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ABSTRACT

Ensemble learning is a practical family of methods for uncertainty modeling, par-
ticularly useful for sequential decision-making problems like recommendation
systems and reinforcement learning tasks. The posterior on likelihood parame-
ters is approximated by sampling an ensemble member from a predetermined in-
dex distribution, with the ensemble’s diversity reflecting the degree of uncertainty.
In this paper, we propose Bayesian Ensemble (BE), a lightweight yet principled
Bayesian layer atop existing ensembles. BE treats the selection of an ensemble
member as a bandit problem in itself, dynamically updating a sampling distribu-
tion over members via Bayesian inference on observed rewards. This contrasts
with prior works that rely on fixed, uniform sampling. We extend this framework
to both bandit learning and reinforcement learning, introducing Bayesian Ensem-
ble Bandit and Bayesian Ensemble Deep Q-Network for diverse decision-making
problems. Extensive experiments on both synthetic and real-world environments
demonstrate the effectiveness and efficiency of BE.

1 INTRODUCTION

Sequential decision-making under uncertainty lies at the core of recommendation systems and rein-
forcement learning (RL) (Sutton & Bartol [1998)), where agents must continually balance exploiting
known high-reward actions against exploring uncertain options to maximize long-term returns. This
exploration—exploitation trade-off is most famously distilled in the multi-armed bandit (MAB) prob-
lem. MAB is a foundational RL setting in which an agent sequentially pulls one of K arms, and
each arm is associated with an unknown stochastic reward distribution (Slivkins} 20195 |Lattimore &
Szepesvari, [2020; Bouneffouf & Rish, [2019; Bubeck & Cesa-Bianchil 2012). In order to implement
efficient exploration (select informative actions or visit different states), the agent must understand
the “uncertainty” degree of its acquired knowledge. Therefore, uncertainty modeling often plays a
central role for these tasks.

Thompson sampling (TS) follows this uncertainty modeling paradigm. It maintains a posterior
distribution of the parameters of the likelihood function for all possible arms’ rewards (Thompson),
1933} [Li et al., [2010; |Chapelle & Li, [2011; [Kawale et al., 2015} |[Russo et al.| 2018])). This posterior
distribution characterizes uncertainty of knowledge on arms. At each iteration, one sample of the
likelihood parameters are drawn from the posterior distribution, and then the sample is utilized to
select the “best” arm by calculating the reward expectation for each arm. After the actual reward is
observed, the agent updates the posterior distribution.

A possible way to account for the complex relation of each arm’s context and reward is to use neural
networks for modeling the likelihood function. The key challenge lies in the fact that maintaining
the exact posterior distribution is often computationally intractable under general circumstances, es-
pecially in the neural network case (primarily owing to entailing exact Bayesian inference). A series
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of works address this challenge by approximate Bayesian inference based on variational inference,
Markov chain Monte Carlo, gradient-based methods and ensemble-based methods (Lu & Roy,2017;
Riquelme et al., 2018; Guo et al.,2020; Kveton et al.;2019; Zhang et al.,|2021)).

Among the methods discussed, ensemble learning is favored in practical applications due to its
straightforward approach, versatility, and demonstrated effectiveness (Zhou, 2012). In ensemble
learning, each iteration involves selecting a base model (an ensemble member) at random from a
predetermined index distribution to predict the reward for each option. These base models represent
samples from the prior/posterior distribution of the likelihood parameters, with their variety reflect-
ing the uncertainty in predictions. Updating the base models’ parameters with the received rewards
is tantamount to conducting an approximate Bayesian inference on these distributions. Ensemble-
based techniques have been shown to offer substantial benefits for joint predictions and enhance per-
formance in sequential decision-making tasks when compared to other uncertainty-modeling agents.
uncertainty (Snoek et al.,[2019; (Osband et al., 2022).

Current ensemble-based Thompson Sampling methodologies primarily concentrate on refining the
model parameters of ensemble members to better approximate the posterior distribution. However,
these methods maintain the sampling index distribution (such as a discrete uniform distribution)
unchanged throughout the decision-making process. This approach does not fully account for the
uncertainty inherent in the diversity of the ensemble members. In our setting, the performance of
individual ensemble members similarly varies due to factors such as random initialization and the
incorporation of prior functions. Therefore, we suggest an update to both the parameters of ensemble
members and the index distribution governing them. The parameters are responsible for guiding
the actions, while the index distribution is crucial in selecting the appropriate ensemble member.
Essentially, we forge a direct nexus between the index distribution and the feedback rewards to
achieve a more precise approximation of the posterior distribution.

Our contribution in this paper is two-pronged. Firstly, we propose Bayesian Ensemble (BE) — a
unified framework adapting Bayesian index distribution updating to both contextual bandits and rein-
forcement learning, achieving state-of-the-art exploration efficiency through theoretically grounded
variance reduction. This technique not only updates the parameters of ensemble members but also
forges a direct link between the index and reward distributions by employing Bayesian inference to
update the index distribution. BE’s versatility allows it to enhance a broad spectrum of ensemble-
based Thompson sampling methods and reinforcement learning methods. Secondly, we demonstrate
the efficacy of BE in a variety of settings, including both synthetic and real-world environments,
with a particular focus on recommendation systems within sequential decision-making problems.
We conduct a thorough and meticulous comparison with cutting-edge deep Thompson sampling and
ensemble reinforcement learning methods, providing a comprehensive benchmark that will aid in
advancing future research in this area.

2 RELATED WORK

There is a long history in the research of uncertainty estimation aiming for the decision-making
problem, of which the key challenge is balancing exploration and exploitation. Much of the work,
as the extension of vanilla Thompson sampling (Thompsonl 1933} Russo et al.,|2018)), maintains an
approximate posterior distribution (used for posterior sampling) rather than making exact Bayesian
inference. These methods include variational inference (Blundell et al., 2015)), bootstrapping (Os-
band et al., 2016), MCMC (Welling & Teh, |2011;|Ahn et al.,|2012; |Li et al., 2016), dropout (Gal &
Ghahramani|, |2016), ensemble sampling (Lu & Royl[2017) and so on.

Among these promising posterior sampling techniques, ensemble sampling (ensemble-based TS) is
preferable in practice owing to its simplicity and generality (Snoek et al.l 2019). Variants of en-
semble sampling based on neural networks has attracted considerable attention. To approximate
posterior distribution, deep ensembles (Lakshminarayanan et al.l 2017)) yield predictive uncertainty
estimates through multiple neural networks with random initialization. These ensemble members
could further improve computing and storage efficiency through shared weights (Wen et al., [2020).
Moreover, these ensemble-based approaches can be formalized as sampling an index from a fixed
reference distribution and then mapping the index to an ensemble member. Deep ensembles (Lak-
shminarayanan et al.,[2017) and ensembles with prior functions (Osband et al.,|2018)) sample neural
networks from a uniform distribution. The index of hypermodel (Dwaracherla et al.,[2020)) is drawn
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Figure 1: The Bayesian Ensemble (BE) framework. The agent maintains a probability distribution
p® for the index z € Z and bridges the gap between the index and reward distribution.

from a standard Gaussian distribution, and then is mapped to base model parameters with a neu-
ral network. Epistemic Neural Networks (Osband et al., [2023) maps a distributional index to an
epinet which specially quantify uncertainty for the base network. Besides, Bayesian regret bounds
of ensemble sampling for the linear bandit problem are theoretically analyzed (Qin et al.} 2022).

Ensemble++ (Li et al., |2025) proposes a novel shared-factor ensemble architecture with random
linear combinations. Different from Ensemble++, our method focuses on the dynamic Bayesian
updating of index distributions. It models member selection as an inner-bandit problem, enhancing
uncertainty modeling accuracy by directly linking indices to reward distributions.

Besides Thompson sampling, ensemble methods also play an important role in reinforcement learn-
ing. After the proposal of Deep Q-Network (DQN) (Mnih et al., [2015), Ensemble DQN (Anschel
et al.l [2017) is introduced to reduce the variance of the standard DQN. Ensemble DQN uses the
average weighted combination of multiple value functions to guide policy updates, making the re-
inforcement learning process more stable. Inspired by Dropout, Random Ensemble DQN (Agarwal
et al.| 2020) proposes random weighting of multiple value functions to address the distribution mis-
match problem in offline reinforcement learning. Reset Deep Ensemble (Kim et al., [2023)), through
the periodic reset operation on multiple ensemble agents, demonstrates its effectiveness in sample
efficiency and safety considerations. HyperDQN (Li et al.|[2022)) and HyperAgent (Li et al., 2024b)
optimize a hypermodel that parameterizes the last layer of the Q-network for efficient exploration.

3 BAYESIAN ENSEMBLE FRAMEWORK

Sequential decision-making involves optimizing long-term objectives through a series of choices
made under uncertainty. In Multi-Armed Bandit (MAB) problems, the goal is to maximize cumu-
lative rewards, with actions influencing only immediate outcomes and leaving subsequent environ-
mental states unchanged. In contrast, Reinforcement Learning (RL) tasks require accounting for
dynamic state transitions while optimizing for long-term cumulative rewards. Under uncertainty,
the core learning process entails inferring the underlying objective: in MAB, by estimating un-
known reward distributions; in RL, by developing policies to guide long-term optimization. The
exploration—exploitation dilemma remains a fundamental challenge for sequential decision-making.

Ensemble-based methods have shown their effectiveness in characterizing uncertainty. The key dis-
tinguishing feature of our proposed Bayesian Ensemble, illustrated in Figure [T} lies in its dynamic
updating of the index distribution for sampling base models via Bayesian inference — unlike prior
ensemble-based Thompson Sampling methods that maintain a fixed index distribution. This update
directly links the index distribution to the feedback rewards through interacting with the environ-
ment, leading to a more precise approximation of the posterior distribution, and thus enhance the
performance for uncertainty modeling. Bayesian Ensemble advances beyond simple ensemble ag-
gregation techniques by introducing a learned, dynamic weighting mechanism for ensemble mem-
bers. Within this framework, we elaborate on our approach as applied to sequential decision-making
problems, particularly in bandit and reinforcement learning contexts.



Published as a conference paper at ICLR 2026

4 BAYESIAN ENSEMBLE BANDIT

We first introduce a preliminary on the bandit problem setting. The problem is then addressed by
our proposed Bayesian Ensemble Bandit (BEB) framework. Finally, we provide two examples on
employing BEB to reinforce existing ensemble-based TS methods.

4.1 PRELIMINARY

We consider the multi-armed contextual bandit problem. Let X denote the action space, and R
denote the reward space. At every iteration t, a set of actions X'(¥) C X’ are provided to the agent.
Then, the agent selects an action ) € X'() and derives the reward 7(*) € R. Finally, (z(*), (") is
utilized to update the agent policy. The objective is to maximize the cumulative rewards  _, (),

4.2 BEB FRAMEWORK

We focus on the finite reward space with N distinct rewards, denoted by R = {R; }¥ ;. [/| We utilize
an ensemble of neural networks

flxresze0e): X xZx0 = AN (D

to model the probability distribution of the reward, where x € X is the context vector of an action,
z € Z is the index of a base model, § € O are the learnable parameters of the neural network
ensemble, and A" is the regular N — 1 dimensional simplex. Each of the coordinates of A" is the
estimated probability corresponding to a possible reward value, i.e.,

Pr{r = R;} = f(z;2,0);, Vi € [N]. 2

At each iteration ¢, the agent maintains a probability distribution p(*) for the index z € Z and the
parameters 0(*). The index z(*) is sampled from p(*). Then, the agent selects the action z(*) € xX'(*)
that maximizes the expected reward estimated by the ensemble:

zeX ()

N
#® « arg max ZRi . f(ac;z(t),e(t))i. 3)
i=1

and derives the reward (). Finally, the instance (2, r(*)) is utilized to update the agent policy, i.e.,
6(+1) and p**+1). The overall algorithm Bayesian Ensemble Bandit (BEB) is shown in Algorithm

Algorithm 1: Bayesian Ensemble Bandit (BEB)

Input: Initialization of learnable parameters 6 of neural network ensemble, index

distribution p(©).
fort=0toT —1do
Receive X (V)

Sample z(*) ~ p(*) ;

(t) N R (2 g0
") argmax ey > g Ri - f(x;219,00);;
Apply * and observe r(*);

Update 8(+1) and p(t+1);

While maximizing cumulative rewards is the ultimate goal in multi-armed contextual bandit prob-
lems, we often resort to minimizing a surrogate loss function when learning model parameters, like
0 in this case. This trade-off is primarily made due to computational efficiency, and aligns with
existing ensemble-based methods. Formally, let £(-,-) : R x AN — R represent the loss function,

“In fact, it is easy to see that the actual reward space could be R; only the space over which the predicted
distribution is required to be finite.
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which is typically task-driven, and the binary cross-entropy loss is commonly used. Given train-
ing data D C X x R, we leverage the Empirical Risk Minimization (ERM) principle to learn 6.
This involves minimizing the expected value of the empirical risk over a probability distribution
p governing the model index z. Therefore, we estimate @ by solving the following optimization
problem:

min Y B [((r, f(;2,0))]. @)

(x,r)eD

Learning the index distribution marks a critical departure from existing ensemble-based Thompson
Sampling methods. We exploit the observation that the number of parameters in p (index distribu-
tion) is typically much smaller compared to 8 (ensemble parameters). This allows us to directly
optimize p for long-term cumulative reward, eliminating the need for surrogate losses. Essentially,
we bridge the gap between the index and reward distribution without relying on surrogate loss func-
tions.

While specifics depend on the chosen p structure, at each iteration, probabilistic techniques like
exact or approximate Bayesian inference can be employed for updating p. Careful design of p based
on the specific case is crucial for effective application.

4.3 UNIFYING BANDIT METHODS

Many existing ensemble-based Thompson Sampling methods can be captured as special cases of
BEB. The crucial difference lies in their treatment of the index distribution p. Prior methods often
fix p throughout the decision-making process. BEB offers a powerful way to “supercharge” these
methods by allowing p to be dynamic and adaptive through the learning process.

Furthermore, we can categorize ensemble-based methods based on how they define the index conti-
nuity. To illustrate this, we will showcase two representative examples: a discrete and a continuous
ensemble-based Thompson Sampling method. Their enhancements when combined with BEB will
be further evaluated in experiments.

ensemble+ (Osband et al.,2018)) is a variation of deep ensembles (Lakshminarayanan et al., 2017)
that incorporates a randomized prior function into each member. These priors, implemented as
randomly initialized neural networks with identical architecture, remain fixed throughout training
and inference. They have proven effective for generating uncertainty estimates. Originally, the index
distribution p in ensemble+ was a discrete uniform distribution: z ~ DiscreteU([K]), where K
is the number of ensemble members. Under the BEB framework, we enhance ensemble+ by
transforming z to z = arg max;¢ k] w;, where the weights (wz)fil represent individual ensemble
members and are drawn from Beta distributions: w; ~ Beta(«;, 8;). This choice is motivated by the
fact that the Beta distribution is the conjugate prior to the Bernoulli likelihood of the rewards, which
enables efficient and exact Bayesian updates. The update rule follows Thompson sampling (Russo
et al., |2018). Through Bayes’ theorem, if member ¢ is selected at step ¢ and receives reward rt) e
{0, 1}, the index distribution p can be updated with exact Bayesian inference: (v, 8;) + (o, 5;) +

(r®,1—r®).

hypermodel (Dwaracherla et al., 2020) is a variation of deep ensembles (Lakshminarayanan et al.,
2017) that treats ensemble members as specific parameter values of a base model class. It em-
ploys hypernetworks (Ha et al.,[2017) to map an index to a specific ensemble member. Originally,
hypermodel uses the multivariate standard Gaussian distribution (z; ~ A(0,1) for each ¢ in
the index vector) as its index distribution. As the hypermodel framework maps a continuous,
multi-dimensional index vector to model parameters, it is natural to model the index distribution
with a multivariate Gaussian. This allows us to learn its mean and variance parameters via approxi-
mate inference, extending the original method’s use of a fixed standard Gaussian. Therefore, under
the BEB framework, we instead employ Gaussian distributions with individual means p; and vari-
ances o7 for each index component. This enables us to learn and adapt these parameters separately
throughout the process. Similar to other BEB implementations, the update rule follows Thompson
sampling (Russo et al.| 2018). However, due to the complexity of the model, exact Bayesian infer-
ence becomes impractical. To address this, hypermodel utilizes variational inference (Blundell
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et al., |2015) to approximate the posterior distribution by updating the means and variances of the
individual Gaussian components.

5 BAYESIAN ENSEMBLE REINFORCEMENT LEARNING

Besides bandit problems, Reinforcement Learning represents a classic sequential decision mak-
ing scenario. Prior research has investigated Ensemble-DQN (Anschel et al., [2017) and Random
Ensemble-DQN (Agarwal et al., 2020), demonstrating their capability to effectively reduce the vari-
ance of Q-value estimates compared to standard DQN algorithms, which significantly stabilizes the
learning process. However, we posit that the conventional practice of applying random or uniform
weighting schemes across different evaluators fails to fully exploit their complementary capabilities
and optimize collective performance. Similar to the idea of Self Imitation Learning (Oh et al.| | 2018)),
we propose that making better use of superior evaluators can help the agent obtain more cumulative
rewards during the training process, thereby facilitating the agent to explore more effectively.

We consider the reinforcement learning (RL) framework formalized as a Markov Decision Process
(MDP), defined by the tuple M = (S, A, P,R,v). § = {s0,51,..-,8x} is the state space and
A = {ag,a1,...,a,} is the action space, denoting the set of states and actions available to the
agent. P(s'|s,a) : § x A x S — [0,1] is the transition probability function. After transitioning
from s to s’ via action a, the agent receives a reward r. v € [0,1) is the discount factor that
balances the importance of immediate and future rewards. At each time step ¢, the agent observes
the current state s; € S, selects an action a; € A according to a policy m(a|s), which represents
the probability of taking action a in state s. The environment then transitions to a new state ;41 ~
P(-|s¢, a;) and emits a reward r;. The agent’s objective is to learn a policy 7 that maximizes the
expected cumulative discounted reward: E, [>,2 7'r¢|so]. To evaluate and improve policies,
the action-value function Q™ (s, a) = E; [>°,°,v'r¢| so = s, a0 = a]. These functions satisfy the
Bellman equations. In particular, the optimal action-value function Q*(s, a) satisfies the Bellman
optimality equation: Q*(s,a) = Ey . p(|s,a) [r +7maxeca Q*(s',a’)]. The optimal policy 7*
can be derived by acting greedily with respect to Q*.

Inspired by the accelerated policy learning through multi-perspective value estimations in partially
observable Markov decision processes (Li et al., [2024a)), we propose Bayesian Ensemble Deep Q-
Network (BE-DQN) by integrating Bayesian principles into reinforcement learning training. BE-
DQN maintains K independent Q-networks {Q(s, a; %)} | in iteration i , each Q-network is
parameterized by weights #%. These networks are trained jointly using the standard DQN objective,
but with a shared experience replay buffer.

Following the ensemble approach, we maintain a Beta distribution wy ~ Beta(ay, fi) for each
k Q-network. At each iteration, BE-DQN samples probability {w;, w2, -+ ,wk } according to the
Beta distribution of each Q-network, and selects the j-th Q-network with the maximum probability
for action selection. At the end of each iteration, the agent receives a reward ) € {0,1}. BE-DQN
subsequently updates the j-th Beta distribution parameter through (o, 3;) < (v, 8;) + (r®), 1 —
r(t)), where the update mechanism explicitly links reward feedback with distribution adaptation.

In contrast to Ensemble DQN which estimates state action values (s, a) through averaging outputs
from multiple Q networks, BE-DQN employs a single Q-network sampling mechanism for action
selection while utilizing weighted averaging across all Q-networks for objective function computa-
tion. This update mechanism effectively mitigates the overestimation bias commonly induced by
individual Q-functions (Van Hasselt et al., 2016} |Anschel et al., 2017; |/Agarwal et al., 2020), while
maximizing exploitation and exploratory behavior (Ecoffet et al., 2021)). Define the weight of the

k-th model as py, = %, the sum weight of all model is Zf:l pr = 1. The BE-DQN target Q
network is defined as:
K
Yea :Eg[r+vmz}prkQ(s’,a’,9§71)|s,a|]. (5)
“ k=1
and the Target Approximation Error (TAE) is:
Z3e = Q(5,0:07) — Yo - (©)
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Algorithm 2: Bayesian Ensemble DQN (BE-DQN)

Initialize K Q-networks Q(s, a; 0*) with random weights 6% for k € {1,..., K}
Initialize Experience Replay (ER) buffer B
Initialize exploration procedure Explore(-)
for iterationi = 1to N do
Sample the probablhty {w1 .+ ,wi '} from each distribution Beta(cy, B);
Update weights {p'~*,- ,le h.
Choose the index j with the max probability j = arg max;,, p}‘c_l;
for timet =110 T do
Choose action using Q(s, a; 05) ;
Y0 = Eslr + y maxe S50, prQ(s', 0/, 0|5, al);
for k =1t K do
| 0 ~ argming Eg[(ys,a — Q(s,a:0))°];
Explore(-), update B;
| Update the j-th distribution (avj, ;)  (a;, 8;) + (r®, 1 —r®);

Output Q¥ PN (5, a) = Eszl PiQ(s,a;0F).

We provide the algorithmic implementation in Algorithm

To demonstrate the effectiveness of Bayesian Ensemble DQN, we employ a simple M states uni-
directional MDP environment shown as Figure |2 (Anschel et al., 2017). We analyze TAE Z;ya is

a random processes with specific statistical characteristics. The expected value of TAE E[Z;’;] is

o and Zg’,a’
Cov(Z. w2, ol =0 Vi#ji€e[l,K]j € [l,K]. To focus exclusively on the TAEs, we

eliminate the overestimation error by considering a fixed policy for updating the target values. This
ensures that any bias introduced by the choice of policy does not interfere with the analysis of TAEs.
By fixing the policy, we isolate the effects of temporal errors from other sources of uncertainty.
Furthermore, we conveniently assume a zero reward (r = 0) everywhere in the environment. This
assumption has no effect on the variance calculations because the reward term does not contribute
to the variance of the TAEs. In this environment, the Q value of DQN (Anschel et al., 2017), for
1> M is:

and the covariance between Z! a

0, the variance of TAE is given by Var[Z!F] = o2

QDQN(so7a)=Z§D,a+7Z‘ L. 4y (M=1) i—(M— 1)7 7)

i s1,a SM—1,a

and the variance is
M-1
Var[Q so, Z 72’” 2 (8)
m=0

The variance of Ensemble DQN (Anschel et al., 2017) is:

M—
Var[QE DQN Z 2m gm . (9)

m=0

For the variance of the BE-DQN, we establish the following two theorems.

Figure 2: A M states unidirectional MDP environment with a zero reward in any state.
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Theorem 1. The variance of BE-DQN Var[QBE'DQN(so, a)] has a upper bound matching the vari-

ance of DON, and with a lower bound matchinzg the variance of Ensemble DON under the same K,
ie., Var[QY"P (5o, a)] € [Var[QE PN (s0, a)], Var[Q7%" (50, a)]].

i i i
Theorem 2. The variance of each ¥j € [1,...,K] BE-DON Q-value estimator

Var[QfE'DQN(SO, a, 0{ )] has a upper bound matching the variance of DON, and with a strict lower

bound matching the variance of Ensemble DON under the same K, i,e., Var[QfE'DQN(so, a,07)] €
(VarlQEP2 (so, )], Varl QP (s0, )]

See Appendix [A.T] for detailed proofs. Theorem [I]and [2] ensure that the variance of BE-DQN
does not exceed that of standard DQN, thereby enhancing training stability and convergence — a
critical property for reliable deep reinforcement learning in complex environments. Besides, com-
pared with E-DQN, BE-DQN improves exploratory behavior by leveraging a single Q-function for
action selection at each step. This design encourages temporally coherent exploration while main-
taining sufficient behavioral diversity across ensemble members, effectively balancing exploration
with stable exploitation.

6 EXPERIMENTS

Our experiments span both Neural Testbed (Osband et al., 2022)) and Mushroom (Schlimmer, |1981)
synthetic environment and real-world (Yahoo!R6B (Li et al.,|2011)) sequential decision-making en-
vironments, echoing prior works (Osband et al.,[2022; |Dwaracherla et al., 2020; Osband et al., 2021}
Song et al.,[2021; Wu et al., 2022} Riquelme et al., 2018)). In addition, we use MiniGrid (Chevalier-
Boisvert et al., [2023) as the testing environment for reinforcement learning. To demonstrate the
effectiveness and efficiency of our proposed BEB and BE-DQN, we compare its regret, elapsed wall
time, cumulative rewards and performances against strong baselines in these diverse environments.
See the Appendix for detailed experiment settings.

6.1 RESULTS ON SYNTHETIC ENVIRONMENTS

In synthetic sequential decision-making environments, the true reward distributions are given, which
enables us to evaluate benchmark agents by calculating regrets, i.e., the cumulative reward differ-
ence from the best agent. We validate our methods on Neural Testbed (Osband et al., 2022) and
Mushroom dataset (Schlimmer, |1981)).

Neural Testbed (Osband et al., [2022) is an open-source library that synthesizes sequential decision-
making problems by simulating an environment with data generated by neural network—based gen-
erative models. Each environment corresponds to a 2-layer fully-connected neural network with
ReLU as the activation function, with independent Xavier initialization in each hidden layer, and
with two nodes in the output layer, i.e., f* : X — AZ2; the environment serves as a ground truth
for the reward distribution. At each iteration ¢, the candidate arm set X of K arms are indepen-
dently sampled from the standard Gaussian distribution, and the reward r(*) of the selected arm 2(*)
is sampled from f* (m(t)). In our experiment, the size of the hidden layer of the generative model
is set to 50, the number of actions KX = 20d, and the time horizon 7" = 20 000. To some extent,
the dimension of arms (actions) d represents the complexity of the problem. Therefore, we set the
dimension of arms (actions) d € {2,10,50} (i.e., X = R9) to show the superiority of our method
over the state-of-the-arts for uncertainty modeling — ensemble+ and hypermodel, in a wide
range of complexity degrees.

Different from Neural Testbed, the Mushroom dataset (Schlimmer, |1981)) is a real-world classifica-
tion dataset that contains 8,124 instances with 22 attributes and 2 classes: poisonous and edible. We
synthesize the decision-making process by letting the agent decide whether to select a given mush-
room round by round following previous benchmarks (Riquelme et al., 2018}; Zhang et al., 2021}
The agent would receive reward 1 if an edible mushroom is selected and reward O otherwise. We
sample 20,000 data points in the experiment.

The cumulative regrets are illustrated in Figure [3] It can be obviously observed that our models
(BEB-based) outperform their corresponding baselines significantly, across all environments with
different settings on the dimension throughout the whole decision-making process (at every step).
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Figure 3: Regrets (the smaller the better) on Neural Testbed and Mushroom with 90% confidence
interval.

Specifically, at the end of the decision-making process, for d = 2,10,50, ensemble+ (BEB)
outperforms ensemble+ by 37.0%, 12.8%, and 42.2%; hypermodel (BEB) outperforms
hypermodel by 69.8%, 22.8%, and 30.3%. The results on the Mushroom dataset are similar (also
shown in Figure [3] (d)). BEB models win at every step, and at the end of the decision-making pro-
cess, BEB-based ensemble+ and hypermodel outperform their baselines by 8.7% and 4.8%,
respectively. These results indicate BEB is able to boost the exploration efficiency for sequential
decision-making problems in these purely simulated environments.

Compared with enemble+ and .
hypermodel, as the parameters of the Table 1: Elapsed wall time(s) on Neural Testbed
index distribution are required to be updated _d=2 4=l d=50
oL ensemble+ 374.33+£16.47 390.59 £1.76 1165.07 & 14.69
additionally for BEB models, one may concern  cnsemoles (25)  374.62+17.80 38056+ 194 1162.82 = 38.65
whether the performance gain deserves the  hypermodel 41834176 43284168 6016+ 118
extra tlme cost. Therefore, we demonstrate hypermodel (BEB) 54.934+£1.64 55.75+£1.24 84.20 £1.27
BEB’s efficiency on Neural Testbed with
different dimensions in Table[I} For enemble+, owning to the conjugacy property, updating the
index distribution is efficient via exact Bayesian inference. Thus in all cases, the elapsed time
for enemble+ (BEB) is roughly equivalent to enemble+. In the case of hypermodel, since
exact Bayesian inference is intractable, we resort to variational inference which incurs additional
computational overhead — the elapsed time for hypermodel (BEB) increases by 20%. As
expected, the additional overhead of BEB actually depends on the updating rule for the index
distribution, which is highly related to its based Thompson sampling method.

6.2 RESULTS ON REAL-WORLD ENVIRONMENT

Extending our analysis, we follow prior works (Gal & Ghahramani, 2016; |[Song et al., 2021; Wu
et al.,[2022) and conduct further experiments on the Yahoo!R6B dataset (Li et al.,[2011). This dataset
offers 28 million user visits to Yahoo!’s Today Module over 15 days, where each visit presents four
key features: (1) User Information: A 136-dimensional binary vector capturing demographics like
age and gender; (2) Displayed Article: The ID of the article presented to the user; (3) Candidate
Articles: A set of possible articles from which the displayed article was randomly chosen; (4) Click
Label: A binary indicator of whether the user clicked the displayed article. We adopt the experimen-
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tal setup of |Song et al.| (2021): hyperparameter tuning on day 1 entries and performance evaluation
on the remaining 14 days. As ground truth rewards are unavailable, we use the cumulative number
of clicks (rewards) instead of regrets.

Due to the significantly higher computational demand Taple 2: Cumulative rewards on Ya-
of ensemble+ compared to other methods, we focus hoo!R6B

solely on the hypermodel in this experiment. Table[3] o Numberofcicks__Relive Imp ()
andom | —49.45%

showecases the results on the Yahoo!R6B dataset. Notably, Greedy 39,4233+ 1,397.9 Doles% |
3 3 o : . . —Greed 43,645.0 407.. —13.26%

our method delivers a significant increase in click-through ¢ brapou b L a0s f;i% it

rate compared to both non-ensemble and ensemble-based =~ Gradient TS 03T 8490 683%4

; hypermodel 49,676.8 + 1,355.7 —~1.28% |
methods. These compelling results demonstrate BEB’s ~ _TypermodeI(BEE) 03221+ 14872 -

superior exploration efficiency in a real-world sequential
decision-making setting, further solidifying the effectiveness of our proposed approach.

6.3 RESULTS ON MINIGRID

To evaluate the efficacy of BE-DQN across diverse tasks, we conduct experiments in generated
Box2D environments FourRooms, Empty-6x6, LavaGapS5, GoToDoor-5x5 and MultiRoom-N2-S4
using the MiniGrid framework (Chevalier-Boisvert et al., 2023). As illustrated, agents with tri-
angular avatars operate in discrete action spaces to achieve goal-oriented objectives. These tasks
require dynamic interaction with environmental objects and navigation through procedurally gener-
ated maze configurations that vary episodically.

We compare BE-DQN with four baselines: vanilla DQN (Mnih et al., |2015), Ensemble DQN (E-
DQN) (Anschel et al., [2017), Random Ensemble DQN (RE-DQN) (Agarwal et al.l[2020), and Un-
biased Asymmetric Actor-Critic (UAAC) (Baisero & Amatol 2022). UAAC is a state-of-the-art
(SOTA) method for addressing partially observable Markov decision processes. To ensure exper-
imental rigor, we maintain consistent network architectures across all methods and report mean
performance metrics with standard deviations per environment. The average score across all games
is provided in Table [3|to demonstrate the overall performance for different methods. DQN ex-
hibits limited robustness across most environments, primarily due to its reliance on single Q-value
estimator. While past ensemble methods E-DQN and RE-DQN partially mitigate this issue, their
performance remains unstable owing to static weighting schemes that inadequately prioritize high-
quality Q-estimators. BE-DQN, in contrast to RE-DQN, dynamically updates the distribution of
each Q-value estimator and further exploits the individual strengths of estimators. Although the
utilization of superior estimators promotes accelerated exploration and exploitation by the agent,
the variance associated with it presents challenges for policy optimization. BE - DQN effectively
surmounts these limitations and stands out as a formidable competitor among the baseline meth-
ods in reinforcement learning. Also, we compare Bayesian Ensemble DQN with UAAC, BE-DQN
significantly outperformed UAAC, which further validates the effectiveness of BE-DQN.

Table 3: Performance of agents on MiniGrid after 1e5 frames training. We report the average
rewards and standard error for each method. All results are averaged over 5 random seeds, with
each seed tested for 100 episodes.

FourRooms Empty-6x6 LavaGapS5-6x6  GoToDoor-5x5 MultiRoom-N2-S4
vanilla DQN 0.004 £ 0.008 0.026 £ 0.0265 0.026 +0.052  0.066 & 0.0543 0.002 £ 0.0040
Ensemble DQN 0.0124+0.0117 0.162£0.1546  0.178 £0.1403  0.12 £0.0358 0.042 £ 0.0325
Random Ensemble DQN 0.01 £ 0.0063 0.186 £ 0.1540 0.124+0.1439 0.128 4 0.0627 0.03 £ 0.0200
Unbiased Asymmetric Actor-Critic  0.036 4 0.0314 0.082 £0.1541  0.022 £ 0.0075 0.106 £ 0.0162 0.004 £ 0.0049
Bayesian Ensemble DQN 0.04 £0.0228 0.248 £0.1444 0.35£0.066 0.142 £ 0.0407 0.118 £ 0.2260

7 CONCLUSION

This paper proposes Bayesian Ensemble (BE), a unified framework that enhances ensemble-based
methods for uncertainty modeling. By establishing a direct Bayesian connection between the index
distribution of ensemble members and the reward distribution, BE dynamically refines both the
parameters of base models and the sampling strategy governing their selection. We instantiate this
framework in two critical domains, bandit learning and reinforcement learning. Extensive empirical
evaluation across diverse decision-making problems demonstrates BE’s effectiveness and efficiency.

10
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8 REPRODUCIBILITY STATEMENT

To enhance the reproducibility of our work, we have made comprehensive efforts to document and
share all relevant resources. The source code for our experiments is provided as supplementary
material. Detailed experimental configurations, model hyperparameters, and procedural descriptions
are thoroughly documented in the Appendix. Furthermore, complete proofs for theoretical claims
and theorems presented in the paper are included in the Appendix to ensure verifiability.
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A APPENDIX

A.1 THEORETICAL PROOF

In this section, we provide the detail proof of Theorem |I{and Theorem
Theorem 1. The variance of BE-DON Var[QP*P% (5o, a)] has a upper bound matching the vari-

K2

ance of DON, and with a lower bound matching the variance of Ensemble DON under the same K,
ie., Var[Q¥ PN (5o, a)] € [Var[QEP (50, a)], Var[QP%N (s, a)]].

K3 K3 3
Proof. The Q value of BE-DQN for ¢ > M is:

K
BE-DQN ik i
Qi < (So,a) = Zpkz\;;),a—’—y;g,a
k=1
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PRZir Y peQ(s1, a0 )
1 k=1

M-

>
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(10)

I
] >

K K
PRZiF Y o Z Y ozl Y
k=1 k=1

=
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1
K
4t 7M—1 Zka;;l(—J\l{gl)’k’
k=1
the variance is:
K
Var[QF"P M (so, )] = Y pf - 470l (1)

The Upper bound of BE-DQN variance is:

K

VarfQPF PN (sg, )] = 3 p2VarlQPM (so, a)]
k=1
K (12)
< (ZPHQV&Y[Q?QN(SO,G)]
k=1

= Var[QP¥ (50, a)].

Based on Cauchy—Schwarz inequality (Alzer, |1992), the lower bound of BE-DQN variance is:

| KK
e Z 12 Zinar[Q?QN(so, a)]

k=1 k=1

1 K
= (O p)?Varl@P® (50, ) (13)
k=1

Var[Q?E'DQN(so, a)]

Y]

= o VarlQP (50, a)
= Var[Q¥ PN (s, a)].

i

O

Theorem 2. The variance of each Yj € [l,...,K]| BE-DON Q-value estimator
Var[Q¥F P (50, a, 0{ )] has a upper bound matching the variance of DON, and with a strict lower
bound matching the variance of Ensemble DON under the same K, i,e., Var[QfE'DQN(SO, a, 95 )] €
(Var|QEPN (59, a)], VarlQP (so, a)])-

% i
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Proof. The Q value of BE-DQN j-th estimator for ¢ > M is:

BE-DQN j ]
Qi N (5030493) Zi] +y;0,a

80,a

K
=Z0 47> prQ(s1,a:0 )
k=1

K
RS WIS
AM=1 Zp Z;M(]\i[al

the variance is:

M—-1
Var[QBE DQN(S a 0.7 — O.SO + Zpk- Z 72771 2

m=1

The Upper bound of BE-DQN j-th estimator variance is:

Var[QBEDQN(s a, 93)] 030 Z 2 'me
k=

I
)
9
3

The lower bound of BE-DQN j-th estimator variance is:

Var[QBEDQN(S a,67)]

>7O’50+ 212219%2727n 2m
k 1 =

M—-1

et 3 X
m=1
1 M-1
? Z ,y2m 2
=0
1

KVar[QDQN(so, a)]

= Var[QE DQN(SO, a)].

(14)

5)

(16)

a7

Our theoretical analysis is derived under the assumption of a zero-reward environment, where the
variance of value estimates serves as a proxy for policy stability. This formulation allows us to iso-
late and characterize the intrinsic uncertainty arising from bootstrapping and ensemble interactions,

independent of reward noise.

Under the standard assumption that Var[Z;"a] = 02, the derivation also holds in non-zero environ-
ments. Suppose after the final state sp;_1, the agents receive a reward of 1. The Q value of BE-DQN
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for ¢ > M in this environment is:

K
Q?E_DQN(‘SOv a) = Zka;Oka + y;g,a

I
Mx

k; 50 a +’72ka Slaaaez 1)

=~
Il

1

X (18)
= peZf Zka;’;};’“ +92 Zka;';i’k
k=1 k=1
M ! Zp Z;NI(AI{ R k M 1y;1w 1,a’
Since y%,, , ., = 1, the variance of BE—DQN remains:
M-1
Var[QPFPN (s Zpk Z Vol . (19)

Theorem 1 and 2 likewise hold. Because reward terms contnbute only to the mean or bias, not
the variance of the Q-update. Therefore, the bounds remain valid for any bounded reward, as long
as TAE variance is state-wise stationary. However, in certain environments the reward function is
not defined solely as a function of the state. When the reward itself is stochastic (e.g., in multi-
armed bandits where rewards follow a Beta distribution), the 1/K lower bound no longer holds.
Nevertheless, the variance of BE-DQN remains lower than that of standard DQN. To address this
limitation, which falls beyond the scope of the present work, we intend to explicitly model and
bound the variance of environmental rewards in future research, integrating it into our theoretical
framework.

A.2 SYNTHETIC AND REAL-WORLD ENVIRONMENTS SETTINGS

The experiments are conducted on quad-core Intel Core i5 processor with 16GB of RAM. Each
experiment is repeated 20 times with different random seeds.

We implement ensemble+ based on deep ensembles with randomized prior functions (Osband
et al.,2018). Each base model (ensemble member) is a 2-layer fully-connected neural network with
ReLU as the activation function. The hidden layer size is tuned in {8, 16, 32, 50}. Each prior func-
tion (neural network) has the same configuration with the base model; its parameters are initialized
by LeCun normal initialization, and kept fixed during the training process. The ensemble size is
tuned in {10, 30, 100}.

We consider a linear hypermodel over a 2-layer fully-connected neural network with ReLU as the
activation function (Dwaracherla et al.| [2020). The index distribution is a standard Gaussian distri-
bution; the index dimension is tuned in {6, 12, 18}. The hidden layer size is tuned in {8, 16, 32, 50}.
The additive prior is also a linear hypermodel over an MLP with 1 hidden layer of 10 hidden units.

In the training process, the base model parameters and the index distribution (only for BEB) are up-
dated successively every n steps. A replay buffer with capacity m is maintained to provide training
samples. We set n = 1, m = 10,000 for Neural Testbed, n = 1, m = 256 for Mushroom and
n = 80,000, m = 80,000 for Yahoo!R6B.

A.3 MINIGRID ENVIRONMENT SETTINGS

MiniGrid (Chevalier-Boisvert et al.,[2023)) is a minimalist gridworld environment for reinforcement
learning research, designed to study sample efficiency and generalization in partially observable
Markov decision processes (POMDPs). It features a discrete action space (e.g., move, turn left
or right, pick), symbolic tile-based observations, and procedurally generated levels with varying
complexity (e.g., doors, keys, obstacles).

For instance, as depicted in Figure [] (a), the agent in the FourRooms environment aims to reach
the green goal square in the room. The agent must navigate in a maze composed of four rooms

16



Published as a conference paper at ICLR 2026

— Do

0.08 E-DON 06
— RE-DQN

— uaac

— BE-DON

0.06 —— WE-DON

H

2004 03
g 02
002 01

164 264 3e4 4e4 Se4  bed Ted Bed 9ed  leS 164 204 3e4 4e4 Sed Ged Ted Bed 9ed  1eS
timesteps

(a) MiniGrid Exam- (b) FourRooms (c) Empty6x6
ple

05 0175 04
0150
0125

0.100

02 0.075 01
01 0.050
00
0.025
00

0.000

164 264 364 4c4 Se4  Ged Ted Bed 9ed  1eS 164 264 3e4 4e4 Se4  Ged Ted Bed 9ed  leS 164 204 3e4 4e4 Se4 Ged Ted Bed 9ed  leS

(d) LavaGapS5 (e) GoToDoor5x5 (f) MultiRoomN2S4

Figure 4: (a) FourRooms in MiniGrid. The agent’s objective (represented by a red triangle) is to
reach the target (a green box). (b-f) Performance of agents on MiniGrid after 1e5 frames of training.
All results are averaged over 5 random seeds, with each seed tested for 100 episodes.

Table 4: Hyperparameters used in BE-DQN.

Hyperparameter Value
Number of episodes 2,000
Maximum steps per episode 50
Ensemble size 5
Discount factor 0.99
Learning rate 5x 1074
Batch size 32
Replay buffer size 5x 10%
Update frequency 1
Target network update frequency 500
Initial € 0.1
Final € 0.02

€ decay factor 0.995

interconnected by 4 gaps in the walls. To obtain a reward, the agent must reach the green goal
square. Both the agent and the goal square are randomly placed in any of the four rooms. The agent
receives a 7 X 7 x 3 dimensional image of the environment as observation input. The three channels
represent object ID, color ID, and state, respectively. The agent’s position is fixed at the center of
the bottom row in the observed image. The state encoding is consistent with the observation image,
displaying all grids in global coordinates at all times, without rotation according to the agent’s
orientation. The third channel indicates that the agent is currently facing east, south, west, or north,
respectively. It is worth noting that we do not impose a step penalty in the environment. Instead, we
assign the reward for the entire trajectory is set to 1 if the agent achieves the goal within the allowed
number of steps, and 0 otherwise.

To evaluate the efficacy of BE-DQN across diverse tasks, we conduct experiments in generated
Box2D environments FourRooms, Empty-6x6, LavaGapS5, GoToDoor-5x5 and MultiRoom-N2-S4
and provide the learning curves for DQN (Mnih et al., 2015), Ensemble DQN (E-DQN) (Anschel
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Figure 5: Performance of agents on BabyAI(Go-To-0bj) and Blackjack after 1e5 frames of training.
All results are averaged over 5 random seeds, with each seed tested for 100 episodes.

et all 2017), Random Ensemble DQN (RE-DQN) (Agarwal et al., [2020), Unbiased Asymmetric

Actor-Critic (UAAC) (Baisero & Amatol 2022) and our BE—DQN in Figure [4| (b-f). Additionally,

we use a sampling approach, sampling from weights {pzfl, S p?l }), named Weighted Ensemble

DQN (WE-DQN). The above comparison demonstrates the effectiveness of BE-DQN.

To further validate the effectiveness of our method, we conducted experiments with E-DQN, RE-
DQN, and BE-DQN in both the BabyAl and Blackjack environments, thereby confirming the effi-
cacy of BE-DQN.

We run all experiments on a single server with AMD EPYC 7763 64-Core Processor and 1 NVIDIA
P40 GPU. The hyperparameters for training BE-DQN are summarized in Table 4| The ensemble
size of DQN is set to 1, while the ensemble size of DQN, E-DQN, RE-DQN, and BE-DQN is 5.
The remaining parameters and network architectures are consistent. The detailed information for
Q-network structure is provided below.

e Conv2d: (in=3, out=32, kernel=3, stride=1, pad=0)
¢ ReLU

* Conv2d: (in=32, out=64, kernel=3, stride=1, pad=0)
* ReLLU

* Conv2d: (in=64, out=64, kernel=2, stride=1, pad=0)
* ReLU

* Flatten

e FC: (in=input_dim, out=512)

¢ ReLLU

* FC: (in=input_dim, out=1)

A.4 PERFORMANCE OF ENSEMBLE+ ON YAHOO!R6B SUBSET
Following the experimental setup outlined in Appendix A.3, we set the ensemble size to 30 and

evaluated the models on a subset comprising the first 1 million events of the Yahoo!R6B dataset. The
results demonstrate that ensemble+ (BEB) outperforms the ensemble+ baseline by a margin of

3%.

Table 5: Cumulative rewards on the Yahoo!R6B subset (first 1M events)

Method Number of clicks Relative Imp.(%)
ensemble+ 2,185.4 + 37.65 -3.1% |
ensemble+ (BEB) 2,255.5 +94.46 -
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A.5 IMPACT OF ENSEMBLE SIZE

We investigated the impact of the number of ensemble members on ensemble+ (BEB). All ex-
periments were conducted in a synthetic environment based on the Neural Testbed, with an action
dimension of 50 and 10 different random seeds.

For ensemble+ (BEB), we evaluated ensemble sizes of 25, 50, 100. As illustrated in Table@ we
observe a consistent improvement in performance as the number of ensemble members increases.
Specifically, the relative regret reduction grows from 28.23% with 25 members to 47.97% with 100
members. This trend suggests that the Bayesian Ensemble framework is particularly effective at
scaling with larger models.

Table 6: Relative Regret Reduction(%) of ensemble+(BEB) over ensemble+ across varying ensem-

ble sizes
Ensemble Size 25 50 100

Regret Reduction 28.23% 33.21% 47.97%

A.6 SCALABILITY AND COMPUTATIONAL EFFICIENCY

The computational overhead of the hypermodel (BEB) is primarily attributed to the index updates
derived from variational inference. However, a distinct advantage of our proposed framework is the
inherent flexibility of this update mechanism, which allows for the modulation of update frequency
to achieve an optimal balance between performance and computational efficiency.

To investigate this trade-off, we conduct experiments by adjusting the update interval. The ex-
periments are conducted in a synthetic environment based on the Neural Testbed, with an action
dimension of 50 and 10 different random seeds. Specifically, we reduce the index update frequency
to one-third (1/3) of the original setting. As demonstrated in Table (7} this adjustment significantly
lowers the computational cost. For instance, in the 36-dimensional setting, the elapsed wall time
drops from approximately 90 seconds to 77 seconds.

Crucially, the results in Table [§]indicate that this reduction in computational cost does not compro-
mise the model’s fundamental utility. While there is a trade-off, the reduced-frequency model still
achieves a competitive relative regret reduction compared to the baseline hypermodel. This confirms
that the BEB framework can maintain high effectiveness even under constrained computational bud-
gets.

Table 7: Elapsed wall time(s) across different index dimensions.

Method Index Dim =3 Index Dim = 12 Index Dim = 36
hypermodel 61.48 £5.11 61.73 £2.38 65.25 £ 2.32
hypermodel (BEB) Reduced Freq. 70.19 + 3.97 73.59 £+ 5.09 76.99 + 3.98
hypermodel (BEB) 83.49 + 2.32 86.11 + 3.38 90.39 + 1.68

Table 8: Relative Regret Reduction (%) compared to hypermodel across different index dimensions.

Method Index Dim =3 Index Dim = 12 Index Dim = 36
hypermodel (BEB) 44.33% 43.01% 16.47%
hypermodel (BEB) Reduced Freq. 37.98% 32.03% 4.37%
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