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Figure 1: Overview of our contributions. (a) Comparison of the proposed composed person retrieval task with
several classic person retrieval tasks. (b) Illustration of the proposed automatic high-quality CPR data synthesis
pipeline, the proposed training framework FAFA, and the first carefully annotated test set in this domain, ITCPR.
(c) Some examples from our fully synthetic SynCPR dataset.

Abstract

Person retrieval has attracted rising attention. Existing methods are mainly divided
into two retrieval modes, namely image-only and text-only. However, they are
unable to make full use of the available information and are difficult to meet diverse
application requirements. To address the above limitations, we propose a new
Composed Person Retrieval (CPR) task, which combines visual and textual queries
to identify individuals of interest from large-scale person image databases. Never-
theless, the foremost difficulty of the CPR task is the lack of available annotated
datasets. Therefore, we first introduce a scalable automatic data synthesis pipeline,
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which decomposes complex multimodal data generation into the creation of textual
quadruples followed by identity-consistent image synthesis using fine-tuned gen-
erative models. Meanwhile, a multimodal filtering method is designed to ensure
the resulting SynCPR dataset retains 1.15 million high-quality and fully synthetic
triplets. Additionally, to improve the representation of composed person queries,
we propose a novel Fine-grained Adaptive Feature Alignment (FAFA) framework
through fine-grained dynamic alignment and masked feature reasoning. Moreover,
for objective evaluation, we manually annotate the Image-Text Composed Person
Retrieval (ITCPR) test set. The extensive experiments demonstrate the effectiveness
of the SynCPR dataset and the superiority of the proposed FAFA framework when
compared with the state-of-the-art methods. All code and data will be provided at
https://github.com/Delong-liu-bupt/Composed_Person_Retrieval.

1 Introduction

Person retrieval [1, 2] aims to identify target individuals from large-scale databases and encompasses
two primary research directions: image-based person retrieval (IPR) [3] and text-based person retrieval
(TPR) [4]. Typically, they rely independently on images or textual queries to identify the intended
targets. In fact, in real-world scenarios, visual and textual information are often simultaneously
available when searching for specific individuals. For example, when looking for a missing person,
people may refer to the past photographs along with a recent verbal description. However, existing
methods fail to fully exploit this combined information, resulting in suboptimal retrieval accuracy.

To address this drawback, as shown in Figure 1(a), a novel task named Composed Person Retrieval
(CPR) is introduced, which fuses visual and textual information for person retrieval. Similar to
Composed Image Retrieval (CIR) [5, 6], the CPR data will also comprise numerous triplets (Iq, Tq,
It), where each triplet consists of a reference person image (Iq), a relative caption (Tq), and one or
more target images4 (It). The objective is to effectively locate It by exploiting the complementary
information between Iq and Tq . Constructing such data requires paired images of individuals with the
same identity (ID) and textual descriptions highlighting their differences. However, manual collection
and annotation is time-consuming, costly, and often hindered by privacy issues, limiting both the
variety and scale of the depicted scenarios. Consequently, this poses a significant challenge to the
construction of a comprehensive, high-quality, large-scale training dataset for CPR task.

To cope with these challenges, we propose a scalable automatic CPR data synthesis pipeline, depicted
in Figure 1(b). The generation of complex multimodal triplets is achieved by overcoming two
key problems: First, how to create pure and diverse textual data. Second, how to leverage the
generative models to transform a subset of this text into identity-consistent person images, thus
attaining CPR data synthesis. Specifically, this pipeline is decomposed into three stages. First, a
Large Language Model (LLM) [7] generates abundant textual quadruples, and each one comprises
two image descriptions and two relative captions that connect them. Through carefully designed
prompts, the LLM is guided to produce diverse descriptions reflecting a wide range of individuals
and states, while effectively capturing relative differences.

In order to solve the second problem, we first fulfill the synthesis of person image-text pairs in
the second stage. Considering that directly employing pretrained diffusion models to individually
generate Iq and It will lead to identity mismatches and discrepancies from real-world distributions.
Thus, we fine-tune generative models [8, 9] using real-world data [4] to derive a suitable person
image generator firstly. Subsequently, by merging textual prompts, we simultaneously generate a
single image containing two related sub-images, which are then cropped into the reference image and
the target one, thereby ensuring identity consistency.

In the third stage, rigorous data filtering method is designed to ensure the high quality of triplets.
Specifically, a multimodal large language model (MLLM) [10] is applied to evaluates the generated
triplets according to four scoring criteria: image quality, identity consistency, text-image alignment,
and relative caption quality. After filtering based on these scores, a high-quality, fully synthetic CPR
dataset named Synthetic Composed Person Retrieval (SynCPR) can be obtained, and its representative
examples are shown in Figure 1(c).

Moreover, we propose a novel framework tailored for CPR task: Fine-grained Adaptive Feature
Alignment (FAFA). FAFA strengthens model training by integrating fine-grained dynamic alignment
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with bidirectional masked feature reasoning, thereby generating more comprehensive, robust, and fine-
grained representations. Finally, in order to conduct an objective evaluation of FAFA’s performance,
an Image-Text Composed Person Retrieval (ITCPR) test set is carefully constructed and manually
annotated, based on widely-used clothes-changing person retrieval datasets such as Celeb-reID [11],
LAST [12], and PRCC [13]. Among them, we annotate the relative captions by selecting images
of the same identity in different outfits or states, and ultimately form complete triplets. Extensive
experiments on ITCPR dataset demonstrate the effectiveness of both the proposed automated triplet
synthesis pipeline and the FAFA framework. The main contributions can be summarized as follows:

• A novel cross-modal task, composed person retrieval is proposed for the first time, aiming to
address person retrieval by making full use of combined visual-textual information.

• A scalable automatic triplet synthesis pipeline is presented, which greatly alleviates the diffi-
culties in CPR data annotation. Based on this pipeline, the first million-scale, high-quality and
fully synthetic CPR dataset named SynCPR is constructed.

• A new CPR framework, called FAFA is proposed, which significantly improves retrieval per-
formance through fine-grained dynamic alignment and bidirectional masked feature reasoning.

• The first carefully annotated test set named ITCPR is constructed, and extensive experiments
validate the effectiveness of our proposed methods.

2 Related Work

Person Retrieval. Person retrieval primarily comprises two research directions: IPR and TPR. IPR
has been extensively explored from various perspectives, including feature extraction [3, 14, 15],
metric learning [16], lightweight architecture design [17–19], multi-branch frameworks [1, 20], and
attention mechanisms [21, 22]. A related subtask, clothes-changing image person retrieval (CC-IPR)
[11], targets identification across outfit variations and has driven the development of specialized
datasets [11, 13, 12] and methods [23–25]. In comparison, TPR emerges later but has progressed
rapidly. It focuses on aligning visual and textual features within a unified embedding space. Early
TPR approaches emphasize global [26–28] and local [29–33] feature extraction and employ cross-
modal matching losses [34] but often have difficulty in balancing efficiency and accuracy. More
recently, visual-language pretrained (VLP) models [35–38] have significantly improved retrieval
performance through carefully designed auxiliary tasks [39, 40, 2] tailored specifically for TPR
fine-tuning. However, despite substantial progress, existing approaches still struggle to effectively
integrate visual and textual information for precise identification of specific individuals, which
remains an essential and practical requirement. To bridge this gap, we propose the CPR task.

Composed Image Retrieval. CIR [41–43], as a representative compositional learning task [44, 45],
jointly leverages image and textual queries for precise image retrieval. CIR has been extensively
applied in fashion [5] and real-world domains [6, 46], fostering diverse image-text fusion and training
strategies. However, existing supervised CIR methods [47, 48, 42, 43] heavily depend on annotated
triplet datasets, inherently limiting their generalizability. To alleviate reliance on annotation, recent
zero-shot CIR (ZSCIR) approaches [49] propose techniques such as image-to-pseudo-text conversion
[49, 46, 50, 51] or using LLM-generated target descriptions to reformulate CIR as pure text-to-image
retrieval [52, 53]. Compared to CIR, CPR imposes stricter constraints on image relevance and places
greater emphasis on fine-grained variations during retrieval. Consequently, existing CIR methods
generally struggle to maintain effectiveness under the CPR setting.

Diffusion Models. Diffusion models [54, 55] have become the prevailing architecture for image
generation, with applications in text-to-image synthesis [56–58], image translation [59–61], and
controllable content generation [62–64]. This progress has been accompanied by efficient parameter
tuning strategies such as Low-Rank Adaptation (LoRA) [9] and Adapter-based [65] methods, which
retain high generation quality while enhancing adaptability. The incorporation of Transformer [66]
architectures has led to novel designs like the Diffusion Transformer (DiT) [67], improving scalability
and bring about advanced models such as Stable Diffusion 3 [68], PixArt [69], and Flux [8]. Inspired
by the above, our work elegantly combines the Flux model with LoRA-based fine-tuning to generate
person images that closely resemble visual styles in the real world.
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Figure 2: Overall framework of our method. (a) The pipeline for synthesizing high-quality triplets,
consisting of three key stages: generation of text quadruples, synthesis of person image pairs, and
data filtering. (b) The structure of FAFA. The left part illustrates the training process of the model,
while the right part highlights the key objectives employed by FAFA.

3 Method

The overall framework of the proposed CPR method is illustrated in Figure 2, comprising two main
components. Section 3.1 introduces the automatic pipeline for synthesizing high-quality CPR data,
including textual quadruple generation, identity-consistent image synthesis, and data filtering. Section
3.2 presents the FAFA framework, detailing the model architecture, fine-grained dynamic alignment
objectives, bidirectional masked feature reasoning strategies during training, and the inference
procedure. To objectively evaluate the proposed method, Section 3.3 outlines the construction of the
ITCPR test set.

3.1 High-quality CPR Data Synthesis

Diverse Textual Quadruples Generation. Considering that there is currently a lack of feasible
methods for directly generating multimodal triplet data, we propose decomposing this task into the
generation of single-modality triplets first and then expanding them into multimodal form, which
effectively alleviates this problem. Specifically, an instruction template P(Character, Clothes, Color)
is designed to guide the LLM [7] (denoted as Gllm(·)) to produce textual quadruples. Each quadruple
comprises two pairs of textual triplets, as expressed in Equation 1:

Gllm(p) → ⟨TIq , Tq→t, Tt→q, TIt⟩, (1)

where TIq and TIt denote the same person with different outfits or states and will later be used to
synthesize images Iq and It. The relative caption Tq→t highlights key appearance changes from Iq to
It, while the reverse caption Tt→q describes changes in the opposite direction, allowing two usable
triplets to be constructed from each quadruple. To enhance diversity and avoid repetitive outputs,
each instruction p ∼ P includes multiple descriptive elements and randomly selected high-quality
annotated examples. Providing these random elements and examples ensures semantic richness,
diversity, output quality, and structural stability (see Appendix A.1 for details). A simplified version
of the instruction template is shown below:
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Figure 3: Example pairs of generated person images using different generative models and generation
methods under the same text input.

Generate a quadruple satisfying CPR requirements using the following elements: suggested
character, clothes, color. Follow the output format and content length from: examples.

Identity-consistent High-quality Image Synthesis. As mentioned before, generative models
have been widely applied to text-to-image synthesis. However, most of them are oriented towards
natural images and portraits, and methods specifically for generating pedestrian images are still rare.
Therefore, person images generated by pretrained models often deviate significantly from the style
and distribution of real-world person images encountered in retrieval tasks. To address this, we
fine-tune the cross-attention layers of DiT [67] using LoRA [9] on the dataset of person image-text
pairs:

Attention(Q,K, V ) = Softmax
(
QKT

√
d

)
V, K = WKτ txt(Ttxt), V = WV τ txt(Ttxt) (2)

where Q denotes DiT image features, τtxt(Ttxt) is the text encoder output, and WK , WV are learnable
projection matrices. During fine-tuning, only the LoRA components in the cross-attention layers
are updated, while all other parameters remain frozen. Given a weight matrix W ∈ Rh×l, LoRA
introduces trainable matrices B ∈ Rh×r and A ∈ Rr×l, with r ≪ min(h, l), and computes the
residual update as ∆W = βγBA, where β controls LoRA strength and γ is a learnable layer-specific
scaling factor. The updated weights are then given by W′ = W+∆W, enabling parameter-efficient
adaptation. Training is guided by a flow-matching objective function [70].

Once fine-tuning is complete, as shown in Figure 3, the generative model’s inherent consistency
capability, that is, the ability to generate coherent elements within a single image, is ingeniously
leveraged to synthesize image pairs with consistent identities, which cannot be achieved through
independent generation. Specifically, we first define a layout prefix and merge TIq and TIt into a
unified prompt. Then, this prompt is input to the model to generate a single image with left and right
sub-images. The final images Iq and It are obtained by cropping:

Rectangular grid layout for left and right images. Each image is independent, ... Left: TIq , Right: TIt .

Furthermore, to maximize textual quadruple utilization, we dynamically adjust β, generating n image
pairs for each textual pair (TIq , TIt), thus creating 2n triplets. Besides, images within the same triplet
share a unique ID, while those within groups that share the same relative captions are assigned a
common group ID (GID), facilitating label smoothing during training.

Data Filtering. To ensure the quality of generated data, the MLLM [10] is employed to evaluate
each generated triplet on a scale from 1 to 10 across four criteria: (1) naturalness of individuals in
Iq and It (excluding resolution and instead focusing on visual realism, noise, and artifact presence);
(2) identity consistency between Iq and It; (3) alignment between images and their corresponding
descriptions (Iq ↔ TIq ); and (4) CPR task relevance (Iq + Tq → It). Triplets with an average score
below a strict threshold of 8.5 are discarded, leading to the removal of approximately 59% of the data.

Based on this pipeline, a large-scale synthetic dataset named SynCPR is constructed, consisting
of 1.15 million high-quality triplets. Further implementation details regarding data synthesis (e.g.,
complete prompt templates and additional visualization examples) can be found in the Appendix A.
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3.2 End-to-End Composed Person Retrieval Framework

A new retrieval framework is proposed to achieve end-to-end CPR, where the FAFA is constructed to
achieve fine-grained feature alignment.

3.2.1 The FAFA Architecture

Inspired by BLIP-2 [38], the proposed FAFA architecture, as shown in Figure 2(b), integrates a frozen
image encoder and a lightweight Query Transformer (Q-Former). The Q-Former enables efficient
multimodal representation extraction through a trainable query mechanism. It supports two encoding
pathways: one is an image-guided path that combines visual and textual inputs, and the other is a
purely visual path.

Given an input triplet ⟨Iq, Tq, It⟩, the frozen image encoder extracts visual features from the reference
image Iq, which are then combined with the relative caption Tq and fed into the Q-Former. The
textual [CLS] token, after passing through a text projection layer, yields the query representation
fq ∈ Rd. Meanwhile, the target image It is processed by the same frozen encoder, and its visual
features are routed through the purely visual branch of the Q-Former. The learnable query tokens in
this branch are projected along the sequence dimension using a visual projection layer, generating the
fine-grained feature representation ft = {ft(1), ft(2), . . . , ft(N)} ∈ RN×d, where N denotes the
number of learnable queries and d is the feature dimension.

3.2.2 Fine-grained Adaptive Feature Alignment

Fine-grained feature matching is another inherent challenge in the CPR task. To deal with the issue,
we propose a fine-grained dynamic alignment mechanism, integrating feature diversity supervision
and masked feature reasoning into an end-to-end optimization strategy.

Fine-grained Dynamic Alignment (FDA). Unlike conventional contrastive learning methods [35, 71]
that focus on global single-feature matching, the proposed approach dynamically aligns multiple
fine-grained features from the target image with the query representation. Specifically, for each input
triplet, the similarity between the query representation fq and the set of target fine-grained features ft
is calculated by using dynamic feature selection and aggregation:

Sim(fq, ft) =
1

k

k∑
i=1

TopKi

{
f⊤
q ft(j)

∥fq∥ · ∥ft(j)∥

}N

j=1

 (3)

where TopKi(·) denotes the ith highest similarity score. This mechanism allows the model to
adaptively select the most relevant fine-grained features for improved precision. During training,
distribution matching and label smoothing are incorporated to enhance contextual alignment. For
batch size B, the ground-truth matching probability is defined as: qi,j =

yi,j∑B
k=1 yi,k

, where yi,j = 1

for exact matches (with the same ID), yi,j = α, α ∈ (0, 1) for partial matches (with the same GID),
and yi,j = 0 for unmatched pairs. The predicted distribution is normalized via softmax: pi,j =

exp(Sim(fi
q,f

j
t )/τ)∑B

k=1 exp(Sim(fi
q,f

k
t )/τ)

, where τ is a temperature parameter. Then, the query-to-target alignment loss
is defined as:

Lq2t =
1

B

B∑
i=1

KL(pi|qi) =
1

B

B∑
i=1

B∑
j=1

pi,j log

(
pi,j

qi,j + ϵ

)
(4)

where KL(·|·) represents Kullback–Leibler divergence and ϵ ensures numerical stability. The reverse
loss Lt2q is computed analogously by interchanging fq and ft, leading to the overall alignment loss:
Lfda = Lq2t + Lt2q.

Feature Diversity (FD) Supervision. To reduce redundancy, a feature dispersion loss is introduced:

Lfd =
1

N(N − 1)

∑
i ̸=j

max

(
ft(i)

⊤ft(j)

|ft(i)| · |ft(j)|
−m, 0

)
(5)

where m sets the maximum cosine similarity, encouraging diversity among internal representations.

Masked Feature Reasoning (MFR). To exploit complementary information between reference
images and relative text, a bidirectional MFR strategy is proposed. Specifically, the random masking
operation (30%) is applied to fq and the average pooled target image feature f̄t, thus producing
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Figure 4: Some representative examples from the ITCPR dataset.

masked features f̃q and f̃t. The four features are jointly fed into a lightweight decoder Φ to minimize
reconstruction loss:

Lmfr = E(fq,f̄t)∼B

[
|fq − Φ([f̄t, f̃q])|22 + |f̄t − Φ([fq, f̃t])|22

]
(6)

This loss drives the model to recover complete representations and enhance cross-modal alignment.
Finally, by combining the above three components, the overall training objective is formulated as:
L = Lfda + λ1Lfd + λ2Lmfr, where λ1 and λ2 are balancing weights for the auxiliary loss terms.

3.2.3 Inference Workflow

During inference, the fine-grained feature sets for all target images in the retrieval dataset are pre-
extracted and stored as V = f i

t
Nt

i=1. Given a combined query feature fq, the similarity between it
and each f i

t is computed using the same dynamic alignment method employed during training, thus
ensuring efficient and reliable retrieval of the most relevant target images.

3.3 ITCPR Dataset

To objectively evaluate CPR methods, we manually construct the ITCPR dataset. Each triplet contains
a reference image and a target image sharing the same identity, selected from public clothes-changing
datasets including Celeb-reID [11], PRCC [13], and LAST [12], ensuring identity consistency
despite variations in clothing or background. Each triplet also includes a relative caption explicitly
highlighting differences between the two images, requiring models to jointly leverage visual and
textual information for accurate retrieval. To ensure evaluation reliability, gallery images are carefully
reviewed to eliminate potential false-negative cases. Ultimately, ITCPR contains 2,225 annotated
triplets, comprising 2,202 unique query combinations (Iq, Tq) from 1,199 identities. The gallery
consists of 20,510 person images, among which 2,225 correspond directly to queries. Representative
examples are illustrated in Figure 4.

4 Experiments

4.1 Experimental Setup

Datasets. For data generation, we fine-tune Flux.1 [8] on the training split of CUHK-PEDES [4],
a widely-used real-world person dataset containing 68,126 manually annotated image-text pairs.
For the CPR task, FAFA is trained on 1.15 million filtered high-quality triplets from SynCPR, and
evaluations are conducted on the manually annotated ITCPR dataset. Detailed descriptions of all
datasets are provided in the Appendix B.

Choice of Dataset for Fine-tuning. For fine-tuning the model, we chose CUHK-PEDES over other
datasets such as UFine6926 [72], ICFG-PEDES [73], and RSTPReid [74]. CUHK-PEDES was
selected primarily because of its greater scene diversity, encompassing images from five surveillance
datasets that represent a wide range of real-world scenarios, including urban environments and public
spaces. This diversity is crucial for ensuring that the model generalizes well across various contexts,
which is essential for practical person retrieval tasks. In contrast, ICFG-PEDES and RSTPReid, which
mainly focus on constrained environments like parking lots (MSMT17 [75]), lack the same level of
visual variation, potentially limiting the model’s adaptability to real-world scenarios. Furthermore,
while UFine6926 offers more fine-grained text-image pairings, its higher image quality and controlled
video sources do not provide the same environmental diversity as CUHK-PEDES, which could lead
to overfitting. By fine-tuning on CUHK-PEDES, we strike a balance between rich textual descriptions
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Table 1: Comparison of methods across different domains and settings. For all domains other
than CPR, models are trained on the most representative dataset within each domain.
Domain Method Ref. Pretraining Data Setting Rank-1 Rank-5 Rank-10 mAP

IPR
TransReID [76] ICCV21

Market-1501 [77] Image-only
7.27 17.30 22.75 12.57

SOLIDER [78] CVPR23 8.45 18.48 23.89 13.74
CLIP-ReID [79] AAAI23 7.95 18.12 22.75 13.31

CC-IPR CAL [80] CVPR22 LTCC [81] Image-only 9.86 22.34 29.20 16.45
FIRe2 [82] TIFS24 10.76 22.84 29.29 17.00

TPR

RaSa [83] IJCAI23 CUHK-PEDES [4] Text-only 28.02 49.23 57.77 38.04
IRRA [2] CVPR23 26.39 46.46 56.27 36.13

RDE [84] CVPR24 CUHK-PEDES [4]
Image-only 6.31 13.78 18.46 10.43
Text-only 26.43 47.41 56.45 36.35

Image + Text 29.79 51.82 60.49 40.10

Fuse SOLIDER + RaSa - - Image + Text 30.97 52.86 61.81 41.22
FIRe2 + RaSa - 32.89 54.27 62.03 42.16

ZSCIR
Pic2Word [49] CVPR23 CC3M [85]

Combination
21.21 37.15 44.51 29.11

CoVR-BLIP [86] AAAI24 WebVid-CoVR [86] 26.75 47.68 56.36 36.49
LinCIR (ViT-G) [87] CVPR24 - 23.93 44.46 53.18 33.95

CIR
CaLa [47] SIGIR24 CIRR [6] Combination 24.02 44.64 53.45 34.08

SynCPR (Ours) 39.33 60.85 68.66 49.29

SPRC [48] ICLR24 CIRR [6] Combination 25.07 45.73 54.50 35.05
SynCPR (Ours) 42.27 61.81 69.35 51.62

CPR FAFA (Ours) - SynCPR (Ours) Combination 46.54 66.21 73.12 55.60
∗Bold indicates the best performance; Underline indicates the second best.

and diverse visual settings, ensuring the model’s robustness when confronted with the variety of
challenges encountered in real-world person retrieval tasks.

Implementation Details. All experiments are conducted using two H800 GPUs. During the SynCPR
construction process, we adopt Qwen2.5-70B [7] as the LLM to generate textual quadruples, and
use Flux.1 [8] as the base image generation model. This model is fine-tuned by LoRA [9] with its
rank r = 64, and we set β = 1 to generate five identity-consistent image pairs per quadruple in
the most realistic style. Another five image pairs are generated using random values of β ∈ (0, 1)
to ensure stylistic diversity. Qwen2.5VL-32B [10] is employed for data filtering. For training the
FAFA framework, we set the total number of epochs to 10 and use a batch size of 256. The soft
label strength in FDA is set to α = 0.5, the number of selected fine-grained features is k = 6, and
τ = 0.02. The margin parameter m in Lfd is set to 0.5. The loss balancing hyperparameters are
set to λ1 = 1 and λ2 = 0.5. All comparison methods are implemented using the optimal settings
reported by them. Additional implementation details can be found in the Appendix C.1.

Evaluation Metrics. Retrieval performance is measured using Rank-k accuracy and mean average
precision (mAP). Rank-k indicates the probability of correct matches in top-k retrievals, while mAP
averages precision across all queries.

4.2 Results

To objectively evaluate FAFA and the SynCPR dataset, we extensively compare recent approaches
from person retrieval and composed image retrieval. The compared methods are categorized into
four settings based on input types: 1) Image-only, which relies solely on the reference image and
retrieves targets via the visual encoder; 2) Text-only, which uses only relative captions and retrieves
targets through cross-modal alignment; 3) Image + Text, which calculates similarity scores separately
via the first two methods and then retrieves targets using their average; and 4) Combination, which
simultaneously inputs both reference image and relative caption into the model for target retrieval.
As shown in Table 1, our method consistently outperforms others across all settings. Specifically,
directly applying IPR methods yields the lowest performance due to clothing variations between
reference and target images. Even CC-IPR methods trained explicitly on clothes-changing datasets
struggle due to limited generalization. In contrast, TPR methods achieve relatively better results, as
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Table 2: Ablation experiments on each component of FAFA. To validate the effectiveness of FDA,
we additionally introduce the image–text contrastive loss (ITC) [71] for comparison.

No. Components ITCPR Dataset

SynCPR ITC FDA FD MFR Rank-1 Rank-5 Rank-10 mAP

1 ✓ ✓ 41.33 61.72 68.94 50.94
2 ✓ ✓ 45.04 64.90 72.21 54.41
3 ✓ ✓ ✓ 46.05 65.85 73.02 55.49
4 ✓ ✓ ✓ 45.78 65.58 72.62 55.13
5 ✓ ✓ ✓ ✓ 46.54 66.21 73.12 55.60

(a) � (b) � (c) Filtering Threshold (d) Scale of the Dataset

Figure 5: Sensitivity analysis of FAFA on hyperparameters and analysis of the SynCPR dataset.

the relative captions inherently match target images, although some visual information is missing.
Among baseline approaches excluding our method, the Image + Text strategy achieves the best results,
validating the rationality of our ITCPR dataset and emphasizing the necessity of combining visual
and textual queries for optimal retrieval.

For CIR methods, although inherently designed for joint image-text queries, their training generally
targets natural images involving significant visual modifications, thus lacking fine-grained retrieval
capability required by CPR tasks. Notably, supervised CIR methods trained on original CIR datasets
perform worse than certain ZSCIR methods on our task, underscoring the need for CPR-specific
datasets and methods. Training supervised CIR methods on our SynCPR dataset significantly
improves retrieval performance to a practical level. Furthermore, integrating our fine-grained retrieval
framework FAFA with SynCPR further substantially enhances retrieval accuracy, confirming the
indispensable roles of both the proposed dataset and FAFA.

4.3 Ablation Study

In this section, we conduct comprehensive ablation experiments to investigate the contribution of each
component within the FAFA framework. Additionally, we discuss the impact of key hyperparameters
in both the FAFA model and the data generation process.

FAFA Model. We train variants of the FAFA model with different components on the SynCPR
dataset and evaluate their performance on the ITCPR test set. As shown in Table 2, experimental
results demonstrate that due to the specific nature of the CPR task, employing our proposed fine-
grained dynamic alignment strategy can substantially improve retrieval performance. Moreover, both
supervision strategies, namely the FD strategy for enhancing feature diversity and the MFR strategy
for capturing complementary features, contribute effectively to performance gains. The FAFA model
equipped with all components achieves the best overall performance.

Hyperparameters of FAFA. Figures 5(a) and 5(b) illustrate the impact of two critical hyperparam-
eters in our proposed FAFA model, namely the soft label strength α and the number of selected
fine-grained features k in FDA, on the retrieval performance. Regarding α, lower values mean
that the triplets generated from the same textual data will be treated more negatively, thus have an
adverse impact on FAFA’s semantic understanding. Conversely, higher values will weaken FAFA’s
ability to maintain identity consistency. This observation is consistent with our experimental results:
as α increases, the retrieval performance initially improves and subsequently declines, achieving
optimal performance when α = 0.5. Similarly, the number of fine-grained features k also exhibits a
comparable trend, and the optimal performance can be obtained when k = 6. This also aligns with
expectations, because smaller k values will restrict the involvement of sufficient fine-grained features
in retrieval, whereas excessively large k values may make the training process too homogenized, thus
are not suitable for retrieval tasks that require distinctive feature representations.
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SynCPR Dataset. Figure 5(c) presents the influence of applying various scoring thresholds on
retrieval performance and data filtration ratio after generating all triplet data. Without any filtering,
the potential noise in the dataset negatively impacts the FAFA training process, and consequently
reduces retrieval performance. The optimal retrieval performance is observed when the threshold
is set at 8.25 and 8.5. To enhance training efficiency and ensure the high quality of the SynCPR
dataset, we finally adopt the latter. Furthermore, we perform sampling on the retained 1.15 million
high-quality triplets via GID to validate the appropriate scale of the SynCPR dataset. As shown
in Figure 5(d), as the dataset size increases, the retrieval performance improves rapidly. When the
number of samples exceeds 500k, the marginal gains gradually diminish, and it saturates when the
number of samples reaches approximately 800k. This confirms that our SynCPR dataset containing
1.15 million triplets is large and challenging enough to train better CPR models and is also convenient
for comparison with our baseline method.

5 Conclusion

We introduce a practically significant task of composed person retrieval. Firstly, we put forward a
scalable synthetic pipeline to address the data scarcity problem, and construct a high-quality SynCPR
dataset at million scale. Secondly, a novel FAFA framework is introduced to enhance fine-grained
retrieval accuracy. Extensive experiments on the newly annotated ITCPR benchmark confirm the
significant superiority of our approach over the existing IPR, TPR, and CIR methods. Future work
will explore composed person retrieval based on multiple images and multiple textual descriptions, as
well as retrieval under open-set conditions.

Ethical Considerations. While the CPR task holds significant promise for applications such as
locating missing individuals, it also raises critical ethical concerns, particularly regarding privacy
and the potential for surveillance misuse. The ability to track individuals across different locations
introduces privacy risks, which can be mitigated through various safeguards. For instance, invisible
digital watermarks have been embedded in the images of the generated SynCPR dataset to ensure
traceability, and access is restricted to academic use under responsible-use agreements. Additionally,
biases inherent in synthetic data generated by LLMs have been addressed by ensuring substantial
diversity in the generated data. Statistical information and visual representations in Appendix B.2 of
the appendix effectively demonstrate the demographic diversity of the SynCPR dataset, encompassing
various genders, ages, and ethnicities. These measures ensure the responsible use of the proposed
method, adhering to the principle of "Tech for Good" while addressing potential societal risks.

Limitations

While the proposed CPR task demonstrates significant potential, several limitations remain. The
SynCPR dataset, although highly diverse, relies on synthetic data, which may still introduce a domain
gap when applied to real-world scenarios. Despite efforts to minimize this gap through adjustments
in the generation strategy and fine-tuning of the generative model, the synthetic nature of the training
data may not fully capture all the variations found in real-world images. Additionally, the ITCPR test
set primarily focuses on clothing changes, which limits the model’s ability to generalize to other types
of variations, such as changes in scenes or hairstyles. Expanding the dataset to encompass a broader
range of person-related variations will be an important area for future improvement. Furthermore, the
current FAFA framework and the ITCPR test set focus mainly on scenarios where only a single image
and textual description are provided, which may not align with more complex real-world situations.
Addressing this limitation will be a key focus for future work.
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Appendix

A More Details for High-Quality Triplet Synthesis

The triplet data required for Composed Person Retrieval (CPR) consists of three key elements: a
reference image Iq, a relative caption Tq, and a target image It. Two significant challenges hinder
the complete synthetic generation of such triplets. Firstly, generating a pair of person images (Iq, It)
consistent with real-world distributions while preserving identity. Secondly, providing accurate
textual descriptions of relative changes between the two images. To address these challenges, as
shown in Figure S6, we effectively divide the data synthesis process into three steps. First, a Large
Language Model (LLM) [7] generates textual data comprising descriptions for synthesizing image
pairs and relative captions. Second, generative models [8] utilize the textual descriptions to produce
realistic and identity-consistent image pairs, thereby forming the required triplets. To ensure realism
in the generated images, we further fine-tune the generative models. Finally, a multimodal large
language model (MLLM) [10] evaluates the synthesized triplets across multiple dimensions, filtering
out lower-quality data.

A.1 Diverse Textual Quadruples Generation

In this step, we simplify the multimodal triplet generation objective (Iq, Tq, It) to purely textual
quadruple generation (TIq , Tq→t, Tt→q, TIt) using an LLM. Each quadruple comprises a reference
description TIq , a target description TIt , a relative caption describing changes from TIq to TIt (Tq→t),
and another describing the reverse changes (Tt→q). To achieve this, we select QWen2.5-72B [7] as
the LLM and carefully design structured instructions to generate quadruples meeting the desired
criteria.

The instruction format, illustrated in Figure S6, initially provides an overview of the task and
fundamental requirements for the LLM. It then specifies detailed guidelines for generating each
element within the quadruple. Additionally, the instructions include three high-quality example
outputs randomly selected from 100 manually annotated cases to enhance the quality and stability
of the LLM outputs. Random sampling of examples promotes diversity in instructions, preventing
repetitive outputs caused by similar inputs.

Notably, the instructions suggest the primary character, clothing items, and colors, randomly drawn
from candidate lists. These lists are derived from relevant datasets [4, 73, 74] containing person
descriptions, supplemented by additional related elements. Such a design ensures generated data
closely aligns with real-world distributions while maximizing its diversity and comprehensiveness.
The LLM subsequently generates structured prompts for image synthesis and composed retrieval
based on these provided elements.

A.2 Identity-consistent High-quality Image Synthesis

Once the textual quadruples (TIq , Tq→t, Tt→q, TIt) are obtained, we convert TIq and TIt into their
corresponding images, Iq and It, thus forming the desired triplet data. For this purpose, we adopt
FLUX.1 [8], an advanced generative model, as the base model and fine-tune it using Low-Rank
Adaptation (LoRA) [9] on a text-based person retrieval (TPR) dataset [4] to generate person images
consistent with real-world distributions. Due to the inherent randomness in diffusion model image
generation, a critical challenge remains ensuring identity consistency between paired images. How-
ever, diffusion models intrinsically possess the capability to generate two identical or similar objects
within one image. We leverage this internal consistency capability by generating two sub-images
within a single image, thereby ensuring detailed consistency of shared elements in Iq and It. To
achieve this, we specifically design the image generation prompt template to include two equally
sized sub-images with the same identity.

During this stage, prompts generated by the LLM are input into FLUX.1 to produce images with a
resolution of 400 × 400. This configuration allows each generated image to be split into two sub-
images (192× 384), forming the pair (Iq, It). This padding strategy mitigates inaccuracies that may
arise during image generation and avoids artifacts caused by image cropping. As depicted in Figure
S6, this method effectively maintains identity consistency between the sub-images while varying
their appearances and states, demonstrating clear advantages over separate generation. Consequently,
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'Quality': 9, 
'Consistency': 8, 
'Align': 10, 
'Relative_prompt_quality': 9

Please help me provide a prompt with the same structure as my example but different content. Structurally, first provide two detailed descriptions 
of the appearance of a single person's image, labeled as Prompt1 and Prompt2. Ensure both describe the same person but with partially different 
outfits (backgrounds/actions may vary, and note that backgrounds/actions are relatively less important compared to appearance, so you can 
choose to omit relevant parts when describing). When Prompt1 is given, Relative Prompt1 should be a relative description or abbreviated version 
of Prompt2, only mentioning outfit differences from Prompt1 (omit identical elements). Similarly, Relative Prompt2 should describe only the 
differences between Prompt1 and Prompt2. Three examples: {Examples} Note: The output must describe a '{Character}'. At least one prompt 
must mention '{Clothes}', and include at least one '{Color}' clothing/accessory. The final output must be logical, strictly follow the example 
structure, avoid duplicating any example's content, meet all requirements above, and ensure sentence lengths are similar to the examples.

LLM Instructions Step 1: Diversified Quadruple Generation

man, woman, boy, girl, teenager, 
elderly man, elderly woman, 
child, baby, toddler, young adult, 
middle-aged man, middle-aged 
woman, student, teacher, doctor, 
nurse, chef, engineer, office 
worker, police officer, firefighter, 
farmer, artist, musician, athlete, 
construction worker, salesperson, 
scientist, pilot, driver, barista, 
tourist, shopper, cyclist, jogger, 
hiker, swimmer, dancer, yoga 
p r a c t i t i o n e r ,  g a r d e n e r , 
photographer, traveler, waitress, 
street vendor, businessman, 
student with backpack, person in 
wheelchair,  siblings,  bride, 
groom, bride with wedding dress, 
groom in suit, person with pet 
dog, person holding umbrella, 
person wearing headphones, 
military officer, paramedic.

Character List
T-shirt, shirt, sweater, hoodie, tank top, 
blouse,  polo shirt ,  long-sleeve shirt , 
cardigan, crop top, sweatshirt, vest, jeans, 
shorts, skirt, trousers, leggings, sweatpants, 
cargo pants, chinos, denim skirt, mini skirt, 
pleated skirt, cargo shorts, jacket, coat, 
blazer, windbreaker, parka, trench coat, 
leather jacket, denim jacket, bomber jacket, 
puffer jacket, raincoat, sneakers, sandals, 
boots, loafers, high heels, flats, oxford 
shoes, running shoes, hiking boots, slip-on 
shoes, espadrilles, ankle boots, glasses, 
sunglasses, scarf, hat, baseball cap, beanie, 
backpack, handbag, belt, watch, necklace, 
earrings, bracelet, gloves, hairpin, tie, bow 
tie, umbrella, headphones, fanny pack, 
d re s s ,  su i t ,  t u x e d o ,  e v e n i n g  g o w n , 
sportswear, yoga pants, swimsuit, bikini, 
apron, uniform, lab coat, chef's hat, striped 
pattern, floral print, plaid shirt, polka dots, 
plain color, graphic print, checkered design, 
rolled-up sleeves, belted waist.

Clothes List
red, green, blue, yellow, cyan, magenta, black, white, gray, 
brown, orange, purple, pink, beige, ivory, navy, teal, maroon, 
olive, lime, gold, silver, bronze, amber, peach, turquoise, 
lavender, coral, indigo, plum, salmon, mint, khaki, chocolate, 
crimson, violet, emerald, jade, aquamarine, rose, charcoal, 
cream, tan, burgundy, scarlet, chartreuse, cobalt, periwinkle, 
ruby, sapphire, amethyst, topaz, fuchsia, blush, canary, 
copper, denim, orchid, pearl, rust, sage, seafoam, sepia, 
slate, tangerine, ultramarine, vermillion, wine, forest green, 
sky blue, ocean blue, sand, desert, sunset orange, midnight 
blue, stone gray, grass green, cloud white, earth brown, 
seaweed green, lavender field, mountain gray, rose gold, 
platinum, steel, onyx, diamond, ruby red, emerald green, 
sapphire blue, amethyst purple, opal, topaz yellow, ash, 
pewter, slate gray, graphite, smoke, dove gray, stone, taupe, 
off-white, eggshell, neon green, neon pink, neon yellow, neon 
orange, electric blue, hot pink, pastel blue, pastel pink, 
pastel yellow, pastel green, baby blue, baby pink, fluorescent 
green, fluorescent orange, royal blue, mustard, apricot, 
cerulean, persimmon, mauve, ochre, ebony, ebony black, 
jade green, carnation pink, raspberry, peacock blue, 
mandarin, brick red, bubblegum pink.

Color List

Random Random Random

Examples

Prompt1 ( ��� ):A woman with black hair is wearing a teal tank top, black shorts, and white sandals. She is carrying a black crossbody bag.
Prompt2 ( ��� ): A woman with black hair is wearing a teal tank top, black shorts, and black ankle boots. She is carrying a white tote bag.
Relative Prompt1 ( ��→� ): Wearing black ankle boots, carrying a white tote bag.
Relative Prompt2 ( ��→� ): Wearing white sandals, carrying a black crossbody bag.

LLM Output 

Step 2: Constant Image Pair Synthesis
Wearing black ankle boots, 
carrying a white tote bag.

Dataset Training Inference

Wearing white sandals, 
carrying a black crossbody 

bag.

Rectangular grid layout for left and right images. Each image is independent, shown in photorealistic style. Left: ��� Right: ��→� 

Generation Prompt

Evaluate two synthetic images (possibly surveillance-style; ignore image sharpness) depicting the same person with 
different outfits based on four criteria (1-10 scale). Background: Both images are generated with corresponding 
prompts and mutual modification descriptions.Evaluate these two images across four dimensions (1-10 scale, 1=worst, 
10=best). First dimension 'Quality': Assess if both images depict plausible human figures without border artifacts or 
incoherent compositions, ignoring sharpness. Higher scores indicate natural, well-composed figures. Second dimension 
'Consistency': Evaluate if �� and �� represent the same person despite differing outfits/poses/scenes. Higher scores 
mean stronger facial/body feature consistency. Third dimension 'Align': Check how accurately �� matches ��� and �� 
matches ���, verifying objects, colors, and scene elements. Higher scores reflect precise text-image alignment. Fourth 
dimension 'Relative_prompt_quality': Judge if  ��→� accurately modifies �� into �� and and whether ��→� accurately 
reverses this transformation from �� to �� . Deduct points for incorrect/unnecessary changes. Higher scores mean 
prompts precisely capture mutual differences while preserving shared elements. Output format: 'Quality': score, 
'Consistency': score, 'Align': score, 'Relative_prompt_quality': score. Use single quotes. Only provide the scores 
dictionary, no explanations.

MLLM Instructions 

Scores

SynCPR

Step 3: Data Filtering �� ���

Figure S6: Pipeline of high-quality CPR triplet construction with detailed instruction design.
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1. black shirt
2. bright yellow 
zip-up jacket

Low-Quality 
Person Images

Text-Image 
Misalignment

A man is jogging outdoors on a paved 
path, wearing a black zip-up jacket 

over a bright yellow shirt, paired with 
dark blue pants and white sneakers.

Identity 
Inconsistency

Low-Quality
Relative Caption

Wearing a light blue hoodie, with 
one hand resting on a bicycle.

Wearing a beige button-up shirt, 
sitting on a park bench.

standing in front 
of a bicycle.

The same man is jogging on a red 
running track in an athletic setting. He 

is dressed in a gray zip-up jacket,  
black athletic leggings with a Nike logo, 
and wears neon green running shoes.

Figure S7: Representative examples of samples filtered out during the data filtering process. From
left to right, each panel corresponds to one of the four evaluation dimensions, and the samples are
excluded due to low scores in their respective dimensions.

we acquire the desired dataset, and swapping the reference and target images yields two sets of triplet
annotations. By dynamically adjusting the LoRA strength β, each textual quadruple generates ten
image pairs. Images with identical relative captions are defined under the same group identity (GID),
thus forming strong positive samples within triplets and weak positive samples within groups, with
other instances treated as negative samples.

A.3 Data Filtering

To further ensure the quality of the synthesized data, we employ Qwen2.5-VL 32B [10] combined
with carefully designed instructions to score and filter all generated data. Four dimensions are
considered: first, assessing the fidelity of person images Iq and It, focusing on naturalness, noise, and
artifacts while ignoring image clarity; second, evaluating identity consistency between Iq and It; third,
assessing the alignment between images and their descriptions (e.g., Iq ↔ TIq ); fourth, evaluating the
overall quality of the triplet (Iq+Tq → It), where higher scores indicate the ability to accurately infer
It from the combination of Iq and Tq , with minimal overlap and high complementarity. Qwen2.5-VL
rates each dimension from 1 to 10, and the final score is the average of these dimensions. Triplets
scoring higher than 8.5 are retained and included in the SynCPR dataset. Representative examples of
discarded low-quality data are shown in Figure S7.

B Additional Datasets Details

B.1 ITCPR Dataset

In contrast to existing CIR datasets [5, 6], where reference and target images only need to be loosely
related, the CPR datasets subject to the constraint that both of them depict the same person. Therefore,
when constructing the ITCPR dataset, we ask the selected images to have the same identity, but wear
different clothes or be in different scenes. In our implementation, publicly available clothes-changing
datasets such as Celeb-reid [11], PRCC [13], and LAST [12] are utilized as our image sources.

B.1.1 Dataset Annotation Process

The annotation process, as shown in Figure S8, primarily consists of three steps. The first step involves
selecting identities from the image data sources that have multiple images with different outfits,
ensuring a diverse selection for subsequent steps. In the second step, a pair of images associated with
each chosen identity is selected and denoted as Iq and It. It is worth noting that, ideally, these two
images should depict partially matching outfits, allowing Iq to provide additional clothing-related
information beyond facial features and body posture. This additional clothing information is not
mentioned in the corresponding annotation Tq , ensuring that CPR methods can only correctly identify
It by utilizing both Iq and Tq. Once the image pair is selected, the process moves to the third step,
where manual annotations are created to specifically capture the differences between Iq and It. For
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Clothes-Changing Datasets

Wearing a 
dark green 

sweater and 
no shoes.

Step1: Select Identity Step2: Select 
Image Pair

Step3: Annotate 
Relative Text

①

②
�� �� ��

Wearing a 
pink top, a 

ring, and her 
hair tied up

Figure S8: The annotation process of the ITCPR dataset. The annotation process can be summarized
in three steps: the first step is selecting identities from the clothes-changing datasets, the second
step is choosing pairs of reference and target images for each identity, and the third step is manually
annotating the relative captions.

instance, as shown in case 1 of Figure S8, if the skirt is the same in both the target image and the
reference image, it does not need to be described; the annotation focuses only on differences in
the top and shoes. After manually annotating Tq, a complete triplet annotation process is finalized.
Repeating this process, a batch of triplets (Iq, Tq, It) can be generated for testing CPR methods.

B.1.2 Re-Annotation of the ITCPR Dataset

The gallery contains a large number of noisy images, which may introduce false negatives. For
example, for certain queries, some images may be potential ground truth but remain unlabeled.
Including such cases would reduce the reliability of the evaluation metrics. To address this issue,
all images in the gallery are screened, and any false negative images identified in the dataset are
re-annotated. The re-annotation process is illustrated in Figure S9. After completing the dataset
annotation and adding noise images to the gallery, we use a well-trained visual encoder [78] to search
for the most similar images for each target image, followed by manual inspection and verification.
Through this approach, we effectively eliminate false negatives in the ITCPR dataset.

B.1.3 Statistics of the ITCPR Dataset

In summary, ITCPR comprises a total of 2,225 annotated triplets. These triplets encompass 2,202
unique combinations (Iq, Tq) as queries. ITCPR contains 1,151 images and 512 identities from
Celeb-reID [11], 146 images and 146 identities from PRCC [13], and 905 images and 541 identities
from LAST [12]. In the target gallery, there are a total of 20,510 images of persons from the three
datasets, with 2,225 corresponding ground truths for the queries. The textual annotations have an
average sentence length of 9.54 words. The longest sentence contains 32 words, while the shortest
sentence only contains 3 words. These annotations are exclusively designated for testing in the
ZS-CPR task, which expects to achieve substantial performance without utilizing any data from the
three datasets mentioned above.

B.2 SynCPR Dataset

Using our proposed automated construction pipeline, we successfully build the SynCPR dataset,
which is a fully synthetic dataset specifically designed for the composed person retrieval task. In
the first stage, we utilize Qwen2.5-70B [7] to generate a total of 140,500 textual quadruples. In the
second stage, by employing fine-tuned LoRA [9] combined with Flux.1 [8] and setting β = 1 for
the most realistic person image style, we generate five image pairs per quadruple. Additionally, we
create another five image pairs using randomly selected β ∈ (0, 1), ensuring diverse styles across
generated images. Combining these images with two relative captions from each quadruple yields a
total of 2,810,000 valid triplets. In the third stage, under stringent data filtering criteria, 1,153,220
high-quality triplets are retained. Among the retained samples, a total of 177,530 unique GIDs are
involved. The average length of the relative caption sentences is 13.3 words, excluding punctuation.
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Visual
Encoder

Gallery Images

Target Image Top-k ImagesVisual Token

Target Image Re-annotation Re-annotation

Re-annotation

Method

Example

Target Image

Figure S9: False negative elimination scheme in ITCPR. Top: The method of eliminating false
negative images and adding annotations in the dataset. Bottom: Examples of false negative images
re-annotated in ITCPR.

Wearing denim skirt, 
sitting on a park 

bench.

Wearing black 
leggings, silver 

bracelet, standing 
next to a bike.

No hoodie, sitting on 
a bench.

Wearing gray hoodie, 
holding a skateboard.

Taking a photo of a 
landmark, no hat or 

sunglasses.

Wearing a wide-
brimmed hat and 

sunglasses, browsing 
a map.

Relative Caption Image2Image1

Wearing a copper-
colored t-shirt, 

playing with a toy car 
in a backyard.

Wearing a green 
sweater, sitting on a 

swing.

Wearing a white t-
shirt, carrying a small 

black backpack.

Wearing a red striped 
t-shirt, carrying a 
large green duffel 

bag.

Wearing plaid shirt, 
cyan sneakers.

Wearing cyan jacket, 
white t-shirt, black 

shoes.

Relative Caption Image2Image1

Wearing denim 
jacket, gold chain 

necklace, sitting on a 
park bench.

Wearing gold 
sequined top, walking 

through a park.

Wearing a plaid 
cardigan, dark grey 

thermals, and lying on 
a colorful play mat.

Wearing a white 
cardigan with a plaid 
lining, lying on pastel 

blanket.

Wearing white 
sneakers and carrying 
a canvas backpack on a 

boardwalk.

Wearing orange flip-
flops and holding a 
straw tote bag on a 

sandy beach.

Relative Caption Image2Image1

Wearing magenta 
sweater, holding a 

walking stick.

Wearing magenta 
scarf, gray cardigan, 
holding a newspaper.

Reading a book under 
a tree, no jacket.

Wearing a denim 
jacket, holding a 
basket, walking 

through a garden.

Wearing a navy 
cardigan and black 
loafers, seated in a 

park.

Wearing a burgundy 
cardigan and brown 

loafers.

Figure S10: Representative examples of samples from the SynCPR dataset.

In total, 4,370 distinct words appear across all sentences, further highlighting the diversity of the
SynCPR dataset.

The samples from SynCPR dataset are visualized in Figure S10. Thanks to our diversified textual
generation strategy, realism-oriented fine-tuning of generative models, and rigorous data filtering
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mechanisms, the SynCPR dataset ensures high quality, realism, and diversity of person images. By
leveraging varied image generation prompts and the zero-shot generation capability of generative
models, the SynCPR dataset encompasses rich scenarios, broad age coverage, diverse image clarity,
varied attire and states of individuals, and comprehensive ethnic representation. Furthermore, the
gender ratio in the generated dataset is highly balanced, with males accounting for 51.2%. Although
SynCPR is entirely synthetic, its comprehensiveness significantly surpasses other manually annotated
datasets within the person retrieval domain.

B.3 CUHK-PEDES Dataset

CUHK-PEDES [4] is a widely used benchmark for text-to-person retrieval, comprising 40,206
pedestrian images and 80,412 corresponding textual descriptions annotated across 13,003 unique
identities. The dataset is divided into three subsets: a training set containing 34,054 images and
68,108 descriptions for 11,003 identities, a validation set with 3,078 images and 6,158 descriptions
for 1,000 identities, and a test set comprising 3,074 images and 6,156 descriptions for a separate set
of 1,000 identities. Each image is paired with two independent human-written descriptions, and the
average length of the descriptions exceeds 23 words.

C Additional Experiments and Results

C.1 Additional Implementation Details.

All experiments are conducted on two NVIDIA H800 GPUs. For training the generative models,
we select FLUX.1-dev [8] as the base model and apply LoRA with a rank of r = 64 specifically
to the cross-attention layers. The training is performed with a per-GPU batch size of 1, utilizing
gradient accumulation over eight steps, and optimized using AdamW [88] with an initial learning rate
of 1× 10−5, 10-step warm-up, and weight decay of 0.01, for a total of 20,000 steps. The training
employs bfloat16 mixed precision. Input person images from CUHK-PEDES are resized to 192×384
during training. During inference, each prompt dynamically adjusts LoRA strength, generating ten
paired sub-images of size 400 × 400 via a 25-step beta noise reduction. Each generated image is
first centrally cropped horizontally into two separate images, then each resulting sub-image is further
centrally cropped to form a pair of person images sized 192× 384.

For the Fine-grained Adaptive Feature Alignment (FAFA) framework, we use BLIP-2 [38] and a
frozen ViT-G/14 [89] with an input resolution of 224 pixels. Input images undergo random horizontal
flipping, random cropping with padding, and random erasing, followed by scaling the longer side to
224 pixels while preserving the aspect ratio. The images are then symmetrically padded horizontally
to a final size of 224 × 224 before being input into FAFA. The model is trained on the SynCPR
dataset using a single NVIDIA H800 GPU with a batch size of 256 for 10 epochs. Optimization
is performed using AdamW [88] with an initial learning rate of 2× 10−6. In FAFA, the soft label
strength parameter α is set to 0.5, the number of selected fine-grained features k is set to 6, and the
temperature parameter τ is 0.02. The margin parameter m in the feature difference loss Lfd is 0.5.
The loss balancing hyperparameters are set as λ1 = 1 and λ2 = 0.5. Additionally, for subsequent
training from scratch on the Composed Image Retrieval (CIR) dataset CIRR [6], the model is trained
for 50 epochs with an initial learning rate of 1× 10−5, while all other settings remain consistent.

In our experiments on CIRR, Rank-K serves as the primary metric, measuring the likelihood of
finding the target image within the top-K retrieved candidates. For CIRR, we additionally report
Ranks-K on visually similar subsets, with overall performance summarized as Avg. = Rank-5+Ranks-1

2 .

C.2 Additional Quantitative Results

C.2.1 FAFA for Composed Image Retrieval

The CPR task can be viewed as a more constrained and finer-grained variant of the CIR task,
involving stricter alignment requirements between the reference and target images. Consequently,
the FAFA framework, originally designed for CPR, can naturally be applied to CIR scenarios. We
thus conduct experiments on CIRR, the most representative dataset within the CIR domain. The
results, summarized in Table R1, demonstrate that our FAFA framework achieves comprehensive
state-of-the-art performance with significant advantages, even in the context of CIR. Specifically,
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Table S3: Performance comparison with existing supervised CIR methods on CIRR dataset only.
The best results are marked in bold, and the second-best results are underlined. † indicates that the
method is pretrained on its own constructed triplet dataset.

Method Ref. Rank-K Ranks-K Avg.
K=1 K=5 K=10 K=1 K=3

TIRG [90] CVPR19 14.61 48.37 64.08 22.67 65.14 35.52
CIRPLANT [6] ICCV21 19.55 52.55 68.39 39.20 79.49 45.88
ARTEMIS [41] ICLR22 16.96 46.10 61.31 39.99 75.67 43.05
CLIP4CIR [42] CVPR22 38.53 69.98 81.86 68.19 94.17 69.09

TG-CIR [91] MM23 45.25 78.29 87.16 72.84 95.13 75.57
BLIP4CIR+Bi [43] WACV24 40.15 73.08 83.88 72.10 95.93 72.59

CASE† [92] AAAI24 48.68 79.98 88.51 76.39 95.86 78.19
CoVR-BLIP† [86] AAAI24 49.69 78.60 86.77 75.01 93.16 76.81
CompoDiff† [93] TMLR24 32.39 57.61 77.25 67.88 94.07 62.75

CaLa [47] SIGIR24 49.11 81.21 89.59 76.27 96.46 78.74
SPRC [48] ICLR24 51.96 82.12 89.74 80.65 96.60 81.39

FAFA (Ours) - 54.48 84.07 91.48 81.05 97.11 82.56

Prompt1 ( ��� ): A young adult with blonde hair is wearing a jade green tank top, denim shorts, and brown sandals. She is 
lounging on a beach chair under a parasol.
Prompt2 ( ��� ): A young adult with blonde hair is wearing a jade green scarf over a white T-shirt, denim shorts, and brown 
sandals. She is walking along a path.

Prompt1 ( ��� ): A boy with blonde hair is wearing a khaki parka with a fur-lined hood, paired with dark blue jeans and 
brown hiking boots. He is walking in a snowy forest.
Prompt2 ( ��� ): A boy with blonde hair is wearing a khaki parka with a fur-lined hood, but this time it’s paired with a red 
scarf, black pants, and black snow boots. He is building a snowman.

0 10.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 10.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

�
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Figure S11: Person image generation results under different LoRA strengths.

FAFA outperforms the second-ranked method SPRC, which also utilizes BLIP-2 as its backbone, by
2.51% in Rank-1 accuracy on the CIRR dataset. When compared with CaLa, another BLIP-2-based
method, FAFA achieves an even more notable improvement, surpassing it by 5.37% in Rank-1.
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Wearing a brown 
plaid shirt, black 
leather shoes, 

another dark gray 
T-shirt, another 

blue jeans.

Query

Query

Wearing a white 
long windbreaker, 
white pants, gray 
shoes, and a gray 

hat.

Results

Image-only
（SOLIDER）

Text-only
（RaSa）

Image+Text
（FIRe2+RaSa）

Ours
（FAFA）

Results

Image-only
（SOLIDER）

Text-only
（RaSa）

Image+Text
（FIRe2+RaSa）

Ours
（FAFA）

①

②

Figure S12: Comparative visualization of Top-10 retrieval results across different methods on the
ITCPR dataset.

C.3 Additional Qualitative Results

C.3.1 Effects of Different LoRA Strengths on Person Image Generation

During the person image generation process, in order to achieve more comprehensive and realistic
styles, multiple groups of images are generated for each textual prompt by dynamically adjusting the
LoRA strength β ∈ (0, 1]. Figure S11 illustrates the effects of different LoRA strengths on generated
person images, clearly demonstrating that the same textual input combined with varying values of
β can yield distinct image styles. Specifically, when β = 0, the pre-trained generative model is
employed directly, resulting in high-quality images but with noticeable discrepancies from real-world
styles. As the β value increases gradually, the realism of the generated images correspondingly
improves, ultimately reaching a style closely aligned with that of real-world person retrieval datasets
at β = 1.

C.3.2 Visualization of Results from Different Methods

Figure S12 presents two illustrative examples of the Top-10 retrieval results obtained by various
representative methods from Table 1 on the ITCPR dataset. It is evident that the Image-only retrieval
method yields the poorest performance, primarily because it tends to retrieve images with visually
similar pixel distributions. Given that the dataset contains numerous instances involving clothing
changes, this leads to suboptimal performance. Text-only retrieval also falls short of expectations,
as most annotations in the dataset provide brief descriptions of clothing differences between the
reference and target images, while the retrieval database includes many images with similar clothing.
Combining both modalities typically retrieves the target image within the Top-10 results; however,
its inability to dynamically complement multimodal query information leads to scenarios where an
excessively high match in one modality adversely affects the final retrieval results. For instance, in
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Figure S13: Left: Variations in FAFA’s Rank-1 performance under different balancing weights of
auxiliary loss terms. Right: Relationship between FAFA’s performance and the feature mask ratio in
Lmfr.

Example 2⃝ of Figure S12, the high visual similarity causes the Image + Text method’s most confident
retrieval results to closely resemble those of the Image-only method. In contrast, our proposed FAFA
method dynamically extracts complementary information from multimodal queries, consistently
identifying the target person’s image among the top-ranked retrieval results.

C.4 Additional Ablation Study

C.4.1 Balancing Weights of Auxiliary Loss Terms

To fully leverage the synergistic effects of the proposed loss functions, extensive experiments on
balancing the weights of FAFA losses are conducted. As illustrated in Figure S13, when fixing
the value of λ2, the retrieval performance of FAFA initially rises and subsequently declines with
increasing λ1, achieving its highest performance at λ1 = 1. Similarly, fixing λ1 and varying λ2

reveals the same trend, ultimately attaining the optimal performance at λ1 = 1 and λ2 = 0.5, which
corresponds to our final selected configuration.

C.4.2 Feature Masking Ratio in Lmfr

As demonstrated in Figure S13, the optimal performance of FAFA in the Lmfr setting is achieved
when the feature masking ratio is set to 30%. When the masking ratio is set to 0, it is equivalent
to disabling the Lmfr loss. As the masking ratio increases, performance first improves and then
declines. When the masking ratio exceeds 50%, the complexity of masked feature reasoning becomes
excessively high, resulting in elevated loss values that negatively impact overall training stability,
thereby diminishing the effectiveness of the Lmfr component.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s core contributions. Specifically, the abstract clearly introduces the novel Composed
Person Retrieval (CPR) task, the automated synthetic data generation pipeline, the con-
struction of the SynCPR dataset, the proposal of the FAFA framework, and the ITCPR
benchmark. These claims are further expanded in the introduction with detailed descrip-
tions of the task formulation, methodology, and motivation. All major contributions are
consistently described and substantiated throughout the paper.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations of the current work are discussed as part of the future work
section in the conclusion. Specifically, the current setting of the CPR task restricts each
query to contain only a single image and a single textual description.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: This paper primarily addresses a practical application problem and does not
involve any theoretical assumptions or formal theoretical results that would require proofs.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The main information required to reproduce the experimental results is pro-
vided in the main paper, while detailed configuration settings and additional implementation
details are included in the appendix. Furthermore, all related code will be open-sourced to
ensure full reproducibility.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All code and data will be made publicly available on GitHub after the review
process. To preserve anonymity and ensure a rigorous double-blind review, no links are
included in the current submission.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The main training and test details are provided in Section 4.1 of the main paper,
and a more comprehensive version with additional implementation details is included in
Appendix C.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: The proposed composed person retrieval task is a subtask of the broader person
retrieval domain, where standard evaluation metrics are well established and widely adopted.
These metrics, such as Rank-1 and mAP accuracy, do not typically include statistical
significance measures such as error bars or confidence intervals.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The relevant information about compute resources is included in Section 4.1
(Implementation Details), with additional details provided in Appendix C.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have strictly followed the anonymization requirements and fully complied
with the NeurIPS Code of Ethics throughout the research and submission process.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

29

https://neurips.cc/public/EthicsGuidelines


• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The proposed composed person retrieval task is of practical significance and
has the potential to improve real-world person retrieval systems, particularly in scenarios
where both visual and textual information are available. The positive societal impact of this
work is discussed in the introduction. To the best of our knowledge, the task does not pose
any obvious negative societal impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper does not involve any content that poses high risk of misuse requiring
safeguards.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.
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12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All models and datasets used in the paper have been properly credited to their
original creators and used in accordance with their respective licenses.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The main paper and appendix provide detailed information about the newly
introduced SynCPR and ITCPR datasets, including their composition and usage details. All
underlying models and base data used in constructing these datasets are used within the
scope of their original creators’ licenses. The new datasets will be publicly released after
the review process along with comprehensive documentation.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

31

paperswithcode.com/datasets


• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: This paper uses an open-source large language model in the construction of the
SynCPR dataset, and the usage is described in detail in the paper. All usage complies with
the license and terms specified by the model’s original creators, and adheres to the NeurIPS
LLM usage policy.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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