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ABSTRACT

Cross-domain few-shot segmentation (CD-FSS) aims to segment objects of novel
classes under domain shifts, using only a few mask-annotated support samples.
However, directly applying pretrained CD-FSS models to unseen domains is often
suboptimal due to their limited coverage of domain diversity by fixed parameters
trained on source domains. Moreover, simply adjusting hand-selected model pa-
rameters, such as test-time training, typically neglects the distinct domain gaps and
characteristics of target domains. To address these issues, we propose adapting
informative model structures for target domains by learning domain characteristics
from few-shot labeled support samples during inference. Specifically, we first
adaptively identify domain-specific model structures by measuring parameter im-
portance using a novel structure Fisher score in a data-dependent manner. Then,
we progressively train the selected informative model structures with hierarchically
constructed training samples, progressing from fewer to more support shots. Our
method selectively and gradually adapts the model to target domains, optimizing
model adaptation, minimizing overfitting risks, and maximizing the use of limited
support data. The resulting Informative Structure Adaptation (ISA) method effec-
tively addresses domain shifts and equips existing few-shot segmentation models
with flexible adaptation capabilities for new domains, eliminating the need to re-
design or retrain CD-FSS models on base data. Extensive experiments validate the
effectiveness of our method, demonstrating superior performance across multiple
CD-FSS benchmarks.

1 INTRODUCTION

Few-shot semantic segmentation (FSS) aims to segment novel classes using a limited number of
support samples. It typically trains a conventional support-query matching network to transfer class-
agnostic patterns from extensive base data to novel classes. Existing FSS methods (Fan et al., 2022a;
Nguyen & Todorovic, 2019; Lu et al., 2021; Zhang et al., 2019b) have made significant progress on
in-domain class generalization due to various well-designed matching and training techniques.

Despite their success, existing few-shot segmentation methods often struggle with domain shifts,
particularly when test and training data come from different domain distributions. This challenge
underscores the significance of cross-domain few-shot segmentation (CD-FSS), which aims to
generalize to new classes and unseen domains using minimal annotated data from the target domain.

Existing CD-FSS methods (Lei et al., 2022; Su et al., 2024a; Wang et al., 2022b; Huang et al., 2023)
typically train models by leveraging abundant base data from the source domain and then directly
applying the trained models to various target domains. However, the issue arises because CD-FSS
models are trained on limited domain data with frozen parameters, while the potential target domains
can be diverse and arbitrary. Therefore, it is necessary to adapt the trained models to target domains
during inference by utilizing few-shot labeled support samples.

Test-time training (TTT) (Wang et al., 2020; Sun et al., 2020b) effectively adapts models to target
domains by learning from test data. Although promising, most existing TTT methods adjust the same
manually-selected trainable structures across different domains, disregarding the distinct domain gaps
and characteristics of the target domains. For instance, in a domain-agnostic manner, MCS (Liang
et al., 2019) and Tent (Wang et al., 2020) respectively train the classifier and transformation parameters
across all possible target domains. However, different domains, or even individual test images,
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Figure 1: Top: Performance comparison of various methods on 5-shot CD-FSS tasks across four
datasets. Our ISA method outperforms all other approaches, including FSS (SSP), CD-FSS with
TTT (PATNet), and CD-FSS without TTT (DR-Adapter). Bottom: Comparison of related methods.
(a) Few-Shot Segmentation: Directly apply a frozen model structure across all domains without
adaptation. (b) Test-Time Training: Simply fine-tunes a fixed, trainable model structure, such as the
last layer, across all domains. (c) Ours (ISA): Fine-tunes the selected informative model structure,
which varies across different domains.

exhibit distinct properties related to various model structures, such as specific model layers. For
example, the satellite images in DeepGlobe (Demir et al., 2018) dataset primarily rely on low-level
texture analysis for parsing structured and detailed remote sensing areas. In contrast, Chest X-ray
images (Candemir et al., 2013) typically require middle- and high-level semantic understanding to
distinguish pneumonia-affected areas from normal lung regions in medical image analysis. Thus,
dynamically selecting trainable model structures is crucial for adapting to various target domains
with distinct characteristics.

To address these challenges, we propose a novel method, Informative Structure Adaptation (ISA),
specifically designed for cross-domain few-shot segmentation. We explore methods for identifying and
adapting domain-specific informative structures during inference by learning domain characteristics
from few-shot labeled support samples. Given the varying reliance on model structures across
different domains (Yosinski et al., 2014; Liang et al., 2019), the Informative Structure Identification
(ISI) module identifies domain-sensitive model structures by measuring parameter importance in a
data-dependent manner. First, we compute empirical Fisher information to reduce computational
overhead, inspired by the parameter importance metric used in continual learning (Kirkpatrick
et al., 2017). Building on this, we propose a novel structure Fisher score to guide the identification
of informative model structures. This strategy optimizes model adaptation for varying domain
characteristics and mitigates the risk of overfitting in few-shot scenarios.

Once informative model structures are obtained, optimizing trainable parameters becomes essential,
particularly in few-shot scenarios. Conventional test-time training methods typically optimize the
model using a single test image that shares the same class space as the training data. In contrast,
CD-FSS requires simultaneous generalization to new classes and unseen target domains, utilizing
multiple labeled support images. Therefore, it is essential to fully utilize few-shot support data to
tackle the challenges of class and domain generalization. We propose a novel Progressive Structure
Adaptation (PSA) module that trains the model with hierarchically constructed training samples,
progressing from fewer to more support shots. Specifically, we initially create support-query training
pairs by cyclically designating each support image as the pseudo query image. Subsequently, we
extend the training pairs by progressively increasing the number of support shots. This strategy
enables the model to gradually adapt to domain shifts and maximizes the use of limited support data
during inference for the challenging CD-FSS.

Our approach fundamentally differs from conventional few-shot segmentation and test-time training
methods, as shown in Figure 1. We are the first to leverage few-shot annotated support data to
adaptively identify and progressively adapt informative model structures during test-time training for
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CD-FSS. In contrast, most prevailing test-time training methods (Wang et al., 2020; Su et al., 2022;
Wang et al., 2022a; Su et al., 2024b) manually define trainable model structures and directly train
models on accessible test data, which are proven suboptimal by our empirical analysis. Moreover,
most test-time training methods fail to generalize to novel classes and semantic segmentation tasks.
Although PATNet (Lei et al., 2022) introduces a test-time training method for CD-FSS, it is specifically
designed to train fixed anchor layers and requires pre-training on the source domain. Therefore,
applying PATNet to other few-shot semantic segmentation methods is non-trivial. In contrast, our
method is model-agnostic, requires no additional learnable parameters, and can easily equip existing
few-shot segmentation models with flexible adaptation capabilities for new domains, eliminating the
need to redesign or retrain CD-FSS models on base data. In summary, our key contributions include:

• We introduce a novel Informative Structure Adaptation (ISA) method that adaptively identi-
fies and progressively adjusts informative model structures during inference for CD-FSS.

• The Informative Structure Identification (ISI) module dynamically identifies domain-
sensitive model structures in a data-dependent manner, while the Progressive Structure
Adaptation (PSA) module progressively addresses domain shifts by adapting the model with
an increasing number of support shots.

• Our ISA generalizes effectively across multiple unseen target domains and is remarkably
simple, enabling the adaptation of existing few-shot segmentation methods for CD-FSS
without the need for redesigning or retraining CD-FSS models on base data.

2 RELATED WORKS

Few-Shot Semantic Segmentation. Few-shot semantic segmentation, pioneered by Shaban et
al. (Shaban et al., 2017), aims to predict dense masks for objects of novel classes using only a limited
number of labeled support images. The mainstream prototype-based methods (Dong & Xing, 2018; Li
et al., 2021; Wang et al., 2019) perform segmentation by measuring the similarity between the query
features and representative support prototypes incorporating various improvements (Siam et al., 2020;
Liu et al., 2020; Zhang et al., 2021a; Zhuge & Shen, 2021). The affinity-based methods (Lu et al.,
2021; Zhang et al., 2021b; Peng et al., 2023; Min et al., 2021; Tian et al., 2020) establish detailed
dense correspondence between query and support features through feature concatenation and leverage
a learnable CNN or transformer module for segmentation prediction. Recently, foundation models
like SAM (Kirillov et al., 2023) present a novel opportunity for few-shot segmentation (Liu et al.,
2024; Zhang et al., 2024a), due to their remarkable transfer capability on tasks and data distributions
beyond the training scope. However, these methods do not consider the domain shifts problem,
leading to poor generalization performance when encountering new domains during testing.

Cross-Domain Few-Shot Semantic Segmentation. Cross-domain few-shot semantic segmentation
has recently received increasing attention. PATNet (Lei et al., 2022) introduces a feature trans-
formation layer that seamlessly maps query and support features across diverse domains into a
unified feature space, effectively tackling the intra-domain knowledge preservation issue in CD-FSS.
RD (Wang et al., 2022b) utilizes a memory bank to reinstill meta-knowledge from the source domain,
thereby improving generalization performance in the target domain. Subsequently, DARNet (Fan
et al., 2023) and RestNet (Huang et al., 2023) approach the problem from distinct perspectives,
focusing on bridging domain gaps through dynamic adaptation refinement and knowledge transfer,
respectively. Inspired by these pioneering efforts, PMNET (Chen et al., 2024a) presents a compre-
hensive solution capable of addressing both in-domain and cross-domain FSS tasks concurrently by
capturing pixel relations within each support-query pair. Unlike previous CD-FSS approaches, our
method effectively addresses domain shifts in CD-FSS during inference by adaptively identifying
and gradually adapting informative model structures on few-shot annotated support samples, and
is capable of seamlessly adapting current few-shot segmentation methods to address domain shifts
problem.

Test-Time Training. Normally, once a well-trained model is deployed, it remains static without
further alterations. In contrast, test-time training (TTT) (Sun et al., 2020a) adapts models to the
deployment scenario by leveraging unlabeled data available at test time. The mainstream self-
supervised learning-based methods (Liu et al., 2021b; Wang et al., 2021; Liang et al., 2020; Goyal
et al., 2022; Gandelsman et al., 2022) leverage the available unlabeled test data to facilitate model
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adaptation to the target domain using self-supervised learning techniques. The feature alignment-
based methods (Su et al., 2022; Jung et al., 2023; Wang et al., 2023a) attempt to rectify the feature
representations for the target domain. Some works attempt to apply TTT to address the semantic
segmentation problem. For instance, MM-TTA (Shin et al., 2022) utilizes multiple modalities to
provide reciprocal TTT self-supervision for 3D semantic segmentation. Similarly, CD-TTA (Song
et al., 2022) explores domain-specific TTT for urban scene segmentation using an online clustering
algorithm. OCL (Zhang et al., 2024b) proposes an output contrastive loss to stabilize the TTT
adaptation process for extreme class imbalance and complex decision spaces in semantic segmentation.
These methods typically adjust fixed hand-selected trainable structures on one single test image for
different domains. In contrast, our method dynamically adapt domain-specific informative structures
by learning domain characteristics from few-shot labeled support samples.

3 METHOD

Cross-Domain Few-Shot Segmentation (CD-FSS) aims to transfer knowledge learned from the source
domain to new categories in unseen target domains using minimal annotated support samples. The
model is typically trained on the source domain and then evaluated on target domains, ensuring no
label space overlap between the source and target domains.

3.1 BASELINE METHODS

Few-Shot Segmentation Model. Mainstream few-shot semantic segmentation model can be for-
mulated as follows: The input support and query images {Is, Iq} are processed by a weight-shared
backbone to extract image features {Fs,Fq}:

Fs = f(Is; θ),Fq = f(Iq; θ), (1)

where f denotes the image encoder with parameters θ. Then, the support features Fs and groundtruth
masks Ms are fed into the masked average pooling layer (MAP) to generate support prototypes Ps.
The final prediction is made by measuring the cosine similarity between Ps and Fq .

Model Structure Adaptation Baseline. Our model structure adaptation baseline for CD-FSS is
derived from the Test-Time Training (TTT) method, which typically adapts the pre-trained source
domain model during evaluation using the available test data. In CD-FSS, we segment the unlabeled
query image using the few-shot support set S =

{(
Iis,Mi

s

)}K

i=1
containing K support images with

groundtruth masks. We leverage the labeled support data to train the few-shot matching model for
adapting model structures by constructing support-query pairs with mask labels. Specifically, we
randomly select one support data Si

q = (Iis,Mi
s) as the pseudo query data, and treat the remaining

support samples as a new support set S \ Si
q, creating a support-query training pair (S \ Si

q, S
i
q).

Then, we extract support prototypes Pi
s and query features F i

q for test-time training:

Li
T = BCE

(
cosine

(
Pi
s,F i

q

)
,Mi

q

)
, (2)

where BCE is the binary cross entropy loss and Mq is the groundtruth mask of the pseudo query
image. Eventually, we train the model by optimizing the loss: θ∗ = argmin

θ
Li
T(Pi

s,F i
q,Mi

q; θ),

where θ denotes the trainable parameters of the model and θ∗ denotes the updated model parameters
after training. To prevent overfitting, we follow the common practice (Boudiaf et al., 2021; He et al.,
2020) to train only the final convolutional layer of the model during test-time training.

3.2 INFORMATIVE STRUCTURE IDENTIFICATION

To adapt the model to varying domain characteristics, we first investigate how to identify domain-
specific informative structures from few-shot labeled support samples during inference, rather than
manually defining trainable model layers.

Fisher Information Matrix (FIM) can evaluate the significance of parameters concerning a specific
task and data distribution. Given a model with parameters θ, input xi, output yi and output probability

pθ(yi|xi), the FIM can be computed as Fθ = Ex∼p(x)

[
Ey∼pθ(y|x)

(
∂ log pθ(y|x)

∂θ

)(
∂ log pθ(y|x)

∂θ

)⊤
]

.
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The matrix Fθ ∈ R|θ|×|θ| can alternatively be understood as representing the covariance of the
gradients of the log likelihood with respect to the parameters θ.

Empirical Fisher Information. However, directly computing the Fisher Information Matrix for
the pre-trained CD-FSS model involves significant computational overhead due to the |θ| × |θ|
scale. Thus, we simplify FIM for CD-FSS, inspired by the parameter importance metric used in
continual learning (Kirkpatrick et al., 2017). Specifically, we concentrate on the support samples
K in the target domain and utilize the diagonal elements of the “Empirical Fisher” to evaluate the
importance of the pre-trained model parameters for cross-domain tasks. Specifically, for the l-th
convolutional layer, we derive the empirical Fisher information of its u-th trainable parameters as

Fθl,u = 1
|K|

∑|K|
j=1

(
∂ log pθ(yj |xj)

∂θl,u

)2

. Correspondingly, a relatively large value of Fθl,u indicates that
the parameter θl,u is crucial for the cross-domain task.

Structure Fisher Score. Now, we can compute the empirical Fisher information for all parameters
of the model based on labeled support samples. We observe that the empirical Fisher information is
typically distributed sparsely throughout the model, with many low-value entries in each convolutional
layer. Directly fine-tuning the most sensitive unstructured parameters may lack the representational
capacity to handle severe domain shifts. Therefore, we propose identifying informative model
structures, i.e., convolutional layers, for subsequent model adaptation. Specifically, we compute the
maximum absolute value of empirical Fisher information across all U trainable parameters within the
l-th layer as its structure fisher score F ∗

θl
:

F ∗
θl
= max

(
|Fθl,1 |, |Fθl,2 |, . . . , |Fθl,u |, . . . , |Fθl,U |

)
. (3)

Model layers with higher structure Fisher scores are typically more important for model training (Liu
et al., 2021a) because of their greater contribution to the optimization process. Updating only the
informative model structures preserves the model’s ability to fit few-shot data and regularizes training
to mitigate the risk of overfitting. Therefore, we select the model layer with the highest structure
Fisher score and update its parameters θtr for model structure adaptation during inference, while
freezing all other parameters to minimize the risk of overfitting in few-shot scenarios:

θtr = θl∗ ,where l
∗ = argmax

l
{F ∗

θl
}. (4)

3.3 PROGRESSIVE STRUCTURE ADAPTATION

After identifying informative model structures, it is essential to optimize trainable parameters during
inference by fully utilizing few-shot support data to tackle the challenges of CD-FSS. Therefore,
we propose a Progressive Structure Adaptation (PSA) module to assist the model gradually address
domain shifts by adapting informative model structures on hierarchically constructed training samples,
progressing from fewer to more support shots.

Hierarchical Training Sample Construction. We begin by enhancing the utilization of few-shot
support data, cyclically designating each support image as a pseudo query image to generate multiple
support-query training pairs {(S \ Si

q, S
i
q)}Ki=1. To conserve computational resources, we first extract

features from all support images, then compute the losses for each constructed training pair based on
these features, and finally perform back-propagation to update model parameters using the averaged
loss 1

K

∑K
i=1 Li

T across all training pairs. Next, we vary the number of support shots from 1 to K − 1
to construct hierarchical training pairs. Specifically, for each support shot number n (n ≤ K − 1),
we construct training pairs containing n support samples. Therefore, we progressively increase the
number of support samples to construct training pairs, optimizing the utilization of few-shot support
data and enabling the model to gradually handle domain shifts during inference.

Progressive Structure Adaptation. To better address domain shifts in cross-domain tasks during
test-time training, we propose a Progressive Structure Adaptation (PSA) module that trains the model
using HTC-constructed hierarchical training pairs. The PSA method progressively trains the model
with an increasing number of support shots from 1 to K − 1, gradually reducing the domain gap.
Specifically, for the support shot number n, the training loss is:

LPSA,n =
1

K · Sn

K∑
i=1

∑
sn

BCE
(
cosine

(
Pi
sn ,F

i
q

)
,Mi

q

)
, (5)
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Algorithm 1 Informative Structure Adaptation (ISA)
1: Require: K-shot support samples, and well-trained FSS model f .
2: Select trainable layer parameters θtr using ISI module ▷ See Section 3.2
3: for n from 1 to K − 1 do ▷ PSA with increasing support shots. See Eqn. 7
4: Extract features F for all samples using the updated model f ▷ See Eqn. 1
5: for i from 1 to K do ▷ HTC with cyclic pseudo query
6: Compute loss Li

T on F for the i-th query with n support samples ▷ See Eqn. 2
7: (Omit the computation on combinations of n support samples for clarity)
8: end for
9: Compute average loss LPSA,n for support shots n ▷ See Eqn. 5

10: Back-propagation for model f with LPSA,n

11: Update model f : θ∗tr,n−1 → θ∗tr,n ▷ See Eqn. 6
12: end for

where sn denotes the sn-th combination of n support samples, enumerated from the S \ Si
q support

set, with a total of Sn combinations. The model parameters are updated by optimizing the loss:

θ∗n = argmin
θ∗
n−1

LPSA,n(Pi
sn ,F

i
q,Mi

q; θ
∗
n−1), (6)

where θ∗n−1 and θ∗n denote the updated model parameters trained with HTC-constructed training
samples with n− 1 and n support shots, respectively. Specifically, when n = 1, the θ∗n−1 represents
the original parameters θ of the FSS model.

Consequently, we progressively update the model parameters by gradually increasing the number of
support shots from 1 to K − 1, as follows: θ∗1 → θ∗2 → · · · → θ∗n → · · · → θ∗K−1. This approach
optimizes the use of limited support data to progressively mitigate domain shifts during inference on
the support set. Hence, we term it as Progressive Structure Adaptation (PSA) module.

3.4 INFORMATIVE STRUCTURE ADAPTATION

We incorporate the proposed ISI and PSA modules into the Informative Structure Adaptation (ISA)
method, as shown in Algorithm 1. Specifically, we first use ISI to select the trainable parameters θtr
for test-time training. Then, we use PSA with hierarchically constructed training pairs to train the
selected model parameters by gradually increasing the number of support shots n from 1 to K − 1:

θ∗tr,1 → θ∗tr,2 → · · · → θ∗tr,n → . . . θ∗tr,K−1. (7)

Notably, unlike conventional online TTT settings, our method isolates model training among testing
episodes, thereby safeguarding against data leakage and ensuring fidelity to the few-shot setting.

4 EXPERIMENTS

We adopt the popular few-shot semantic segmentation model SSP (Fan et al., 2022a) as our baseline,
trained on Pascal VOC (Everingham et al., 2010) source domain dataset. We directly apply our method
to the public released, well-trained SSP model with a ResNet-50 (He et al., 2016) backbone, without
any re-training on the source domain dataset. For test-time training, we use the SGD optimizer with a
learning rate of 1e-3 and one training iteration to update the trainable model parameters. Following
previous works (Lei et al., 2022; Su et al., 2024a), we evaluate all methods on four datasets with
distinct domain shifts: Deepglobe (Demir et al., 2018) for satellite images with seven categories,
ISIC2018 (Codella et al., 2019; Tschandl et al., 2018) for medical images with three types of skin
lesions, Chest X-Ray (Candemir et al., 2013; Jaeger et al., 2013) for medical screening images, and
FSS-1000 (Li et al., 2020) for 1000-class daily objects. The input images are resized to 400× 400
pixels. In the 1-shot setting, we apply data augmentation to support images to generate two additional
support images for test-time training. We use the mean Intersection-over-Union (mIoU) for evaluation.
All experiments are conducted on a Tesla V100 GPU.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Quantitative comparison results on the CD-FSS benchmark. The models are trained on
Pascal VOC source domain dataset and evaluated on four datasets with distinct domain shifts. The
best results are highlighted with bold. The † means our reproduced results. The ‡ means using the
ViT-base backbone.

Methods Deepglobe ISIC Chest X-ray FSS-1000 mIoU

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

PGNet (Zhang et al., 2019a) 10.7 12.4 21.9 21.3 34.0 23.0 62.4 62.7 32.2 31.1
PANet (Wang et al., 2019) 36.6 45.4 25.3 34.0 57.8 69.3 69.2 71.7 47.2 55.1

CaNet (Zhang et al., 2019b) 22.3 23.1 25.2 28.2 28.4 28.6 70.7 72.0 36.6 38.0
RPMMs (Yang et al., 2020) 13.0 13.5 18.0 20.0 30.1 30.8 65.1 67.1 31.6 32.9
PFENet (Tian et al., 2020) 16.9 18.0 23.5 23.8 27.2 27.6 70.9 70.5 34.6 35.0

RePRI (Boudiaf et al., 2021) 25.0 27.4 23.3 26.2 65.1 65.5 71.0 74.2 46.1 48.3
HSNet (Min et al., 2021) 29.7 35.1 31.2 35.1 51.9 54.4 77.5 81.0 47.6 51.4
SSP† (Fan et al., 2022a) 42.3 50.4 33.0 47.0 74.9 75.5 77.1 79.1 56.8 63.0
PATNet (Lei et al., 2022) 37.9 43.0 41.2 53.6 66.6 70.2 78.6 81.2 56.1 62.0

PMNet (Chen et al., 2024a) 37.1 41.6 51.2 54.5 70.4 74.0 84.6 86.3 60.8 64.1
ABCDFSS (Herzog, 2024) 42.6 49.0 45.7 53.3 79.8 81.4 74.6 76.2 60.7 65.0
APSeg‡ (He et al., 2024) 35.9 40.0 45.4 54.0 84.1 84.5 79.7 81.9 61.3 65.1

DR-Adapter (Su et al., 2024a) 41.3 50.1 40.8 48.9 82.4 82.3 79.1 80.4 60.9 65.4

Ours 44.3 52.7 37.2 56.1 83.4 86.3 78.8 86.0 60.9 70.3

Table 2: Quantitative comparison results on SUIM dataset, where models are trained on Pascal VOC.
ASGNet HSNet SCL RD DAM MMT DR-Adapter Ours

mIoU 31.9 28.8 31.8 34.7 34.8 35.9 40.3 44.1

Su
pp
or
t

Q
ue
ry

B
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el
in
e

O
ur
s

Deepglobe ISIC Chest X-ray FSS-1000

Figure 2: Qualitative comparisons between our method and the baseline model in the 1-way 5-shot
setting across four target domain datasets. We show only one support image for clarity.

4.1 COMPARISON WITH STATE-OF-THE-ARTS

In Table 1, we compare our method with existing cross-domain few-shot semantic segmentation
methods. Our method substantially outperforms the baseline method SSP (Fan et al., 2022a), with a
4.1/7.3 mIoU average improvement in the 1-shot/5-shot settings across all datasets. Additionally, our
method surpasses previous CD-FSS SOTA methods, PMNet (Chen et al., 2024a), APSeg (He et al.,
2024) and DR-Adapter (Su et al., 2024a), by a large margin in the 5-shot setting. APSeg achieves
slightly better performance than our method (61.3 v.s. 60.9), primarily because their ViT backbone is
more powerful than our ResNet-50 backbone. Note that all other CD-FSS methods require extensive
re-training on the source domain dataset to learn transferable, domain-agnostic features for domain
generalization. In contrast, our method can effectively and efficiently adapt existing well-trained FSS
models for segmenting objects of novel classes under domain shifts without any re-training. To further
validate the effectiveness of our method, we follow RD (Wang et al., 2022b) to evaluate our method on
the SUIM dataset. All models are trained on Pascal VOC dataset and evaluated on SUIM (Islam et al.,
2020) dataset. Table 2 shows that our method improves the SOTA performance from 40.3 to 44.1
mIoU, beating other popular methods, including ASGNet (Li et al., 2021), HSNet (Min et al., 2021),
SCL (Zhang et al., 2021a), RD (Wang et al., 2022b), DAM (Chen et al., 2024b), MMT (Wang et al.,
2023b) and DR-Adapter (Su et al., 2024a). Figure 2 shows qualitative result comparisons between
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Table 3: Results of ablation studies for the self-guiding test-time training method. “MSA” denotes
the model structure adaptation baseline, “ISI” denotes the informative structure identification module,
and “PSA” denotes the progressive structure adaptation module.

MSA ISI PSA Deepglobe ISIC Chest X-ray FSS-1000 mIoU FPS

50.4 47.0 75.5 79.1 63.0 16.5
✓ 50.9 48.4 80.8 78.2 64.6 8.6
✓ ✓ 51.5 50.6 81.7 82.1 66.5 3.2
✓ ✓ 53.2 50.8 84.2 82.0 67.6 1.4
✓ ✓ ✓ 52.7 56.1 86.3 86.0 70.3 1.0

Figure 3: Selected trainable layer distribution of the informative structure identification (ISI) module.

our method and the strong baseline SSP models. By applying our ISA method, we can substantially
improve the segmentation quality of the FSS method for novel objects in distinct domains.

4.2 ABLATION STUDIES

Module Ablation. In Table 3, the simple model structure adaptation (MSA) module improves the
performance by 1.6 mIoU, thanks to the model adaptation for diverse target domains. The ISI module
improves segmentation performance on all target domains, due to the identified informative structures
for model adaptation to varying domain characteristics. The PSA module boosts the performance
to 67.6 mIoU, attributing to its progressive training strategy to gradually solve domain shifts and
maximal exploitation of the few-shot data. Integrating all modules, our ISA method significantly
improves the performance from 63.0 to 70.3 mIoU on the strong baseline model.

Speed Ablation. Table 3 presents the running speed analysis of our proposed modules. Model
structure adaptation (MSA) reduces the running speed from 16.5 FPS to 8.6 FPS, primarily due to
the extra model forwarding step. The ISI module reduces the running speed to 3.2 FPS due to the
additional model forwarding and Fisher score computation. The PSA module improves performance
by 4.6 mIoU, reducing the speed to 1.4 FPS, primarily due to the multiple extra model forwarding steps
required for progressive self-guiding training. Our ISA method substantially improves performance
from 63.0 to 70.3 mIoU, reducing the speed to 1.0 FPS. The proposed ISA method is inherently suited
for performance-demanding applications with low speed requirements, such as image annotation and
offline image analysis. In Section 4.3, we further propose a fast ISA method based on our analysis,
improving the running speed to 3.3 FPS while keeping competitive performance.

4.3 INFORMATIVE STRUCTURE ADAPTATION ANALYSIS

We conduct extensive experiments to understand our informative structure adaptation method. All
experiments are performed in the 5-shot setting, focusing solely on the target module of the full ISA.

Informative Structure Identification Mechanism. Figure 3 summarizes the trainable layer distribu-
tion selected by ISI for various datasets. The ISI-selected trainable layers vary significantly depending
on the properties of each dataset. For example, the DeepGlobe and ISIC datasets both require reliable
low-level texture analysis for accurate segmentation, thus guiding the model to select more low-level
trainable layers, such as “layer2.0.conv1”. The FSS-1000 dataset requires high-level semantic
understanding for segmenting various common objects in context, guiding the model to primarily train
the high-level layers, such as “layer3.5.conv1”. Figure 4 compares the training loss, testing
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Figure 4: Comparisons on training loss, testing loss and mIoU for various model training strategies.

Table 4: Results of various hyperparameteres for informative structure identification (ISI) module.
Manual ISI with different # of trainable layers ISI with different structure Fisher scores

last conv 1 layer 2 layers 3 layers 4 layers 5 layers top1 top3 top5 top10 top20 mean

mIoU 67.6 70.3 70.8 71.0 70.7 70.6 70.3 70.2 70.3 70.3 70.2 67.8

Table 5: Results of using various progressive training strategies in the progressive structure adaptation
(PSA) module. The “1/2/3/4” denotes training models using HTC-constructed samples with 1/2/3/4
support shots. The → denotes the sequential training procedure.

1 2 3 4 1→4 2→4 3→4 1→2→4 1→3→4 2→3→4 1→2→3→4

mIoU 67.0 67.3 67.5 67.8 69.7 69.8 69.6 70.0 70.1 70.1 70.3

Table 6: Results of using various support shots for the baseline model and our method.
1-shot 3-shot 5-shot 8-shot 10-shot 15-shot 20-shot 30-shot

Baseline 56.8 61.0 63.0 63.4 64.0 65.0 65.1 65.2
Ours 60.9 67.1 70.3 71.0 71.9 73.0 74.0 74.6

loss and mIoU for various model training strategies. When training all model layers, both the training
loss and testing loss are significantly high across all datasets, indicating inferior generalization ability.
Training only the last convolutional layer mitigates the overfitting problem. Our ISI strategy further
addresses the overfitting problem, evidenced by the lowest training and testing losses, achieving the
best generalization performance. This analysis validates the effectiveness and working mechanism of
our selective self-guiding mechanism in addressing overfitting for test-time training in CD-FSS.

Informative Structure Identification Hyperparameters. Table 4 summarizes the model perfor-
mance under different ISI settings. Compared to training only the last convolutional layer, our ISI
substantially improves performance from 67.6 to 70.3 mIoU. By increasing the number of trainable
layers, performance can be further boosted to 71.0 mIoU when ISI selects three trainable layers.
We find that structure Fisher score are distributed sparsely, with many low-value scores in the con-
volutional parameters. Thus, the average structure Fisher score of each convolutional layer cannot
represent their importance, resulting in inferior segmentation performance. In contrast, we compute
the largest structure Fisher scores of each convolutional layer for trainable layer selection. We also
experiment with computing the top-k largest structure Fisher scores for selecting trainable layers and
achieve consistently good performance.

Progressive Structure Adaptation Mechanism. Our PSA module gradually addresses domain shifts
using HTC-constructed training samples, progressing from fewer to more support images. As shown
in Table 5, when directly trained with the 4-shot training pairs, the model performs worse than our
PSA-trained model, with a 2.5 mIoU performance drop. By adding one intermediate training step
(1 → 4, 2 → 4, or 3 → 4), the performance drop is significantly reduced to 0.5-0.7 mIoU. Adding
more intermediate training steps further improves generalization performance. These results validate
the importance of progressive training in gradually addressing domain shifts. Notably, our PSA does
not require additional data and maximizes the use of limited support data to construct hierarchical
training pairs for progressive self-guiding training.

Benefits from More Supports. Table 6 shows that existing the TTT-free FSS method encounters
performance saturation when the support data reaches 15 shots. In contrast, our ISA method benefits
from more support shots, reaching 74.6 mIoU with 30-shot supports.
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Table 7: Results of applying our method to other FSS/CD-FSS methods.
PANet + Ours FPTrans + Ours DR-Adapter + Ours PerSAM + Ours

mIoU 55.1 61.8 66.3 71.4 65.4 70.9 64.5 72.9

Table 8: Comparisons with related methods.
DG-based Methods TTT-based Methods SAM-based Methods

Mixstyle DSU NP TTT Tent PerSAM Matcher Ours

mIoU 63.8 64.2 64.5 63.1 63.3 64.5 64.2 70.3

Fast ISA. Based on our experimental analysis, we further propose a fast ISA method. Specifically,
we replace ISI by directly selecting the “layer3.5.conv1” and the last convolutional layers as
the trainable layers. Additionally, we replace PSA with a (2 → 3 → 4)-based progressive training
strategy, and randomly select only one training pair for each pseudo query data. The proposed fast
ISA method achieves 3.3 FPS and 70.0 mIoU, with a considerable improvement on the running speed
and a marginal performance drop compared with the original ISA method.

Generalized to Other Methods. Our ISA method is general and can be applied to other FSS methods
to address cross-domain few-shot semantic segmentation. As shown in Table 7, when equipped
with our ISA method, two FSS methods, PANet (Wang et al., 2019) and FPTrans (Zhang et al.,
2022), achieve substantially better performance on CD-FSS. Our method can further improve existing
CD-FSS methods, as evidenced by the 5.5 mIoU improvement on DR-Adapter (Su et al., 2024a)
when combined with our ISA method. Our method can also adapt the powerful SAM-based method
PerSAM (Zhang et al., 2024a) for CD-FSS, achieving remarkable 72.9 mIoU.

Comparison with More Related Methods. Table 8 compares our method with domain generalization
(Mixstyle (Zhou et al., 2021), DSU (Li et al., 2022), and NP (Fan et al., 2022b)), test-time training
(TTT (Sun et al., 2020b) and Tent (Wang et al., 2020)), and SAM-based methods (PerSAM (Zhang
et al., 2024a) and Matcher (Liu et al., 2024)) to further demonstrate the superiority of our approach.
Our method significantly outperforms other methods. Recently, IFA (Nie et al., 2024) sets a new
SOTA on CD-FSS benchmarks, but they adopt a distinct evaluation protocol. For a fair comparison,
we adopt their code and evaluation protocol to implement and evaluate our method. When combined
with their baseline model, our method achieves 72.8 mIoU, surpassing their reported 71.4 mIoU.

Discussions on Foundation Model-based Methods. Foundation models, such as SAM (Kirillov
et al., 2023) and CLIP (Radford et al., 2021), are typically trained on large-scale web-collected data,
resulting in excellent generalization on natural images. However, due to data domain limitations, they
often underperform in unseen domains like medical images, remote sensing images, or industrial
images. Additionally, foundation models are typically built on large backbone models, leading to
computation, deployment, and storage challenges. In contrast, our method is specifically designed to
address generalization to novel classes and unseen domains, featuring lightweight computation, a
simple network architecture, few model parameters, and easy deployment. Our method is general and
can flexibly equip foundation models to address domain shifts, evidenced in Table 7.

5 CONCLUSION

In this paper, we address the domain shifts problem in few-shot scenarios by introducing a novel
Informative Structure Adaptation (ISA) method for cross-domain few-shot segmentation (CD-FSS).
Our Informative Structure Identification (ISI) module adaptively identifies domain-specific model
structures by measuring parameter importance with a novel structure Fisher score in a data-dependent
manner. Furthermore, we propose the Progressive Structure Adaptation (PSA) module to progres-
sively adapt the selected informative model structures during inference, utilizing hierarchically
constructed training samples with an increasing number of support shots. The ISA method com-
bines these strategies to effectively address domain shifts in CD-FSS, and equips existing few-shot
segmentation models with flexible adaptation capabilities for new domains, eliminating the need
for redesigning or retraining CD-FSS models on base data. Extensive experiments demonstrate the
effectiveness of our method in cross-domain few-shot segmentation.
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