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ABSTRACT

Chinese character recognition has been a longstanding research topic and remains
essential in visual tasks like ancient manuscript recognition. Chinese character
recognition faces numerous challenges, particularly the issue of zero-shot char-
acters. Existing Chinese zero-shot character recognition methods primarily fo-
cus on the radical or stroke decomposition. However, radical-based methods
still struggle to solve zero-shot radicals, while stroke-based ones are hard to per-
ceive fine-grained information. Besides, previous methods can hardly general-
ize to characters of other languages. In this paper, we propose a novel Self-
learning Compositional Representation method for zero-shot Chinese Character
Recognition (SCR-CCR). SCR-CCR learns compositional components automat-
ically from the data, which are not aligned with human-defined radical or stroke
decomposition methods. SCR-CCR follows the pretraining-inference paradigm.
First, we train a Character Slot Attention (ChSA) via pure feature reconstruction
loss to parse appropriate components from character images. Then we recognize
zero-shot characters without finetuning or retraining in the inference stage by com-
paring components between input and example images. To evaluate the proposed
method, we conduct experiments of zero-shot character recognition. The exper-
iments illustrate that SCR-CCR outperforms previous methods in most cases of
character and radical zero-shot settings. In particular, visualization experiments
indicate that the components learned by SCR-CCR reflect the structure of char-
acters in an interpretable way, and can be used to recognize Japanese and Korean
characters.

1 INTRODUCTION

Optical Character Recognition (OCR) plays a crucial role in various downstream tasks, such as docu-
ment understanding (Francois et al., 2022; Singh & Sachan, 2018) and traffic sign recognition (Jain
& Gianchandani, 2018; Greenhalgh & Mirmehdi, 2014). Thus, this field continues to attract the
attention of researchers. Unlike Latin characters, Chinese characters possess complex internal struc-
tures. Consequently, the multitude of Chinese character categories often leads to the prevalence of
zero-shot learning problems in practical applications (Yu et al., 2023).

As Figure 1 illustrates, previous zero-shot Chinese Character Recognition (CCR) methods can be
broadly categorized into character-based, radical-based and stroke-based approaches. To solve the
zero-shot problem, the character-based approach (Li et al., 2020; Xiao et al., 2019) extracts mono-
lithic representation for images and typically requires additional printed character images during
training. Differently, the radical- or stroke-based approaches (Wang et al., 2019; 2018; Chen et al.,
2021) recognize Chinese characters through radical and stroke decomposition, which may cost
considerable inference time due to the existence of auto-regressive decoders. Recently, based on
CLIP (Radford et al., 2021), Yu et al. (2023) proposed an efficient image-IDS matching method
for zero-shot CCR. Although existing methods have achieved certain performance improvements in
zero-shot CCR, the human-defined representations used in these methods may lack the flexibility to
adapt to different scenarios and have poor generalization in practical applications.

Compositionality is a fundamental way in which humans understand and interpret the world (Lake
et al., 2017). In contrast to monolithic representations of entire scenes, compositional representa-
tions describe the visual world by discovering objects in scenes, capturing attributes of objects, and
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Figure 1: Different representation methods of Chinese character recognition. (a) displays
character-based methods using monolithic representations to predict character labels; (b) and (c) are
stroke-based and radical-based methods using auto-regressive decoders to predict human-defined
strokes and radicals; (d) indicates the proposed SCR-CCR that can automatically decompose char-
acters into object slots.

abstracting relationships between objects (Singh et al., 2022; Seitzer et al., 2022). As a typical com-
positional representation, object-centric representation is crucial for understanding visual scenes and
enhancing generalization capabilities in scenes with novel objects or combinations of objects (Lo-
catello et al., 2020; Dedhia et al., 2023). For example, if one can recognize a car and a tree as two
independent objects, it can understand a new scene where a car parks next to a tree, even though
it has never seen such combination. In zero-shot CCR, we can decompose unseen characters into
acquired objects, and transform the task of character recognition into comparing object sequences
(Lake et al., 2011; 2015). Although radical-based or stroke-based approaches are similar in the
motivation of character decomposition, the object-centric representations are automatically learned
from data and can handle different types of data without annotations of human-defined radical or
stroke categories.

Inspired by the compositionality of visual scenes, we propose a novel Self-learning Compositional
Representation method for zero-shot Chinese Character Recognition (SCR-CCR). As Figure 1d
shows, SCR-CCR parses slots (i.e., compositional objects) from Chinese characters automatically,
which are not aligned with human-defined structures such as radicals and strokes, allowing it to
generalize effectively to unseen characters in a zero-shot setting. SCR-CCR realizes zero-shot CCR
via a pretraining-inference paradigm. In the first pretraining stage, we train an encoder, decoder,
and Character Slot Attention (ChSA) to parse appropriate slots from input character images by
reconstructing features of a frozen pre-trained encoder (Locatello et al., 2020). In the second in-
ference stage, SCR-CCR recognizes zero-shot characters without finetuning by matching slots of
input and example images. We conduct experiments of character and radical zero-shot CCR. SCR-
CCR outperforms previous methods on all datasets in both zero-shot settings and surpasses previous
methods by about 50% in the radical zero-shot setting. Visualization experiments indicate that the
slots learned by SCR-CCR can reflect the structure of Chinese characters in an interpretable way.
In particular, trained with only Chinese characters, SCR-CCR can recognize Japanese and Korean
characters, achieving an accuracy of 89% and 62%.

2 RELATED WORKS

2.1 ZERO-SHOT CHINESE CHARACTER RECOGNITION

Due to the significantly larger number of Chinese characters compared to Latin characters, character
recognition in Chinese inevitably encounters zero-shot problems, i.e., the characters in the test set are
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excluded in the training set. Early works in Chinese character recognition can be broadly categorized
into three types: character-based, radical-based, and stroke-based approaches.

Character-based. Before the era of deep learning, the character-based methods usually utilize the
hand-crafted features to represent Chinese characters (Jin et al., 2001; Su & Wang, 2003; Chang,
2006). With deep learning achieving a great success, MCDNN (Cireşan & Meier, 2015) takes the
first attempt to use CNN for extracting robust features of Chinese characters while approaching
the human performance on handwritten CCR in the ICDAR 2013 competition (Yin et al., 2013).
Although the character-based methods, treating each character as one class, have a higher time
efficiency, they are prone to suffer from the character zero-shot problem in practice.

Radical-based. To solve the character zero-shot problem, some methods propose to predict the
radical sequence of the input character image. In Wang et al. (2018), character images are first
fed into a DenseNet-based encoder (Huang et al., 2017) to extract the character features, which are
subsequently decoded into the corresponding radical sequences through an attention-based decoder.
FewShotRAN (Wang et al., 2019) proposes a radical aggregation module to introduce the deep
prototype learning for robust radical feature representation. These radical-based methods can indeed
alleviate the character zero-shot problem to a certain extent, but the prediction of radical sequences
takes longer time than the character-based methods. Although HDE (Cao et al., 2020) adopts a
matching-based method to avoid the time-consuming radical sequence prediction, this method needs
to manually design a unique vector for each Chinese character. Meanwhile, it does not achieve ideal
performance in the zero-shot settings.

Stroke-based. To fundamentally solve the zero-shot problem, some methods decompose Chinese
characters into stroke sequences. The early stroke-based methods usually extract strokes by tradi-
tional strategies. For example, in Kim et al. (1999), the authors employed mathematical morphology
to extract each stroke in characters. The proposed method in (Liu et al., 2001) describes each Chi-
nese character as an attributed relational graph. Recently, a deep-learning-based method (Chen et al.,
2021) is proposed to decompose each Chinese character into a sequence of strokes and employs a
feature-matching strategy to solve the one-to-many problem (i.e., there is a one-to-many relationship
between stroke sequences and Chinese characters). This stroke-based method can indeed alleviate
the zero-shot problem and achieve higher performance than radical-based methods. However, it
costs more time in inference, resulting from that the predicted stroke sequences of Chinese charac-
ters are longer than the corresponding radical sequences.

Recently, Yu et al. (2023) introduced CCR-CLIP, which aligns character images with their rad-
ical sequences to recognize zero-shot characters, achieving comparable inference efficiency with
the character-based approach. All previous methods focus on learning Chinese character features
through human-defined representations but struggle to achieve high generalization capabilities.

2.2 OBJECT-CENTRIC REPRESENTATION LEARNING

Object-centric representation methods interpret the world in terms of objects and their relationships.
They capture structured representations that are more interpretable, compositional, and generaliz-
able, which has become increasingly popular in computer vision, as it aligns with how humans
perceive and interact with the world. One class of models extracts object-centric representations
with feedforward processes. For example, SPACE and GNM (Lin et al., 2020; Jiang & Ahn, 2020)
attempt to divide images into small patches for parallel computation while modeling layouts of
scenes. Another class of models initializes and updates object-centric representations by iterative
processes (Greff et al., 2017; 2019; Emami et al., 2021). A representative method is Slot Attention,
which assigns visual features to initialized slots via iterative cross-attention mechanism (Locatello
et al., 2020). Based on Slot Attention, many methods have been proposed to improve the quality of
object-centric representations in different scenarios (Seitzer et al., 2023). Recently, some models
have aimed at parsing object-centric scene representations in videos. SAVi++ (Elsayed et al., 2022)
uses Slot Attention to extract a set of temporally consistent latent variables while discovering and
segmenting objects with additional visual cues of the first video frame. STEVE (Singh et al., 2022)
combines the transformer-based decoder of SLATE (Singh et al., 2021) with a standard slot-level
recurrence module to extract object-centric representations.
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Figure 2: An overview of the two stages in SCR-CCR. SCR-CCR consists of a trainable encoder,
ChSA and decoder. In the pre-training stage, SCR-CCR encodes image features, extracts slots, and
decodes slots back to features. The training objective is to reduce the difference between the features
reconstructed by SCR-CCR and the features of a frozen teacher encoder. In the slot-matching stage,
SCR-CCR uses the pre-trained encoder and ChSA to extract slots from the test image and example
images, assigning a category to the test image by comparing their slots.

3 METHODOLOGY

In this paper, we propose SCR-CCR, an object-centric representation method for CCR. As shown in
Figure 2, SCR-CCR recognizes characters through two separate stages: the pre-training stage and
the slot-matching stage. In the pre-training stage, we train an encoder, ChSA, and decoder that can
extract slots (i.e., object-centric representations) from the input character images. And in the slot-
matching stage, we use the pre-trained ChSA to extract slots from the input and example images,
and assign a category to the input by comparing their component slots.

3.1 PROBLEM SETTING

Given an input character image, a CCR model is required to provide the class of the input. In most
cases, the training and testing splits of datasets have similar distributions of characters. However, all
testing samples will not appear in the training stage in a more challenging zero-shot setting. The key
to zero-shot character recognition is transferring the ability of character recognition to novel cases,
which are not available in the model training. In the paper, a sample is a tuple (X, y) where X is
the input character image and y is the corresponding input type. We keep the training charset and
the testing charset disjoint for the zero-shot setting.

3.2 SLOT ATTENTION

Slot Attention (Locatello et al., 2020) maps a scene to a group of slots to capture the representations
of objects independently. This mechanism effectively extracts object-centric representations and can
even automatically discover individual objects in a scene in an unsupervised setting. The core idea
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is to iteratively assign the features of the input image with each slot through a specific attention
mechanism.

Input Feature Encoding. First, the input image X is encoded into a 2D feature matrix F ∈ RN×D

through a feature extractor, where N is the number of input features (e.g., spatial locations or pixels),
and D is the dimensionality of each feature.

Slot Initialization. A set of slots S ∈ RK×D is initialized randomly or with learnable parameters,
where S = {s1, ..., sK}, K is the number of slots (i.e., the maximum number of objects to extract),
and each slot is a D-dimensional vector.

Attention Computation and Slot Update. In each iteration, the slots act as queries, while the input
features act as keys and values. The matching is performed through an attention mechanism. First,
compute the queries, keys, and values:

Q = WqS ∈ RK×Dq , K = WkF ∈ RN×Dk , V = WvF ∈ RN×Dv , (1)

where Wq , Wk, and Wv are linear transformation weight matrices that project the slots and input
features into different dimensional spaces of Dq , Dk, and Dv , respectively. Slot Attention computes
the attention logits by measuring the similarity between the slot queries and the feature keys, and
normalizes the logits to h prevent ignoring parts of the input features:

Aij =
eΦij∑
l e

Φlj
, where Φ =

QK⊤
√
Dk

∈ RK×N . (2)

Slot Attention aggregates the input values to their assigned slots by a weighted mean operation:

U = WV ∈ RK×Dv , where Wij =
Aij∑
l Ail

. (3)

Slot Attention use the aggregated values U to updates the slots:

Snew = GRU(S,U). (4)

The Gated Recurrent Unit fuses the newly extracted information with the previous slot states. The
above process is repeated over multiple iterations to update the slots through the attention mecha-
nism, allowing them to gradually focus on different objects or regions in the scene.

3.3 PRE-TRAINING STAGE

Since SCR-CCR performs recognize characters based on object-centric representations, we train an
encoder, ChSA, and decoder to parse slots from input images in the pre-training stage. For an input
image, the encoder extracts its visual features; the ChSA parser aggregates features that belong to
the same object based on visual clues to form slots; the decoder reconstructs the features of slots and
composes them into a complete feature map. The training objective of SCR-CCR is to reconstruct
the DenseRAN features, allowing the ChSA to output slots that can reflect meaningful components
of the character.

Image Encoding. The encoder is responsible for downsampling the input character image to extract
visual features. Since the slot parser needs to assign each feature to one slot, the number of features
is an important factor influencing the computational efficiency of SCR-CCR. On the other hand, the
input character image may contain details that are not critical for recognition (e.g., stroke thickness
and color). By downsampling input images through the encoder, we can control the number of
features and obtain more representative features for recognition. The encoder is randomly initialized
and trained from scratch. Assuming that the input images X , the process of image encoding is:

F = Encoder(Scale(X)). (5)

SCR-CCR scales the shape of X to 80× 80 and outputs a 40× 40 feature map F .

Slot Parsing. ChSA extracts slots from F , which represents different components that make up
the complete character. ChSA is built upon the Slot Attention mechanism, where the features in
F are iteratively assigned to different slots through update aggregation. Most character recognition
datasets provide additional auxiliary information besides character images and the corresponding
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categories. For example, Ideographic Description Sequence (IDS) provides a human-defined struc-
ture hierarchy and radical-level decomposition of characters. During the process of slot update,
ChSA leverages auxiliary information to guide the learning of slots for more accurate inference
results. Since SCR-CCR parses slots automatically, which are not designed to align with human-
defined radicals, ChSA does not use meta information of radicals and only calculates the number of
radicals of each training sample. As Figure 2 shows, the number of radicals is used as the number
of slots in training empirically. Assuming that ChSA has K slots, and the training sample contains
m radicals according to the auxiliary information, we introduce a K-dimensional indicator vector v
to indicate the availability of slots, where vi = 1 when 1 < i < m, and vi = 0 otherwise. ChSA
changes Equation 2 to calculate the attention logits using the indicator vector:

Ai,j =
vi · eΦi,j∑K
l=1 vl · eΦl,j

, (6)

where v ensures that only m of the K slots are assignable. Controlling the number of slots encour-
ages ChSA to learn interpretable components of characters, rather than decomposing the input into
more fragmented parts.

Feature Decoding. The decoder is responsible for reconstructing features from the parsed slots S.
Most OCR models are typically trained with discriminative losses, for example, calculating cross-
entropy loss on the output of a classification head. However, supervising the learning of slots with
discriminative losses is hard for ChSA. The order of the parsed slots is not always consistent due
to the random initialization strategy, making it difficult to determine the real category label for each
slot. Besides, pre-defined radicals (e.g., IDS) may not completely match the components learned
by ChSA. ChSA follows the training strategy of most object-centric representation methods, i.e.,
introducing a decoder to reconstruct the slots back into the image or features, and updating param-
eters through reconstruction loss. The decoder of ChSA chooses to reconstruct features because we
expect the slots to contain high-level information such as component categories, rather than those
used for reconstructing pixels of images (e.g., stroke thickness). The decoding process is:

Λk,Ok = Decoder(sk), k = 1, · · · ,K,

R =

K∑
k=1

Mk ⊙Ok, where Mk
i,j =

vk · eΛ
k
i,j∑K

l=1 vl · e
Λl

i,j

.
(7)

Ok is the features of the kth component, Mk is a mask indicating the position of the kth component,
and R is the reconstructed features. With the decoder, SCR-CCR can be trained by minimizing the
distance between the reconstructed features and the features of DenseRAN. The training loss is

L =
1

HW

H∑
i=1

W∑
j=1

∥∥Ri,j − F̄i,j

∥∥2
2
, where F̄i,j =

Fi,j − E[Fi,j ]

Var[Fi,j ]
. (8)

F̄ represents the standardized DenseRAN features. Since DenseRAN is trained by predicting IDS,
the visual features extracted by the encoding module typically retain information related to the char-
acter structure (e.g., its layout and components) while ignoring details that have less contribution to
recognition. SCR-CCR leverages the feature extraction module of the pre-trained DenseRAN as the
teacher encoder and fixes its parameters during the entire training procedure.

3.4 SLOT-MATCHING STAGE

SCR-CCR uses the pre-trained encoder and ChSA to extract test slots Ŝ from the test image X̂ . A
straightforward idea is that the distance between slots can reflect the similarity between the images.
But as Figure 3 displays, even if we input the same character image, ChSA may output slots with
different orders due to the randomness of slot initialization. In this case, although the input images
belong to the same category, the distance between their slots can be quite large. To solve this
problem, SCR-CCR uses a fixed set of vectors sampled from standard Gaussian to initialize slots.
We find that the region focused by each slot is related to its initial state. If all input images share
the same initial states of slots, the acquired components will tend to have the same order. SCR-CCR
estimates the similarity of two images by calculating the distance (e.g., L2 distance) between the
ordered slots.
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(a) Initialized with fixed vectors (b) Initialized randomly

Image Slot#1 Slot#2 Slot#3 Slot#4 Slot#5 Image Slot#1 Slot#2 Slot#3 Slot#4 Slot#5

Figure 3: A comparison of slot initialization. (a) shows the slots parsed from the fixed initial states.
Slots in (b) follow the original random initialization strategy of Slot Attention.

SCR-CCR requires datasets to provide Ne example images for each character in the charset C to
illustrate different forms of the character. SCR-CCR uses the averaged example slots to represent
the character c:

S̄c =
1

Ne

Ne∑
i=1

Sc,i, (9)

where
{
Sc,1, . . . ,Sc,Ne

}
are the slots of Ne examples. SCR-CCR calculates distance between Ŝ

and the averaged example slots of all characters in C, finding the one with the smallest distance as
the recognition result:

ŷ = argmin
c∈C

∥∥∥Ŝ − S̄c
∥∥∥2
2
. (10)

4 EXPERIMENTS

In this section, we first introduce the experimental settings, including data construction and training
details. Then, we show some results of conducted experiments (additional experimental results are
shown in Appendix A.3). Finally, we conduct evaluation on Japanese and Korean characters to
validate the effectiveness of SCR-CCR.

4.1 EXPERIMENTAL SETTINGS

Dataset Construction. In this paper, we mainly conduct experiments on two datasets: HWDB1.0-
1.1 (Liu et al., 2013) and Printed artistic characters (Chen et al., 2021). HWDB1.0-1.1 (Liu et al.,
2013) contains 2,678,424 handwritten Chinese character images with 3,881 classes, which is col-
lected from 720 writers and covers 3,755 commonly-used Level-1 Chinese characters. Printed artis-
tic characters (Chen et al., 2021) are generated in 105 font files and contains 394,275 samples for
3,755 Level-1 Chinese characters. Some examples of each dataset are shown in Appendix A.1. We
follow (Chen et al., 2021) to construct the corresponding datasets for the character zero-shot and
radical zero-shot settings. For the character zero-shot settings, we collect samples with labels falling
in the first m classes as the training set and the last k classes as the test set. For the handwritten
character dataset HWDB and printed artistic character dataset, m ranges in {500, 1000, 1500, 2000,
2755} and k is set to 1000. For the radical zero-shot settings, we first calculate the frequency of
each radical in the lexicon. Then the samples of characters that have one or more radicals appearing
less than n times are collected as the test set, otherwise, collected as the training set, where n ranges
in {10, 20, 30, 40, 50} in the radical zero-shot settings.

Training Details. SCR-CCR is trained using the Adam optimizer (Kingma & Ba, 2014) where the
momentums β1 and β2 are set to 0.9 and 0.99. For the encoder and ChSA, we increase the learning
rate from 0 to 10−4 in the first 30K steps and then halve the learning rate every 250K steps. For the
decoder, we increase the learning rate from 0 to 3 × 10−4 in the first 30K steps and then halve the
learning rate every 250K steps. The training batch size is 32, and the input image of SCR-CCR will
be scaled to 80× 80. We set the maximum number of slots as K = 3 in the slot-matching stage.

7
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Table 1: Accuracy (%) of Chinese character recognition on the character zero-shot setting.
The proposed SCR-CCR outperforms the previous methods on handwritten and printed character
datasets and demonstrates outperforming recognition ability with a limited training charset (with
only 500 training characters).

Datasets HWDB Printed

500 1000 1500 2000 2755 500 1000 1500 2000 2755

DenseRAN 1.70 8.44 14.71 19.51 30.68 0.20 2.26 7.89 10.86 24.80
HDE 4.90 12.77 19.25 25.13 33.49 7.48 21.13 31.75 40.43 51.41
SD 5.60 13.85 22.88 25.73 37.91 7.03 26.22 48.42 54.86 65.44
CUE 7.43 15.75 24.01 27.04 40.55 - - - - -
CCR-CLIP 21.79 42.99 55.86 62.99 72.98 23.67 47.57 60.72 67.34 76.44
Ours 84.60 83.74 82.58 80.23 79.23 81.20 81.68 81.16 79.70 81.02

Table 2: Accuracy (%) of Chinese character recognition on the radical zero-shot setting. Since
SCR-CCR does not rely on human-defined radical or stroke sequences for supervision, it can illus-
trate satisfying performance when meeting zero-shot radicals.

Datasets HWDB Printed

50 40 30 20 10 50 40 30 20 10

DenseRAN 0.21 0.29 0.25 0.42 0.69 0.07 0.16 0.25 0.78 1.15
HDE 3.26 4.29 6.33 7.64 9.33 4.85 6.27 10.02 12.75 15.25
SD 5.28 6.87 9.02 14.67 15.83 11.66 17.23 20.62 31.10 35.81
CCR-CLIP 11.15 13.85 16.01 16.76 15.96 11.89 14.64 17.70 22.03 21.27
Ours 79.93 77.90 81.03 83.87 81.30 74.11 76.38 76.63 79.98 81.35

4.2 RESULTS ON CHINESE CHARACTER RECOGNITION

Two radical-based methods (Wang et al., 2018; Cao et al., 2020), one stroke-based method (Chen
et al., 2021) and one matching-based method (Yu et al., 2023) are selected as the comparison meth-
ods in zero-shot settings. For fair comparison, some few-shot CCR models (Li et al., 2020), intro-
ducing the additional template samples at the training stage, are not considered. Moreover, since the
character accuracy of character-based methods is almost zero in zero-shot settings, these methods
are also not used for comparison.

Character Zero-Shot Setting. We first validate the effectiveness of the proposed SCR-CCR on the
character zero-shot setting. As shown in Table 1, regardless of the handwritten or printed character
dataset, the proposed SCR-CCR outperforms previous methods by a clear margin. For instance, in
the 500 HWDB character zero-shot setting, the proposed method achieves a performance improve-
ment of 62.81% compared with the previous SOTA method CCR-CLIP. However, we observe an
interesting phenomenon that as the size of the training set increases, the performance of our model
actually decreases to some extent. One possible reason is that although the training set includes
more characters, the number of samples for each character remains unchanged. However, the pro-
posed method relies on the differences between characters to learn compositional representations,
which requires an increase in the number of samples for each character as the number of characters
increases. For the interpretability of performance improvement, we have visualized some interme-
diate results of our method in Figure 4. More discussions are shown in Section 4.3.

Radical Zero-Shot Setting. Following the previous method (Chen et al., 2021), we have also con-
ducted corresponding experiments in the radical zero-shot setting. The experimental results shown
in Table 2 indicate that the proposed method achieves the best performance across all sub-settings
with an average improvement of 63.12% in accuracy compared to the previous SOTA method CCR-
CLIP (Yu et al., 2023). Since our method does not introduce manually defined radical or stroke
sequences for supervision, the proposed SCR-CCR can still achieve satisfying performance in the
case of radical zero-shot scenarios.
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(a) Slots learned from Printed

Image Slot #1 Slot #2 Slot #3 Slot #4 Slot #5 Image Slot #1 Slot #2 Slot #3 Slot #4 Slot #5 Slot #6

(b) Slots learned from HWDB

Figure 4: Visualization of the learned slots. Although we introduce no fine-grained supervisions
defined by humans, e.g., radical and stroke sequences, the proposed SCR-CCR can still perceive
different components with slots.

4.3 VISUALIZATION OF SLOTS

Previous radical-based or stroke-based methods rely on human-defined representations, such as rad-
ical or stroke sequences. Radical-based methods suffer from inconsistent decomposition across dif-
ferent characters, which requires the model to extract different features from the same visual charac-
teristics, thereby hindering performance. In addition, stroke-based methods require perceiving fine-
grained stroke information, which is challenging for Chinese characters with complex structures.
In this section, we attempt to visualize the compositional representations learned by the proposed
method. As shown in Figure 4, we visualize the regions attended by different slots for both printed
and handwritten character samples. The visualization results reveal that each slot focuses on distinct
and independent components of the characters. It is satisfying to note that despite the absence of any
fine-grained supervision information (such as radicals or strokes), different slots can still effectively
distinguish different character regions. Therefore, the compositional representations learned in an
unsupervised manner from the training set characters can possess stronger generalization capabili-
ties, thus being more robust to zero-shot characters.

4.4 DIFFERENT NUMBER OF SLOTS AND EXAMPLES

In experiments, we observe that there are two factors that affect the performance of SCR-CCR in
inference: the number of slots and that of template character images used for matching. As shown in
Figure 5, we have evaluated the performance of SCR-CCR with different slot and template character
image quantities in the character zero-shot settings. On both HWDB and Printed characters, SCR-
CCR exhibits better performance when the number of slots is set to 2 or 3. This also conforms to
the way that native Chinese speakers recognize Chinese characters, i.e., they tend to only focus on
the patterns of left-right or upper-lower radicals of the entire character. In addition, we find that
the more template characters used in inference, the better the performance of SCR-CCR. Therefore,
we use 10 character images for matching in the final experiments. It should be noted that since
the features of character images used for matching can be extracted in advance, there will be no
additional inference time when more template character images are used. More experimental results
in the radical zero-shot setting are displayed in Appendix A.3.2.
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Figure 5: Accuracy on the different number of slots and examples. (a) and (b) illustrate how the
number of slots influences the accuracy of slot-matching. (c) and (d) show the impact of the number
of examples on the experimental results.

Table 3: Accuracy (%) of recognizing Japanese and Korean characters. The proposed SCR-
CCR can achieve satisfying performance in recognizing Japanese and Korean characters with a
pre-trained model trained only on Chinese characters.

Datasets Japanese Korean

Ours 89.46 62.13

4.5 ZERO-SHOT JAPANESE AND KOREAN CHARACTER RECOGNITION

Most Chinese zero-shot character recognition methods can only achieve limited generalization on
unseen Chinese characters and cannot further generalize to other languages. To demonstrate the ef-
fectiveness of their method on character recognition in other languages, Chen et al. (2021) defined
stroke sequences for Korean characters using their stroke-decomposition method and achieved sat-
isfying performance in Korean character recognition. However, this method still requires collecting
Korean character images for training. Unlike the evaluation of generalization in previous methods,
we directly perform testing on Japanese and Korean characters without any training or fine-tuning
on data of these languages. The experimental results shown in Table 3 indicate that, despite not
being trained on any Japanese or Korean character datasets, the proposed SCR-CCR achieves an
accuracy of 89.46% and 62.13% on Japanese and Korean characters, respectively.

5 CONCLUSION

In this paper, we introduce the Self-learning Compositional Representation method for zero-shot
Chinese Character Recognition (SCR-CCR) to address challenges in Chinese character recog-
nition, particularly zero-shot recognition. SCR-CCR offers a unique solution by autonomously
learning compositional components from the data, distinct from traditional radical or stroke-based
approaches. By following a pretraining-inference paradigm and leveraging Character Slot Atten-
tion, SCR-CCR excels in extracting relevant components for recognition. The experimental results
demonstrate that SCR-CCR outperforms previous methods in most scenarios of character and radi-
cal zero-shot settings. Particularly, visualization experiments reveal that the components learned by
SCR-CCR reflect the structure of characters in an interpretable manner and can be applied to recog-
nize Japanese and Korean characters. In essence, SCR-CCR not only advances the field of Chinese
character recognition but also offers insights into broader applications across languages.
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A APPENDIX

A.1 EXAMPLES OF ADOPTED DATASETS

(b) Examples of Printed characters

(a) Examples of handwritten characters

Figure 6: Visualization of the adopted datasets (a) HWDB and (b) Printed.
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(b) Examples of Japanese characters

(a) Examples of Korean characters

Figure 7: Visualization of the additional (a) Korean and (b) Japanese test characters.
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A.2 DETAILS OF SCR-CCR

This section describes the architectures of learnable networks in SCR-CCR, including the encoder
and decoder. The architecture of ChSA follows the original design of Slot Attention (Locatello et al.,
2020).

• Encoder:
– 5 × 5 Conv, stride 2, padding 2, 192, ReLU
– [ 5 × 5 Conv, stride 1, padding 2, 192, ReLU ] × 2
– 5 × 5 Conv, stride 1, padding 2, 192
– Cartesian Positional Embedding, 192, LayerNorm
– Fully Connected, 192 ReLU
– Fully Connected, 192

• Decoder:
– Fully Connected, 192 ReLU
– Learnable 2D Positional Embedding, 192
– [ Fully Connected, 1024 ReLU ] × 2
– [ Fully Connected, 1024 ] × 2

A.3 ADDITIONAL EXPERIMENTAL RESULTS

A.3.1 CLUSTERING OF CHARACTERS

To further validate the effectiveness of the representations learned by SCR-CCR, we cluster the
whole features of slots and visualize the clustering results in Figure 8. The results demonstrate that
SCR-CCR can effectively distinguish different characters in the feature space, whether on handwrit-
ten or printed Chinese characters. Interestingly, compared to handwritten characters, the features of
printed characters exhibit more ambiguity in the feature space. While printed characters are typically
easier to recognize (i.e., the features of printed characters are more distinguishable), the examples of
adopted datasets shown in Appendix A.1 indicate that the diversity of printed characters is no less
than that of handwritten characters.

(a) Slots Clustering on HWDB (b) Slots Clustering on Printed

Figure 8: Visualization of the slot clustering. The slot clustering results demonstrate that the
learned compositional representations can be well distinguished in the feature space.

A.3.2 DIFFERENT NUMBER OF SLOTS AND EXAMPLES

We also explore the impact of different numbers of slots and template character images on model
performance in the radical zero-shot setting. The experiment indicates that when the number of slots

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

is set to 2 3 and the number of template character images is set to 10, SCR-CCR can achieve the
best performance, which is consistent with the conclusion in Section 4.4.

Figure 9: Accuracy on the different number of slots and examples (radical zero-shot setting).
(a) and (b) illustrate how the number of slots influences the accuracy of slot-matching. (c) and (d)
show the impact of the number of examples on the experimental results.

A.3.3 CANDIDATES IN SLOT-MATCHING

As shown in Figures 10-12, we list the candidates that the model considers most similar to the input
image during the slot-matching process. Overall, SCR-CCR tends to confuse characters with the
same radicals or structures. This is particularly common in Chinese and Korean character recog-
nition since they have similar hierarchical structures. In Japanese, confusion typically occurs in
the symbols located in the upper right corner. Since Japanese characters have relatively simpler
structures, component-level confusion occurs less frequently.

A.3.4 ZERO-SHOT JAPANESE AND KOREAN CHARACTER RECOGNITION

Although SCR-CCR is trained on pure Chinese data, we still attempted to visualize the slots parsed
from Japanese and Korean data in this experiment. The visualization results in Figure 13 show that,
SCR-CCR can still discover some meaningful components in Korean data. This might be due to the
model having learned layout-related knowledge from the Chinese data, enabling it to parse unseen
components from non-Chinese characters. In contrast, Japanese characters have simpler structures,
and the model tends to recognize the entire Japanese character as a single component.
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Figure 10: Candidates in slot-matching of Chinese characters. The degree of matching decreases
from left to right. The matching targets are indicated in square brackets.

Figure 11: Candidates in slot-matching of Japanese characters. The degree of matching de-
creases from left to right. The matching targets are indicated in square brackets.
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Figure 12: Candidates in slot-matching of Korean characters. The degree of matching decreases
from left to right. The matching targets are indicated in square brackets.

(a) Slots learned from Korean (b) Slots learned from Japanese

Figure 13: Visualization of the slots learned from (a) Japanese and (b) Korean characters.
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