
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GENERATING DIRECTED GRAPHS WITH
DUAL ATTENTION AND ASYMMETRIC ENCODING

Anonymous authors
Paper under double-blind review

ABSTRACT

Directed graphs naturally model systems with asymmetric, ordered relationships,
essential to applications in biology, transportation, social networks, or visual under-
standing. Generating such graphs enables simulation, data augmentation and novel
instance discovery; however, this task remains underexplored. We identify two
key reasons: first, modeling edge directionality introduces a substantially larger
dependency space, making the underlying distribution harder to learn; second, the
absence of standardized benchmarks hinders rigorous evaluation. Addressing the
former limitation requires more expressive models that are sensitive to directional
topologies. Thus, we propose DIRECTO, the first generative model for directed
graphs built upon the discrete flow matching framework. Our approach combines:
(i) a dual-attention mechanism distinctly capturing incoming and outgoing depen-
dencies, (ii) a robust, discrete generative framework, and (iii) principled positional
encodings tailored to asymmetric pairwise relations. To address the second limita-
tion and support evaluation, we introduce a novel and extensive benchmark suite
covering synthetic and real-world datasets. Experiments show that our method out-
performs existing directed graph generation approaches across diverse settings and
competes with specialized models for particular classes, such as directed acyclic
graphs. These results highlight the effectiveness and generality of our approach,
establishing a solid foundation for future research in directed graph generation.

1 INTRODUCTION

Directed graphs (digraphs) model systems with asymmetric relationships, capturing essential struc-
tures such as flows, dependencies, and hierarchies that arise in many real-world applications. This
makes digraphs particularly well-suited for problems in diverse domains including biology (Li et al.,
2006; Takane et al., 2023; Wei et al., 2024), transportation (Concas et al., 2022), social dynam-
ics (Schweimer et al., 2022), and, more recently, image and video understanding (Chang et al., 2023;
Rodin et al., 2023), where structured and directional representations are critical for interpretation and
reasoning. Consequently, generating digraphs is central to tasks such as simulation, data augmentation
and novel instance discovery in domains with directional structure.

Graph generative models have shown strong potential in diverse applications, including drug dis-
covery (Mercado et al., 2020; Vignac et al., 2023b), finance (Li et al., 2023), social network model-
ing (Tsai et al., 2023), and medicine (Nikolentzos et al., 2023). However, most generative models
focus on undirected graphs (Liao et al., 2019; Martinkus et al., 2022; Vignac et al., 2023a; Siraudin
et al., 2024; Xu et al., 2024; Eijkelboom et al., 2024; Qin et al., 2025a), with only limited efforts
on directed settings where recent works propose auto-regressive models for DAGs (Zhang et al.,
2019; Li et al., 2025) and, more recently, for general digraphs (Law et al., 2025). We identify two
main factors limiting progress in this direction. First, at the modeling level, the directed setting is
inherently more challenging than its undirected counterpart, as edge directionality greatly enlarges the
learnable space (see Figure 1a: for graphs with 4 nodes, there are 218 possible digraphs, compared
to only 11 undirected ones). We will see that simply extending undirected architectures without
explicit directional components fails on this larger space of digraphs. This is further amplified in
settings where domain-specific structural constraints must be respected, such as directed acyclic
graphs (DAGs). Second, beyond these technical challenges, we identify the lack of standardized
benchmarks for directed graph generation as a barrier to rigorous evaluation and fair comparison.
Current DAG methods (Li et al., 2025) typically rely only on proxy metrics derived from downstream
tasks, with no established benchmarks to evaluate digraph generative quality systematically.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

1 2 3 4 5 6 7 8

nodes

0

2

4

6

8

10

12

L
og

(#
gr

ap
h

st
ru

ct
u

re
s)

Undirected

Directed

(a) Comparison on # structures.

Dual Attention
Transformer

t = 0 t = 1t t + Δt

Noised sample Original sampleRθ
t (Gt, Gt+Δt)

Prediction

Cross
Entropy

Directed
Positional
Encoding

θ

pθ(⋅ ∣ Gt)

Training

Sampling

Both

(b) Overview of DIRECTO.

Figure 1: (a) The learnable space increases drastically with the number of nodes for digraphs
compared to undirected graphs (Harary & Palmer, 1973), highlighting challenges in extending graph
generative models to directed structures. (b) Overview of our generative model for directed graphs.
During training, the dual attention transformer (denoising network), parameterized by θ, is enhanced
with asymmetric positional encoding, learning to reverse predictions using cross-entropy loss. During
inference, we compute the rate matrix Rθ

t (Gt, Gt+∆t), which governs the evolution of the generative
process over finite intervals ∆t, based on the model prediction pθ(· | Gt).

To address the first challenge, we introduce DIRECTO1, the first iterative refinement-based generative
model for directed graphs. Our approach brings together three core components of expressive graph
generative modeling: (i) an expressive neural architecture, (ii) a robust generative framework, and
(iii) informative input features. For the architecture, we employ a dual attention mechanism that
performs cross-attention between edge features and their reversed counterparts, capturing both source-
to-target and target-to-source information flow. All this is integrated within a robust discrete-state flow
matching framework that enables efficient generation with state-of-the-art performance and is also
readily extendable to conditional generation tasks through classifier-free guidance (Ho & Salimans,
2022). Finally, the network’s input features include positional encodings designed for asymmetric
adjacency matrices, which we show outperform directionality-agnostic alternatives. Figure 1b gives
an overview of our method and its components.

To tackle the second challenge, we propose a new benchmarking framework for rigorous evaluation
of directed graph generation, spanning both synthetic and real-world datasets. The synthetic bench-
marks cover different distributions, including acyclic and community-based graphs, while real-world
benchmarks include a DAG dataset for Neural Architecture Search (NAS) (Phothilimthana et al.,
2023) and a scene understanding dataset (Krishna et al., 2017). The evaluation metrics are systematic
and tailored to directed graphs, including distributional distances for fidelity, and dataset-specific
metrics reflecting the graph types used in different tasks. We evaluate DIRECTO on the proposed
benchmarks, where it consistently outperforms prior approaches across all settings, underscoring its
effectiveness on structurally diverse datasets. Extensive ablations further reveal that the dual attention
mechanism is critical for modeling directional dependencies, while positional encodings play a role
in enhancing overall generation quality.

Our main contributions are summarized as follows:

(i) We propose DIRECTO, the first flow-based digraph generative model, combining a direction-
aware dual attention block with positional encodings that capture asymmetric structure.

(ii) We address the lack of benchmarks by releasing an evaluation suite covering synthetic graphs
with relevant structural properties and real-world datasets with meaningful applications.

(iii) We conduct an extensive empirical analysis demonstrating that DIRECTO achieves state-of-
the-art performance on structurally diverse synthetic and real-world graphs, while showing
the need for a dedicated directed architecture.

Overall, by addressing the two main bottlenecks in directed graph generation, we propose an effective,
new generative framework and provide standardized benchmarks, aiming to lay the groundwork for
future research and to support real-world applications.

1Code available at: https://anonymous.4open.science/r/DirectoAnonymous

2

https://anonymous.4open.science/r/DirectoAnonymous

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 BACKGROUND: DISCRETE FLOW MATCHING FOR GRAPH GENERATION

Notation We denote by G =
(
x(1:n:N), e(1:i ̸=j:N)

)
directed graphs with N nodes. The set of nodes

is denoted by {x(n)}Nn=1, and the set of directed edges by {e(i,j)}1≤i̸=j≤N . Both nodes and edges
are categorical variables, where x(n) ∈ {1, . . . , X} and e(i,j) ∈ {1, . . . , E}. Inspired by standard
practice in iterative refinement for undirected graphs (Vignac et al., 2023a; Xu et al., 2024; Siraudin
et al., 2024; Qin et al., 2025a), we assume that every ordered pair of distinct nodes corresponds to a
directed edge in one of several possible classes, including a class representing an absent edge. Finally,
we use a subscript t to denote variables at time t, e.g., x(n)

t or e(i,j)t .

Problem statement Graph generative models aim to learn the probability distribution of a set
of observed graphs, enabling the generation of new samples that preserve structural and statistical
properties. Discrete Flow Matching (DFM)-based models (Gat et al., 2024; Campbell et al., 2024)
have recently achieved state-of-the-art performance in undirected graph generation (Qin et al.,
2025a). DFM belongs to a broader class of discrete state-space methods that recover the original
graph distribution p1 by progressively denoising samples from a pre-specified noise distribution
pnoise (Vignac et al., 2023a; Xu et al., 2024; Siraudin et al., 2024). It distinguishes itself from other
methods in this class by decoupling sampling from training, allowing for post-training sampling
optimization. Additionally, by operating directly in the discrete spaces, these methods naturally align
with the discreteness of graphs and are well-suited to capture complex dependencies through iterative
refinement. We hypothesize that this added expressivity is especially valuable for modeling the added
complexity of digraphs. We now introduce the two main processes of DFM: noising and denoising.

Noising process The noising process runs from t = 1 to t = 0, progressively corrupting the original
input graphs through a linear interpolation between the data distribution and the limit distribution
p0 = pnoise (as detailed in Figure 1b). This interpolation is applied independently to each variable (Gat
et al., 2024; Campbell et al., 2024), corresponding to each node and edge in the case of graphs. For
example, for each node x

(n)
1 , its noisy distribution at step t is defined as:

pXt|1(x
(n)
t | x(n)

1) = t δ(x
(n)
t , x

(n)
1) + (1− t) pXnoise(x

(n)
t), (1)

where δ(·, ·) denotes the Kronecker delta and pXnoise is the limit distribution over node categories. A
similar construction is used for the edges (Qin et al., 2025a).

Denoising process The denoising process aims to reverse the noising trajectory, running from t = 0
to t = 1. It is formulated as a Continuous-Time Markov Chain (CTMC), which starts sampling a
noisy graph G0 ∼ p0 and evolves according to:

pt+∆t|t(Gt+∆t | Gt) = δ(Gt, Gt+∆t) +Rt(Gt, Gt+∆t) dt, (2)

where Rt is the CTMC rate matrix (Campbell et al., 2024). In practice, this update rule is approx-
imated in two ways: first, by discretizing time with a finite step size ∆t, in an Euler method step;
and second, by approximating the ground-truth rate matrix with an estimate Rθ

t computed from the
predictions of a denoising neural network pθ

1|t(· | Gt) parametrized by θ. This network is trained to

predict the clean node p
θ,(n)
1|t and edge p

θ,(i,j)
1|t distributions given a noisy graph, aggregated as:

pθ
1|t(·|Gt) =

((
p
θ,(n)
1|t (x

(n)
1 | Gt)

)
1≤n≤N

,
(
p
θ,(i,j)
1|t (e

(i,j)
1 | Gt)

)
1≤i ̸=j≤N

)
. (3)

This network is trained using a cross-entropy loss independently to each node and each edge:

L = Et,G1,Gt

−∑
n

log
(
p
θ,(n)
1|t

(
x
(n)
1 | Gt

))
− λ

∑
i ̸=j

log
(
p
θ,(i,j)
1|t

(
e
(i,j)
1 | Gt

)) , (4)

where the expectation is taken over time t, sampled from a predefined distribution over [0, 1] (e.g.,
uniform); G1 ∼ p1(G1) is a clean graph from the dataset; and Gt ∼ pt(Gt|G1) is its noised version
at time t (Qin et al., 2025a). The hyperparameter λ ∈ R+ controls the relative weighting between
node and edge reconstruction losses. Further details are provided in Appendix I.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 GENERATING DIGRAPHS WITH ASYMMETRIC ENCODING AND DUAL
ATTENTION

In this section, we introduce DIRECTO, the first flow-based digraph generative model. We begin by
outlining the overall generative framework, followed by the two directionality-aware components
that form the core of DIRECTO: asymmetric positional encoding and dual attention.

3.1 DIRECTED GRAPH GENERATION VIA DISCRETE FLOW MATCHING

Building on the formulation of Section 2, we extend DFM to the directed graph setting. To address
the added complexity of asymmetric adjacency matrices in digraphs (Figure 1a), we exploit a key
strength of DFM: the decoupling of training and sampling. This enables post-training optimizations
such as time-adaptive schedules and custom CTMC rate matrices Qin et al. (2025a), which we can
extend to directed graphs (details in Appendix C). While these strategies improve performance (see
Appendix H.8), they remain insufficient to capture the structural properties of digraphs (see Section 5).
We therefore introduce architectural components explicitly tailored for directionality-aware graph
generation, providing the complete training and sampling algorithms in Appendix D.

3.2 ASYMETRIC POSITIONAL ENCODING

Our generative framework employs a denoising GNN, which inherently struggles to capture global or
higher-order patterns due to the locality of message passing (Xu et al., 2019; Morris et al., 2019). To
maximize the capacity of our method, we augment our GNN with positional encodings (PEs) that
inject structural information beyond local neighborhoods (Beaini et al., 2021; Bouritsas et al., 2020).
Common choices for undirected graphs include Laplacian eigenvectors or shortest-path distances,
effective in enriching node and edge representations (Vignac et al., 2023a; Qin et al., 2025a). However,
these encodings do not respect edge directionality, failing to distinguish asymmetric structural roles.
To overcome this, we adopt direction-aware positional encodings (Geisler et al., 2023; Huang et al.,
2025) that account for both outgoing and incoming connectivity. We append them to node and edge
features, allowing our model to better capture the structural dependencies unique to digraphs.

Specifically, we experiment with three families of encodings: (i) the Magnetic Laplacian
(MagLap) (Geisler et al., 2023), which introduces complex-valued phase shifts into the standard
Laplacian to retain edge orientation; (ii) its Multi-q MagLap extension (Huang et al., 2025), which
stacks Q Multiple Magnetic Laplacians with different complex potentials to provide richer representa-
tions; and (iii) Directed Relative Random Walk Probabilities (RRWP) (Geisler et al., 2023), which
combine forward and reverse transition probabilities to capture outgoing and incoming asymmetric
flows. These encodings are designed to provide direction-sensitive structural signals that better reflect
the properties of directed graphs, and are described in detail in Appendix B.

We hypothesize that incorporating directionality-aware positional encodings improves digraph gen-
erative performance. To test this, we design an ablation study evaluating which of the described
encodings provide the most informative structural signals, while also considering their computational
cost, to identify the best tradeoff between performance and efficiency.

3.3 GRAPH TRANSFORMER WITH DUAL ATTENTION

Graph Transformers (Dwivedi & Bresson, 2021; Rampášek et al., 2022) effectively model node
interactions by leveraging the adjacency matrix to encode structural information. However, in directed
graphs, it is crucial for the model to distinguish the different semantics carried by incoming and
outgoing edges, which makes the standard graph transformer insufficiently expressive. Generating
digraphs thus requires models that (i) capture bidirectional information flow to learn how source and
target nodes influence each other distinctly, and (ii) integrate structural signals across nodes, edges,
and the global graph to preserve relational dependencies and ensure coherent outputs.

To address this, our model jointly processes stacked node features X , edge features E, and global
features y through a Transformer composed of L layers of a dual attention block (see Figure 2).
This dual attention mechanism introduces two key components: (i) an attention-based aggregation
scheme that captures directional information, and (ii) modulation layers to incorporate information at
different levels of granularity across nodes, edges, and the global graph structure.

Bidirectional information flow via dual attention aggregation To model directional depen-
dencies more effectively, we use a cross-attention mechanism between source-to-target (outgoing)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Node features

Positional
Encoding

Edge features

Global features

+ Residual
connection

MLP + Residual
connection

Gated residual
connection

Dual Attention Block

Positional
Encoding

Positional
Encoding

Figure 2: Network architecture of DIRECTO. We stack L dual attention layers that account for both
source-to-target and target-to-source information via cross-attention mechanisms. X , E and y denote
the stacked input node, edge, and global features. X ′, E′ and y′ are the output of the model, i.e.,
predicted clean node and edge distribution, and graph feature. FiLM (Perez et al., 2018) and PNA
pooling layers (Corso et al., 2020) are incorporated to enable flexible modulation between node, edge,
and graph-level features. Full technical details are provided in Appendix A.

edge features EST and their reversed target-to-source (incoming) counterparts ETS. By explicitly
attending to both directions, our architecture, which builds on ideas from Wang et al. (2024), reasons
bidirectionally and better captures directed relationships, improving expressiveness and accuracy.
Concretely, we compute two directional attention maps between role-specific node projections:

YST[i, j] =
QS[i] ·KT[j]√

dq
, YTS[i, j] =

QT[i] ·KS[j]√
dq

, (5)

where QS, QT, KS, and KT are the role-specific projections for nodes that act as the source or the
target of an edge, respectively, and dq is the query feature dimension. These attention weights are
modulated through a FiLM layer (see Equation (8)) using edge features to enable effective reasoning,
producing the updated attention maps Y ′

ST and Y ′
TS.

To further consolidate directional information, we introduce an attention aggregation mechanism.
Instead of treating the attentions from the two directions independently, we concatenate the modulated
attention maps and apply a single softmax operation to obtain unified attention weights:

Aaggr = softmax(concat(Y ′
ST,Y

′
TS)) ∈ Rn×2n, V ⊤

aggr = concat(V ⊤
S ,V ⊤

T) ∈ R2n×h, (6)

where h is the hidden dimension, VS,VT are the value vectors for source and target nodes, and the
concatenation operation is performed along the node dimensions. These unified weights are then
used to aggregate the value vectors through weighted summation:

X ′ = AaggrVaggr ∈ Rn×h. (7)

This aggregation allows the model to assign asymmetric importance to the outgoing and the incoming
directions. The node features are then updated using a gated residual connection, which adaptively
combines the original and updated features by learning a gate that controls how much of the new
information should be integrated in the update.

Multi-scale information modulation for graph denoising A graph denoising model should predict
clean node and edge types from noisy inputs, which requires integrating both local interactions and
global structure from node, edge, and graph-level features. Building on standard graph generation
architectures (Vignac et al., 2023a; Siraudin et al., 2024; Qin et al., 2025a), we incorporate Feature-
wise Linear Modulation (FiLM) (Perez et al., 2018) and Principal Neighbourhood Aggregation
(PNA) (Corso et al., 2020) layers to enhance multi-scale feature fusion. FiLM adaptively modulates
edge features using attention signals: given the edge feature matrix E, the attention matrix Eattn, and
the learnable weights W 1

FiLM, W 2
FiLM, it computes

FiLM(E,Eattn) = EW 1
FiLM + (EW 2

FiLM)⊙Eattn +Eattn, (8)

where ⊙ denotes element-wise multiplication. These layers are also used to integrate global graph-
level signals y into the construction of edge features.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

To complement this, PNA layers aggregates multi-scale neighborhood information via pooling
operations: given node (or edge) features X ∈ Rn×h and a learnable weight matrix WPNA:

PNA(X) = concat (max(X),min(X),mean(X),std(X))WPNA ∈ R4h, (9)

with concatenation performed along the feature dimension. We use PNA layers to update global
graph signals based on local node- and edge-level information at each attention pass. Together, these
components enable expressive and scalable integration of local and global features, allowing the
model to capture higher-order structure which is critical for accurate graph denoising.

4 BENCHMARKING DIRECTED GRAPH GENERATION

Despite growing interest in digraphs (Sun et al., 2024), benchmarking in this area remains under-
developed (Bechler-Speicher et al., 2025). Existing approaches typically rely on downstream task
performance, failing to directly evaluate generative quality. With the objective of establishing standard
datasets and metrics, we propose a comprehensive benchmark that covers synthetic and real-world
digraphs, along with tailored metrics that directly assess key generative qualities, including sample
validity, diversity, and distributional alignment.

4.1 DATASETS

To enable systematic evaluation, we introduce a suite of synthetic directed datasets alongside two real-
world use cases: (i) neural architecture search (NAS), where DAGs model computational pipelines,
and (ii) scene graphs, where directed edges encode semantic relations in visual scenes. Further details
and statistics for all datasets are available in Appendix E.

Synthetic datasets We sample from the directed and DAG Erdős–Rényi (binomial) model; from
Price’s model, a directed analogue of the Barabási–Albert model that produces DAGs; and from a
directed version of the Stochastic Block Model (SBM) dataset proposed in Martinkus et al. (2022).
Each dataset comprises 200 graphs, split into 128 training, 32 validation, and 40 test graphs.

Real-world datasets A relevant application of DAGs is Neural Architecture Search, which aims
to generate novel instance to achieve an automated design of efficient Neural Networks (Elsken
et al., 2019). The TPU Tiles dataset (Phothilimthana et al., 2023) contains computational graphs
extracted from Tensor Processing Unit workloads, split into 5,040 training, 630 validation, and 631
test graphs following Li et al. (2025). On the other hand, the Visual Genome dataset (Krishna et al.,
2017), is a widely adopted benchmark for scene graph generation, supporting tasks such as image
retrieval, captioning, or visual question answering. The resulting graphs are not acyclic but instead
represent general directed structures, with nodes corresponding to objects (entities), relationships
(directed interactions), or attributes (object properties). We extract 203 training, 51 validation, and
63 test graphs. Generating new samples is useful for data augmentation, or scenario simulation, and
complements recent scene-to-image generation work (Johnson et al., 2018; Yang et al., 2022).

4.2 METRICS

To evaluate digraph generations, we build upon the evaluation metrics from the undirected graph
generation literature (Martinkus et al., 2022; Bergmeister et al., 2024; Thompson et al., 2022) and
further extend the ones already present in the directed setting (Law et al., 2025).

Validity, uniqueness, and novelty For synthetic datasets, validity is assessed via statistical tests of
adherence to the generative distribution and, for DAG datasets, by ensuring acyclicity. On the TPU
Tiles dataset, we measure acyclicity, while for Visual Genome we check typed structural constraints
(e.g., edges go from objects to attributes and relationships, and from relationships to objects). To
measure generative diversity while avoiding memorization, we compute uniqueness (fraction of
non-isomorphic generated graphs) and novelty (fraction of generated graphs not in the training set).
The V.U.N. ratio reports the proportion of samples that are simultaneously valid, unique, and novel.

Structure distributional alignment To evaluate proximity to the original distribution, we compute
the Maximum Mean Discrepancy (MMD) (Martinkus et al., 2022) between generated and test graphs
across several statistics: outgoing and incoming degree distributions, directed clustering coefficients,
spectral, and wavelet-based features. Spectral features are derived from the directed Laplacian (Chung,
2005), simplifying computations compared to the Magnetic Laplacian. We normalize results as the
ratio from the generated samples MMD to that of the training data and then average the ratios.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Directed graph generation performance for different configurations of DIRECTO. Results are
the mean ± standard deviation across five sampling runs. We considered Q = 10 for MagLap in the
synthetic datasets and Q = 5 in the real-world ones (due to the computational cost of this positional
encoding). OOT indicates that the model could not be run within a reasonable timeframe.

ER-DAG SBM TPU Tiles Visual Genome

Model Ratio ↓ V.U.N. ↑ Ratio ↓ V.U.N. ↑ Ratio ↓ V.U.N. ↑ RBF ↓ Ratio ↓ V.U.N. ↑ RBF ↓
Training set 1.0 0.0 1.0 0.0 1.0 0.0 0.002 1.0 0.0 0.021

MLE 15.1 ± 0.2 0.0 ± 0.0 11.6 ± 0.2 0.0 ± 0.0 149.8 ± 0.7 24.7 ± 0.0 1.039 ± 0.033 17.0 ± 0.6 0.0 ± 0.0 0.618 ± 0.025

D-VAE 106.6 ± 5.4 0.0 ± 0.0 - - OOT OOT OOT - - -
LayerDAG 4.2 ± 3.2 21.5 ± 2.7 - - 413.6 ± 70.1 98.5 ± 3.0 1.021 ± 0.023 - - -
DiGress 1.9 ± 0.3 34.0 ± 4.1 3.9 ± 0.9 41.5 ± 5.1 57.5 ± 1.7 70.9 ± 3.4 0.097 ± 0.033 17.0 ± 0.6 0.3 ± 0.6 0.232 ± 0.028

DeFoG 1.6 ± 0.2 75.0 ± 2.2 4.3 ± 0.8 37.0 ± 6.6 63.7 ± 2.6 72.0 ± 2.4 0.059 ± 0.015 10.8 ± 0.7 50.8 ± 8.4 0.085 ± 0.023

DIRECTO-DD RRWP 1.4 ± 0.3 79.0 ± 3.7 1.7 ± 0.4 81.5 ± 3.2 61.0 ± 2.9 76.8 ± 1.9 0.058 ± 0.023 15.3 ± 0.8 72.7 ± 3.9 0.039 ± 0.004

DIRECTO-DD MagLap 1.5 ± 0.2 85.0 ± 9.2 1.5 ± 0.4 95.5 ± 3.7 64.3 ± 5.3 77.0 ± 7.0 0.079 ± 0.027 7.6 ± 0.7 61.9 ± 4.4 0.042 ± 0.006

DIRECTO RRWP 1.7 ± 0.1 94.0 ± 1.0 1.8 ± 0.5 99.5 ± 1.0 75.4 ± 8.1 77.0 ± 2.9 0.044 ± 0.018 12.8 ± 0.6 83.8 ± 4.3 0.038 ± 0.005

DIRECTO MagLap 1.3 ± 0.2 92.0 ± 3.7 2.0 ± 0.3 96.5 ± 2.5 44.0 ± 7.1 80.5 ± 4.6 0.042 ± 0.001 6.2 ± 0.5 67.0 ± 4.3 0.051 ± 0.012

Joint node-edge distributional alignment To better capture performance on attributed graphs,
we extend evaluation beyond structural statistics to joint node–edge distributions. Specifically, we
measure MMD over label histograms to assess coverage of categorical proportions. We also compute
triplet-based precision and recall by matching semantic tuples (e.g., (object, relation, object)) between
generated and test graphs. Finally, we evaluate embedding-based distances (MMD with RBF kernel
and FID) over GNN-derived representations that encode both labels and structure (Thompson et al.,
2022). These metrics provide a comprehensive view of alignment with the reference distribution.

Among all metrics, we consider V.U.N. and the average ratio as the most informative for structural
distributional alignment, and the RBF MMD for the joint node-label distributional alignment in
real-world datasets. Additional details on the evaluation metrics are provided in Appendix F.

5 EXPERIMENTS

In this Section, we first evaluate the flexibility of our method to generate digraphs across two of
the synthetic and both real-world datasets. Then, we analyze the role of the proposed architectural
improvements on generative performance and analyze scalability and conditional generation.

Baselines In the general directed setting, we compare DIRECTO to a Maximum Likelihood Estima-
tion (MLE) baseline of the node count, node types, and edge types. For DAG settings, we also include
the only two publicly available baselines: D-VAE (Zhang et al., 2019) and LAYERDAG (Li et al.,
2025). Notably, the architectural improvements in Sections 3.2 and 3.3 are agnostic to the underlying
iterative refinement framework. To demonstrate versatility and enable wider experimentation, we
extend DIRECTO to a discrete diffusion (Vignac et al., 2023a) backbone (DIRECTO-DD), described
in Appendix I.3. We also include DEFOG (Qin et al., 2025a) and DIGRESS (Vignac et al., 2023a),
discrete flow matching and diffusion methods in the undirected setting, respectively, adapting both
to the directed case by removing edge symmetrization. For each experiment, we highlight the best
result and second-best method, with further experimental details in Appendix G.

5.1 GENERATIVE PERFORMANCE EVALUATION

Synthetic datasets Table 1 reports the results on two synthetic datasets: ER-DAG and SBM. In
both settings, DIRECTO consistently achieves the best trade-off between sample quality and validity.
For ER-DAG, it achieves the highest validity score using directed RRWP as positional encoding,
with a V.U.N. ratio of 94%. Notably, while LAYERDAG enforces acyclicity by design, it fails to
capture the ER structure of the target graph distribution, as evidenced by its low V.U.N. score (21.5%;
see Table 16 for details). In the SBM case, DIRECTO also successfully captures the distribution
and consistently outperforms the baselines, achieving up to 99.5% in V.U.N. ratio and keeping low
average graph statistics ratios. We provide the complete results for the distributional alignment
metrics and the results for the other two synthetic datasets in Appendices H.1 and H.4.

Real-world datasets Table 1 shows the performance for the two real-world datasets. In TPU tiles,
all DIRECTO variants significantly outperform DAG generation baselines in terms of structure-aware
metrics. The ratio scores for DIRECTO are consistently and substantially lower than those observed
in MLE, and especially LayerDAG, which indicates a more realistic distribution. Again, DIRECTO
variants achieve higher V.U.N. than all baselines, with the exception of LAYERDAG, which benefits

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

from enforcing acyclicity, the only validity constraint evaluated in this case. For Visual Genome,
results reinforce the versatility of DIRECTO. DIRECTO RRWP achieves the highest V.U.N., indicating
a superior ability to generate diverse and novel graphs while maintaining structural fidelity. Finally,
we also see that DIRECTO achieves the lowest RBF MMD score for both datasets, demonstrating
that the model is successful in capturing the joint node-label dependencies of the distribution in the
original dataset. Complete results are available in Tables 10 and 11 in Appendix H.2.

5.2 ABLATIONS AND FURTHER EXPERIMENTS

Impact of dual attention We now analyze the influence of the dual attention mechanism on
the performance of DIRECTO. In Figure 3, we compare the V.U.N metric and the average graph
statistics ratios (“Ratio”) score across both synthetic datasets (ER-DAG and SBM), highlighting the
impact of dual attention on generation quality and graph realism. We observe that the dual attention
mechanism consistently improves generative performance, regardless of the positional encoding it is
combined with. Notably, even in the absence of any positional encoding (“No PE”), dual attention still
achieves non-zero V.U.N., highlighting its capacity to independently capture directionality-relevant
information. See Appendix H.3 for the full ablation tables, both for DIRECTO and DIRECTO-DD.

NoPE RRWP MagLap NoPE RRWP MagLap
0

20

40

60

80

V
.U

.N
.

ER-DAG SBM

0

5

10

15

20

25

R
at

io

Base Dual N
o

PE
Lap

R
RW

P

M
ag

Lap

M
ag

Lap
(Q

=
5)

M
ag

Lap
(Q

=
10

)

N
o

PE
Lap

R
RW

P

M
ag

Lap

M
ag

Lap
(Q

=
5)

M
ag

Lap
(Q

=
10

)
0

20

40

60

80

100

V
.U

.N
.

1.5

2.0

2.5

3.0

3.5

R
at

io

Figure 3: Ablation results for dual attention (left) and positional encodings (right). Each plot shows
results on the ER-DAG (left bars/lines) and SBM (right bars/lines) datasets. Better performance
corresponds to V.U.N. bars and Ratio lines appearing closer to the top of each subplot.

Impact of positional encodings We also evaluate the sensitivity of DIRECTO to different positional
encodings, including a direction-agnostic baseline with the Laplacian (“Lap”) on synthetic datasets
(see Appendix B for details on how it is computed using the symmetrized adjacency matrix). In
Figure 3, we observe consistent trends across datasets: integrating positional encodings improves
V.U.N. and Ratio, mirroring the undirected setting; moreover, direction-aware encodings outperform
agnostic ones, supporting our modeling hypothesis. Among the encodings tested, Directed RRWP
achieves the best overall performance on ER-DAG, and MultiMagLapPE with Q = 10 on SBM.
Nevertheless, we remark that RRWP demonstrates clear superiority in both scalability and runtime
efficiency (see Appendix G.3). Overall, while positional encodings contribute to performance, the
dual attention mechanism remains the most critical component for capturing directional dependencies.
Full tables for both DIRECTO and DIRECTO-DD can be found in Appendix H.4.

Table 2: Directed graph generation perfor-
mance for the dual attention mechanism versus
doubling the depth of the standard network.

Dataset Model Ratio ↓ V.U.N. ↑

ER-DAG

RRWP - Double 4.9 ± 0.2 72.0 ± 9.8
RRWP - Dual 1.7 ± 0.1 94.0 ± 1.0
MagLap - Double 4.3 ± 0.7 80.0 ± 6.3
MagLap - Dual 1.3 ± 0.2 91.0 ± 2.5

SBM

RRWP - Double 27.1 ± 2.3 0.0 ± 0.0
RRWP - Dual 1.4 ± 0.2 87.0 ± 5.1
MagLap - Double 24.8 ± 4.6 6.0 ± 4.9
MagLap - Dual 1.9 ± 0.3 77.0 ± 7.6

Scalability study We investigate scalability across
three axes: dataset size, parameter efficiency, and
graph size (Appendix H.6). Increasing the amount of
training data improves performance but comes with
longer training time (Table 17). For parameter effi-
ciency, our dual attention mechanism demonstrates
clear higher performance then simply enlarging the
adapted undirected model, as can be seen in Table 2.
Finally, while larger graphs pose challenges, par-
ticularly for enforcing strict acyclicity, DIRECTO
achieves strong generation quality (Ratio) across all
graph sizes commonly used in the literature of the
applications explored in this paper (Table 20).

Conditional generation As groundwork for directed graph generation, we prioritize strong uncon-
ditional generation, which we consider a key prerequisite for effective digraph modeling. At the same

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

time, steering generation with graph-level properties is important for many downstream tasks. To
illustrate the flexibility of our framework, we show that DIRECTO can be extended to conditional gen-
eration without major architectural changes via classifier-free guidance (Ho & Salimans, 2022). On
TPU Tiles, we condition on the execution time of the computational graph, aiming at low execution
times. DIRECTO performs competitively with specialized autoregressive models like GraphRNN and
LayerDAG (Appendix H.7), even surpassing the OneShotDAG variant of Li et al. (2025).

6 RELATED WORK

Graph generative methods Initial methods include auto-regressive models (You et al., 2018; Liao
et al., 2019), which grow the graph progressively by inserting nodes and edges, but require node
ordering for feasibility. On the other hand, one-shot graph generative models such as VAEs (Kipf
& Welling, 2016; Simonovsky & Komodakis, 2018; Jin et al., 2018; Ma & Zhang, 2021; Vignac
& Frossard, 2022), GANs (De Cao & Kipf, 2018; Krawczuk et al., 2021; Martinkus et al., 2022),
and normalizing flows (Kaushalya et al., 2019; Wehenkel & Louppe, 2021; Lippe & Gavves, 2021;
Luo et al., 2021b) can directly generate full graphs in a single forward pass, thereby eliminating the
need for predefined node ordering. Graph diffusion models also belong to this class, with the initial
approaches consisting of adaptations of continuous state-space discrete-time diffusion frameworks
(Sohl-Dickstein et al., 2015; Ho et al., 2020; Song & Ermon, 2019) to the graph setting. These
include works such as EDP-GNN (Niu et al., 2020), DGSM (Luo et al., 2021a), and GeoDiff (Xu
et al., 2022). Later, the discrete state-space diffusion framework (Austin et al., 2021) was adopted,
with DiGress (Vignac et al., 2023a) and MCD (Haefeli et al., 2022) operating in discrete time. On the
other hand, methods that operate in continuous time (Song et al., 2021; Campbell et al., 2022) were
introduced, including GDSS (Jo et al., 2022) and GruM (Jo et al., 2024) in continuous state-spaces
and DisCo (Xu et al., 2024) and Cometh (Siraudin et al., 2024) for discrete state-spaces. Recent
approaches combine the sequential modeling of auto-regressive methods with the global denoising of
diffusion (Zhao et al., 2024). Finally, DeFoG (Qin et al., 2025a) recently achieves state-of-the-art
performance by leveraging discrete flow matching (Campbell et al., 2024; Gat et al., 2024).

Directed graph generation The vast majority of works in this area focus solely on DAG generation,
with research including autoencoders (Zhang et al., 2019), autoregressive methods (Li et al., 2022)
and, more recently, combining diffusion in different steps of an auto-regressive process (Li et al.,
2025). However, they require the input DAGs to be topologically ordered, which can result in higher
computational cost. Other approaches (Asthana et al., 2024; An et al., 2024) use ideas from discrete
diffusion for Neural Architecture Search (NAS), but they are tailored to the specific application
and, therefore, to DAGs. Finally, Law et al. (2025) are the first to propose a general digraph
generation method from an auto-regressive perspective. Unfortunately, to the best of our knowledge,
its implementation is not publicly available, limiting its accessibility for study and evaluation.

7 CONCLUSION AND FUTURE DIRECTIONS

We propose DIRECTO, a discrete flow matching-based method for directed graph generation. It
combines directionality-aware positional encodings with a dual-attention mechanism that handles both
source-to-target and target-to-source dependencies, overcoming the limitations of naı̈ve extensions
from undirected models. We also introduce a dedicated benchmarking framework to address the lack
of standardized evaluation. Empirical results show that DIRECTO outperforms existing baselines
on synthetic and real-world datasets, successfully generating directed structures and preserving key
properties, such as acyclicity, without explicit constraints, highlighting its generality and robustness.

Limitations and future directions Despite these promising results, limitations remain. First,
scalability can be further improved in handling larger datasets and graph sizes (a direct result of
the combinatorial complexity of digraphs). Incorporating scalable strategies, such as sparsity-aware
attention (Qin et al., 2025b), hierarchical (Bergmeister et al., 2024; Jang et al., 2024), or latent
diffusion (Yang et al., 2024), could help extend DIRECTO at scale. Second, although our current
setup includes classifier-free conditional generation, exploring alternative conditional strategies could
further improve performance. Third, while DIRECTO can learn structural properties like acyclicity
implicitly, enforcing such constraints (e.g., via PRODIGY (Sharma et al., 2024) or ConStruct (Madeira
et al., 2024)) could further improve controllability and domain-specific validity. Exploring these
directions would enhance the applicability and impact of digraph generative models, particularly on
new real-world scenarios. Appendix L includes a detailed discussion of limitations and future work.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we have taken the following steps. An anonymous
implementation of our method is provided in an anonymous repository, including all code and scripts
necessary to reproduce the experiments and details on how to run it. In addition, we detail the
proposed algorithm in Appendix D, while Appendix G provide full descriptions of baselines, training
setup, and hyperparameters employed. We also report the computational resources used and the
runtime required for all experiments. Together, these materials are intended to enable researchers to
fully replicate and build upon our work.

ETHICS STATEMENT

The objective of this work is to advance methodologies for the generation of directed graphs by
introducing architectural mechanisms that explicitly model directionality and asymmetric relation-
ships. Directed graphs are central to a wide range of applications, including causal inference, traffic
modeling, and biological network analysis. Accordingly, improvements in directed graph generation
have the potential to support progress in scientific research, decision-making systems, infrastructure
design, or causal discovery.

The proposed framework enhances the expressiveness of generative models to directed graphs, and,
at the moment, we do not identify any immediate societal risks associated with its deployment in its
current form. Moreover, although the method is capable of generating structured and semantically
meaningful graphs, the scale and complexity of these outputs remain limited, which may difficult
direct applicability in high-impact domains such as real-time clinical diagnostics or large-scale policy
modeling at this stage.

REFERENCES

Sohyun An, Hayeon Lee, Jaehyeong Jo, Seanie Lee, and Sung Ju Hwang. DiffusionNAG: predictor-
guided neural architecture generation with diffusion models. In International Conference on
Learning Representations (ICLR), 2024.

Rohan Asthana, Joschua Conrad, Youssef Dawoud, Maurits Ortmanns, and Vasileios Belagiannis.
Multi-conditioned Graph Diffusion for Neural Architecture Search. Transactions on Machine
Learning Research (TMLR), 2024.

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
denoising diffusion models in discrete state-spaces. In Advances in Neural Information Processing
Systems (NeurIPS), 2021.

Dominique Beaini, Saro Passaro, Vincent Létourneau, Will Hamilton, Gabriele Corso, and Pietro
Lió. Directional Graph Networks. In International Conference on Machine Learning (ICML),
Proceedings of Machine Learning Research, 2021.

Maya Bechler-Speicher, Ben Finkelshtein, Fabrizio Frasca, Luis Müller, Jan Tönshoff, Antoine
Siraudin, Viktor Zaverkin, Michael M. Bronstein, Mathias Niepert, Bryan Perozzi, Mikhail Galkin,
and Christopher Morris. Position: Graph Learning Will Lose Relevance Due To Poor Benchmarks.
In International Conference on Machine Learning (ICML), 2025.

Andreas Bergmeister, Karolis Martinkus, Nathanaël Perraudin, and Roger Wattenhofer. Efficient and
Scalable Graph Generation through Iterative Local Expansion. In International Conference on
Learning Representations (ICLR), 2024.

Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M. Bronstein. Improving graph
neural network expressivity via subgraph isomorphism counting. IEEE Transactions on Pattern
Analysis and Machine Intelligence (TPAMI), 2020.

Andrew Campbell, Joe Benton, Valentin De Bortoli, Thomas Rainforth, George Deligiannidis, and
Arnaud Doucet. A continuous time framework for discrete denoising models. In Advances in
Neural Information Processing Systems (NeurIPS), 2022.

10

https://anonymous.4open.science/r/DirectoAnonymous/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Andrew Campbell, Jason Yim, Regina Barzilay, Tom Rainforth, and Tommi Jaakkola. Generative
flows on discrete state-spaces: Enabling multimodal flows with applications to protein co-design.
In International Conference on Machine Learning (ICML), 2024.

Xiaojun Chang, Pengzhen Ren, Pengfei Xu, Zhihui Li, Xiaojiang Chen, and Alex Hauptmann. A
Comprehensive Survey of Scene Graphs: Generation and Application. IEEE Transactions on
Pattern Analysis and Machine Intelligence (TPAMI), 2023.

Fan Chung. Laplacians and the Cheeger inequality for directed graphs. Annals of Combinatorics, 9:
1–19, 2005.

Anna Concas, Caterina Fenu, Lothar Reichel, Giuseppe Rodriguez, and Yunzi Zhang. Chained
structure of directed graphs with applications to social and transportation networks. Applied
Network Science, 7(1), 2022.

Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal
neighbourhood aggregation for graph nets. In Advances in Neural Information Processing Systems
(NeurIPS), 2020.

Nicola De Cao and Thomas Kipf. MolGAN: An implicit generative model for small molecular graphs.
In International Conference on Machine Learning (ICML), 2018.

Derek J. de Solla Price. Networks of Scientific Papers. Science, 149(3683):510–515, 1965.

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs. In
AAAI Conference on Artificial Intelligence (AAAI), 2021.

Floor Eijkelboom, Grigory Bartosh, Christian Andersson Naesseth, Max Welling, and Jan-Willem
van de Meent. Variational Flow Matching for Graph Generation. In Advances in Neural Information
Processing Systems (NeurIPS), 2024.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey. Journal
of Machine Learning Research (JMLR), 20(55):1–21, 2019.

Paul Erdös and Alfred Rényi. On random graphs I. Publ. math. debrecen, 6(290-297):18, 1959.

Itai Gat, Tal Remez, Neta Shaul, Felix Kreuk, Ricky T. Q. Chen, Gabriel Synnaeve, Yossi Adi, and
Yaron Lipman. Discrete flow matching. In Advances in Neural Information Processing Systems
(NeurIPS), 2024.

Simon Geisler, Yujia Li, Daniel J Mankowitz, Ali Taylan Cemgil, Stephan Günnemann, and Cosmin
Paduraru. Transformers meet directed graphs. In International Conference on Machine Learning
(ICML), 2023.

Kilian Konstantin Haefeli, Karolis Martinkus, Nathanael Perraudin, and Roger Wattenhofer. Diffusion
models for graphs benefit from discrete state spaces. In Advances in Neural Information Processing
Systems (NeurIPS), 2022.

Frank Harary and Edgar M. Palmer. Graphical Enumeration. Academic Press, 1973.

Leonhard Held and Daniel Sabanés Bové. Applied Statistical Inference: Likelihood and Bayes.
Springer Publishing Company, Incorporated, 2013. ISBN 3642378862.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598,
2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic Models. In Advances
in Neural Information Processing Systems (NeurIPS), 2020.

Paul W. Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic blockmodels: First
steps. Social Networks, 5(2):109–137, 1983.

Yinan Huang, Haoyu Wang, and Pan Li. What Are Good Positional Encodings for Directed Graphs?
In International Conference on Learning Representations (ICLR), 2025.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yunhui Jang, Dongwoo Kim, and Sungsoo Ahn. Graph Generation with K2-trees. In International
Conference on Learning Representations (ICLR), 2024.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for
molecular graph generation. In International Conference on Machine Learning (ICML), 2018.

Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. Score-based generative modeling of graphs via the
system of stochastic differential equations. In International Conference on Machine Learning
(ICML), 2022.

Jaehyeong Jo, Dongki Kim, and Sung Ju Hwang. Graph Generation with Diffusion Mixture. In
International Conference on Machine Learning (ICML), 2024.

Justin Johnson, Agrim Gupta, and Li Fei-Fei. Image generation from scene graphs. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

Madhawa Kaushalya, Ishiguro Katushiko, Nakago Kosuke, and Abe Motoki. GraphNVP: An
Invertible Flow Model for Generating Molecular Graphs. arXiv preprint arXiv:1905.11600, 2019.

Thomas N. Kipf and Max Welling. Variational Graph Auto-Encoders. In Advances in Neural
Information Processing Systems (NeurIPS), 2016.

Igor Krawczuk, Pedro Abranches, Andreas Loukas, and Volkan Cevher. GG-GAN: A Geometric
Graph Generative Adversarial Network. OpenReview, 2021.

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz, Stephanie Chen,
Yannis Kalantidis, Li-Jia Li, David A Shamma, et al. Visual genome: Connecting language and
vision using crowdsourced dense image annotations. International Journal of Computer Vision,
123:32–73, 2017.

Marc T. Law, Karsten Kreis, and Haggai Maron. Directed Graph Generation with Heat Kernels.
Transactions on Machine Learning Research (TMLR), 2025.

Chun Li, Nannan Tang, and Jun Wang. Directed graphs of DNA sequences and their numerical
characterization. Journal of Theoretical Biology, 241(2):173–177, 2006.

Hongsheng Li, Guangming Zhu, Liang Zhang, Youliang Jiang, Yixuan Dang, Haoran Hou, Peiyi
Shen, Xia Zhao, Syed Afaq Ali Shah, and Mohammed Bennamoun. Scene Graph Generation: A
Comprehensive Survey. Neurocomputing, 556, 2024.

Muchen Li, Jeffrey Yunfan Liu, Leonid Sigal, and Renjie Liao. GraphPNAS: learning distribution of
good neural architectures via deep graph generative models. arXiv preprint arXiv:2211.15155,
2022.

Mufei Li, Viraj Shitole, Eli Chien, Changhai Man, Zhaodong Wang, Srinivas Sridharan, Ying Zhang,
Tushar Krishna, and Pan Li. LayerDAG: A Layerwise Autoregressive Diffusion Model for Directed
Acyclic Graph Generation. In International Conference on Learning Representations (ICLR),
2025.

Xujia Li, Yuan Li, Xueying Mo, Hebing Xiao, Yanyan Shen, and Lei Chen. Diga: Guided Diffusion
Model for Graph Recovery in Anti-Money Laundering. In International Conference on Knowledge
Discovery and Data Mining (KDD), 2023.

Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, Charlie Nash, William L. Hamilton, David
Duvenaud, Raquel Urtasun, and Richard Zemel. Efficient Graph Generation with Graph Recurrent
Attention Networks. In Advances in Neural Information Processing Systems (NeurIPS), 2019.

Phillip Lippe and Efstratios Gavves. Categorical Normalizing Flows via Continuous Transformations.
In International Conference on Learning Representations (ICLR), 2021.

Julian Lorenz, Robin Schon, Katja Ludwig, and Rainer Lienhart. A Review and Efficient Implemen-
tation of Scene Graph Generation Metrics. IEEE Conference on Computer Vision and Pattern
Recognition Workshops, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Shitong Luo, Chence Shi, Minkai Xu, and Jian Tang. Predicting molecular conformation via dynamic
graph score matching. In Advances in Neural Information Processing Systems (NeurIPS), 2021a.

Youzhi Luo, Keqiang Yan, and Shuiwang Ji. GraphDF: A Discrete Flow Model for Molecular Graph
Generation. In International Conference on Machine Learning (ICML), Proceedings of Machine
Learning Research, 2021b.

Changsheng Ma and Xiangliang Zhang. GF-VAE: A Flow-based Variational Autoencoder for
Molecule Generation. ACM International Conference on Information & Knowledge Management,
2021.

Manuel Madeira, Clement Vignac, Dorina Thanou, and Pascal Frossard. Generative Modelling
of Structurally Constrained Graphs. In Advances in Neural Information Processing Systems
(NeurIPS), 2024.

Karolis Martinkus, Andreas Loukas, Nathanaël Perraudin, and Roger Wattenhofer. SPECTRE:
Spectral Conditioning Helps to Overcome the Expressivity Limits of One-shot Graph Generators.
In International Conference on Machine Learning (ICML), Proceedings of Machine Learning
Research, 2022.

Rocı́o Mercado, Tobias Rastemo, Edvard Lindelöf, Günter Klambauer, Ola Engkvist, Hongming
Chen, and Esben Jannik Bjerrum. Graph Networks for Molecular Design. Machine Learning:
Science and Technology, 2020.

Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks.
In AAAI Conference on Artificial Intelligence (AAAI), 2019.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In International Conference on Machine Learning (ICML), 2021.

Giannis Nikolentzos, Michalis Vazirgiannis, Christos Xypolopoulos, Markus Lingman, and Erik G.
Brandt. Synthetic electronic health records generated with variational graph autoencoders. Digital
Medicine, 6(1):83, 2023.

Chenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao, Aditya Grover, and Stefano Ermon. Permu-
tation invariant graph generation via score-based generative modeling. In International Conference
on Artificial Intelligence and Statistics (AISTATS), 2020.

Tiago P. Peixoto. Efficient Monte Carlo and greedy heuristic for the inference of stochastic block
models. Physical Review E, 89(1), 2014.

Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. FiLM: Visual
reasoning with a general conditioning layer. In AAAI Conference on Artificial Intelligence (AAAI),
2018.

Phitchaya Mangpo Phothilimthana, Sami Abu-El-Haija, Kaidi Cao, Bahare Fatemi, Michael Burrows,
Charith Mendis, and Bryan Perozzi. TpuGraphs: A Performance Prediction Dataset on Large
Tensor Computational Graphs. In Advances in Neural Information Processing Systems (NeurIPS),
2023.

Yiming Qin, Manuel Madeira, Dorina Thanou, and Pascal Frossard. DeFoG: Discrete Flow Matching
for Graph Generation. In International Conference on Machine Learning (ICML), 2025a.

Yiming Qin, Clement Vignac, and Pascal Frossard. SparseDiff: Sparse Discrete Diffusion for Scalable
Graph Generation. Transactions on Machine Learning Research (TMLR), 2025b.

Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a general, powerful, scalable graph transformer. In Advances in Neural
Information Processing Systems (NeurIPS), 2022.

Ivan Rodin, Antonino Furnari, Kyle Min, Subarna Tripathi, and Giovanni Maria Farinella. Action
Scene Graphs for Long-Form Understanding of Egocentric Videos. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Christoph Schweimer, Christine Gfrerer, Florian Lugstein, David Pape, Jan A Velimsky, Robert
Elsässer, and Bernhard C Geiger. Generating simple directed social network graphs for information
spreading. ACM Web Conference 2022, 2022.

Kartik Sharma, Srijan Kumar, and Rakshit S Trivedi. Diffuse, sample, project: plug-and-play
controllable graph generation. In International Conference on Machine Learning (ICML), 2024.

Martin Simonovsky and Nikos Komodakis. GraphVAE: Towards Generation of Small Graphs Using
Variational Autoencoders. In Artificial Neural Networks and Machine Learning (ICANN). Springer
International Publishing, 2018.

Antoine Siraudin, Fragkiskos D Malliaros, and Christopher Morris. Cometh: A continuous-time
discrete-state graph diffusion model. arXiv preprint arXiv:2406.06449, 2024.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International Conference on Machine Learning
(ICML), 2015.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
In Advances in Neural Information Processing Systems (NeurIPS), 2019.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In International
Conference on Learning Representations (ICLR), 2021.

Henan Sun, Xunkai Li, Daohan Su, Junyi Han, Rong-Hua Li, and Guoren Wang. Towards Data-centric
Machine Learning on Directed Graphs: a Survey. arXiv preprint arXiv:2412.01849, 2024.

Martha Takane, Saúl Bernal-González, Jesús Mauro-Moreno, Gustavo Garcı́a-López, Bruno Méndez-
Ambrosio, and Francisco F De-Miguel. Directed Graph Theory for the Analysis of Biological
Regulatory Networks. biorXiv preprint biorXiv:2023.10.02.560622, 2023.

Rylee Thompson, Boris Knyazev, Elahe Ghalebi, Jungtaek Kim, and Graham W. Taylor. On
Evaluation Metrics for Graph Generative Models. In International Conference on Learning
Representations (ICLR), 2022.

Jui-Yi Tsai, Ya-Wen Teng, Ho Chiok Yew, De-Nian Yang, and Lydia Y. Chen. CDGraph: Dual
Conditional Social Graph Synthesizing via Diffusion Model. arXiv preprint arXiv:2311.01729,
2023.

Clement Vignac and Pascal Frossard. Top-N: Equivariant Set and Graph Generation without Ex-
changeability. In International Conference on Learning Representations (ICLR), 2022.

Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pascal Frossard.
DiGress: Discrete Denoising diffusion for graph generation. In International Conference on
Learning Representations (ICLR), 2023a.

Clement Vignac, Nagham Osman, Laura Toni, and Pascal Frossard. MiDi: Mixed Graph and 3D
Denoising Diffusion for Molecule Generation. European Conference on Machine Learning, 2023b.

Qitong Wang, Georgios Kollias, Vasileios Kalantzis, Naoki Abe, and Mohammed J Zaki. Directed
Graph Transformers. Transactions on Machine Learning Research (TMLR), 2024.

Antoine Wehenkel and Gilles Louppe. Graphical Normalizing Flows . In International Conference
on Artificial Intelligence and Statistics (AISTATS), 2021.

Pi-Jing Wei, Ziqiang Guo, Zhen Gao, Zheng Ding, Rui-Fen Cao, Yansen Su, and Chun-Hou Zheng.
Inference of gene regulatory networks based on directed graph convolutional networks. Briefings
in Bioinformatics, 25(4), 2024.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How Powerful are Graph Neural
Networks? In International Conference on Learning Representations (ICLR), 2019.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Minkai Xu, Lantao Yu, Yang Song, Chence Shi, Stefano Ermon, and Jian Tang. Geodiff: A geometric
diffusion model for molecular conformation generation. In International Conference on Learning
Representations (ICLR), 2022.

Zhe Xu, Ruizhong Qiu, Yuzhong Chen, Huiyuan Chen, Xiran Fan, Menghai Pan, Zhichen Zeng,
Mahashweta Das, and Hanghang Tong. Discrete-state Continuous-time Diffusion for Graph
Generation. In Advances in Neural Information Processing Systems (NeurIPS), 2024.

Ling Yang, Zhilin Huang, Yang Song, Shenda Hong, Guohao Li, Wentao Zhang, Bin Cui, Bernard
Ghanem, and Ming-Hsuan Yang. Diffusion-based scene graph to image generation with masked
contrastive pre-training. arXiv preprint arXiv:2211.11138, 2022.

Ling Yang, Zhilin Huang, Zhilong Zhang, Zhongyi Liu, Shenda Hong, Wentao Zhang, Wenming
Yang, Bin Cui, and Luxia Zhang. Graphusion: Latent Diffusion for Graph Generation. IEEE
Transactions on Knowledge and Data Engineering, 2024.

Jiaxuan You, Rex Ying, Xiang Ren, William L. Hamilton, and Jure Leskovec. GraphRNN: Generating
Realistic Graphs with Deep Auto-regressive Models. In International Conference on Machine
Learning (ICML), Proceedings of Machine Learning Research, 2018.

Muhan Zhang, Shali Jiang, Zhicheng Cui, Roman Garnett, and Yixin Chen. D-VAE: A Variational
Autoencoder for Directed Acyclic Graphs. In Advances in Neural Information Processing Systems
(NeurIPS), 2019.

Lingxiao Zhao, Xueying Ding, and Leman Akoglu. Pard: Permutation-Invariant Autoregressive
Diffusion for Graph Generation. In Advances in Neural Information Processing Systems (NeurIPS),
2024.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Appendix

Table of Contents
A Dual Attention 17

B Positional Encodings 18

C Sampling Optimization in DIRECTO 20

D DIRECTO Training and Sampling Algorithms 21

E Dataset descriptions 21
E.1 Synthetic datasets . 22
E.2 TPU Tiles . 22
E.3 Visual Genome . 23

F Further details on evaluation metrics 23
F.1 Validity metrics . 24
F.2 Uniqueness and novelty . 25
F.3 Maximum Mean Discrepancy metrics . 25
F.4 Joint node-edge distributional metrics . 26
F.5 Downstream tasks metrics . 26

G Experimental details 26
G.1 Details on baselines . 26
G.2 Training setup . 27
G.3 Resources and runtime . 28

H Additional results 29
H.1 Extended results for synthetic datasets . 29
H.2 Extended results for real-world datasets . 30
H.3 The role of dual attention . 31
H.4 The role of positional encodings . 32
H.5 ER vs DAG performance . 33
H.6 Scalability experiments . 34
H.7 Conditional generation . 35
H.8 Impact of sampling optimization using discrete flow matching 36

I Iterative Refinement Methods for Graph Generation 38
I.1 Graph iterative refinement methods . 38
I.2 Discrete flow matching for graph generation 38
I.3 Discrete diffusion for graph generation . 39

J Use of Large Language Models 40

K Visualizations 40

L Limitations and future work 47

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A DUAL ATTENTION

In this section, we provide a detailed description of the dual attention mechanism used in our model,
which effectively integrates both target-to-source and source-to-target information to enhance the
graph generation process.

We start with the stacked tensors of node X ∈ RB×N×dx , edge E ∈ RB×N×N×de and global
y ∈ RB×dy features, where B is the batch size, N is the number of nodes of the biggest graph in the
batch, and dx, de, and dy are the node, edge, and global feature dimensions respectively. To handle
different node sizes in a batch, we use a binary node mask M ∈ {0, 1}B×N×1 that accounts for the
presence of nodes in each graph.

First, we begin by projecting the queries, keys, and values for the source and the target directions.
These are then projected and reshaped into nh heads of dimension dq = dx/nh, thus obtaining for
each node:

QS = reshape(M⊙W S
QX), KS = reshape(M⊙W S

KX), VS = reshape(M⊙W S
VX), (10)

QT = reshape(M⊙W T
QX), KT = reshape(M⊙W T

KX), VT = reshape(M⊙W T
VX), (11)

where W S
Q ,W

S
K ,W

S
V ,W

T
Q ,W

T
K ,W

T
V are the learned linear projections. The final shape of each of

the elements after the reshaping is B ×N × nh × dq .

Then we compute the dual attention, both from source to target and from target to source:

YST[i, j] =
QS[i] ·KT[j]√

dq
, YTS[i, j] =

QT[i] ·KS[j]√
dq

. (12)

with i, j the index nodes and each Y ∈ RB×N×N×nh×dq .

To incorporate edge features into the attention mechanism, we apply FiLM-style modulation (Perez
et al., 2018) using additive and multiplicative projections Wmul,Wadd:

ES
mul = reshape(W S

mul(E)), ES
add = reshape(W S

add(E)), (13)

ET
mul = reshape(W T

mul(E
⊤)), ET

add = reshape(W T
add(E

⊤)), (14)

where we reshape the edge features to E ∈ RB×N×N×nh×dq . This is done so that they can be added
or multiplied to the attention scores YST and YTS to modify them:

YST ← YST · (ES
mul + 1) +ES

add, (15)

YTS ← YTS · (ET
mul + 1) +ET

add. (16)

Edge Feature Update To get the final update of the edge features, the attention-weighted edge
representations are flattened and modulated by global features y using FiLM with additive and
multiplicative projections WE

add and WE
mul:

E′ = W y
add(y) + (W y

mul(y) + 1)⊙ flatten(YST), (17)

where we flatten over the last dimension. We use YST as it captures the directional flow from source
to target, avoiding ambiguity in the directional influence, and still effectively encoding the influence
of source nodes on their targets. Then, the result is followed by an output projection and a residual
connection

E′ = WE
out(E

′), E′ ← E +E′, (18)

resulting in the updated E′ ∈ RB×N×N×de .

Node Feature Update To perform the node feature update, first we concatenate the dual attention
scores and apply softmax:

Aaggr = softmax (concat(YST,YTS)) ∈ RB×N×2N×nh×de , (19)

Vaggr = concat(VT,VT) ∈ RB×2N×nh×dx , (20)

with concat() being the concatenation over the third dimension for Aaggr and over the second
dimension for Vaggr.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

After this, the unified weights are aggregated through weighted summation and the result flattened
over the second dimension to produce:

Xaggr = attnaggrVaggr ∈ RB×N×nh×dx . (21)

We then FiLM-modulate the attended features with the global vector y with additive and multiplicative
projections WX

add and WX
mul to produce:

Xmod = WX
add(y) + (WX

mul(y) + 1)⊙Xaggr, (22)

To allow the model to adaptively balance between preserving the original node features and incorpo-
rating the updated ones, we introduce a learnable gating mechanism gX ∈ [0, 1]:

gX = σ(WX
gate ⊙ concat(X,Vaggr)), (23)

followed by a gated residual connection:
X′ = (1 + gX)⊙X + (1− gX)⊙Xmod, (24)

where the weights assigned to X and Xmod sum up to 2, ensuring that the overall magnitude remains
consistent with the ungated case.

Finally, the result is followed by an output projection:

X′ = WX
out(X

′), (25)

resulting in the updated X′ ∈ RB×N×dx .

Global Features Update The updated global vector is computed by aggregating from the node X
and edge E projections:

y′ = y +Wy(y) +X→y(X) + E→y(E), (26)

where X→y and E→y are PNA layers (Corso et al., 2020) that given node features X ∈ RB×N×dx

or edge features E ∈ RB×N×N×de and a learnable weight matrix WPNA, computes

PNA(X) = concat (max(X),min(X),mean(X),std(X))WPNA ∈ R4dx , (27)

PNA(E) = concat (max(E),min(E),mean(E),std(E))WPNA ∈ R4de , (28)
where the different operations are performed over the features and then concatenation is per-
formed along the feature dimension. Both results then pass through a linear layer resulting in
X→y(X), E→y(E) ∈ Rdy .

Once again, we use an output projection
y′ = W y

out(y
′), (29)

which results in the updated global features y′ ∈ RB×dy .

This dual attention block is applied L times within the graph transformer.

B POSITIONAL ENCODINGS

To effectively capture the structural properties of directed graphs, we explore a range of positional
encodings (PEs) that can be incorporated into the transformer architecture. These encodings provide
nodes with a sense of position and orientation within the digraph, enabling the model to better reason
about directionality. Below, we detail the specific PEs evaluated in our work.

Laplacian (Lap) Traditionally in the undirected case, the eigenvectors of the combinatorial Lapla-
cian are widely used to encode graph structure, relying on the spectral decomposition L = ΓΛΓ−1

where L is the combinatorial Laplacian, Λ is the diagonal matrix of eigenvalues, and Γ is the matrix
of eigenvectors. The unnormalized and normalized Laplacians are defined as

LU = D −As, LN = I −D−1/2AsD
−1/2, (30)

where As is the adjacency matrix (symmetrized when working with digraphs) and D is the degree
matrix. However, when dealing with directed graphs, this symmetrization discards directionality
information, as it enforces As =

⊤
s , but it is necessary to guarantee that LU and LN are symmetric

and positive semi-definite.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Magnetic Laplacian (MagLap) To retain directional information while preserving desirable
spectral properties, Geisler et al. (2023) propose the Magnetic Laplacian, which introduces a complex-
valued phase encoding into the adjacency matrix. Specifically, the (unnormalized and normalized)
Magnetic Laplacians are given by:

L
(q)
dir,U = D − (As ⊙ exp(iΘ(q))), L

(q)
dir,N = I −

(
(D−1/2AsD

−1/2)⊙ exp(iΘ(q))
)
, (31)

where ⊙ denotes the element-wise (Hadamard) product, i is the imaginary unit, and the phase matrix
Θ(q) is defined as:

Θ(q)
u,v = 2πq(Au,v −Av,u). (32)

The potential parameter q ≥ 0 controls the strength of the phase shift. For q = 0, the Magnetic Lapla-
cian reduces to the classical combinatorial Laplacian. The resulting complex-valued eigenvectors can
effectively encode directionality patterns in the graph. We leverage the information by concatenating
the real and complex parts of the eigenvectors to the node features, and the eigenvalues to the global
graph features.

Multi-q Magnetic Laplacian Recently, Huang et al. (2025) extends the Magnetic Laplacian by
introducing a multi-q formulation, which considers as positional encoding stacking together the
eigenvalues and eigenvectors of Q distinct Magnetic Laplacians with potentials q1, . . . , qQ. This
approach enables the recovery of the bidirectional walk profile, a generalization of walk counting in
undirected graphs that captures a broader range of directional relationships.

By incorporating information from multiple potentials, the multi-q formulation enhances the repre-
sentational power for directed structures. In particular, they show that the method is robust to the
chosen potentials q chosen. In our model, we leverage this information by concatenating the first k
eigenvectors (real and imaginary parts) of each of the Q magnetic Laplacians to the global features,
and the corresponding first k eigenvalues to the node features, providing direction-aware structural
signals to both levels of representation. As a drawback, this positional encoding results in higher
computational costs, as it is necessary to compute several eigenvalue decompositions and, in addition,
results in a higher dimensional positional encoding to be processed by the denoising network.

Directed Relative Random Walk Probabilities (RRWP) For undirected graphs, RRWP encodes
the likelihood of arriving from one node to another through k-step random walks. This is usually
expressed via a transition matrix T k, with T = AD−1, that encodes the transition probabilities.

For directed graphs, it is possible to consider T = AD−1
out, where we take into account the degree

matrix of the outgoing edges D−1
out (Geisler et al., 2023). The K-step transition probabilities are then

captured by powers of T , producing the sequence [I,T ,T 2, . . . ,TK−1].

Additionally, in the directed setting, Geisler et al. (2023) suggest it is also informative to model
reverse random walks, starting from incoming edges. For this, we can define the reverse transition
matrix R = A⊤D−1

in , where Din is the in-degree matrix. This would represent the likelihood
of arriving at a given edge starting from another through k-step random walks. Analogously, we
compute [I,R,R2, . . . ,RK−1].

To have our final positional encoding, following Geisler et al. (2023), we ensure that graphs are not
nilpotent and that the probabilities encoded in the matrices sum up to 1 by adding self-loops to sink
nodes during pre-processing. Finally, the full positional encoding concatenates both forward and
reverse walk features for a pre-defined K, yielding:

RRPW(G) = [I,T ,T 2, . . . ,TK−1, I,R,R2, . . . ,RK−1]. (33)

We concatenate the PE to the edge features, and additionally concatenate the diagonal elements of
each matrix to the node features to further infuse them with the information.

Additionally, to mitigate that for large k the probabilities tend to converge to sink nodes, we optionally
incorporate Personalized PageRank (PPR) features. The PPR matrix is defined in closed form as:

PPR = pr(I − (1− pr)T)−1, (34)

where pr denotes the restart probability.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

C SAMPLING OPTIMIZATION IN DIRECTO

The decoupling of training and sampling in discrete flow matching enables principled, training-free
modifications to the sampling procedure, offering a flexible design space to enhance generation
quality across digraph distributions (Qin et al., 2025a). In this section, we detail the three core
parameters that govern sampling behavior: (i) time distortion functions, (ii) target guidance intensity,
and (iii) stochasticity strength. Each plays a distinct role in shaping the denoising trajectory and
contributes to different aspects of generation quality and structural fidelity.

Time Distortion Functions A central part for sampling optimization lies in the application of
time distortion functions. These functions transform the time variable t ∈ [0, 1] through a bijective,
monotonic mapping f(t), yielding a distorted time variable t′ = f(t). While used in both training
and sampling, their objectives differ. In training, time distortions skew the sampling distribution
over time, concentrating the model’s learning capacity on specific denoising intervals. In sampling,
they induce variable step sizes along the denoising trajectory, with finer resolution where structural
sensitivity is highest (e.g., late-stage edits near t = 1).

Formally, the probability density function (PDF) of the transformed time variable t′ is:

ϕt′(t
′) = ϕt(t)

∣∣∣∣ ddt′ f−1(t′)

∣∣∣∣ , where ϕt(t) = 1 for t ∈ [0, 1]. (35)

We consider the same five representative time distortion functions from Qin et al. (2025a) that yield
diverse distributions for t′:

• Identity: f(t) = t — Uniform time density, baseline behavior.

• Polydec: f(t) = 2t− t2 — Increasing density over time, emphasizing late-stage denoising.

• Cos: f(t) = 1−cos(πt)
2 — Concentrates density at both boundaries.

• Revcos: f(t) = 2t− 1−cos(πt)
2 — Peaks at intermediate times.

• Polyinc: f(t) = t2 — Decreasing density over time, emphasizes early steps.

In the sampling phase, the induced variable step sizes, particularly from functions like polydec, allow
for finer resolution near the clean data, where structural coherence is most fragile. Empirically,
these functions are selected based on dataset-specific properties to improve fidelity and structural
constraints without need for retraining.

Target Guidance Another axis for improving sampling efficiency is the modification of the condi-
tional rate matrix Rt to better guide the generation trajectory toward the clean target graph z1. This
is achieved by incorporating an additive guidance term:

Rt(zt, zt+∆t | z1) = R∗
t (zt, zt+∆t | z1) + ω · δ(zt+∆t, z1)

Z>0
t · pt|1(zt | z1)

. (36)

Here, ω ∈ R+ controls the strength of the guidance, Z>0
t is a discrete variable with Z possible

positive values, and δ(·, ·) is the Kronecker delta. Intuitively, this formulation prioritizes transitions
that directly align with the clean graph.

Stochasticity Control The final sampling-time parameter is the stochasticity coefficient η. This
parameter scales an auxiliary rate matrix RDB

t that satisfies the detailed balance condition (Campbell
et al., 2024) and adds it to the optimal rate matrix R∗

t :

Rη
t = R∗

t + η ·RDB
t . (37)

The role of η is to regulate trajectory stochasticity: higher values promote broader exploration during
denoising, potentially correcting suboptimal states. Setting η = 0 recovers the deterministic path
prescribed by R∗

t , minimizing the expected number of transitions.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Sampling Optimization Together, these sampling parameters constitute a flexible, principled
toolkit for tailoring the sampling procedure to diverse graph domains and structural requirements. In
our case, we optimize these parameters at sampling time to improve the performance of DIRECTO.
In particular, we individually optimize each of them for the main results, and perform the final
sampling using the best performing parameters in terms of V.U.N (a detailed description is available
in Appendix G.2). and ratio performance. A study of the effect of these parameters on sampling
performance can be found in H.8.

D DIRECTO TRAINING AND SAMPLING ALGORITHMS

This appendix provides detailed pseudocode for the training and sampling procedures used in the
DIRECTO framework. Alg. 1 outlines the training loop, where a digraph is progressively noised and a
denoising model is optimized to reconstruct the original graph.

We consider the original data distribution p1 as well as the time distribution T which in our case is
set to be the uniform distribution. In addition, fθ refers to the denoising network, in our case the
graph transformer with dual attention.

Algorithm 1 DIRECTO Training

1: Input: Graph dataset {G1, . . . , GM} ∼ p1

2: while fθ not converged do
3: Sample G ∼ p1

4: Sample t ∼ T
5: Iteratively sample Gt ∼ pt|1(Gt|G) ▷ Noising process
6: h← PosEnc(Gt) ▷ Positional encoding
7: pθ

1|t(·|Gt)← fθ(Gt, h, t) ▷ Denoising prediction with dual attention
8: loss← CEλ(G,pθ

1|t(·|Gt))

9: end while

Alg. 2 describes the generative sampling process in which new digraphs are synthesized by iteratively
denoising from an initial random digraph structure. Again, we consider p0 = pnoise the prede-
fined noise distribution, fθ the denoising graph transformer with dual attention, pθ

1|t the denoising
predictions, and pθ

t+∆t|t as the update rule, see Equation (41).

Algorithm 2 DIRECTO Sampling

1: Input: # graphs to sample S
2: for i = 1 to S do
3: Sample N from train set ▷ # nodes
4: Sample G0 ∼ p0(G0)
5: for t = 0 to 1−∆t with step ∆t do
6: h← PosEnc(Gt) ▷ Positional encoding
7: pθ

1|t(·|Gt)← fθ(Gt, h, t) ▷ Denoising prediction with dual attention
8: Gt+∆t ∼ pθ

t+∆t|t(Gt+∆t|Gt) ▷ Update rule
9: end for

10: Store G1 as Gi

11: end for

E DATASET DESCRIPTIONS

In this section, we provide further detailed information about the datasets described in Section 4 and
used for the experiments in Section 5.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

E.1 SYNTHETIC DATASETS

We outline the mathematical formulation of each graph generation strategy used in our experiments.
All graphs are generated as adjacency matrices A ∈ {0, 1}n×n (where Aij = 1 denotes a directed
edge from node i to node j), and preprocessed to adapt to the structure required by the model.

For all datasets, we generate a total of 200 graphs, split as: 128 train, 32 validation, 40 test. A study
on the effect of the dataset size on the quality of the generations can be found in Appendix H.6.
Furthermore, the dataset statistics can be found in Table 3.

Table 3: Synthetic dataset statistics.

Dataset Min. nodes Max. nodes Avg. nodes Min. edges Max. edges Avg. edges #Train #Val #Test

Erdos-Renyi (ER) 20 80 46 223 3670 1446 128 32 40
SBM 44 175 106 340 3008 1426 128 32 40

ER (DAG) 20 80 49 103 1892 762 128 32 40
Price (DAG) 64 64 64 132 246 197 128 32 40

Erdős-Renyi (Erdös & Rényi, 1959) We generate graphs with a variable number of nodes between
n = 20 and n = 80. For a number of nodes n, edges are sampled independently with a fixed
probability p = 0.6. The adjacency matrix A is generated by:

Aij ∼ Bernoulli(p), ∀i ̸= j

To generate a second dataset of DAGs, we enforce a lower-triangular structure (i.e., edges only from
higher-indexed to lower-indexed nodes), which results in graphs generated with a probability p = 0.3.

Price’s model (de Solla Price, 1965) This is the directed version of the Barabási-Albert or preferen-
tial attachment model, which simulates the growth of citation networks. We build DAGs sequentially
for a fixed number of nodes N = 64. Each new node i forms m = log2(N) edges to existing nodes
j with probability proportional to their degree:

P(i→ j) ∝ deg(j).

Since the number of nodes is fixed to N = 64, mean out-degree results in m = 6. In practice, we
implement this ”bag” of nodes that replicates existing connections. For each new node i, we sample
m destination nodes from the bag. Then, for each selected node j, we set Aij = 1 and add i and
the selected nodes to the bag. This ensures a directed acyclic graph (DAG) due to the order of node
addition.

Stochastic Block Model (Holland et al., 1983) We create K communities with sizes
{n1, n2, . . . , nK}. We set the number of communities between K = 2 and K = 5, and the
number of nodes per community between 20 and 40. The probability of an edge between any two
nodes depends on their community assignments

Aij ∼ Bernoulli(Pzizj)

where zi ∈ {1, . . . ,K} is the block assignment of node i and P ∈ [0, 1]K×K is a matrix of intra-
and inter-community connection probabilities. In particular, we use

Pkk = pintra = 0.3, Pkl = pinter = 0.05 for k ̸= l

to generate a block-structured, directed graph.

E.2 TPU TILES

In this dataset introduced by Phothilimthana et al. (2023), each DAG represents a computation
within a machine learning workload, such as a training epoch or an inference step. Each of the 6301
datapoints includes a computational graph, a specific compilation configuration, and the execution
time of the graph when compiled with that configuration. The dataset features different model
architectures, such as ResNets, EfficientNets, Masked R-CNNs, and Transformers, with graphs of up
to ∼ 400 nodes.

We adopt the processing and splits from Li et al. (2025). Details on dataset statistics for the three
different splits can be found in Table 4.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 4: TPU Tiles dataset statistics.

Dataset Min. nodes Max. nodes Avg. nodes Min. edges Max. edges Avg. edges # Graphs

Train 2 394 41 1 711 43 5040
Validation 2 113 41 1 123 43 630
Test 2 154 41 1 249 44 631

E.3 VISUAL GENOME

The Visual Genome dataset (Krishna et al., 2017) aims at bridging computer vision and natural
language understanding by providing richly annotated images. It comprises over 100,000 images
annotated with object labels, attributes, relationships, which allows to capture the presence of objects
but also their attributes and interactions. It has become a standard benchmark for tasks such as scene
graph generation, visual question answering, and grounded language understanding.

To build the directed graph dataset, we set 3 types of nodes: objects, attributes, and relationships,
with the actual node class being the text label. Then, we link them via directed edges according to the
visual rules provided in the original data and taking into account that:

1. Objects have outgoing edges to attributes and relationships and incoming edges from
relationships.

2. Relationships have outgoing edges to objects and incoming edges from objects.
3. Attributes have no outgoing edges and incoming edges from objects.

Once we built the digraphs, we select a relevant subset from this raw dataset by keeping graphs with
20 to 40 nodes, and with a minimum of 25 edges per graph. Then, for each graph, we only consider
objects, attributes, and relationships that are in the top-20 in terms of prevalence in the full dataset,
ending with 60 node classes. We randomly split the graphs into 203 train, 52 validation and 63 test
graphs, with detailed statistics of each split available in Table 5. The total number of cyclic graph in
the dataset is 119 (∼37.5% of the digraphs).

Table 5: Visual Genome dataset statistics.

Dataset Min. nodes Max. nodes Avg. nodes Min. edges Max. edges Avg. edges # Graphs

Global 21 40 34 25 47 28 317

Train 21 40 33 25 47 28 203
Validation 24 40 34 25 40 28 51
Test 21 40 34 25 36 28 63

The selected top-20 objects, relationships, and attributes are:

• Objects: [’window’, ’tree’, ’man’, ’shirt’, ’wall’, ’person’,
’building’, ’ground’, ’sign’, ’light’, ’sky’, ’head’, ’leaf’,
’leg’, ’hand’, ’pole’, ’grass’, ’hair’, ’car’, ’cloud’]

• Relationships: [’on’, ’has’, ’in’, ’of’, ’wearing’, ’with’, ’behind’,
’holding’, ’on top of’, ’on a’, ’near’, ’next to’, ’has a’, ’on’,
’under’, ’by’, ’of a’, ’wears’, ’above’, ’sitting on’]

• Attributes: [’white’, ’black’, ’blue’, ’green’, ’red’, ’brown’,
’yellow’, ’small’, ’large’, ’wooden’, ’gray’, ’silver’, ’metal’,
’orange’, ’grey’, ’tall’, ’long’, ’dark’, ’pink’, ’clear’]

F FURTHER DETAILS ON EVALUATION METRICS

In this section, we detail the statistical procedures used to evaluate the graphs generated by our model.
We detail how we compute the validity metrics for the different datasets, as well as how we make the
validity and uniqueness computation more efficient.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

F.1 VALIDITY METRICS

Erdős-Renyi Given a graph G = (V,E) with n = |V | nodes and m = |E| edges, we want
to determine whether the graph likely originates from an Erdős–Rényi model G(n, p) with edge
probability p using a Wald test (Held & Sabanés Bové, 2013). For that, we follow the following steps
distinguishing the cases in which the graphs are DAGs or not:

1. Empirical edge probability: we compute the number of possible edges

mmax =

{
n(n−1)

2 if the graph acyclic
n(n− 1) if the graph is not acyclic

and then estimate the empirical probability of edge presence p̂ = m
mmax

.

2. Wald test statistic: the Wald statistic tests the null hypothesis H0 : p̂ = p, where p is the
expected edge probability:

W =
(p̂− p)2

p̂(1− p̂) + ε

and where we add a small regularization ε = 10−6 to prevent division by zero.

3. p-value computation: assuming the null hypothesis, the Wald statistic W asymptotically
follows a Chi-squared distribution with 1 degree of freedom:

p-value = 1− Fχ2(W ; df = 1)

where Fχ2 is the cumulative distribution function (CDF) of the Chi-squared distribution.

In the rare limit case where graphs contain only one node, we consider that the graph does not follow
the distribution.

Stochastic Block Model To assess whether a graph G = (V,E) conforms to a Stochastic Block
Model (SBM), we recover the block structure and probability parameters. The test then computes
Wald statistics for intra- and inter-block edge probabilities.

1. Block assignment via model inference: Given the adjacency matrix A ∈ {0, 1}n×n of a
graph G, we use an algorithm (Peixoto, 2014) to infer the stochastic block model (block
assignment) from a given network:

Infer z : V → {1, . . . , B} using minL(G, z)

where B is the number of non-empty blocks found and L is the description length. The
model can be further refined using Markov-Chain Monte Carlo (MCMC) for T timesteps.

2. Estimating intra- and inter-block probabilities: let Ni be number of nodes in block i
and Eij the number of edges between block i and block j recovered by the algorithm in the
previous step. Then the estimated probabilities for directed SBM graphs are:

p̂intra,i =
Eii

Ni(Ni − 1) + ε

p̂inter,ij =
Eij

NiNj + ε
, i ̸= j

where ε = 10−6 is a small regularization constant.

3. Wald test statistic: we compare the empirical estimates to expected values pintra and pinter
using a Wald statistic:

Wii =
(p̂intra,i − pintra)

2

p̂intra,i(1− p̂intra,i) + ε

Wij =
(p̂inter,ij − pinter)

2

p̂inter,ij(1− p̂inter,ij) + ε
, i ̸= j

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

4. p-value computation: assuming the null hypothesis (i.e., estimated probabilities match
expected ones), each Wald statistic follows a Chi-squared distribution with 1 degree of
freedom:

pij = 1− Fχ2(Wij ; df = 1),

and therefore the overall p-value can be computed as the mean of all pij

p-value =
1

B2

B∑
i=1

B∑
j=1

pij

Price’s model To assess whether a graph follows a Price’s model, we use a nonparametric two-
sample Kolmogorov–Smirnov (KS) test:

1. Computing degree distribution: let D = {d1, d2, . . . , dn} be the degree sequence of the
nodes in G. To reduce noise and ensure a more stable distribution, ignore nodes with degree
≤ 1 and end with the distribution D′ = {di ∈ D | di > 1}.

2. Synthetic graph generation: we construct a synthetic graph GBA using the Barabási–Albert
model with the same number of nodes: GBA ∼ BA(n,m), where n = |V | is the number of
nodes and m = 6 is the number of edges each new node adds during attachment, fixed to the
same value as in our data generation. The degree sequence of the synthetic graph is DBA.

3. Kolmogorov-Smirnov Two-Sample test: we perform a two-sample Kolmogorov–Smirnov
(KS) test to compare the empirical distribution functions of D′ and DBA

p-value = 1− KS2 sampled(D
′, DBA)

which evaluates the null hypothesis: H0 : D′ ∼ DBA.

TPU Tiles For the TPU Tiles dataset, we report the percentage of valid Directed Acyclic Graphs
(DAGs) as our primary validity metric, reflecting our focus on accurately reconstructing acyclic
computational graphs.

Visual Genome As seen in Appendix E.3, by construction, object nodes can have outgoing edges to
relationship or attribute nodes but only receive incoming edges from relationship nodes. Relationship
nodes only have incoming edges from object nodes and send outgoing edges to objects. Finally,
attributes can only receive edges from object nodes and do not have any outgoing edges. Therefore,
to measure digraph validity we evaluate that the generated graphs verify these constraints.

F.2 UNIQUENESS AND NOVELTY

To evaluate the quality and novelty of generated graphs, we employ the usual metrics based on graph
isomorphism. In particular we measure the fraction of isomorphic graphs from the sampled set to the
train set (uniqueness) and the fraction of graphs from the sampled set that are not isomorphic to any
other in the same sampled set (novelty).

However, since exact graph isomorphism testing can be computationally expensive, particularly for
large or dense graphs such as the one in the TPU Tiles dataset, we incorporate a timeout mechanism.
Specifically, if an isomorphism check does not complete within 5 seconds, it is treated as a timeout
and the graph is conservatively assumed to be non-isomorphic.

In Table 10, we see that in three of the model configurations the computations timed out. We report
the average percentage of graphs that could not be tested, which was 2.5% for DIGRESS, 0.8% for
DEFOG, and 2% for DIRECTO RRWP.

F.3 MAXIMUM MEAN DISCREPANCY METRICS

For the different metrics, we adapt previous work from Martinkus et al. (2022); Law et al. (2025).
We propose to measure both out-degree and in-degree distributions, as well as clustering, spectre
and walvelet. To measure the clustering coefficient, we compute the distribution of directed local
clustering coefficients using networkx function clustering(), which supports digraphs. For

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

the spectral features (spectre and wavelet), we derive the spectral features from the directed Laplacian,
as described in Section 4.

In addition, the orbit metric that was also computed in Martinkus et al. (2022) has not been adapted
to the directed setting as it relies on the Orbit Counting Algorithm (ORCA) which counts graphlets in
networks but is only implemented in the undirected setting. Therefore, adapting this metric to the
directed setting remains an open challenge.

F.4 JOINT NODE-EDGE DISTRIBUTIONAL METRICS

Downstream evaluations in graph generative models usually assume conditional graph generation
and alignment with auxiliary inputs. Moreover, standard evaluations in domains such as Scene Graph
Generation (Li et al., 2024; Lorenz et al., 2024) assume access to input images to compare generated
graphs against ground truth images using retrieval metrics such as Precision@K and Recall@K.
These require alignment with specific input conditions, which is not possible in our formulation as
there are no ground truth images for the generated graphs. Instead, we propose metrics to directly
evaluate generative performance by assessing joint node-edge distributional coverage, an essential
aspect for labeled graphs such as NAS and scene graphs.

• Node type distribution MMD: To evaluate coverage of node class distributions, we compute
normalized histograms over node labels for each graph and calculate the MMD score between
generated and reference sets, which captures how well categorical proportions are preserved
across generated graphs.

• Triplet-based precision and recall: Inspired by retrieval-style evaluations in Scene Graph
Generation (Li et al., 2024; Lorenz et al., 2024), we extract semantic tuples from graphs. For
scene graphs, we use (subject, attribute) pairs and (object, relation, object) triplets. For the
TPU Tiles dataset, we extract element–element pairs. We compare the tuples from generated
graphs with those in the test set and compute:

Precision =
|correctly generated tuples|
|generated tuples| Recall =

|correctly generated tuples|
|test tuples|

• Embedding-based distances (FID and RBF): Following Thompson et al. (2022), we
compute RBF-kernel MMD and Fréchet Inception Distance (FID) over embeddings extracted
from a random GNN trunk. These embeddings encode both node labels and structural
information, thus capturing joint node-edge distributions.

F.5 DOWNSTREAM TASKS METRICS

In addition to the distributional alignment evaluations, we also provide a evaluations on downstream
tasks for the TPU Tiles dataset. Here, we train a conditional generative model and follow the
evaluation protocol of LayerDAG (Li et al., 2025). Specifically, we employ their ML-based surrogate
cost models to approximate the computational performance of generated architectures. This ensures
direct comparability with prior work.

G EXPERIMENTAL DETAILS

G.1 DETAILS ON BASELINES

Maximum Likelihood Estimation (MLE) We define a simple baseline by estimating empirical
probabilities from the training dataset via maximum likelihood estimation. The following distributions
are computed:

1. Number of Nodes Distribution: Let n denote the number of nodes in a graph. The
empirical distribution over n is given by:

P (n) =
Number of training graphs with n nodes

Total number of training graphs
.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

2. Node Class Distribution: Let c be a node class. The empirical node class distribution is:

P (v = c) =
Number of nodes of class c

Total number of nodes in all training graphs
.

3. Edge Type Distribution Conditioned on Node Pairs: Let (vi, vj) be a pair of nodes such
that vi has class ca and vj has class cb. Let eij ∈ {1, . . . ,K} denote the edge type between
them (with K total edge types). The empirical conditional distribution is:

P (eij = k | vi = ca, vj = cb) =
Number of edges of type k between (ca, cb)∑K

k′=1 Number of edges of type k′ between (ca, cb)
.

These distributions are stored and later used to construct graphs by first sampling the number of
nodes, then sampling node types independently, and finally sampling edge types between each node
pair according to the conditional edge distribution.

D-VAE (Zhang et al., 2019) This autoregressive method encodes and decodes directed acyclic
graphs (DAGs) using an asynchronous message passing scheme. Unlike standard graph neural
networks (GNNs), which apply simultaneous message passing across all nodes and updates them
all at once, D-VAE updates nodes sequentially, allowing it to capture the computational flow within
the graph rather than just its structure. During generation, the DAG is built one node at a time in
topological order, with edges always directed toward newly added nodes ensuring the resulting graph
remains acyclic. To enable this process, input graphs must be topologically sorted before being
processed by the model.

To reproduce this baseline, we adapted the code available in their GitHub and arranged both the
TPU Tiles and ER-DAG datasets to match the input format expected by the original model. We used
the same hyperparameter configurations as suggested in the original paper to ensure consistency in
training, which happened for 500 epochs. After generation, we converted the output DAGs back into
the required format for compatibility with our evaluation metrics.

For ER-DAG, we tested two different learning rates 10−4 and 10−5, and ended using the model with
10−5, which resulted in better V.U.N. results with a training time of ∼3min per epoch. For TPU
Tiles, due to the large size of the dataset and some of the graphs in it, it was impossible to perform a
training epoch in a reasonable time, as each of them was predicted to take ∼12h.

LayerDAG (Li et al., 2025) This autoregressive diffusion model generates DAGs by converting
them into sequences of bipartite graphs, effectively enabling a layer-wise tokenization suitable for
autoregressive generation. At each step, a layer-wise diffusion process captures dependencies between
nodes that are not directly comparable (i.e., not connected by a path). As with other autoregressive
DAG models, the input graphs must be topologically sorted to ensure correct processing.

To reproduce this baseline, we adopted the implementation from GitHub adapted the ER-DAG data to
the correct format ordering the graphs topologically, as TPU Tiles was already in the correct format.
We kept the hyperparameters from the default configurations, including the number of epochs for
each of the elements of the model. After generation, we converted the output DAGs back into the
required format for compatibility with our evaluation metrics.

DiGress (Vignac et al., 2023a) To benchmark against DIGRESS, we consider its directed version
by simply removing the symmetrization operations. This corresponds to DIRECTO-DD without dual
attention and using the Laplacian positional encoding.

DeFoG (Qin et al., 2025a) To benchmark against DEFOG, we consider its directed version by
again removing the symmetrization operations. In this case this corresponds to DIRECTO without
dual attention and using the RRWP Positional encoding (without PPR).

G.2 TRAINING SETUP

This section details the training hyperparameters used across all experiments presented in the main
text. Unless otherwise specified, the values reported below were used uniformly across all positional
encoding variants and ablation settings. In particular, we report the choices for the training, for the
positional encodings employed, and for the sampling.

27

https://github.com/muhanzhang/D-VAE
https://github.com/Graph-COM/LayerDAG

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Training The training hyperparameters used in our experiments are summarized in Table 6. These
settings were consistently applied across all training runs for both DIRECTO and DIRECTO-DD (with
discrete diffusion). We trained each model for up to 10,000 epochs, stopping the runs based on
validation performance to account for variations in convergence behavior across datasets.

Table 6: Training and model hyperparameters used in all experiments.

Hyperparameter Value
Training Settings

Learning rate 0.0002
Weight decay 1× 10−12

Optimizer AdamW

Model Settings

Initial distribution Marginal
Train distortion Identity
Number of diffusion steps 500
Noise schedule Cosine
Number of layers 5
Hidden MLP dimensions X: 256, E: 128, y: 128
Transformer hidden dimensions dx: 256, de: 64, dy: 64, nhead: 8
Feedforward dims dimffX : 256, dimffE : 128, dimffy : 128
Training loss weights (λtrain) [5, 0]

Positional encodings For RRWP, we set the walk length parameter to K = 20. For MagLap with
Q = 5, we used equidistant potentials q5 = (0, 0.1, 0.2, 0.3, 0.4). For Q = 10, we selected again 10
equidistant potentials q10 = (0.01, . . . , 0.1). In all cases, we then kept the k = 10 first eigenvalues
and eigenvectors, padding with null values whenever the graphs had less than 10 nodes.

Conditional generation To train with classifier-free guidance conditioning, we first conducted
a hyperparameter search to determine the guidance strength with values from 0 to 4, in particular
ωcond ∈ (0, 0.25, 0.5, 1, 1.5, 2, 3, 4). We ultimately set the parameter to ωcond = 0.25.

Sampling To perform sampling optimization, we conducted a targeted search over the three key
hyperparameters: the time distortion function, the target guidance factor (ω), and the stochasticity
coefficient (η). Each hyperparameter was varied independently, while the others were held at their
default values (identity distortion and ω = η = 0). For computational efficiency, all searches were
performed using 100 sampling steps, and each configuration was evaluated using five independent
sampling runs to ensure robustness. An exception was made for the TPU Tiles dataset, where only a
single sampling run was performed per configuration due to the large size of the dataset and some
individual graphs.

Based on the outcome of this optimization, we selected the best-performing configurations for each
combination of dataset and positional encoding, balancing the trade-off between V.U.N and ratio.
The optimal configurations of the results reported in the main paper are summarized in Table 7. For
the final evaluation, we performed five sampling runs per configuration using 1000 sampling steps. In
all cases, the number of generated graphs matched the size of the test set (40 for synthetic datasets, 63
for Visual Genome), except for TPU Tiles, where we again limited the number of sampled digraphs
to 40 due to computational constraints.

Finally, for the ablations on dual attention and positional encodings, we did not perform sampling
optimization on η and ω to avoid the consequent computational cost, but searched for the optimal
time distortion. For the scalability experiments, we also did not perform sampling optimization
but chose the relevant optimal configuration (from Table 7). For DIRECTO-DD we performed 500
sampling steps in all the different model configurations.

G.3 RESOURCES AND RUNTIME

All experiments were conducted on a single NVIDIA A100-SXM4-80GB GPU. Table 8 summarizes
the runtime of the training and sampling stages across the different datasets. These timings reflect

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Table 7: Optimal sampling hyperparameters for each dataset and positional encoding variant.

Encoding Distortion ω η

ER-DAG

Baseline Polydec 0.3 10
RRWP Polydec 0.1 25
MagLap Polydec 0 100

SBM

Baseline Revcos 0 0
RRWP Polyinc 0.1 50
MagLap Polydec 0.01 10

TPU Tiles

Baseline Polydec 0 0
RRWP Polyinc 0.3 10
MagLap Polydec 0.5 100

Visual Genome

Baseline Cos 0.1 0
RRWP Polydec 0.3 10
MagLap Polydec 0.1 50

the training time until best performance and the average sampling time per sample, for all the
configurations reported in the main results for DIRECTO.

Table 8: Training and sampling runtimes for each dataset and positional encoding variant.

Encoding Training graphs Training time (h) Graphs sampled Sampling time (min/sample)
ER-DAG

Baseline 128 13.6 40 0.125
RRWP 128 13.5 40 0.3
MagLap 128 14.4 40 0.8

SBM

Baseline 128 23.7 40 0.3
RRWP 128 13.7 40 0.5
MagLap 128 21 40 2.1

TPU Tiles

Baseline 5040 10 40 1.1
RRWP 5040 21 40 1.1
MagLap 5040 49 40 6.7

Visual Genome

Baseline 203 7.5 63 0.9
RRWP 203 9 63 1.1
MagLap 203 10 63 1.3

H ADDITIONAL RESULTS

In this section, we present additional results that offer deeper insights into our model’s performance
and design choices. Specifically, we analyze the impact of the dual attention mechanism and the
choice of positional encoding, compare performance on ER and DAG accuracy metrics, examine
how dataset size influences generation quality, provide detailed results for conditional generation,
and evaluate the effect of the sampling optimization step in discrete flow matching.

H.1 EXTENDED RESULTS FOR SYNTHETIC DATASETS

Table 9 reports the performance of DIRECTO across different configurations on synthetic datasets.
We observe that the choice of architecture and positional encodings leads to noticeable differences in
the distributional alignment metrics (MMD), highlighting the strong performance of DIRECTO. At

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

the same time, uniqueness and novelty remain consistently at 100% across all models, confirming
that the V.U.N. ratio is driven uniquely by the validity metric.

Table 9: Directed graph generation performance on synthetic graphs for different configurations
of DIRECTO. Results are presented as mean ± standard deviation across five sampling runs. We
considered Q = 10 for the MagLap variants.

Model Out-degree ↓ In-degree ↓ Clustering ↓ Spectre ↓ Wavelet ↓ Ratio ↓ Valid ↑ Unique ↑ Novel ↑ V.U.N. ↑
Erdős-Renyi Directed Acyclic Graph (ER-DAG)

Training set 0.0113 0.0103 0.0355 0.0038 0.0024 1.0 99.2 100 0.0 0.0

MLE 0.0083 ± 0.0004 0.0089 ± 0.0003 0.1318 ± 0.0077 0.0823 ± 0.0013 0.1162 ± 0.0018 15.1 ± 0.2 0.0 ± 0.0 100 ± 0.0 100 ± 0.0 0.0 ± 0.0

D-VAE 0.6158 ± 0.0160 0.6246 ± 0.0103 1.0509 ± 0.00304 0.6160 ± 0.0315 0.5432 ± 0.0389 106.6 ± 5.4 0.0 ± 0.0 100 ± 0.0 100 ± 0.0 0.0 ± 0.0

LAYERDAG 0.0750 ± 0.0697 0.1773 ± 0.0722 0.1842 ± 0.0463 0.0159 ± 0.0120 0.0218 ± 0.0160 4.2 ± 3.2 21.5 ± 2.7 99.9 ± 0.0 100 ± 0.0 21.5 ± 2.7

DIGRESS 0.0138 ± 0.0035 0.0143 ± 0.0050 0.1074 ± 0.0090 0.0073 ± 0.0017 0.0042 ± 0.0011 1.9 ± 0.3 34.0 ± 4.1 100 ± 0.0 100 ± 0.0 34.0 ± 4.1

DEFOG 0.0407 ± 0.0008 0.0041 ± 0.0011 0.0460 ± 0.0052 0.0061 ± 0.0008 0.0008 ± 0.0003 1.6 ± 0.2 75 ± 2.2 100 ± 0.0 100 ± 0.0 75.0 ± 2.2

DIRECTO-DD RRWP 0.0142 ± 0.0040 0.0129 ± 0.0034 0.0408 ± 0.0053 0.0055 ± 0.0010 0.0048 ± 0.0014 1.4 ± 0.3 79.0 ± 3.7 100 ± 0.0 100 ± 0.0 79.0 ± 3.7

DIRECTO-DD MagLap 0.0145 ± 0.0040 0.0134 ± 0.0033 0.0582 ± 0.0083 0.0063 ± 0.0015 0.0034 ± 0.0011 1.5 ± 0.2 85.0 ± 9.2 100 ± 0.0 100 ± 0.0 85.0 ± 9.2

DIRECTO RRWP 0.0107 ± 0.0019 0.0104 ± 0.0012 0.1209 ± 0.0194 0.0054 ± 0.0005 0.0043 ± 0.0008 1.7 ± 0.1 94.0 ± 1.0 100 ± 0.0 100 ± 0.0 94.0 ± 1.0

DIRECTO MagLap 0.0117 ± 0.0014 0.0110 ± 0.0015 0.0711 ± 0.0120 0.0055 ± 0.0016 0.0026 ± 0.0004 1.3 ± 0.2 92.0 ± 3.7 100 ± 0.0 100 ± 0.0 92.0 ± 3.7

Stochastic Block Model (SBM)

Training set 0.0031 0.0031 0.0274 0.0027 0.0011 1.0 97.7 100 0.0 0.0

MLE 0.0020 ± 0.0002 0.0020 ± 0.0002 0.1973 ± 0.0162 0.0087 ± 0.0003 0.0508 ± 0.0009 11.6 ± 0.2 0.0 ± 0.0 100 ± 0.0 100 ± 0.0 0.0 ± 0.0

DIGRESS 0.0037 ± 0.0018 0.0038 ± 0.0018 0.0722 ± 0.0098 0.0045 ± 0.0004 0.0142 ± 0.0039 3.9 ± 0.9 41.5 ± 5.1 100 ± 0.0 100 ± 0.0 41.5 ± 5.1

DEFOG 0.0026 ± 0.0019 0.0022 ± 0.0016 0.0813 ± 0.0058 0.0048 ± 0.0002 0.0110 ± 0.0019 4.3 ± 0.8 37 ± 6.6 100 ± 0.0 100 ± 0.0 37.0 ± 6.6

DIRECTO-DD RRWP 0.0036 ± 0.0019 0.0036 ± 0.0018 0.0592 ± 0.0027 0.0038 ± 0.0007 0.0027 ± 0.0009 1.7 ± 0.4 81.5 ± 3.2 100 ± 0.0 100 ± 0.0 81.5 ± 3.2

DIRECTO-DD MagLap 0.0037 ± 0.0019 0.0038 ± 0.0018 0.0450 ± 0.0037 0.0038 ± 0.0006 0.0021 ± 0.0009 1.5 ± 0.4 95.5 ± 3.7 100 ± 0.0 100 ± 0.0 95.5 ± 3.7

DIRECTO RRWP 0.0031 ± 0.0014 0.0028 ± 0.0013 0.0594 ± 0.0027 0.0035 ± 0.0004 0.0027 ± 0.0009 1.8 ± 0.5 99.5 ± 1.0 100 ± 0.0 100 ± 0.0 99.5 ± 1.0

DIRECTO MagLap 0.0039 ± 0.0012 0.0038 ± 0.0010 0.0654 ± 0.0052 0.0038 ± 0.0003 0.0039 ± 0.0008 2.0 ± 0.3 96.5 ± 2.5 100 ± 0.0 100 ± 0.0 96.5 ± 2.5

H.2 EXTENDED RESULTS FOR REAL-WORLD DATASETS

Table 10 reports the performance of DIRECTO across different configurations on real-world datasets.
While some configurations show evidence of partial memorization, particularly in node and edge
distributions, this does not negatively affect the overall generative quality: V.U.N. remains high, and
DIRECTO consistently achieves the best or second-best performance across the majority of metrics.
These results highlight that, despite occasional replication of training structures, the model maintains
strong distributional alignment and generates diverse, valid, and novel graphs.

Table 10: Directed graph generation performance on real-world graphs for different configurations
of DIRECTO. Results are presented as mean ± standard deviation across five sampling runs. We
considered Q = 5 for the MagLap variants. OOT indicates that the model could not be run within a
reasonable timeframe. (∗) indicates that isomorphism tests occasionally timed out, due to the large
size of some graphs in this dataset; such cases were excluded from the uniqueness computation.

Model Out-degree ↓ In-degree ↓ Clustering ↓ Spectre ↓ Wavelet ↓ Ratio ↓ Valid ↑ Unique ↑ Novel ↑ V.U.N. ↑
TPU Tiles

Training set 0.0003 0.0003 0.0007 0.0006 0.0002 1.0 100 100 0.0 0.0

MLE 0.0354 ± 0.0005 0.0878 ± 0.0014 0.0141 ± 0.0006 0.0689 ± 0.0013 0.0407 ± 0.0004 149.8 ± 0.7 24.7 ± 0.0 99.9 ± 0.0 100 ± 0.0 24.7 ± 0.0

D-VAE OOT OOT OOT OOT OOT OOT OOT OOT OOT OOT
LAYERDAG 0.1933 ± 0.0905 0.2225 ± 0.0395 0.1512 ± 0.0522 0.0501 ± 0.0206 0.0765 ± 0.0251 413.6 ± 70.1 100 ± 0.0 99.5 ± 1.0 98.5 ± 3.0 98.5 ± 3.0

DIGRESS 0.0084 ± 0.0009 0.0726 ± 0.0019 0.0020 ± 0.0006 0.0033 ± 0.0003 0.0018 ± 0.0003 57.5 ± 1.7 86.1 ± 2.3 87.1(∗) ± 5.8 99.4 ± 0.6 70.9 ± 3.4

DEFOG 0.0099 ± 0.0012 0.0794 ± 0.0023 0.0042 ± 0.0027 0.0040 ± 0.0005 0.0017 ± 0.0003 63.7 ± 2.6 86.3 ± 2.2 87.7(∗) ± 5.4 93.3 ± 2.5 72.0 ± 2.4

DIRECTO-DD RRWP 0.0093 ± 0.0010 0.0767 ± 0.0035 0.0015 ± 0.0013 0.0045 ± 0.0007 0.0018 ± 0.0005 61.0 ± 2.9 86.5 ± 1.9 90.3 ± 0.8 99.6 ± 0.5 76.8 ± 1.9

DIRECTO-DD MagLap 0.0115 ± 0.0035 0.0703 ± 0.0033 0.0103 ± 0.0021 0.0076 ± 0.0007 0.0043 ± 0.0014 64.3 ± 5.3 86.5 ± 5.1 90.5 ± 3.3 100 ± 0.0 77.0 ± 7.0

DIRECTO RRWP 0.0133 ± 0.0025 0.0859 ± 0.0072 0.0136 ± 0.0075 0.0086 ± 0.0010 0.0038 ± 0.0009 75.4 ± 8.1 97.0 ± 1.0 81.8(∗) ± 4.5 96.5 ± 1.2 77.0 ± 2.9

DIRECTO MagLap 0.0039 ± 0.0017 0.0376 ± 0.0051 0.0211 ± 0.0117 0.0126 ± 0.0022 0.0062 ± 0.0009 44.0 ± 7.1 90.5 ± 3.3 90.5 ± 4.6 97.5 ± 3.2 80.5 ± 4.6

Visual Genome

Training set 0.0018 0.0030 0.0000 0.0072 0.0036 1.0 100 100 0.0 0.0

MLE 0.0607 ± 0.0036 0.0474 ± 0.0023 0.5342 ± 0.0830 0.0535 ± 0.0015 0.0399 ± 0.0017 17.0 ± 0.6 0 ± 0.0 100 ± 0.0 100 ± 0.0 0.0 ± 0.0

DIGRESS 0.0654 ± 0.0044 0.0389 ± 0.0032 0.0008 ± 0.0008 0.0416 ± 0.0017 0.0225 ± 0.0007 17.0 ± 0.6 0.3 ± 0.6 100 ± 0.0 100 ± 0.0 0.3 ± 0.6

DEFOG 0.0447 ± 0.0044 0.0396 ± 0.0028 0.0002 ± 0.0002 0.0122 ± 0.0020 0.0089 ± 0.0011 10.6 ± 0.8 39.6 ± 2.8 100 ± 0.0 100 ± 0.0 39.6 ± 2.8

DIRECTO-DD RRWP 0.0424 ± 0.0043 0.0413 ± 0.0037 0.0000 ± 0.0000 0.0132 ± 0.0053 0.0074 ± 0.0008 15.3 ± 0.8 72.7 ± 3.9 100 ± 0.0 100 ± 0.0 72.7 ± 3.9

DIRECTO-DD MagLap 0.0245 ± 0.0022 0.0359 ± 0.0036 0.0000 ± 0.0000 0.0163 ± 0.0026 0.0086 ± 0.0011 7.6 ± 0.7 86.5 ± 5.1 100 ± 0.0 100 ± 0.0 61.9 ± 4.4

DIRECTO RRWP 0.0494 ± 0.0021 0.0425 ± 0.0029 0.0000 ± 0.0000 0.0226 ± 0.0075 0.0228 ± 0.0058 12.8 ± 0.6 86.0 ± 4.5 98.4 ± 1.7 99.3 ± 0.7 83.8 ± 4.3

DIRECTO MagLap 0.0180 ± 0.0024 0.0302 ± 0.0040 0.0000 ± 0.0000 0.0142 ± 0.0021 0.0099 ± 0.0013 6.2 ± 0.5 67.6 ± 3.6 99.7 ± 0.6 99.7 ± 0.6 67.0 ± 4.3

Table 11 reports the node-label distributional alignment metrics for the two real-world datasets
considered. The results highlight that DIRECTO consistently manages to capture node-label distri-
butions accurately. On TPU Tiles, DIRECTO achieve the lowest node-type MMD, indicating strong
alignment with the training set, while also maintaining high precision and competitive recall. On
Visual Genome, although DIRECTO exhibits slightly lower node-type MMD compared to DeFoG, it
attains the highest precision, recall, and RBF MMD, reflecting its ability to capture the underlying
distribution. Overall, these results indicate that DIRECTO effectively balances reproducing node label

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

distributions while capturing richer graph structure, with the different positional encoding strategies
providing complementary strengths in distributional alignment.

It is relevant to note that the low precision achieved in the training sets is due to the fact that the
ground truth set is much larger than the generated set, and therefore there are many pairs and triplets
present in the ground truth dataset that have not been generated.

Table 11: Directed graph generation performance on node-label distributional alignment metrics for
the two real-world datasets. Results are presented as mean ± standard deviation across five sampling
runs.

Model Node type (MMD) ↓ Precision ↑ Recall ↑ FID ↓ RBF (MMD) ↓
TPU Tiles

Training set 0.0001 0.64 0.99 0.0854 0.0021

MLE 0.4573 ± 0.0070 0.10 ± 0.01 0.22 ± 0.01 105776.8 ± 22676.3 1.0392 ± 0.0326

D-VAE OOT OOT OOT OOT OOT
LAYERDAG 0.0130 ± 0.0077 0.31 ± 0.03 0.24 ± 0.10 2864.1 ± 1715.6 1.0208 ± 0.0225

DIGRESS 0.0037 ± 0.0033 0.95 ± 0.03 0.46 ± 0.05 887.7 ± 313.8 0.0969 ± 0.0331

DEFOG 0.0031 ± 0.0015 0.90 ± 0.03 0.45 ± 0.05 159.5 ± 108.9 0.0579 ± 0.0150

DIRECTO-DD RRWP 0.0028 ± 0.0008 0.92 ± 0.03 0.48 ± 0.02 336.6 ± 163.9 0.0587 ± 0.0225

DIRECTO-DD MagLap 0.0051 ± 0.0030 0.91 ± 0.03 0.42 ± 0.03 482.2 ± 124.3 0.0792 ± 0.0266

DIRECTO RRWP 0.0018 ± 0.0004 0.97 ± 0.01 0.44 ± 0.03 293.0 ± 110.1 0.0438 ± 0.0179

DIRECTO MagLap 0.0086 ± 0.0014 0.96 ± 0.02 0.42 ± 0.02 96.0 ± 64.0 0.0421 ± 0.0080

Visual Genome

Training set 0.0072 0.34 0.81 1.2 0.0214

MLE 0.0807 ± 0.0030 0.25 ± 0.03 0.13 ± 0.01 48941.0 ± 19586.5 0.6179 ± 0.0253

DIGRESS 0.0206 ± 0.0034 0.46 ± 0.04 0.35 ± 0.04 42.6 ± 1.3 0.2321 ± 0.0276

DEFOG 0.0181 ± 0.0030 0.51 ± 0.02 0.39 ± 0.02 19.9 ± 5.6 0.0845 ± 0.0233

DIRECTO-DD RRWP 0.0231 ± 0.0082 0.48 ± 0.02 0.48 ± 0.02 4.8 ± 1.2 0.0391 ± 0.0047

DIRECTO-DD MagLap 0.0288 ± 0.0069 0.50 ± 0.02 0.46 ± 0.02 8.4 ± 2.5 0.0420 ± 0.0056

DIRECTO RRWP 0.0272 ± 0.0056 0.53 ± 0.02 0.45 ± 0.02 4.7 ± 2.1 0.0383 ± 0.0049

DIRECTO MagLap 0.0299 ± 0.0047 0.58 ± 0.02 0.46 ± 0.01 9.3 ± 2.6 0.0507 ± 0.0118

H.3 THE ROLE OF DUAL ATTENTION

To assess the impact of the dual-attention mechanism in our model, we conduct an ablation study in
which we remove the cross-attention between edge features and their transposes. This mechanism
is designed to capture both source-to-target and target-to-source interactions, which are critical for
modeling directional dependencies in directed graphs. By disabling dual attention, we isolate its
contribution to generation quality, particularly in terms of validity, expressiveness, and generalization.
We compare the full model with its ablated variant across model combinations to quantify the
importance of this component.

DIRECTO Table 12 presents ablation results highlighting the impact of the dual attention mecha-
nism in our method. The results are presented for two datasets: ER-DAG and SBM.

Table 12: Directed Graph Generation performance across different transformer architectures using
discrete flow matching. MagLap considers Q = 1.

Dataset Model Out-degree ↓ In-degree ↓ Clustering ↓ Spectre ↓ Wavelet ↓ Ratio ↓ Valid ↑ Unique ↑ Novel ↑ V.U.N. ↑

ER-DAG

No PE 0.0078 ± 0.0008 0.0078 ± 0.0010 0.1293 ± 0.0024 0.0735 ± 0.0023 0.0874 ± 0.0030 12.2 ± 0.4 0.0 ± 0.0 100 ± 0.0 100 ± 0.0 0.0 ± 0.0

No PE - Dual 0.0109 ± 0.0012 0.0110 ± 0.0012 0.0807 ± 0.0147 0.0073 ± 0.0007 0.0215 ± 0.0017 3.0 ± 0.2 47.0 ± 12.1 100 ± 0.0 100 ± 0.0 47.0 ± 12.1

RRWP 0.0109 ± 0.0019 0.0108 ± 0.0017 0.0540 ± 0.0112 0.0061 ± 0.0008 0.0030 ± 0.0005 1.3 ± 0.1 67.5 ± 1.6 100 ± 0.0 100 ± 0.0 67.5 ± 1.6

RRWP - Dual 0.0107 ± 0.0019 0.0104 ± 0.0012 0.1209 ± 0.0194 0.0054 ± 0.0005 0.0043 ± 0.0008 1.7 ± 0.1 94.0 ± 1.0 100 ± 0.0 100 ± 0.0 94.0 ± 1.0

MagLap 0.0113 ± 0.0024 0.0110 ± 0.0015 0.1196 ± 0.0107 0.0061 ± 0.0011 0.0029 ± 0.0006 1.7 ± 0.2 74.0 ± 4.4 100 ± 0.0 100 ± 0.0 74.0 ± 4.4

MagLap - Dual 0.0110 ± 0.0017 0.0116 ± 0.0021 0.0509 ± 0.0017 0.0062 ± 0.0014 0.0027 ± 0.0005 1.3 ± 0.2 91.0 ± 2.5 100 ± 0.0 100 ± 0.0 91.0 ± 2.5

SBM

No PE 0.0038 ± 0.0021 0.0040 ± 0.0020 0.1912 ± 0.0178 0.0975 ± 0.0028 0.0961 ± 0.0071 20.5 ± 2.0 0.0 ± 0.0 100 ± 0.0 100 ± 0.0 0.0 ± 0.0

No PE - Dual 0.0038 ± 0.0011 0.0037 ± 0.0010 0.0638 ± 0.0059 0.0037 ± 0.0003 0.0127 ± 0.0018 3.5 ± 0.4 48.5 ± 6.4 100 ± 0.0 100 ± 0.0 48.5 ± 6.4

RRWP 0.0036 ± 0.0009 0.0034 ± 0.0008 0.1276 ± 0.0065 0.0345 ± 0.0028 0.0961 ± 0.0071 21.4 ± 1.6 13.5 ± 5.4 100 ± 0.0 100 ± 0.0 13.5 ± 5.4

RRWP - Dual 0.0038 ± 0.0011 0.0037 ± 0.0012 0.0492 ± 0.0041 0.0035 ± 0.0007 0.0015 ± 0.0004 1.4 ± 0.2 87.0 ± 5.1 100 ± 0.0 100 ± 0.0 87.0 ± 5.1

MagLap 0.0033 ± 0.0008 0.0034 ± 0.0008 0.1356 ± 0.0118 0.0481 ± 0.0022 0.1250 ± 0.0017 27.7 ± 4.3 21.5 ± 2.0 100 ± 0.0 100 ± 0.0 21.5 ± 2.0

MagLap - Dual 0.0039 ± 0.0011 0.0036 ± 0.0010 0.0653 ± 0.0026 0.0033 ± 0.0003 0.0038 ± 0.0010 1.9 ± 0.3 77.0 ± 7.6 100 ± 0.0 100 ± 0.0 77.0 ± 7.6

In particular, we observe that, across both datasets, the inclusion of the dual attention mechanism
consistently improves the validity of the generated graphs and reduces structural discrepancies as
measured by clustering, spectral, and wavelet distances. In the ER-DAG setting, models with dual
attention (e.g., RRWP-Dual and MagLap-Dual) significantly outperform their non-dual counterparts in
validity, achieving up to 94% validity with RRWP-Dual and 91% with MagLap-Dual, compared to just

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

67.5% and 74%, respectively. These models also demonstrate better structural fidelity, particularly in
clustering and spectral metrics. A similar trend is observed in the SBM dataset, where dual attention
boosts validity (e.g., RRWP-Dual: 87%, MagLap-Dual: 77%). These results demonstrate how
incorporating bidirectional information flow into the attention mechanism contributes to improved
model performance and provides insight into the effectiveness of this architectural component.

DIRECTO-DD Table 13 shows a second ablation assessing the contribution of the dual attention
mechanism within the discrete diffusion framework. In this case, we see a similar pattern to that
observed under discrete flow matching: the incorporation of dual attention leads to consistent gains
in graph validity across both ER-DAG and SBM datasets. Models augmented with dual attention not
only produce more valid graphs but also exhibit improved alignment with structural statistics such as
clustering, spectre, and wavelet.

Table 13: Directed Graph Generation performance across different transformer architectures using
discrete diffusion. MagLap considers Q = 1.

Dataset Model Out-degree ↓ In-degree ↓ Clustering ↓ Spectre ↓ Wavelet ↓ Ratio ↓ Valid ↑ Unique ↑ Novel ↑ V.U.N. ↑

ER-DAG

No PE 0.0094 ± 0.0024 0.0095 ± 0.0023 0.1221 ± 0.0122 0.0814 ± 0.0030 0.1094 ± 0.0066 14.4 ± 0.8 0.0 ± 0.0 100 ± 0.0 100 ± 0.0 0.0 ± 0.0

No PE - Dual 0.0149 ± 0.0037 0.0138 ± 0.0035 0.1256 ± 0.0088 0.0089 ± 0.0018 0.0106 ± 0.0014 2.6 ± 0.3 53.0 ± 2.9 100 ± 0.0 100 ± 0.0 53.0 ± 2.9

RRWP 0.0147 ± 0.0038 0.0139 ± 0.0038 0.0985 ± 0.0154 0.0067 ± 0.0009 0.0038 ± 0.0009 2.1 ± 0.3 42.0 ± 1.0 100 ± 0.0 100 ± 0.0 42.0 ± 1.0

RRWP - Dual 0.0142 ± 0.0040 0.0129 ± 0.0034 0.0408 ± 0.0053 0.0055 ± 0.0010 0.0048 ± 0.0014 1.4 ± 0.3 79.0 ± 3.7 100 ± 0.0 100 ± 0.0 79.0 ± 3.7

MagLap 0.0144 ± 0.0040 0.0135 ± 0.0038 0.0792 ± 0.0126 0.0071 ± 0.0012 0.0036 ± 0.0011 1.6 ± 0.3 59.0 ± 6.8 100 ± 0.0 100 ± 0.0 59.0 ± 6.8

MagLap - Dual 0.0142 ± 0.0044 0.0135 ± 0.0034 0.0438 ± 0.0071 0.0057 ± 0.0013 0.0046 ± 0.0010 1.4 ± 0.3 69.0 ± 6.4 100 ± 0.0 100 ± 0.0 69.0 ± 6.4

SBM

No PE 0.0038 ± 0.0021 0.0040 ± 0.0020 0.1912 ± 0.0177 0.0120 ± 0.0019 0.0975 ± 0.0081 20.5 ± 2.0 0.0 ± 0.0 100 ± 0.0 100 ± 0.0 0.0 ± 0.0

No PE - Dual 0.0037 ± 0.0020 0.0039 ± 0.0019 0.0721 ± 0.0059 0.0055 ± 0.0007 0.0403 ± 0.0067 8.8 ± 1.3 35.0 ± 9.1 100 ± 0.0 100 ± 0.0 35.0 ± 9.1

RRWP 0.0038 ± 0.0019 0.0038 ± 0.0018 0.1085 ± 0.0205 0.0088 ± 0.0009 0.0359 ± 0.0043 8.5 ± 0.3 4.0 ± 2.0 100 ± 0.0 100 ± 0.0 4.0 ± 2.0

RRWP - Dual 0.0036 ± 0.0019 0.0036 ± 0.0018 0.0592 ± 0.0027 0.0038 ± 0.0007 0.0027 ± 0.0009 1.7 ± 0.4 81.5 ± 3.2 100 ± 0.0 100 ± 0.0 81.5 ± 3.2

MagLap 0.0038 ± 0.0019 0.0039 ± 0.0019 0.0186 ± 0.0046 0.0043 ± 0.0006 0.0543 ± 0.0072 11.3 ± 1.6 10.0 ± 4.2 100 ± 0.0 100 ± 0.0 10.0 ± 4.2

MagLap - Dual 0.0035 ± 0.0018 0.0036 ± 0.0018 0.0670 ± 0.0032 0.0045 ± 0.0008 0.0033 ± 0.0013 1.9 ± 0.4 66.5 ± 4.1 100 ± 0.0 100 ± 0.0 66.5 ± 4.1

H.4 THE ROLE OF POSITIONAL ENCODINGS

To evaluate the importance of positional encodings in our model, we perform an ablation study
comparing different options. Directed graphs lack a canonical node ordering, making positional
information crucial for capturing structural context. We test several variants, including no positional
encoding, encodings that do not take into accounts directed information, and then different directed
positional encodings. This analysis isolates how each encoding contributes to the model’s ability to
generate valid and semantically meaningful graphs. We report performance across synthetic datasets
for both discrete diffusion and flow matching.

DIRECTO Table 14 presents an ablation study analyzing the impact of various positional encoding
(PE) strategies on directed graph generation performance under the discrete flow matching framework.
This evaluation highlights the critical role of positional information in enabling models to capture the
asymmetric and hierarchical structure inherent to directed graphs.

Table 14: Directed Graph Generation performance across different positional encodings using discrete
flow matching.

Dataset Model Out-degree ↓ In-degree ↓ Clustering ↓ Spectre ↓ Wavelet ↓ Ratio ↓ Valid ↑ Unique ↑ Novel ↑ V.U.N. ↑

ER-DAG

No PE 0.0109 ± 0.0012 0.0110 ± 0.0012 0.0807 ± 0.0147 0.0073 ± 0.0007 0.0215 ± 0.0017 3.0 ± 0.2 47.0 ± 12.1 100 ± 0.0 100 ± 0.0 47.0 ± 12.1

Lap 0.0119 ± 0.0020 0.0115 ± 0.0025 0.1272 ± 0.0224 0.0047 ± 0.0009 0.0048 ± 0.0005 1.8 ± 0.0 84.0 ± 4.9 100 ± 0.0 100 ± 0.0 84.0 ± 4.9

RRWP 0.0107 ± 0.0019 0.0104 ± 0.0012 0.1209 ± 0.0194 0.0054 ± 0.0005 0.0043 ± 0.0008 1.7 ± 0.1 94.0 ± 1.0 100 ± 0.0 100 ± 0.0 94.0 ± 1.0

MagLap 0.0110 ± 0.0017 0.0116 ± 0.0021 0.0509 ± 0.0017 0.0062 ± 0.0014 0.0027 ± 0.0005 1.3 ± 0.2 91.0 ± 2.5 100 ± 0.0 100 ± 0.0 91.0 ± 2.5

MagLap (Q = 5) 0.0112 ± 0.0015 0.0107 ± 0.0022 0.0527 ± 0.0059 0.0056 ± 0.0009 0.0032 ± 0.0006 1.3 ± 0.2 91.5 ± 2.5 100 ± 0.0 100 ± 0.0 91.5 ± 2.5

MagLap (Q = 10) 0.0117 ± 0.0014 0.0110 ± 0.0015 0.0711 ± 0.0120 0.0055 ± 0.0016 0.0026 ± 0.0004 1.3 ± 0.2 92.0 ± 3.7 100 ± 0.0 100 ± 0.0 92.0 ± 3.7

SBM

No PE 0.0038 ± 0.0011 0.0037 ± 0.0010 0.0638 ± 0.0059 0.0037 ± 0.0003 0.0127 ± 0.0018 3.5 ± 0.4 48.5 ± 6.4 100 ± 0.0 100 ± 0.0 48.5 ± 6.4

Lap 0.0040 ± 0.0012 0.0038 ± 0.0011 0.0552 ± 0.0042 0.0048 ± 0.000g 0.0044 ± 0.0008 2.1 ± 0.3 71.5 ± 4.1 100 ± 0.0 100 ± 0.0 71.5 ± 4.1

RRWP 0.0038 ± 0.0011 0.0037 ± 0.0012 0.0492 ± 0.0041 0.0035 ± 0.0007 0.0015 ± 0.0004 1.4 ± 0.2 87.0 ± 5.1 100 ± 0.0 100 ± 0.0 87.0 ± 5.1

MagLap 0.0039 ± 0.0011 0.0036 ± 0.0010 0.0653 ± 0.0026 0.0033 ± 0.0003 0.0038 ± 0.0010 1.9 ± 0.3 77.0 ± 7.6 100 ± 0.0 100 ± 0.0 77.0 ± 7.6

MagLap (Q = 5) 0.0039 ± 0.0010 0.0038 ± 0.0011 0.0748 ± 0.0028 0.0041 ± 0.0005 0.0070 ± 0.0015 2.6 ± 0.2 92.5 ± 2.2 100 ± 0.0 100 ± 0.0 92.5 ± 2.2

MagLap (Q = 10) 0.0039 ± 0.0012 0.0038 ± 0.0010 0.0654 ± 0.0052 0.0038 ± 0.0003 0.0039 ± 0.0008 2.0 ± 0.3 96.5 ± 2.5 100 ± 0.0 100 ± 0.0 96.5 ± 2.5

Overall, the inclusion of any form of positional encoding significantly improves generation validity
compared to the baseline with no PE. Among the methods tested, directed encodings like RRWP and
magnetic Laplacian-based variants demonstrate particularly strong performance. These encodings
consistently enhance graph validity and reduce MMD ratio in both datasets. Notably, the MagLap
variant with multiple potentials (Q = 10) achieves the best results in terms of validity and structural
fidelity, although resulting in a higher computational cost.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Interestingly, although classical Laplacian encodings (Lap) also play a role in increasing the V.U.N.
ratio, they obtain worse results than the directed counterparts, emphasizing that for directed generation
tasks, the choice of positional encoding is not merely a design detail but a relevant architectural
decision that affects model success.

DIRECTO-DD Table 15 presents an ablation study assessing the influence of various positional
encodings within the discrete diffusion framework across four synthetic datasets: SBM, ER-DAG,
ER, and Price’s model.

Table 15: Directed Graph Generation performance across different positional encodings using discrete
diffusion.

Dataset Model Out-degree ↓ In-degree ↓ Clustering ↓ Spectre ↓ Wavelet ↓ Ratio ↓ Valid ↑ Unique ↑ Novel ↑ V.U.N. ↑

ER-DAG

No PE 0.0149 ± 0.0037 0.0138 ± 0.0035 0.1256 ± 0.0088 0.0089 ± 0.0018 0.0106 ± 0.0014 2.6 ± 0.3 53.0 ± 2.9 100 ± 0.0 100 ± 0.0 53.0 ± 2.9

Lap 0.0138 ± 0.0038 0.0144 ± 0.0042 0.0462 ± 0.0071 0.0055 ± 0.0011 0.0052 ± 0.0015 1.5 ± 0.3 67.0 ± 5.3 100 ± 0.0 100 ± 0.0 67.0 ± 5.3

RRWP 0.0142 ± 0.0040 0.0129 ± 0.0034 0.0408 ± 0.0053 0.0055 ± 0.0010 0.0048 ± 0.0014 1.4 ± 0.3 79.0 ± 3.7 100 ± 0.0 100 ± 0.0 79.0 ± 3.7

MagLap 0.0142 ± 0.0044 0.0135 ± 0.0034 0.0438 ± 0.0071 0.0057 ± 0.0013 0.0046 ± 0.0010 1.4 ± 0.3 69.0 ± 6.4 100 ± 0.0 100 ± 0.0 69.0 ± 6.4

MagLap (Q = 5) 0.0135 ± 0.0032 0.0140 ± 0.0045 0.0596 ± 0.0081 0.0061 ± 0.0007 0.0037 ± 0.0017 1.4 ± 0.2 78.5 ± 2.5 100 ± 0.0 100 ± 0.0 78.5 ± 2.5

MagLap (Q = 10) 0.0145 ± 0.0040 0.0134 ± 0.0033 0.582 ± 0.0083 0.0063 ± 0.0015 0.0034 ± 0.0011 1.5 ± 0.2 85.0 ± 9.2 100 ± 0.0 100 ± 0.0 85.0 ± 9.2

SBM

No PE 0.0037 ± 0.0020 0.0039 ± 0.0019 0.0721 ± 0.0059 0.0055 ± 0.0007 0.0403 ± 0.0067 8.8 ± 1.3 35.0 ± 9.1 100 ± 0.0 100 ± 0.0 35.0 ± 9.1

Lap 0.0037 ± 0.0020 0.0038 ± 0.0017 0.0531 ± 0.0042 0.0038 ± 0.0006 0.0106 ± 0.0009 1.4 ± 0.4 81.0 ± 3.7 100 ± 0.0 100 ± 0.0 81.0 ± 3.7

RRWP 0.0036 ± 0.0019 0.0036 ± 0.0018 0.0592 ± 0.0027 0.0038 ± 0.0007 0.0027 ± 0.0009 1.7 ± 0.4 81.5 ± 3.2 100 ± 0.0 100 ± 0.0 81.5 ± 3.2

MagLap 0.0035 ± 0.0018 0.0036 ± 0.0018 0.0670 ± 0.0032 0.0045 ± 0.0008 0.0033 ± 0.0013 1.9 ± 0.4 66.5 ± 4.1 100 ± 0.0 100 ± 0.0 66.5 ± 4.1

MagLap (Q = 5) 0.0039 ± 0.0021 0.0038 ± 0.0018 0.0504 ± 0.0011 0.0047 ± 0.0006 0.0065 ± 0.0018 2.4 ± 0.4 92.0 ± 1.9 100 ± 0.0 100 ± 0.0 92.0 ± 1.9

MagLap (Q = 10) 0.0037 ± 0.0019 0.0038 ± 0.0018 0.0450 ± 0.0037 0.0038 ± 0.0006 0.0021 ± 0.0009 1.5 ± 0.4 95.5 ± 3.7 100 ± 0.0 100 ± 0.0 95.5 ± 3.7

ER

No PE 0.0039 ± 0.0022 0.0038 ± 0.0023 0.0486 ± 0.0039 0.0039 ± 0.0009 0.0030 ± 0.0019 2.8 ± 1.4 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0

Lap 0.0022 ± 0.0014 0.0021 ± 0.0014 0.0479 ± 0.0058 0.0037 ± 0.0013 0.0017 ± 0.0010 1.8 ± 0.9 99.5 ± 1.0 100 ± 0.0 100 ± 0.0 99.5 ± 1.0

RRWP 0.0021 ± 0.0013 0.0021 ± 0.0013 0.0505 ± 0.0037 0.0033 ± 0.0013 0.0018 ± 0.0010 1.8 ± 0.8 99.5 ± 1.0 100 ± 0.0 100 ± 0.0 99.5 ± 1.0

MagLap 0.0021 ± 0.0013 0.0021 ± 0.0013 0.0515 ± 0.0055 0.0029 ± 0.0004 0.0019 ± 0.0011 1.8 ± 0.8 99.0 ± 1.2 100 ± 0.0 100 ± 0.0 99.0 ± 1.2

MagLap (Q = 5) 0.0022 ± 0.0014 0.0021 ± 0.0014 0.0456 ± 0.0068 0.0029 ± 0.0006 0.0017 ± 0.0010 1.8 ± 0.9 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0

Price

No PE 0.0149 ± 0.0020 0.0011 ± 0.0002 0.0524 ± 0.0030 0.0041 ± 0.0004 0.0017 ± 0.0000 2.9 ± 0.1 92.5 ± 1.6 100 ± 0.0 100 ± 0.0 92.5 ± 1.6

Lap 0.0219 ± 0.0030 0.0010 ± 0.0002 0.0725 ± 0.0016 0.0476 ± 0.0034 0.0124 ± 0.0020 16.2 ± 2.0 99.0 ± 1.2 100 ± 0.0 100 ± 0.0 99.0 ± 1.2

RRWP 0.0231 ± 0.0034 0.0010 ± 0.0002 0.0837 ± 0.0022 0.0619 ± 0.0048 0.0123 ± 0.0027 17.0 ± 2.8 99.0 ± 1.2 100 ± 0.0 100 ± 0.0 99.0 ± 1.2

MagLap 0.0232 ± 0.0013 0.0012 ± 0.0001 0.0752 ± 0.0028 0.0531 ± 0.0059 0.0126 ± 0.0019 16.8 ± 2.1 97.5 ± 2.2 100 ± 0.0 100 ± 0.0 97.5 ± 2.2

MagLap (Q = 5) 0.0191 ± 0.0031 0.0010 ± 0.0001 0.0653 ± 0.0118 0.0239 ± 0.0023 0.0044 ± 0.0016 6.8 ± 1.7 99.5 ± 1.0 100 ± 0.0 100 ± 0.0 99.5 ± 1.0

We observe that that ER and Price graphs, due to their simplicity and highly regular generative
processes, pose a relatively easy modeling challenge. As a result, performance is consistently high
across all variants, including the baseline with no positional encoding. In contrast, the SBM and
ER-DAG datasets present more intricate structural patterns, which amplify the benefits of informed
positional encodings. In these cases, clear performance gaps emerge between the baseline, non-
directed encodings (e.g., Lap), and directed-aware methods such as RRWP and MagLapPE.

These differences highlight the importance of encoding directionality to faithfully capture the dis-
tribution of more structurally diverse directed graphs. For this reason, in the main paper we focus
our synthetic evaluations on SBM and ER-DAG, where the modeling challenge is sufficiently rich to
reveal the comparative strengths of different modeling strategies.

H.5 ER VS DAG PERFORMANCE

To evaluate the structural quality of generated synthetic directed acyclic graphs, we defined a
composite validity metric that captures two key properties: (i) the percentage of generated graphs
that are Directed Acyclic Graphs (DAGs), and (ii) the percentage that follow the target structural
distribution (e.g. Erdős-Renyi). The validity score is computed as the proportion of generated graphs
that satisfy both criteria. For completeness, we also report each component individually to disentangle
the contributions of acyclicity and distributional alignment.

Table 16: ER vs DAG accuracy
Model % DAG % ER Valid
Training set 100 99.2 99.2

MLE 0.0 ± 0.0 97.0 ± 2.1 0.0 ± 0.0

D-VAE 100 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

LAYERDAG 100 ± 0.0 21.5 ± 2.7 21.5 ± 2.7

DIGRESS 35.0 ± 4.2 98.5 ± 2.0 34.0 ± 4.1

DEFOG 21.5 ± 2.7 100 ± 0.0 21.5 ± 2.7

DIRECTO-DD RRWP 79.0 ± 3.7 100 ± 0.0 79.0 ± 3.7

DIRECTO-DD MagLap (Q = 10) 86.0 ± 9.4 99 ± 1.2 85.0 ± 10.2

DIRECTO RRWP 94.0 ± 1.0 100 ± 0.0 94.0 ± 1.0

DIRECTO MagLap (Q = 10) 99.5 ± 1.0 92.5 ± 2.7 92.0 ± 3.7

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

As shown in Table 16, baselines such as MLE and LAYERDAG exhibit a stark imbalance: while
LAYERDAG guarantees acyclicity, both fail to model the target ER distribution, resulting in low
overall validity. On the other hand, MLE closely aligns with the distribution but fails to generate
acyclic graphs.

In contrast, diffusion- and flow matching–based methods paired with dual attention and relevant
directed positional encodings achieve strong performance on both fronts, demonstrating their ability to
generate structurally valid DAGs that also align with the underlying data distribution. This highlights
the limitations of purely autoregressive or heuristic DAG-specific approaches when used in isolation.

H.6 SCALABILITY EXPERIMENTS

In this section, we investigate the scalability of our method with respect to three key axes: dataset size,
parameter efficiency, and graph size. These experiments are designed to disentangle the contributions
of data availability, architectural choices, and input complexity to the overall generative performance,
providing a clearer understanding of the trade-offs between accuracy, efficiency, and computational
cost in our framework.

Effect of dataset size To evaluate the effect on the number of graphs available at training time, we
conduct an ablation study using the synthetic ER-DAG dataset in two configurations: the standard
size and a variant with 10× more training, test, and validation samples. This setup allows us to assess
whether the method encodings benefit from increased data. We compare the different positional
encodings for discrete diffusion using dual attention, with results in Table 17.

Table 17: Effect of the dataset size (using DIRECTO-DD).
Dataset Model Out-degree ↓ In-degree ↓ Clustering ↓ Spectre ↓ Wavelet ↓ Ratio ↓ Valid ↑ Unique ↑ Novel ↑ V.U.N. ↑

Standard

Train set 0.0113 0.0103 0.0355 0.0038 0.0024 1.0 99.2 100 0.0 0.0
Lap 0.0138 ± 0.0038 0.0144 ± 0.0042 0.0462 ± 0.0071 0.0055 ± 0.0011 0.0052 ± 0.0015 1.5 ± 0.3 67.0 ± 5.3 100 ± 0.0 100 ± 0.0 67.0 ± 5.3

RRWP 0.0142 ± 0.0040 0.0129 ± 0.0034 0.0408 ± 0.0053 0.0055 ± 0.0010 0.0048 ± 0.0014 1.4 ± 0.3 79.0 ± 3.7 100 ± 0.0 100 ± 0.0 79.0 ± 3.7

MagLap 0.0142 ± 0.0044 0.0135 ± 0.0034 0.0438 ± 0.0071 0.0057 ± 0.0013 0.0046 ± 0.0010 1.4 ± 0.3 69.0 ± 6.4 100 ± 0.0 100 ± 0.0 69.0 ± 6.4

MagLap (Q = 5) 0.0135 ± 0.0032 0.0140 ± 0.0045 0.0596 ± 0.0081 0.0061 ± 0.0007 0.0037 ± 0.0017 1.4 ± 0.2 78.5 ± 2.5 100 ± 0.0 100 ± 0.0 78.5 ± 2.5

x 10

Train set 0.0002 0.0003 0.0021 0.0004 0.0000 1.0 99.9 100 0.0 0.0
Lap 0.00035 ± 0.0007 0.0032 ± 0.0008 0.0261 ± 0.0025 0.0024 ± 0.0003 0.0006 ± 0.0001 10.5 ± 1.3 85.5 ± 2.4 100 ± 0.0 100 ± 0.0 85.5 ± 2.4

RRWP 0.0030 ± 0.0008 0.0031 ± 0.0006 0.0277 ± 0.0075 0.0024 ± 0.0004 0.0006 ± 0.0002 10.1 ± 2.2 94.0 ± 4.4 100 ± 0.0 100 ± 0.0 94.0 ± 4.4

MagLap 0.0030 ± 0.0006 0.0033 ± 0.0005 0.0305 ± 0.0051 0.0025 ± 0.0005 0.0007 ± 0.0003 14.5 ± 2.4 89.5 ± 3.7 100 ± 0.0 100 ± 0.0 89.5 ± 3.7

MagLap (Q = 5) 0.0031 ± 0.0008 0.0028 ± 0.0006 0.0237 ± 0.0028 0.0022 ± 0.0006 0.0008 ± 0.0001 9.6 ± 1.6 93.5 ± 2.5 100 ± 0.0 100 ± 0.0 93.5 ± 2.5

Overall, we see that increasing the dataset size significantly improves generation performance across
all positional encoding variants, confirming that additional training data helps models better capture
structural patterns. However, this performance gain comes at the cost of substantially longer training
times and greater computational demand (∼12h for the standard dataset vs ∼32h for the bigger
version). These trade-offs motivate our focus on architectural innovations such as employing discrete
flow matching as more efficient alternatives to scaling purely through data and compute.

Effect of model size (parameter efficiency) We next evaluate parameter efficiency by contrasting
our dual-attention mechanism with an alternative approach that scales model capacity by doubling the
number of parameters. Dual attention increases the parameter space by introducing two adjacency-
based attention heads, each specialized for handling edge directionality. To ablate for model size, we
compare against a baseline in which the architecture is widened to match the parameter count, but
without dual-attention.

Table 18: Directed Graph Generation performance for the dual attention architecture versus doubling
the depth of the network without using the dual attention mechanism.

Dataset Model Out-degree ↓ In-degree ↓ Clustering ↓ Spectre ↓ Wavelet ↓ Ratio ↓ Valid ↑ Unique ↑ Novel ↑ V.U.N. ↑

ER-DAG

RRWP - Double 0.0129 ± 0.0020 0.0130 ± 0.0015 0.1741 ± 0.0200 0.0107 ± 0.0007 0.0020 ± 0.0005 4.9 ± 0.2 72.0 ± 9.8 100 ± 0.0 100 ± 0.0 72.0 ± 9.8

RRWP - Dual 0.0107 ± 0.0019 0.0104 ± 0.0012 0.1209 ± 0.0194 0.0054 ± 0.0005 0.0043 ± 0.0008 1.7 ± 0.1 94.0 ± 1.0 100 ± 0.0 100 ± 0.0 94.0 ± 1.0

MagLap - Double 0.0131 ± 0.0019 0.0118 ± 0.0022 0.1237 ± 0.0217 0.0095 ± 0.0030 0.0020 ± 0.0008 4.3 ± 0.7 80.0 ± 6.3 100 ± 0.0 100 ± 0.0 80.0 ± 6.3

MagLap - Dual 0.0110 ± 0.0017 0.0116 ± 0.0021 0.0509 ± 0.0017 0.0062 ± 0.0014 0.0027 ± 0.0005 1.3 ± 0.2 91.0 ± 2.5 100 ± 0.0 100 ± 0.0 91.0 ± 2.5

SBM

RRWP - Double 0.0083 ± 0.0024 0.0081 ± 0.0025 0.1789 ± 0.0107 0.0084 ± 0.0014 0.0084 ± 0.0067 27.1 ± 2.3 0.0 ± 0.0 100 ± 0.0 100 ± 0.0 0.0 ± 0.0

RRWP - Dual 0.0038 ± 0.0011 0.0037 ± 0.0012 0.0492 ± 0.0041 0.0035 ± 0.0007 0.0015 ± 0.0004 1.4 ± 0.2 87.0 ± 5.1 100 ± 0.0 100 ± 0.0 87.0 ± 5.1

MagLap - Double 0.0081 ± 0.0025 0.0079 ± 0.0020 0.1799 ± 0.0097 0.0307 ± 0.0052 0.0723 ± 0.0156 24.8 ± 4.6 6.0 ± 4.9 100 ± 0.0 100 ± 0.0 6.0 ± 4.9

MagLap - Dual 0.0039 ± 0.0011 0.0036 ± 0.0010 0.0653 ± 0.0026 0.0033 ± 0.0003 0.0038 ± 0.0010 1.9 ± 0.3 77.0 ± 7.6 100 ± 0.0 100 ± 0.0 77.0 ± 7.6

As shown in Table 18, this baseline fails to recover the correct edge distribution, particularly in
more challenging regimes such as SBM graphs. In contrast, the dual-attention model achieves

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

substantially higher fidelity, demonstrating that our architecture leverages parameters more effectively
by embedding structural inductive bias rather than merely increasing model scale.

Effect of node size We finally investigate how the method scales with increasing graph size by
conducting experiments on ER-DAG datasets ranging from 80–150 up to 200–250 nodes (see Table 19
for dataset statistics). Due to the poor scalability of MultMagLap encodings, we restrict this ablation
to RRWP and MagLap positional encodings, with the largest graphs (200–250 nodes) evaluated only
under RRWP. Training and sampling times, together with generation quality, are reported in Table 20.
Importantly, the computational overhead introduced by dual attention remains bounded by a constant
factor of two and does not affect the overall asymptotic complexity, which matches that of standard
graph transformers.

Table 19: Dataset statistics for the synthetic experiments with larger graph size (nodes and edges).

Min. nodes Max. nodes Avg. nodes Min. edges Max. edges Avg. edges

80 150 117 1866 6699 4170
150 200 173 6643 11851 9046
200 250 225 11982 18645 15148

In terms of positional encodings, MagLap exhibits clear scalability limitations, both in runtime
and performance, whereas RRWP features scale considerably better, consistent with prior findings
(e.g., Appendix G.4 of DeFoG (Qin et al., 2025a)). Regarding generative performance, DIRECTO
demonstrates strong distributional fidelity across node sizes, as reflected in the Ratio and distributional
validity scores. However, ensuring strict acyclicity becomes increasingly challenging at scale: a
single misplaced edge can violate the constraint entirely, and the risk grows quadratically with the
number of nodes. This highlights the inherent difficulty of enforcing global constraints in large
directed graphs, motivating future work on more robust inductive biases for acyclicity preservation.

Table 20: Scaling performance of DIRECTO on ER-DAG datasets of increasing node size.
Model Out-degree ↓ In-degree ↓ Clustering ↓ Spectre ↓ Wavelet ↓ Ratio ↓ Valid ↑ Unique ↑ Novel ↑ V.U.N. ↑ Train (h) Min / sample
80-150 (RRWP) 0.0045 ± 0.0001 0.0044 ± 0.0008 0.3233 ± 0.0676 0.0010 ± 0.0003 0.0003 ± 0.0001 3.7 ± 0.5 53.5 ± 3.0 100 ± 0.0 100 ± 0.0 53.5 ± 3.0 22 0.285
80-150 (MagLap) 0.0040 ± 0.0005 0.0044 ± 0.0005 0.3382 ± 0.0361 0.0015 ± 0.0002 0.0007 ± 0.0002 4.2 ± 0.3 45.0 ± 7.1 100 ± 0.0 100 ± 0.0 45.0 ± 7.1 26 0.940
150-200 (RRWP) 0.0034 ± 0.0002 0.0031 ± 0.0002 0.1570 ± 0.0496 0.003 ± 0.0000 0.0000 ± 0.0000 1.7 ± 0.3 60.0 ± 5.9 100 ± 0.0 100 ± 0.0 60.0 ± 5.9 28 0.555
150-200 (MagLap) 0.0031 ± 0.0005 0.0031 ± 0.0004 0.6691 ± 0.0558 0.0004 ± 0.0000 0.0001 ± 0.0001 3.2 ± 0.4 34.5 ± 1.9 100 ± 0.0 100 ± 0.0 34.5 ± 1.9 38 1.365
200-250 (RRWP) 0.0034 ± 0.0002 0.0033 ± 0.0003 0.0411 ± 0.0178 0.0003 ± 0.0000 0.0000 ± 0.0000 1.9 ± 0.3 2.0 ± 2.4 100 ± 0.0 100 ± 0.0 2.0 ± 2.4 40 0.645

H.7 CONDITIONAL GENERATION

Table 21 shows the results of the experiments with classifier-free guidance conditional generation. We
followed the setup of Li et al. (2025), training on the TPU Tiles dataset with the provided conditional
information and evaluating with their available suite and surrogate models.

Table 21: Averaged conditional generation results across 3 runs. Baseline results were obtained
from Li et al. (2025), where Spearman correlation was not reported.

Model Pearson Spearman MAE
Real graphs 0.75 ± 0.01 0.83 ± 0.01 0.96 ± 0.00

D-VAE 0.50 ± 0.01 N/A 1.4 ± 0.00

GRAPHRNN 0.62 ± 0.02 N/A 1.3 ± 0.00

GRAPHPNAS 0.24 ± 0.10 N/A 2.1 ± 0.06

ONESHOTDAG 0.56 ± 0.02 N/A 1.4 ± 0.01

LAYERDAG (T=1) 0.37 ± 0.11 N/A 2.0 ± 0.04

LAYERDAG 0.65 ± 0.01 N/A 1.2 ± 0.01

DIRECTO 0.59 ± 0.01 0.63 ± 0.03 1.3 ± 0.01

Unlike methods explicitly designed for conditional DAG generation, our framework is general and
primarily optimized for unconditional digraph generation. In contrast, autoregressive models such as
GraphRNN and LayerDAG (especially the latter, where conditional generation is the default training
setup) are naturally more suited for this task and thus represent strong baselines. Moreover, our
evaluation follows their official suite, which is tailored to their own method and may not fully align
with our formulation.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Despite this, DIRECTO achieves competitive performance. In Pearson correlation, DIRECTO ranks
just behind LayerDAG and GraphRNN, while performing on par with them in mean absolute error
(MAE). Notably, it also outperforms LAYERDAG’s one-shot variant ONESHOTDAG. We further
report Spearman correlation, which is implemented in the evaluation suite but was not included
in prior work. These results show that even though conditional generation is not our main focus,
DIRECTO achieves a strong balance across all metrics, demonstrating that our framework can readily
extend to conditional tasks without specialized architectural modifications.

Finally, our results were obtained using classifier-free guidance, a straightforward extension that may
not be optimal for conditional training in our setting. We expect that more dedicated strategies for
conditioning could further improve performance. Overall, these findings highlight the versatility of
DIRECTO: while unconditional generation remains our primary focus, its ability to adapt effectively
to conditional generation underscores the promise of diffusion-based formulations for directed graph
generation.

H.8 IMPACT OF SAMPLING OPTIMIZATION USING DISCRETE FLOW MATCHING

Identity Polydec Cos Revcos Polyinc

Sample Distortion

65

70

75

80

85

90

V
.U

.N
.
↑

0 0.01 0.02 0.05 0.1 0.2 0.3 0.4 0.5 1 2

Target Guidance ω

70

80

90

V
.U

.N
.
↑

0 5 10 25 50 100 200

Stochasticity η

20

40

60

80

V
.U

.N
.
↑

1.1

1.2

1.3

1.4

1.5

1.6

R
a
ti

o
↓

2

3

4

5

6

R
a
ti

o
↓

2

3

4

5

6

7

R
a
ti

o
↓

(a) ER-DAG dataset with RRWP positional encoding

Identity Polydec Cos Revcos Polyinc

Sample Distortion

65

70

75

80

V
.U

.N
.
↑

0 0.01 0.02 0.05 0.1 0.2 0.3 0.4 0.5 1 2

Target Guidance ω

40

50

60

70

80

V
.U

.N
.
↑

0 5 10 25 50 100 200

Stochasticity η

55

60

65

70
V

.U
.N

.
↑

1.1

1.2

1.3

1.4

1.5

1.6

1.7

R
a
ti

o
↓

2

3

4

R
a
ti

o
↓

1.6

1.8

2.0

2.2

2.4

R
a
ti

o
↓

(b) ER-DAG dataset with MagLap (Q = 10) positional encoding

Identity Polydec Cos Revcos Polyinc

Sample Distortion

61

62

63

64

65

66

67

V
.U

.N
.
↑

0 0.01 0.02 0.05 0.1 0.2 0.3 0.4 0.5 1 2

Target Guidance ω

0

20

40

60

80

V
.U

.N
.
↑

0 5 10 25 50 100 200

Stochasticity η

0

20

40

60

80

100

V
.U

.N
.
↑

1.8

1.9

2.0

2.1

2.2

2.3

R
a
ti

o
↓

0

10

20

30

40

50

60

R
a
ti

o
↓

2.5

5.0

7.5

10.0

12.5

15.0

17.5

R
a
ti

o
↓

(c) SBM dataset with RRWP positional encoding

Identity Polydec Cos Revcos Polyinc

Sample Distortion

65

70

75

80

85

90

V
.U

.N
.
↑

0 0.01 0.02 0.05 0.1 0.2 0.3 0.4 0.5 1 2

Target Guidance ω

60

70

80

90

V
.U

.N
.
↑

0 5 10 25 50 100 200

Stochasticity η

70

75

80

85

90

95

100

V
.U

.N
.
↑

1.4

1.5

1.6

1.7

1.8

1.9

R
a
ti

o
↓

0.75

1.00

1.25

1.50

1.75

2.00

2.25

R
a
ti

o
↓

5

10

15

R
a
ti

o
↓

(d) SBM dataset with MagLap (Q = 10) positional encoding

Figure 4: Sampling optimization curves for the synthetic datasets with 100 sampling steps and 5
sampling runs. We represent V.U.N. (blue) and MMD ratio (purple) and optimize for best trade-off
for each of the three parameters individually.

To better understand the influence of the three sampling hyperparameters discussed in Appendix C:
time distortion, stochasticity coefficient (η), and target guidance factor (ω) on generative performance,
we analyze their effect on the V.U.N. and the structural ratio. Specifically, we present performance
curves for the four primary datasets reported in the main results table: SBM, RRWP, TPU Tiles, and

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Visual Genome. For each dataset, we evaluate the impact of these parameters under two positional
encoding strategies: RRWP and MagLap. We report the results for 100 sampling steps and 5
different sampling runs (except for TPU Tiles where only 1 run was performed due to computational
constraints).

Identity Polydec Cos Revcos Polyinc

Sample Distortion

82

83

84

85

86

87

88

V
.U

.N
.
↑

0 0.01 0.02 0.05 0.1 0.2 0.3 0.4 0.5 1 2

Target Guidance ω

72

74

76

78

V
.U

.N
.
↑

0 5 10 25 50 100 200

Stochasticity η

55

60

65

70

75

V
.U

.N
.
↑

76

78

80

82

84

86

R
a
ti

o
↓

65

70

75

80

85

90

R
a
ti

o
↓

65

70

75

80

R
a
ti

o
↓

(a) TPU Tiles dataset with RRWP positional encoding

Identity Polydec Cos Revcos Polyinc

Sample Distortion

62

64

66

68

70

72

V
.U

.N
.
↑

0 0.01 0.02 0.05 0.1 0.2 0.3 0.4 0.5 1 2

Target Guidance ω

68

70

72

74

76

V
.U

.N
.
↑

0 5 10 25 50 100 200

Stochasticity η

55

60

65

70

75

V
.U

.N
.
↑

40

45

50

55

R
a
ti

o
↓

42

44

46

48

50

52

54

R
a
ti

o
↓

20

40

60

80

R
a
ti

o
↓

(b) TPU Tiles dataset with MagLap (Q = 10) positional encoding

Identity Polydec Cos Revcos Polyinc

Sample Distortion

10

20

30

40

50

V
.U

.N
.
↑

0 0.01 0.02 0.05 0.1 0.2 0.3 0.4 0.5 1 2

Target Guidance ω

30

35

40

45

50

55

V
.U

.N
.
↑

0 5 10 25 50 100 200

Stochasticity η

5

10

15

20

25

30

35

V
.U

.N
.
↑

10.0

10.2

10.4

10.6

10.8

11.0

R
a
ti

o
↓

9.5

10.0

10.5

11.0

11.5

12.0

12.5

R
a
ti

o
↓

10.0

10.5

11.0

11.5

12.0

R
a
ti

o
↓

(c) Visual Genome dataset with RRWP positional encoding

Identity Polydec Cos Revcos Polyinc

Sample Distortion

20

30

40

50

V
.U

.N
.
↑

0 0.01 0.02 0.05 0.1 0.2 0.3 0.4 0.5 1 2

Target Guidance ω

25

30

35

40

V
.U

.N
.
↑

0 5 10 25 50 100 200

Stochasticity η

10

15

20

25

V
.U

.N
.
↑

6.50

6.75

7.00

7.25

7.50

7.75

R
a
ti

o
↓

4.0

4.5

5.0

5.5

6.0

6.5

7.0

R
a
ti

o
↓

6.2

6.4

6.6

6.8

7.0

7.2

R
a
ti

o
↓

(d) Visual Genome dataset with MagLap (Q = 10) positional encoding

Figure 5: Sampling optimization curves for the synthetic datasets with 100 sampling steps and 5
sampling runs. We represent V.U.N. (blue) and MMD ratio (purple) and optimize for best trade-off
for each of the three parameters individually.

The results for the synthetic datasets in Figure 4 illustrate that the sampling hyperparameters influence
the generative performance. We observe that different values can lead to variations in both V.U.N. and
the structural ratio. However, a higher V.U.N. does not necessarily correspond to a lower ratio. While
certain configurations tend to perform well across both RRWP and MagLap positional encodings, the
improvements are generally modest, suggesting that optimal settings may vary slightly depending on
the dataset and positional encoding strategy used.

A similar pattern is observed in the results for the real-world datasets (TPU Tiles and Visual Genome),
as shown in Figure 5. The sampling hyperparameters continue to affect generation performance,
and there is no clear one-to-one relationship between V.U.N. and ratio. As with the synthetic
datasets, some hyperparameter combinations show slightly more consistent behavior across positional
encodings, but overall, the best hyperparameters combination remain dependent on the dataset and
positional encoding used.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

I ITERATIVE REFINEMENT METHODS FOR GRAPH GENERATION

I.1 GRAPH ITERATIVE REFINEMENT METHODS

Within the realm of undirected graph generation, discrete state-space iterative refinement ap-
proaches (Vignac et al., 2023a; Xu et al., 2024; Siraudin et al., 2024; Qin et al., 2025a) have
emerged as a powerful framework for capturing the intricate dependencies that govern target graph
distributions. These methods achieve state-of-the-art performance by naturally aligning with the
structure of graphs: they operate directly in discrete state spaces, matching the inherent discreteness
of adjacency matrices, and respect node permutation equivariances due to their one-shot prediction
formulation. These characteristics make iterative refinement approaches particularly well-suited for
the task of directed graph generation.

These methods comprise two main processes: a noising process and a denoising process. For
consistency, we define t = 0 as corresponding to fully noised graphs and t = 1 to clean graphs. The
noising process runs from t = 1 to t = 0, progressively corrupting the original graphs, while the
denoising process learns how to reverse this trajectory, running from t = 0 to t = 1.

Denoising is performed using a neural network parametrized by θ,

pθ
1|t(·|Gt) =

((
p
θ,(n)
1|t (x

(n)
1 | Gt)

)
1≤n≤N

,
(
p
θ,(i,j)
1|t (e

(i,j)
1 | Gt)

)
1≤i ̸=j≤N

)
, (38)

which predicts categorical distributions over nodes and edges given a noised graph Gt. In practice,
pθ
1|t(·|Gt) is parameterized using a graph transformer such as the one from Dwivedi & Bresson

(2021), which allows for expressive modeling of complex graph structures. The network is trained
using a cross-entropy loss applied independently to each node and each edge:

L = Et,G1,Gt

−∑
n

log
(
p
θ,(n)
1|t

(
x
(n)
1 | Gt

))
− λ

∑
i ̸=j

log
(
p
θ,(i,j)
1|t

(
e
(i,j)
1 | Gt

)) , (39)

where the expectation is taken over time t sampled from a predefined distribution over [0, 1] (e.g.,
uniform); G1 ∼ p1(G1) is a clean graph from the dataset; and Gt ∼ pt(Gt|G1) is its noised version
at time t. The hyperparameter λ ∈ R+ controls the relative weighting between node and edge
reconstruction losses. Once the denoising network is trained, different graph iterative refinement
methods vary in how they leverage the predicted pθ

1|t(·|Gt) to progressively recover the clean graphs.

I.2 DISCRETE FLOW MATCHING FOR GRAPH GENERATION

Among graph iterative refinement methods, Discrete Flow Matching (DFM) (Campbell et al., 2024;
Gat et al., 2024) has recently emerged as a particularly powerful framework. By decoupling the
training and sampling processes, DFM enables a broader and more flexible design space, which has
been shown to improve generative performance. This framework has proven particularly effective for
undirected graph generation (Qin et al., 2025a).

The noising process in DFM is defined as a linear interpolation between the data distribution and
a pre-specified noise distribution. This interpolation is applied independently to each variable,
corresponding to each node and each edge in the case of graphs:

pXt|1(x
(n)
t | x(n)

1) = t δ(x
(n)
t , x

(n)
1) + (1− t) pXnoise(x

(n)
t), (40)

where δ(·, ·) is the Kronecker delta and pXnoise is a reference distribution over node categories. A
similar construction is used for edges. Therefore, the complete noising process corresponds to
independently noising each node and edge through pXt|1 and pEt|1, respectively.

To reverse this process, DFM models denoising as a Continuous-Time Markov Chain (CTMC).
Starting from an initial distribution p0, the generative process evolves according to:

pt+∆t|t(Gt+∆t | Gt) = δ(Gt, Gt+∆t) +Rt(Gt, Gt+∆t) dt, (41)

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

where Rt is the CTMC rate matrix. In practice, this update is approximated over a finite interval ∆t,
in an Euler method step, with the rate matrix estimated from the network predictions pθ

1|t(· | Gt) via:

Rθ
t (Gt, Gt+∆t) =

∑
n

δ(G
\(n)
t , G

\(n)
t+∆t)Ep

θ,(n)

1|t (x
(n)
1 |Gt)

[
R

(n)
t (x

(n)
t , x

(n)
t+∆t | x

(n)
1)
]

(42)

+
∑
i̸=j

δ(G
\(i,j)
t , G

\(i,j)
t+∆t)Ep

θ,(i,j)

1|t (e
(i,j)
1 |Gt)

[
R

(i,j)
t (e

(i,j)
t , e

(i,j)
t+∆t | e

(i,j)
1)

]
, (43)

where the G\(d) denote the full graph G except variable d (node or edge). The Knonecker deltas
ensure that each variable-specific rate matrix, R(n)

t or R(i,j)
t , is applied independently at each node

and edge, respectively. Finally, each node-specific rate matrix is defined as:

Rt(x
(n)
t , x

(n)
t+∆t | x

(n)
1) =

ReLU
[
∂tpt|1(x

(n)
t+∆t | x

(n)
1)− ∂tpt|1(x

(n)
t | x(n)

1)
]

X>0
t pt|1(x

(n)
t | x(n)

1)
, (44)

for each node x(n), where X>0
t =

∣∣∣{x(n)
t : pt|1(x

(n)
t | x(n)

1) > 0
}∣∣∣. An analogous definition applies

for edge rate matrices.

I.3 DISCRETE DIFFUSION FOR GRAPH GENERATION

Among discrete diffusion-based models for undirected graphs, DIGRESS (Vignac et al., 2023a),
grounded in the structured discrete diffusion framework (Austin et al., 2021), has been particularly
influential. This approach mostly differs from the DFM-based formulation described in Appendix I.2,
as it operates in discrete time, with the denoising process modeled as a Discrete-Time Markov Chain
(DTMC), in contrast to the continuous-time formulation used in DFM.

The forward, or noising, process is modeled as a Markov noise process q, which generates a
sequence of progressively noised graphs Gt, for t = 1, . . . , T . At each timestep, node and edge
tensors are perturbed using categorical transition matrices [QX

t](i,j) = q(xt = j | xt−1 = i) and
[QE

t]
(i,j) = q(et = j | et−1 = i), respectively. This process induces structural changes such as

edge addition or deletion, and edits to node and edge categories. The transition probabilities can be
summarized as:

q(Gt | Gt−1) =
(
Xt−1Q

X
t , Et−1Q

E
t

)
and q(Gt | G) =

(
X

t∏
i=1

QX
i , E

t∏
i=1

QE
i

)
. (45)

In practice, these noise matrices are implemented based on the marginal noise model, defined as:

QX
t = αtI+ (1− αt)1Xm⊤

X and QE
t = αtI+ (1− αt)1Em

⊤
E ,

where αt transitions from 1 to 0 with t according to the popular cosine scheduling (Nichol &
Dhariwal, 2021). The vectors 1X ∈ {1}X and 1E ∈ {1}E+1 are filled with ones, and mX ∈ ∆X

and mE ∈ ∆E+1 are vectors filled with the marginal node and edge distributions, respectively2.

This noising process can be rewritten using the analogous notation to the one used for DFM in
Equation (46) as:

pXt′|1(x
(n)
t′ | x

(n)
1) = ᾱ(t′) δ(x

(n)
t′ , x

(n)
1) + (1− ᾱ(t′)) pXnoise(x

(n)
t′), (46)

with t′ = 1 − t
T and ᾱ(t′) = cos

(
π
2
1−t′+s
1+s

)2
, with a small s. Importantly, this function is only

evaluated in the discrete values of time considered for the DTMC associated to the diffusion model.
For the remaining of this section, we consider the transformed variable t′ as the reference time
variable.

In the reverse, or denoising, process, a clean graph is progressively built leveraging the denoising
neural network predictions pθ

1|t′(·|G′
t), analogously to the DFM setting. In particular, the model

2We denote the probability simplex of the state-space of cardinality Z by ∆Z

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

begins from a noise sample G0 and iteratively predicts the clean graph G1 by modeling node and
edge distributions conditioned on the full graph structure. The reverse transition is defined as:

pθt′+∆t′|t′(Gt′+∆t′ | Gt′) =

N∏
i=1

pθt′+∆t′|t′(x
(n)
t′+∆t′ | Gt′)

N∏
1≤i<j≤N

pθt′+∆t′|t′(e
(i,j)
t′+∆t′ | Gt′). (47)

with each of the node and edge denoising terms are computer through the following marginalization:

pθ
t′+∆t′|t′(x

(n)
t′+∆t′ | Gt′) =

∑
x
(n)
1 ∈{1,...,X}

pt′+∆t′|1,t′(x
(n)
t′+∆t′ |x

(n)
1 , Gt′) p

θ,(n)
1|t′ (x

(n)
1 |Gt′), (48)

and similarly for edges. To compute the missing posterior term in Equation (48),
pt′+∆t′|1,t′(x

(n)
t′+∆t′ |x

(n)
1 , Gt′), we equate it to the posterior term of the forward process:

pt′+∆t′|1,t′(x
(n)
t′+∆t′ |x

(n)
1 , Gt′) =


x
(n)

t′ (QX
t′)

⊤⊙ x
(n)
1 Q̄X

t′+∆t′

x
(n)

t′ Q̄X
t′x

(n)
1

if q(x(n)
t′ |x

(n)
1) > 0,

0 otherwise,
(49)

where x
(n)
t′ and x

(n)
1 denote the vectorized versions of x(n)

t′ and x
(n)
1 , respectively. Crucially, and

contrarily to DFM, the sampling strategy with discrete diffusion is fixed at training time, which
restricts the design space of this generative framework.

J USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) were used as a writing assistant tool in the preparation of this
manuscript. Specifically, they were employed to aid in writing, checking spelling, and editing for
clarity. Nonetheless, all text produced with the assistance of LLMs was carefully reviewed, verified,
and revised by the authors to ensure accuracy and appropriateness. The use of LLMs was limited to
these support functions, and the authors take full responsibility for the final content of the paper.

K VISUALIZATIONS

In this section, we present visualizations of the digraphs generated with DIRECTO for the different
synthetic and real-world datasets and combinations of positional encodings reported in the main
paper. To allow for a fair comparison between original and generated digraphs, we additionally report
digraphs from the train splits of the original datasets.

Original digraphs for the SBM dataset are shown in Figure 6. Figure 7 and Figure 8 show examples
of digraphs from the Stochastic Block Model (SBM), where clear community structures are visible,
consistent with the underlying block partitioning. These visualizations help illustrate how the
positional encodings preserve modularity and inter-cluster connectivity. Similarly, Figure 9 shows
original digraphs from the ER-DAG dataset, with Figure 10 and Figure 11 displaying generated
digraphs from the Erdős–Rényi (ER-DAG) model. In this case, digraphs are plotted with nodes in
topological order, to highlight the acyclicity.

For the real-world datasets, in particular for the TPU Tiles dataset, which consists of directed acyclic
graphs (DAGs) representing hardware execution plans, we can see the original DAGs in Figure 12
From the visualizations in Figure 13 and Figure 14 we see that the model is able to capture and
generalize across structural patterns that emerge in computational workloads. In a similar way as
before, digraphs are represented with nodes in topological order to highlight acyclicity.

Finally, for the Visual Genome dataset, we represent the three different node types: objects (blue),
relationships (red) and attributes (green), alongside their respective node label. Figure 15 shows
the original graphs, while Figure 16 and Figure 17 report the generations. They show how the
model effectively captures the semantic and relational structure across these node categories, learning
meaningful patterns that align with human understanding (i.e. a person wears a yellow shirt, or a
white cloud in the sky).

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

Figure 6: Visualizations of original synthetic digraphs from the train splits of the SBM dataset.

Figure 7: Visualizations of four generated digraphs for the SBM dataset with RRWP positional
encoding.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

Figure 8: Visualizations of four generated digraphs for the SBM dataset with MagLap (Q = 10)
positional encoding.

Figure 9: Visualizations of original synthetic digraphs from the train splits of the ER-DAG datasets.
Nodes are in topological ordering to highlight the acyclic structure.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

Figure 10: Visualizations of four generated digraphs for the ER-DAG dataset with RRWP positional
encoding. Nodes are in topological ordering to highlight the acyclic structure.

Figure 11: Visualizations of four generated digraphs for the ER-DAG dataset with MagLap (Q = 10)
positional encoding. Nodes are in topological ordering to highlight the acyclic structure.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

Figure 12: Visualizations of original real-world digraphs from the train splits of the TPU Tiles dataset.
Nodes are in topological ordering to highlight the acyclic structure.

Figure 13: Visualizations of four generated dgraphs for the TPU Tiles dataset with RRWP positional
encoding. Nodes are in topological ordering to highlight the acyclic structure.

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

Figure 14: Visualizations of four generated digraphs for the TPU Tiles dataset with MagLap (Q = 5)
positional encoding. Nodes are in topological ordering to highlight the acyclic structure.

Figure 15: Visualizations of original real-world digraphs from the train splits of the Visual Genome
dataset. Nodes represent objects (blue), relationships (red), and attributes (green).

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

Figure 16: Visualizations of four generated digraphs for the Visual Genome dataset with RRWP
positional encoding. Nodes represent objects (blue), relationships (red), and attributes (green).

Figure 17: Visualizations of generated digraphs for the Visual Genome dataset with MagLap (Q = 5)
positional encoding. Nodes represent objects (blue), relationships (red), and attributes (green).

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

L LIMITATIONS AND FUTURE WORK

Although DIRECTO shows strong performance in the generation of directed graphs, several avenues
for future work could further enhance its scalability, controllability, and applicability.

Scalability to Large Graphs and Datasets: Directed graphs present a combinatorial explosion
in the space of possible edges due to asymmetry, posing challenges in both training and sampling
efficiency. Future work could explore sparsity-aware attention mechanisms (Qin et al., 2025b)
to reduce quadratic memory and computational complexity. Hierarchical or latent diffusion ap-
proaches (Bergmeister et al., 2024; Jang et al., 2024; Yang et al., 2024) may allow the model
to efficiently generate large-scale graphs by operating at multiple levels of granularity or in a
lower-dimensional latent space. Investigating adaptive sampling schedules and dataset subsampling
strategies could also help manage computational costs without sacrificing model quality.

Conditional Graph Generation: Many real-world applications require generating graphs con-
ditioned on specific properties or context, such as node features, initial subgraphs, or global graph
characteristics. DIRECTO already supports classifier-free conditional generation, which allows
flexible conditioning without requiring additional networks. However, this approach may not be
optimal for all tasks, and exploring alternative conditional strategies (such as learned conditional
embeddings or auxiliary networks) could further improve performance. Such extensions would enable
targeted graph design, e.g., generating traffic networks with predefined entry/exit nodes, molecular
graphs with given scaffolds, or DAGs adhering to specific causal structures

Explicit Structural Constraints: While DIRECTO can implicitly learn structural constraints such
as acyclicity, certain domains require strict adherence to properties like DAG structure, planarity,
or node degree limits. Integrating ideas from methods such as ConStrucy (Madeira et al., 2024) or
PRODIGY (Sharma et al., 2024) could enforce these constraints explicitly, enhancing control over
generated graphs. Future research could also explore soft vs. hard constraint integration, allowing a
trade-off between flexibility and domain-specific validity.

Integration with Downstream Tasks: Beyond purely generative evaluation, integrating DIRECTO
with downstream tasks such as causal inference, traffic simulation, or molecular optimization—could
highlight practical benefits and guide model improvements. Extending the metrics in the benchmark
to further reflect task-specific objectives could be relevant to quantify real-world impact.

Interpretability and Controllability: Understanding which components (e.g., dual attention vs.
directional positional encodings) drive specific structural properties in the generated graphs is an open
research question. Future work could investigate interpretable latent representations and mechanisms
to control generation in a predictable manner.

47

	Introduction
	Background: Discrete Flow Matching for Graph Generation
	Generating DiGraphs with Asymmetric Encoding and Dual Attention
	Directed Graph Generation via Discrete Flow Matching
	Asymetric positional encoding
	Graph transformer with dual attention

	Benchmarking Directed Graph Generation
	Datasets
	Metrics

	Experiments
	Generative Performance Evaluation
	Ablations and further experiments

	Related work
	Conclusion and future directions
	Appendix
	 Appendix
	Dual Attention
	Positional Encodings
	Sampling Optimization in Directo
	Directo Training and Sampling Algorithms
	Dataset descriptions
	Synthetic datasets
	TPU Tiles
	Visual Genome

	Further details on evaluation metrics
	Validity metrics
	Uniqueness and novelty
	Maximum Mean Discrepancy metrics
	Joint node-edge distributional metrics
	Downstream tasks metrics

	Experimental details
	Details on baselines
	Training setup
	Resources and runtime

	Additional results
	Extended results for synthetic datasets
	Extended results for real-world datasets
	The role of dual attention
	The role of positional encodings
	ER vs DAG performance
	Scalability experiments
	Conditional generation
	Impact of sampling optimization using discrete flow matching

	Iterative Refinement Methods for Graph Generation
	Graph iterative refinement methods
	Discrete flow matching for graph generation
	Discrete diffusion for graph generation

	Use of Large Language Models
	Visualizations
	Limitations and future work

