
ACCURATE COMPRESSION OF TEXT-TO-IMAGE DIFFU-
SION MODELS VIA VECTOR QUANTIZATION

Vage Egiazarian*12 Denis Kuznedelev*13 Anton Voronov*124 Ruslan Svirschevski12

Michael Goin5 Daniil Pavlov4 Dan Alistarh56 Dmitry Baranchuk1

1Yandex Research 2HSE University 3Skoltech 4MIPT 5Neural Magic 6IST Austria

https://yandex-research.github.io/vqdm

ABSTRACT

Text-to-image diffusion models have emerged as a powerful framework for high-
quality image generation given textual prompts. Their success has driven the rapid
development of production-grade diffusion models that consistently increase in size
and already contain billions of parameters. As a result, state-of-the-art text-to-image
models are becoming less accessible in practice, especially in resource-limited
environments. Post-training quantization (PTQ) tackles this issue by compressing
the pretrained model weights into lower-bit representations. Recent diffusion
quantization techniques primarily rely on uniform scalar quantization, providing
decent performance for the models compressed to 4 bits. This work demonstrates
that more versatile vector quantization (VQ) may achieve higher compression rates
for large-scale text-to-image diffusion models. Specifically, we tailor vector-based
PTQ methods to recent billion-scale text-to-image models (SDXL and SDXL-
Turbo), and show that the diffusion models of 2B+ parameters compressed to
around 3 bits using VQ exhibit the similar image quality and textual alignment as
previous 4-bit compression techniques.

1 INTRODUCTION

In recent years, diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020;
Rombach et al., 2022) have revolutionized text-to-image (T2I) synthesis (Saharia et al., 2022; Podell
et al., 2024; Pernias et al., 2023; Rombach et al., 2021; Esser et al., 2024; Betker et al., 2023),
transforming user textual prompts into highly realistic images. Motivated by trends in large language
models (LLM), practitioners are eager to enhance the performance of text-to-image diffusion models
by scaling and curating datasets (Li et al., 2024; Kastryulin et al., 2024; Schuhmann et al., 2022) and
increasing model sizes (Esser et al., 2024; Podell et al., 2024; Li et al., 2024). Current state-of-the-art
models contain up to 12 billion parameters (Black Forest Labs, 2024), with some studies suggesting
that the performance gains from model scaling have yet to reach saturation (Esser et al., 2024).
Therefore, we are likely to witness even larger open-source text-to-image models shortly. However,
the scaling trend of text-to-image models presages slow inference and large memory consumption
in practice. The problem gets more pronounced on edge devices with limited memory and weak
processing units. To address this issue, effective post-training diffusion model compression methods
need to be developed.

Quantization (Gholami et al., 2021) is a prominent compression technique that has gained significant
attention due to its remarkable success in LLM compression (Frantar et al., 2023; Dettmers et al.,
2023; Egiazarian et al., 2024; Tseng et al., 2024). Weight quantization typically transforms the
original parameter tensor into a condensed representation, where each weight or group of weights is
replaced with a low-bit value. Effective quantization algorithms aim to minimize the discrepancy
between the model outputs obtained with the original and compressed weights. Quantization methods
can be broadly categorized into scalar quantization, which projects each individual weight onto a
one-dimensional grid, and vector quantization (Burton et al., 1983; Gray, 1984), which represents a
group of weights as a vector from a codebook. Due to its simplicity, scalar quantization is widely
adopted across different domains. Several studies (Li et al., 2023b; Shang et al., 2023; He et al., 2023;

∗ Equal contribution

ar
X

iv
:2

40
9.

00
49

2v
1

 [
cs

.C
V

]
 3

1
A

ug
 2

02
4

https://yandex-research.github.io/vqdm

Huang et al., 2024) have employed it for small-scale diffusion models, achieving nearly lossless
compression at 4-8 bits. However, for higher compression rates, a more sophisticated representation
might be necessary to maintain the original model’s performance.

Vector quantization (VQ) is a promising candidate due to its flexibility and ability to account
for the non-uniformity of data distribution, thus offering smaller quantization errors for the same
compression rate. The encoded vectors are stored as low-bit integer indices, codes, which point to
vector representations, or codewords, in the corresponding codebooks shared within a model layer.
Various VQ extensions (Babenko & Lempitsky, 2014; Chen et al., 2010; Jegou et al., 2010; Martinez
et al., 2016; 2018) employ multiple codebooks and hence provide even better compression quality.
Recently, vector quantization has demonstrated state-of-the-art results in low-bit compression of large
language models (Egiazarian et al., 2024; Tseng et al., 2024). Therefore, it is appealing to explore
the application of vector quantization for large-scale diffusion models.

Contributions. This work presents a novel post-training quantization method for large-scale text-
to-image diffusion models. Our PTQ method relies on additive quantization (AQ) (Babenko &
Lempitsky, 2014), the generalized multi-codebook vector quantization (MCQ) formulation originated
in vector search for extreme vector compression. We explore AQ specifically for billion-parameter
diffusion U-Net architectures (Podell et al., 2024; Sauer et al., 2023b) and propose several practical
techniques for their fast and accurate compression. Notably, capitalizing on the increased capacity
of AQ codebooks compared to uniform quantization, we demonstrate that the initial calibration
can largely benefit from additional codebook tuning. Following (He et al., 2024), we propose to
fine-tune the quantized model to mimic the final U-Net predictions of the full-precision model. Unlike
typical settings in quantization-aware training (QAT) (Nagel et al., 2022; Esser et al., 2020), the
fine-tuning approach does not require training on large-scale datasets and takes a tiny fraction of the
time needed to train the original model. We demonstrate that fine-tuning significantly eliminates the
discrepancy with the full-precision model, unlocking highly accurate 3-bit weight compression for
PTQ of billion-scale diffusion models. To sum up, our contributions can be formulated as follows:

• We explore vector-based PTQ strategies for text-to-image diffusion models and demonstrate that
the compressed models yield higher quality text-to-image generation than the scalar alternatives
under the same bit-widths. Furthermore, we describe an effective fine-tuning technique that
further closes the gap between the full-precision and compressed models, leveraging the
flexibility of the vector quantized representation.

• To illustrate the power of our technique, we compress the weights of SDXL (Podell et al., 2024),
the state-of-the-art text-to-image diffusion model with 2.6B parameters, down to 3 bits per
parameter. Extensive human evaluation and automated metrics confirm the superiority of our
approach over previous diffusion compression methods under the same bit-widths.

• We illustrate that our approach can be effectively applied to distilled diffusion models, such as
SDXL-Turbo (Sauer et al., 2023b), achieving nearly lossless 4-bit compression. This highlights
the potential for combining integrating text-to-image model quantization with other diffusion
acceleration techniques.

2 RELATED WORK

Efficient diffusion models. Text-to-image diffusion models (Saharia et al., 2022; Podell et al., 2024;
Esser et al., 2024; Rombach et al., 2021; Pernias et al., 2023; Betker et al., 2023) are a class of gener-
ative models that gradually transform noise samples into realistic images corresponding to textual
prompts. One of the most prominent challenges in diffusion modeling is a sequential sampling proce-
dure resulting in significantly slower inference compared to feed-forward alternatives (Goodfellow
et al., 2014; Kingma & Welling, 2022; Kang et al., 2023; Sauer et al., 2023a).

Several major research directions address the efficiency of text-to-image diffusion models. Diffusion
distillation (Sauer et al., 2024; 2023b; Luo et al., 2023; Song et al., 2023; Meng et al., 2023)
and advanced sampling algorithms (Zhou et al., 2024; Lu et al., 2022; Zhao et al., 2023) aim to
reduce the number of sampling steps in the sequential inference of diffusion models. Intermediate
activation caching (Ma et al., 2024; Wimbauer et al., 2024; Li et al., 2023a), efficient architecture
designs (Rombach et al., 2021; Podell et al., 2024) and structured pruning (Kim et al., 2023; Fang
et al., 2023) focus on faster sampling at the architecture level. Model quantization methods (Li et al.,
2023b; Shang et al., 2023; He et al., 2023; Huang et al., 2024; Chang et al., 2023; Wang et al., 2024)
aim to reduce the memory footprint and runtime by compressing the weights and/or activations of
diffusion models to compact representations.

2

Model quantization. This work focuses on model quantization, which has shown remarkable
accuracy-compression trade-offs in the context of LLM compression (Dettmers et al., 2023; Chee
et al., 2023; Egiazarian et al., 2024; Tseng et al., 2024). The quantization methods can generally
be categorized into two classes: post-training quantization (PTQ) (Li et al., 2021; Nagel et al.,
2020) and quantization-aware training (QAT) (Nagel et al., 2022; Esser et al., 2020). PTQ performs
quantization and weight adjustment on top of the pretrained model and typically requires largely
lower costs compared to the training process. QAT methods, in contrast, undergo multiple rounds of
training and quantization iterations. While they are likely to achieve higher accuracy than PTQ, they
require more sophisticated and resource-intensive quantization procedures.

In practice, quantization is applied to linear or convolution layers, consuming the prevalent portion of
the model weights in modern deep learning architectures (Frantar et al., 2022b; Wang et al., 2020;
Khan et al., 2020). Uniform scalar quantization first scales full-precision weights to the specified
value range and then rounds them into low-bit fixed-point values. Although uniform quantization is
efficient and simple to use, it disregards non-uniformity of the underlying distributions and presence
of outliers (Dettmers et al., 2023; Lin et al., 2024; Chee et al., 2023), leading to large quantization
errors at low-bit compression. In contrast, non-uniform scalar quantization assigns individual weights
to the scalar values ci, codewords, from a codebook containing k=2B elements C={c1, ..., ck}. Each
weight is associated with a B-bit index i, code, of the corresponding codeword ci. The codebooks
are more flexible in capturing the underlying weight distributions than uniform grids, making non-
uniform quantization more accurate under the same bit-width. Nevertheless, uniform quantization
remains popular due to its highly efficient encoding and decoding processes.

Vector quantization (VQ) (Burton et al., 1983; Gray, 1984) extends non-uniform scalar quantization
by increasing the dimensionality of the codewords. Thus, the VQ-based methods approximate a
group of consecutive weights by a vector from the codebook. In our work, we exploit multi-codebook
generalization of VQ, additive quantization (AQ) (Babenko & Lempitsky, 2014; Martinez et al.,
2016; 2018). AQ represents the weight groups as a sum of M codewords chosen from multiple
learned codebooks C1, ...CM . Weight group size, the number of codebooks M , and codebook size
k = 2B dictate the trade-off between memory footprint and compression accuracy.

After initialization, the codebooks and other quantization parameters, e.g., scaling factors, are
calibrated to approximate the activation distribution of the original model. The activation statistics
are collected by running the model on small representative calibration data. Recent PTQ calibration
strategies (Nagel et al., 2020; Frantar et al., 2022b; 2023; Egiazarian et al., 2024) simplify the model
quantization problem to layer-wise quantization, enabling scalability to billion-parameter models.
These methods minimize the MSE between the outputs of the full-precision weights W ∈ Rdout×din

and the corresponding quantized weights Wq given calibration inputs X for each layer individually:

argmin
Wq

||WX −WqX||22 (1)

For AQ quantized Wq, the optimal configuration is learned via alternating optimization of codes
and codebooks. Our method adopts the learning procedure in Egiazarian et al. (2024), where AQ is
applied to LLM compression.

Quantization of diffusion models. Previous diffusion PTQ approaches (Li et al., 2023b; Shang
et al., 2023; He et al., 2023; Huang et al., 2024) employ uniform scalar quantization and calibrate
the quantization parameters using adaptive rounding (Nagel et al., 2020) or simple min-max initial-
ization (Nagel et al., 2021b). Some studies introduce diffusion-specific calibration data collection
methods (Li et al., 2023b; Shang et al., 2023) and investigate the importance of different diffusion
time steps and model layers (Li et al., 2023b; Shang et al., 2023; Yang et al., 2023; Chang et al., 2023;
Huang et al., 2024). Other works address the accumulated quantization error caused by sequential
diffusion sampling with quantized models (He et al., 2023; Li et al., 2023c). A few propose using
variable bit widths for activations at different time steps (He et al., 2023; Tang et al., 2023).

Recent works (He et al., 2024; Wang et al., 2024) have demonstrated that effective quantization-
aware fine-tuning (QAFT) may achieve state-of-the-art quantization performance on small-scale
benchmarks. EfficientDM (He et al., 2024) introduces quantization-aware parameter-efficient fine-
tuning for diffusion models and runs full-precision model distillation after initial calibration. TQD (So
et al., 2023) fine-tunes diffusion models in a QAT manner and employs additional MLP modules to
estimate quantization scales for each step. QuEST (Wang et al., 2024) proposes to fine-tune only
the most vulnerable to quantization parts of the diffusion model: time-embedding, attention-related
quantized weights, and activation quantizer parameters.

3

Figure 1: Overview of the proposed layer-wise calibration procedure before fine-tuning.

Contrary to the approaches mentioned above, we investigate more versatile weight quantizers for
large-scale diffusion model compression. In this work, we focus solely on weight quantization and
leave the investigation of activation quantization for future work.

3 METHOD

In this section, we present a VQ-based method adapted for text-to-image diffusion model compression.
Section 3.1 introduces the strategy for applying the existing VQ algorithms to the U-Net architecture,
commonly used in diffusion models. Then, in Section 3.2, we describe the proposed calibration
method comprising of the layer-wise calibration and global fine-tuning procedures. In Section 3.3,
we discuss the inference procedure for the VQ-compressed diffusion models.

3.1 VECTOR QUANTIZATION OF TEXT-TO-IMAGE MODELS

Existing vector quantization algorithms are designed for linear models used in retrieval applications
(Jegou et al., 2010; Babenko & Lempitsky, 2014; Martinez et al., 2016; 2018) or large language
models with extremely large hidden dimension (Egiazarian et al., 2024; Tseng et al., 2024). Naive
transfer of the method introduced in Egiazarian et al. (2024); van Baalen et al. (2024) would not
allow one to achieve practically useful compression rates due to significant architectural differences
between LLMs and text-to-image diffusion models.

Specifically, unlike LLMs, which are built from homogeneous transformer blocks with the same
number of hidden features, modern text-to-image diffusion models contain several heterogeneous
components, including the diffusion model itself – typically a U-Net (Ronneberger et al., 2015) or 2D
image Transformer (Esser et al., 2024; Peebles & Xie, 2022), one or more text encoders, autoencoders
for latent diffusion models (Rombach et al., 2021) or super-resolution models for cascaded diffusion
models (Saharia et al., 2022).

As an illustrative example, we consider Stable Diffusion XL (SDXL) (Podell et al., 2024): a latent
diffusion model consisting of a large 2D U-Net diffusion model with ∼2.6B parameters, two text
encoders, a variational autoencoder (Kingma & Welling, 2022), and an optional refiner network.
Text encoders are regular transformer models with known high-performance quantization algorithms,
including vector quantization (Egiazarian et al., 2024; Tseng et al., 2024; van Baalen et al., 2024).
The variational encoder is a relatively small network with less than 0.1B parameters. Since the overall
amount of computation and inference time is dominated by the iterative application of the diffusion
model, only the compression of the U-Net model is of practical interest.

The U-Net backbone adopted in SDXL comprises stacks of residual and transformer blocks at
different resolutions. The standard U-Net architecture includes an encoder, middle block, and
decoder. The number of channels increases with the decrease in the feature map size after pooling
operations. Specifically, SDXL U-Net has 3 downsampling levels, with 320 channels on the top
level and the multiplication rates [1, 2, 4] at different resolutions. A typical number of channels in
a layer is in the order of 102−103, which is smaller by an order of magnitude than modern LLMs.
Notably, the 16-bit codebooks with a group size of 8, that yield the highest quality in low-bit LLM
compression (Egiazarian et al., 2024), occupy 216 · 8 · 2 = 220 bytes and exceed the size of many
SDXL layers, making such quantization configuration impractical. Thus, one has to work with small
codebooks (of size 26, 28), and capacity could be increased by increasing the number of codebooks.

4

Another aspect is the presence of convolutional layers in addition to linear in ResNet-like (He et al.,
2016) blocks. Following the common practice (Nagel et al., 2021a) for CNN quantization, we group
weights along the input channel dimension rather than the kernel spatial dimensions.

We quantize all convolutional and linear layers within the U-Net blocks, with a few exceptions:
• We do not quantize the first and last convolutional layers: the first layer has an input dimension

of 4, and the last layer has a commensurate output dimension. These layers constitute a tiny
fraction of an overall number of parameters, and there is no benefit from their compression.

• Time embedding layers are not quantized inspired by recent works (Huang et al., 2024; Wang
et al., 2024) demonstrating the importance of the temporal features for quantized diffusion
models. In addition, for a given input sample, timestep projections accept only a single vector
instead of a whole feature map, as most linear projections and convolutional layers do. Finally,
they incur small additional memory overhead. Therefore, we do not quantize these layers based
on practical considerations.

3.2 CALIBRATING VECTOR-QUANTIZED DIFFUSION MODELS

Here, we discuss the calibration procedure used to determine the optimal quantized weight configura-
tion. The procedure involves two stages: i) layer-wise calibration and ii) global fine-tuning. Below,
we discuss both stages in more detail.

Layer-wise calibration. First, the calibration set is collected by running the diffusion sampling on a
small set of calibration prompts. Text-to-image diffusion models alter intermediate generation steps
when using classifier-free guidance (CFG) (Ho & Salimans, 2022). Therefore, we run the diffusion
sampling with a default CFG scale 5 and considering both unconditional and conditional inputs as
separate calibration samples. Unlike some prior works (Shang et al., 2023; Li et al., 2023b), we
collect calibration data for all diffusion timesteps and sample them uniformly.

The calibration procedure is performed sequentially for predefined consequent layer subsets. Specif-
ically, the model, partially quantized up to the i−th subset, collects the activations for all layers
within the i+1−th subset. Then, these layers are quantized in parallel, and the procedure goes
to the following subset. The number of layers in subsets controls the calibration speed, memory
consumption, and overall model quality. The quantization of all layers is the fastest, but storing
the activation statistics requires a large amount of memory. In addition, using the original model
activations to quantize deeper layers does not account for the output changes in the previous layers.
Another extreme is to recollect the data after each quantized layer sequentially. However, the number
of layers in modern diffusion models is several hundred, making such an option intolerably slow.
Therefore, we choose the entire stack of blocks (both convolutional and transformer) for a given
resolution as a subset of weights quantized at once. Since the SDXL U-Net has 3 downsampling
and upsampling levels and a middle block, this constitutes 7 subsets in total. This choice provides a
preferable trade-off between accuracy, memory efficiency, and calibration runtime.

Also, previous diffusion PTQ methods (Li et al., 2023b; He et al., 2023; Shang et al., 2023) collect
raw model activations X ∈ Rn×din , where n is the calibration dataset size multiplied by the spatial
dimension hl×wl for a layer l. We notice that this limits their scalability to large text-to-image
models and calibration sets. Instead, following the practices in LLM quantization (Frantar et al.,
2022a; Egiazarian et al., 2024; van Baalen et al., 2024), we collect XXT ∈ Rdin×din and modify the
objective (1) as follows: ||WX −WqX||22 = ||(W −Wq)X||22 =

〈
(W −Wq)XXT , (W −Wq)

〉
F

.
In our experiments, this vastly reduces the storage of calibration data.

Finally, we closely adopt the codebook learning approach from Egiazarian et al. (2024). In addition to
the codebooks, this method employs learnable scales sout ∈ Rdout to multiply each output dimension
of the dequantized matrix Wq ∈ Rdout×din . Thus, the dequantized matrix can be represented as
soutWq . Figure 1 illustrates the proposed layer-wise calibration procedure.

Global fine-tuning. Since fine-tuning is known to boost the performance of vector-quantized
models (Egiazarian et al., 2024; Tseng et al., 2024), we equip our calibration procedure with an
end-to-end fine-tuning stage. Previous diffusion quantization approaches (Li et al., 2023b; Shang
et al., 2023; Huang et al., 2024) perform block-wise fine-tuning for each residual or attention block
right after their layer-wise calibration. However, the block-wise fine-tuning is unaware of the final
model prediction. Therefore, we employ a more accurate solution by minimizing MSE between
global U-Net predictions at each denoising timestep. We notice that there is no need for fine-tuning
on large-scale data; a few thousand calibration samples generated with the full-precision U-Net are

5

Model Method Avg bits Pickscore↑ CLIP↑ FID↓

SDXL

Original model 32 0.226 0.357 18.99
VQDM 4.15 0.226 0.356 19.11
VQDM 3.15 0.225 0.355 19.18
VQDM 2.15 0.219 0.341 22.14

Q-Diffusion 4 0.225 0.355 19.30
PTQ4DM 4 0.224 0.353 19.78

Table 1: Evaluation of quantized SDXL models for different bit-widths in terms of automatic metrics.

sufficient. In fact, such fine-tuning is an instance of model distillation (Hinton et al., 2015) and helps
to compensate inter-layer errors caused by independent layer-wise or block-wise calibration.

The model’s forward pass is differentiable with respect to the codebook vectors; therefore, these can
be optimized like any other parameter inside the U-Net network. In addition, all non-quantized layers
are made trainable to compensate the quantization error.

The resulting calibration procedure is described in Appendix E in Algorithms 1, 2. First, the algorithm
iterates over the U-Net down, middle, and up blocks and accumulates input activations within each
block by running the diffusion sampling loop with classifier-free guidance (Ho & Salimans, 2022).
Then, the layers within each block are quantized and calibrated with the algorithm inherited from
AQLM (Egiazarian et al., 2024). Once the model is quantized, we fine-tune the entire model to mimic
the teacher output. In the following, we denote the entire calibration method as VQDM.

3.3 INFERENCE PROCEDURE

Uniform scalar quantization facilitates faster inference by using more efficient low-precision calcula-
tions while maintaining a constant number of arithmetic operations. In contrast, the VQ inference
procedure first precomputes look-up tables (LUTs) w.r.t. the learned codebooks and then performs
matrix multiplication by retrieving values from the LUTs and summing them to obtain the final result.
This technique was originally proposed for quantized nearest neighbor search (Jegou et al., 2010;
Babenko & Lempitsky, 2014) and can be adapted to quantized weight matrices (Blalock & Guttag,
2021; Egiazarian et al., 2024). Though such a procedure involves fewer arithmetic operations, we
observe that it significantly slows down the diffusion inference on high-end GPUs and CPUs due to
the absence of specific hardware realizations for efficient look-ups. In other words, software look-ups
are slower than hardware-optimized multiplications with tensor cores or AVX-512.

As a result, we found it more effective to simply dequantize the weights into half- or full-precision
values in runtime and perform standard matrix multiplication that benefits from hardware optimiza-
tions. Still, the proposed quantization method carries additional computational overheads caused by
the dequantization procedure during inference. In Section 4.3, we measure the runtime overheads for
our CPU and GPU implementations. We believe that this overhead is not a fundamental property of
vector quantization but a quirk of modern hardware. Several recent studies (AbouElhamayed et al.,
2023; Zhu et al., 2024) explore this further and achieve highly efficient vector quantization inference
using FPGA (Field Programmable Gate Arrays) hardware. Both studies use Intel Agilex FPGAs.

4 EXPERIMENTS

We begin by comparing VQ-compressed SDXL to the full-precision model and previous diffusion
quantization methods. Then, we measure the inference overheads and realised memory reduction
for our GPU and CPU implementations. Next, we conduct an ablation study on the design choices
discussed in our method. Finally, we apply VQDM to the distilled diffusion model, SDXL-Turbo.

4.1 EXPERIMENTAL SETUP

As a primary quality measure, we consider side-by-side human evaluation (SbS) on 128 prompts
specifically selected from PartiPrompts (Yu et al., 2022), following Sauer et al. (2024). We generate
2 images for each prompt and report the SbS score as a portion of the student wins plus half of the
tied evaluations. To our knowledge, this is the first work that conducts the human study to assess
quantized diffusion models. More details about the human evaluation setup are in Appendix B.

Additionally, we employ the standard metrics such as FID (Heusel et al., 2017) and CLIP Score (Hes-
sel et al., 2021) and also evaluate PickScore (Kirstain et al., 2023), designed to estimate the human
preference score. The automated metrics are calculated on 5000 prompts from the COCO2014
validation set (Lin et al., 2014).

6

Figure 2: Qualitative comparison of SDXL compressed with VQDM and the baselines.

As a compression measure, we report an average number of bits per model weight in all convolutional
and linear layers, including the unquantized ones. The codebook sizes are also included, divided by
the overall number of weights.

For VQDM, if not otherwise stated, we set the group size and number of bits per codebook to 8 and
vary the number of codebooks from 2 to 4 to achieve 2−4 bit compression, respectively.

4.2 COMPARISON WITH BASELINE METHODS

Here, we evaluate our approach on one of the most widely adopted open source text-to-image models,
SDXL, containing 2.6B parameters and compare VQDM to previous PTQ approaches.

Baselines. We select Q-Diffusion (Li et al., 2023b) as our primary baseline from the family of
uniform scalar PTQ techniques. The quantization is applied to all linear and convolutional layers in
the U-Net model, followed by a calibration process. To form the calibration set, Q-Diffusion splits
sampling time steps into equal intervals and uses one time step from each interval for each of the
n prompts. Additionally, Q-Diffusion proposes “shortcut-splitting” in up-sample ResNet blocks of
U-Net to mitigate their abnormal activation distribution.

Changing the strategy for collecting timesteps for calibration to sampling from a normal distribution
skewed to t = T0 and removing “shortcut-splitting” results in PTQ4DM method (Shang et al., 2023),
another baseline we compare with. In contrast to these methods, we use all timesteps for each
calibration prompt. Another difference is that we do not quantize time embedding layers.

7

Figure 3: Human preference study. Left. Comparison between VQDM and the baselines. Right.
Comparison between the quantized and full-precision models.

While EfficientDM (He et al., 2024) and QuEST (Wang et al., 2024) are also competitive baselines,
adapting their code to text-to-image generation and the SDXL model requires significant effort.
Therefore, we left the comparison with these methods for future work.

Experimental results. First, we compare our method with the uncompressed base model. Table 1
reveals that VQDM allows to efficiently compress SDXL to 4.15 bits per parameter with a minor
drop in visual quality and prompt alignment. According to the human study, the samples generated
with the 4.15 bit VQDM model were almost indistinguishable for human annotators, resulting in an
SbS score of 44.5% with a p-value > 0.1 for the null hypothesis claiming that both models perform
equally. The 3.15 bit model also demonstrates highly promising performance, being marginally
worse than the full precision model in terms of SbS score.

Then, we adapt the Q-Diffusion code for the SDXL U-Net architecture and calibrate the quantized
U-Net using 4 bits for weight quantization and keeping activations in full precision to match our
setup. We use n = 64 calibration prompts and run calibration for 10000 iterations for each layer
and block. These hyperparameters were tuned to match the training time with our method without
compromising the quality of the baselines.

In terms of automated metrics, the results in Table 1 indicate that 4 bit VQDM outperform both
4-bit baselines while 3-bit matches their performance. Human evaluation in Figure 3 and qualitative
comparison in Figure 2 support this claim.

4.3 INFERENCE PERFORMANCE

In Table 2, we report the dequantization runtime overheads and released memory reduction for the
SDXL model using our GPU and CPU implementations supporting VQDM.

For GPU measurements, we perform half-precision SDXL inference and use batch size 8 to saturate
GPU utilization. The experiments are run on a single NVIDIA A100 80Gb. Compared to the FP16
model, VQDM allows up-to 5× memory reduction at the cost of ∼50% runtime overhead.

For CPU measurements, we run full-precision SDXL inference since CPUs generally do not support
effective operations in half-precision. The experiments are run on a single core of an Intel Sapphire
Rapids CPU. We observe that memory reductions of up to 9.7× can be realized in practice with
relatively low runtime overheads (23−26%).

GPU implementation FP16 CPU implementation FP32

Avg. bits Runtime overhead Memory reduction Runtime overhead Memory reduction
4.15 49% 3.76× 26% 7.42×
3.15 48% 5.06× 23% 9.70×

Table 2: Inference results for our GPU and CPU implementations, showing decompression overheads
and released memory savings for 3-4-bit VQDM configurations.

4.4 ABLATION

Next, we investigate the influence of the fine-tuning and architecture choices for VQDM on final
model performance. The results in Table 4 fine-tuning consistently increases the compression quality
in terms of both automated metrics and the side-by-side evaluation (SbS score), especially for higher
compression rates. According to Table 3, the effect of non-quantizing the timestep embedding layers
is less significant. Note that we omit the SbS scores for non-finetuned versions of 2- and 3-bit VQDM

8

Figure 4: Qualitative comparison of SDXL-Turbo quantized with VQDM and the full-precision
model for different sampling steps.

Method Avg bits Pickscore↑ CLIP↑ FID↓ SbS,% ↑

VQDM-all
4.06 0.226 0.357 18.88 43.2
3.05 0.225 0.355 19.30 31.1

VQDM
4.15 0.226 0.356 19.11 44.7
3.15 0.225 0.355 19.18 34.6

Table 3: Comparison of VQDM with and without
quantization of the timestep embedding layers.
VQDM-all denotes quantizing the timestep em-
bedding layers.

Method Avg bits Pickscore↑ CLIP↑ FID↓ SbS,% ↑

Original model 32 0.226 0.357 18.99 50.0

VQDM w/ FT
4.15 0.226 0.356 19.11 44.7
3.15 0.225 0.355 19.18 34.6
2.15 0.219 0.341 22.14 9.2

VQDM w/o FT
4.15 0.225 0.355 20.24 34.2
3.15 0.221 0.347 24.88 –
2.15 0.206 0.287 86.88 –

Table 4: Comparison of VQDM quantization
settings before and after fine-tuning (FT).

since their metrics and our preliminary analysis of the generated images shown that they were not
competitive with the teacher model.

4.5 DISTILLED DIFFUSION MODELS

Finally, we apply our approach to SDXL-Turbo (Sauer et al., 2023b) operating in different sampling
steps. We present the results in Table 5 and mark green the SbS scores providing p-value > 0.1 for
the null hypothesis that both models perform equally. The results show that the distilled diffusion
models can be compressed using VQDM to 4 bits without noticeable loss in performance.

Method Steps Avg bits Pickscore↑ CLIP↑ FID↓ SbS,%↑

Original model 4 32 0.229 0.355 24.49 50.0
VQDM 4 4.15 0.228 0.355 24.89 43.9
VQDM 4 3.15 0.226 0.352 26.55 29.9

Original model 2 32 0.230 0.357 26.43 50.0
VQDM 2 4.15 0.230 0.357 26.43 46.5
VQDM 2 3.15 0.230 0.357 26.59 30.1

Original model 1 32 0.228 0.359 26.07 50.0
VQDM 1 4.15 0.226 0.357 26.30 45.5
VQDM 1 3.15 0.221 0.346 30.64 26.6

Table 5: Evaluation of the quantized SDXL-Turbo model for different bit-widths and sampling steps.
Green indicates p-value > 0.1 for the null hypothesis that the models perform equally.

9

5 CONCLUSION

We introduce VQDM, a vector quantization method combined with a fine-tuning procedure aimed
at compressing modern text-to-image diffusion models to low bit-widths. We take into account the
specific architecture and inference process of diffusion models and adapt vector quantization to better
suit these types of models. VQDM outperforms baseline methods in 3−4 bit compression of SDXL.
Notably, our 3-bit compressed models perform on par with previous 4-bit quantization methods.
Additionally, we demonstrate that vector quantization can be effectively applied to distilled diffusion
models.

REFERENCES

Ahmed F AbouElhamayed, Angela Cui, Javier Fernandez-Marques, Nicholas D Lane, and Mo-
hamed S Abdelfattah. Pqa: Exploring the potential of product quantization in dnn hardware
acceleration. arXiv preprint arXiv:2305.18334, 2023.

Artem Babenko and Victor Lempitsky. Additive quantization for extreme vector compression. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 931–938,
2014.

James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng Wang, Linjie Li, Long Ouyang, Juntang
Zhuang, Joyce Lee, Yufei Guo, et al. Improving image generation with better captions. Computer
Science. https://cdn. openai. com/papers/dall-e-3. pdf, 2(3):8, 2023.

Black Forest Labs. Flux.1. https://huggingface.co/black-forest-labs/FLUX.
1-dev, 2024.

Davis Blalock and John Guttag. Multiplying matrices without multiplying. In International Confer-
ence on Machine Learning, pp. 992–1004. PMLR, 2021.

D. Burton, J. Shore, and J. Buck. A generalization of isolated word recognition using vector
quantization. In ICASSP ’83. IEEE International Conference on Acoustics, Speech, and Signal
Processing, volume 8, pp. 1021–1024, 1983. doi: 10.1109/ICASSP.1983.1171915.

Hanwen Chang, Haihao Shen, Yiyang Cai, Xinyu Ye, Zhenzhong Xu, Wenhua Cheng, Kaokao Lv,
Weiwei Zhang, Yintong Lu, and Heng Guo. Effective quantization for diffusion models on cpus.
ArXiv, abs/2311.16133, 2023. URL https://api.semanticscholar.org/CorpusID:
265466086.

Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and Christopher De Sa. Quip: 2-bit quantization of
large language models with guarantees, 2023.

Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang, James
Kwok, Ping Luo, Huchuan Lu, and Zhenguo Li. Pixart-α: Fast training of diffusion transformer
for photorealistic text-to-image synthesis, 2023.

Junsong Chen, Yue Wu, Simian Luo, Enze Xie, Sayak Paul, Ping Luo, Hang Zhao, and Zhenguo Li.
Pixart-δ: Fast and controllable image generation with latent consistency models, 2024.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear
memory cost, 2016.

Yongjian Chen, Tao Guan, and Cheng Wang. Approximate nearest neighbor search by residual vector
quantization. Sensors, 10(12):11259–11273, 2010.

Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian, Denis Kuznedelev, Elias Frantar, Saleh Ashk-
boos, Alexander Borzunov, Torsten Hoefler, and Dan Alistarh. Spqr: A sparse-quantized represen-
tation for near-lossless llm weight compression. arXiv preprint arXiv:2306.03078, 2023.

Vage Egiazarian, Andrei Panferov, Denis Kuznedelev, Elias Frantar, Artem Babenko, and Dan
Alistarh. Extreme compression of large language models via additive quantization, 2024.

10

https://huggingface.co/black-forest-labs/FLUX.1-dev
https://huggingface.co/black-forest-labs/FLUX.1-dev
https://api.semanticscholar.org/CorpusID:265466086
https://api.semanticscholar.org/CorpusID:265466086

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, Dustin Podell, Tim Dockhorn, Zion En-
glish, Kyle Lacey, Alex Goodwin, Yannik Marek, and Robin Rombach. Scaling rectified flow
transformers for high-resolution image synthesis. CoRR, abs/2403.03206, 2024.

Steven K. Esser, Jeffrey L. McKinstry, Deepika Bablani, Rathinakumar Appuswamy, and Dhar-
mendra S. Modha. Learned step size quantization. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=rkgO66VKDS.

Gongfan Fang, Xinyin Ma, and Xinchao Wang. Structural pruning for diffusion models. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=d4f40zJJIS.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. GPTQ: Accurate post-training
compression for generative pretrained transformers. arXiv preprint arXiv:2210.17323, 2022a.

Elias Frantar, Sidak Pal Singh, and Dan Alistarh. Optimal Brain Compression: a framework for
accurate post-training quantization and pruning. Advances in Neural Information Processing
Systems, 36, 2022b.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. OPTQ: Accurate Quantization
for Generative Pre-trained Transformers. International Conference on Learning Representations
(ICLR), 2023.

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W. Mahoney, and Kurt Keutzer. A
survey of quantization methods for efficient neural network inference, 2021.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sher-
jil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In
Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K.Q. Weinberger (eds.), Ad-
vances in Neural Information Processing Systems, volume 27. Curran Associates, Inc.,
2014. URL https://proceedings.neurips.cc/paper_files/paper/2014/
file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf.

R. Gray. Vector quantization. IEEE ASSP Magazine, 1(2):4–29, 1984. doi: 10.1109/MASSP.1984.
1162229.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Im-
age Recognition. In Proceedings of 2016 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR ’16, pp. 770–778. IEEE, June 2016. doi: 10.1109/CVPR.2016.90. URL
http://ieeexplore.ieee.org/document/7780459.

Yefei He, Luping Liu, Jing Liu, Weijia Wu, Hong Zhou, and Bohan Zhuang. PTQD: Accurate post-
training quantization for diffusion models. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023. URL https://openreview.net/forum?id=Y3g1PV5R9l.

Yefei He, Jing Liu, Weijia Wu, Hong Zhou, and Bohan Zhuang. EfficientDM: Efficient quantization-
aware fine-tuning of low-bit diffusion models. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=UmMa3UNDAz.

Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A reference-
free evaluation metric for image captioning. CoRR, abs/2104.08718, 2021. URL https://
arxiv.org/abs/2104.08718.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, Günter Klambauer, and
Sepp Hochreiter. Gans trained by a two time-scale update rule converge to a nash equilibrium.
CoRR, abs/1706.08500, 2017. URL http://arxiv.org/abs/1706.08500.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598,
2022.

11

https://openreview.net/forum?id=rkgO66VKDS
https://openreview.net/forum?id=d4f40zJJIS
https://openreview.net/forum?id=d4f40zJJIS
https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
http://ieeexplore.ieee.org/document/7780459
https://openreview.net/forum?id=Y3g1PV5R9l
https://openreview.net/forum?id=UmMa3UNDAz
https://arxiv.org/abs/2104.08718
https://arxiv.org/abs/2104.08718
http://arxiv.org/abs/1706.08500

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Yushi Huang, Ruihao Gong, Jing Liu, Tianlong Chen, and Xianglong Liu. Tfmq-dm: Temporal
feature maintenance quantization for diffusion models. In The IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2024.

Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest neighbor search.
IEEE transactions on pattern analysis and machine intelligence, 33(1):117–128, 2010.

Minguk Kang, Jun-Yan Zhu, Richard Zhang, Jaesik Park, Eli Shechtman, Sylvain Paris, and Taesung
Park. Scaling up gans for text-to-image synthesis. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2023.

Sergey Kastryulin, Artem Konev, Alexander Shishenya, Eugene Lyapustin, Artem Khurshudov,
Alexander Tselousov, Nikita Vinokurov, Denis Kuznedelev, Alexander Markovich, Grigoriy
Livshits, Alexey Kirillov, Anastasiia Tabisheva, Liubov Chubarova, Marina Kaminskaia, Alexander
Ustyuzhanin, Artemii Shvetsov, Daniil Shlenskii, Valerii Startsev, Dmitrii Kornilov, Mikhail
Romanov, Artem Babenko, Sergei Ovcharenko, and Valentin Khrulkov. Yaart: Yet another art
rendering technology, 2024.

Asifullah Khan, Anabia Sohail, Umme Zahoora, and Aqsa Saeed Qureshi. A survey of the recent
architectures of deep convolutional neural networks. Artificial intelligence review, 53:5455–5516,
2020.

Bo-Kyeong Kim, Hyoung-Kyu Song, Thibault Castells, and Shinkook Choi. Bk-sdm: Architecturally
compressed stable diffusion for efficient text-to-image generation. ICML Workshop on Efficient Sys-
tems for Foundation Models (ES-FoMo), 2023. URL https://openreview.net/forum?
id=bOVydU0XKC.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2022.

Yuval Kirstain, Adam Polyak, Uriel Singer, Shahbuland Matiana, Joe Penna, and Omer Levy.
Pick-a-pic: An open dataset of user preferences for text-to-image generation. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023. URL https://openreview.
net/forum?id=G5RwHpBUv0.

Hao Li, Yang Zou, Ying Wang, Orchid Majumder, Yusheng Xie, R. Manmatha, Ashwin Swaminathan,
Zhuowen Tu, Stefano Ermon, and Stefano Soatto. On the scalability of diffusion-based text-to-
image generation, 2024.

Senmao Li, Taihang Hu, Fahad Shahbaz Khan, Linxuan Li, Shiqi Yang, Yaxing Wang, Ming-Ming
Cheng, and Jian Yang. Faster diffusion: Rethinking the role of unet encoder in diffusion models,
2023a.

Xiuyu Li, Yijiang Liu, Long Lian, Huanrui Yang, Zhen Dong, Daniel Kang, Shanghang Zhang,
and Kurt Keutzer. Q-diffusion: Quantizing diffusion models. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), pp. 17535–17545, October 2023b.

Yanjing Li, Sheng Xu, Xianbin Cao, Xiao Sun, and Baochang Zhang. Q-DM: An efficient low-
bit quantized diffusion model. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023c. URL https://openreview.net/forum?id=sFGkL5BsPi.

Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu, Qi Zhang, Fengwei Yu, Wei Wang, and
Shi Gu. {BRECQ}: Pushing the limit of post-training quantization by block reconstruction. In
International Conference on Learning Representations, 2021. URL https://openreview.
net/forum?id=POWv6hDd9XH.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
llm compression and acceleration, 2024.

12

https://openreview.net/forum?id=bOVydU0XKC
https://openreview.net/forum?id=bOVydU0XKC
https://openreview.net/forum?id=G5RwHpBUv0
https://openreview.net/forum?id=G5RwHpBUv0
https://openreview.net/forum?id=sFGkL5BsPi
https://openreview.net/forum?id=POWv6hDd9XH
https://openreview.net/forum?id=POWv6hDd9XH

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer Vision–
ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings,
Part V 13, pp. 740–755. Springer, 2014.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A
fast ode solver for diffusion probabilistic model sampling in around 10 steps. arXiv preprint
arXiv:2206.00927, 2022.

Simian Luo, Yiqin Tan, Longbo Huang, Jian Li, and Hang Zhao. Latent consistency models:
Synthesizing high-resolution images with few-step inference, 2023.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Deepcache: Accelerating diffusion models for free.
In The IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024.

Julieta Martinez, Joris Clement, Holger H Hoos, and James J Little. Revisiting additive quantization.
In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands,
October 11-14, 2016, Proceedings, Part II 14, pp. 137–153. Springer, 2016.

Julieta Martinez, Shobhit Zakhmi, Holger H Hoos, and James J Little. Lsq++: Lower running time
and higher recall in multi-codebook quantization. In Proceedings of the European Conference on
Computer Vision (ECCV), pp. 491–506, 2018.

Chenlin Meng, Robin Rombach, Ruiqi Gao, Diederik Kingma, Stefano Ermon, Jonathan Ho, and Tim
Salimans. On distillation of guided diffusion models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 14297–14306, 2023.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia,
Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, and Hao Wu. Mixed
precision training, 2018.

Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos Louizos, and Tijmen Blankevoort. Up
or down? Adaptive rounding for post-training quantization. In Hal Daumé III and Aarti Singh
(eds.), Proceedings of the 37th International Conference on Machine Learning, volume 119 of
Proceedings of Machine Learning Research, pp. 7197–7206. PMLR, 13–18 Jul 2020.

Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yelysei Bondarenko, Mart van Baalen, and
Tijmen Blankevoort. A white paper on neural network quantization. CoRR, abs/2106.08295, 2021a.
URL https://arxiv.org/abs/2106.08295.

Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yelysei Bondarenko, Mart van Baalen, and
Tijmen Blankevoort. A white paper on neural network quantization, 2021b.

Markus Nagel, Marios Fournarakis, Yelysei Bondarenko, and Tijmen Blankevoort. Overcoming
oscillations in quantization-aware training. In International Conference on Machine Learning,
2022. URL https://api.semanticscholar.org/CorpusID:247595112.

William Peebles and Saining Xie. Scalable diffusion models with transformers. arXiv preprint
arXiv:2212.09748, 2022.

Pablo Pernias, Dominic Rampas, Mats L. Richter, Christopher J. Pal, and Marc Aubreville. Wuer-
stchen: An efficient architecture for large-scale text-to-image diffusion models, 2023.

Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
Penna, and Robin Rombach. SDXL: Improving latent diffusion models for high-resolution image
synthesis. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=di52zR8xgf.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models, 2021.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

13

https://arxiv.org/abs/2106.08295
https://api.semanticscholar.org/CorpusID:247595112
https://openreview.net/forum?id=di52zR8xgf

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In Medical image computing and computer-assisted intervention–MICCAI
2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part III
18, pp. 234–241. Springer, 2015.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed
Kamyar Seyed Ghasemipour, Raphael Gontijo-Lopes, Burcu Karagol Ayan, Tim Salimans,
Jonathan Ho, David J. Fleet, and Mohammad Norouzi. Photorealistic text-to-image diffusion
models with deep language understanding. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=08Yk-n5l2Al.

Axel Sauer, Tero Karras, Samuli Laine, Andreas Geiger, and Timo Aila. StyleGAN-T: Unlocking the
power of GANs for fast large-scale text-to-image synthesis. volume abs/2301.09515, 2023a. URL
https://arxiv.org/abs/2301.09515.

Axel Sauer, Dominik Lorenz, Andreas Blattmann, and Robin Rombach. Adversarial diffusion
distillation, 2023b.

Axel Sauer, Frederic Boesel, Tim Dockhorn, Andreas Blattmann, Patrick Esser, and Robin Rombach.
Fast high-resolution image synthesis with latent adversarial diffusion distillation, 2024.

Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, Patrick Schramowski,
Srivatsa Kundurthy, Katherine Crowson, Ludwig Schmidt, Robert Kaczmarczyk, and Jenia Jitsev.
Laion-5b: An open large-scale dataset for training next generation image-text models, 2022.

Yuzhang Shang, Zhihang Yuan, Bin Xie, Bingzhe Wu, and Yan Yan. Post-training quantization on
diffusion models. In CVPR, 2023.

Junhyuk So, Jungwon Lee, Daehyun Ahn, Hyungjun Kim, and Eunhyeok Park. Temporal dynamic
quantization for diffusion models. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023. URL https://openreview.net/forum?id=D1sECc9fiG.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learning,
pp. 2256–2265. PMLR, 2015.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. arXiv preprint
arXiv:2303.01469, 2023.

Siao Tang, Xin Wang, Hong Chen, Chaoyu Guan, Zewen Wu, Yansong Tang, and Wenwu Zhu.
Post-training quantization with progressive calibration and activation relaxing for text-to-image
diffusion models, 2023.

Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr Kuleshov, and Christopher De Sa. Quip#: Even
better llm quantization with hadamard incoherence and lattice codebooks, 2024.

Mart van Baalen, Andrey Kuzmin, Markus Nagel, Peter Couperus, Cedric Bastoul, Eric Mahurin,
Tijmen Blankevoort, and Paul Whatmough. Gptvq: The blessing of dimensionality for llm
quantization, 2024.

Haoxuan Wang, Yuzhang Shang, Zhihang Yuan, Junyi Wu, and Yan Yan. Quest: Low-bit diffusion
model quantization via efficient selective finetuning, 2024.

Peisong Wang, Qiang Chen, Xiangyu He, and Jian Cheng. Towards accurate post-training network
quantization via bit-split and stitching. In Proceedings of the 37th International Conference on
Machine Learning, ICML’20. JMLR.org, 2020.

14

https://openreview.net/forum?id=08Yk-n5l2Al
https://arxiv.org/abs/2301.09515
https://openreview.net/forum?id=D1sECc9fiG

Felix Wimbauer, Bichen Wu, Edgar Schoenfeld, Xiaoliang Dai, Ji Hou, Zijian He, Artsiom Sanakoyeu,
Peizhao Zhang, Sam Tsai, Jonas Kohler, Christian Rupprecht, Daniel Cremers, Peter Vajda, and
Jialiang Wang. Cache me if you can: Accelerating diffusion models through block caching, 2024.

Yuewei Yang, Xiaoliang Dai, Jialiang Wang, Peizhao Zhang, and Hongbo Zhang. Efficient quantiza-
tion strategies for latent diffusion models, 2023.

Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gunjan Baid, Zirui Wang, Vijay Vasudevan,
Alexander Ku, Yinfei Yang, Burcu Karagol Ayan, et al. Scaling autoregressive models for content-
rich text-to-image generation. arXiv preprint arXiv:2206.10789, 2(3):5, 2022.

Wenliang Zhao, Lujia Bai, Yongming Rao, Jie Zhou, and Jiwen Lu. Unipc: A unified predictor-
corrector framework for fast sampling of diffusion models. NeurIPS, 2023.

Zhenyu Zhou, Defang Chen, Can Wang, and Chun Chen. Fast ode-based sampling for diffusion
models in around 5 steps, 2024.

Rui-Jie Zhu, Yu Zhang, Ethan Sifferman, Tyler Sheaves, Yiqiao Wang, Dustin Richmond, Peng
Zhou, and Jason K Eshraghian. Scalable matmul-free language modeling. arXiv preprint
arXiv:2406.02528, 2024.

15

A IMPLEMENTATION DETAILS

When applying this algorithm to large text-to-image models, we employ several tricks to make
calibration more scalable. We use half-precision to quickly generate inference trajectories for the
calibration set but run the rest of the calibration in full precision to avoid numeric issues. For
fine-tuning, we opt for mixed precision Micikevicius et al. (2018) for forward and backward passes.
On top of that, we use gradient checkpointing Chen et al. (2016) and gradient accumulation to reduce
the memory footprint during fine-tuning.

We use Adam optimizer for layer-wise calibration and fine-tuning with standard parameters β1 and
β2. During fine-tuning, we found that using a sufficiently large batch size is crucial for the training
to be effective. Namely, we fine-tune with at least 32 samples per batch and use 2048 generated
samples for training. The calibration dataset uses 256 prompts from the Pic-a-Pic dataset Kirstain
et al. (2023).

For each quantization experiment, we used either the 2 NVIDIA H100 or 4 A100 GPUs. Quantizing
the SDXL U-Net model took approximately 52h on 4 NVIDIA A100 and 36h on 2 NVIDIA H100.
Fine-tuning the quantized model was conducted on 4 NVIDIA A100 and took from 8 to 28 hours,
depending on the size of the fine-tuning dataset.

B HUMAN EVALUATION SETUP

Figure 5: Side-by-side comparison interface for text-to-image human evaluation.

The evaluation is conducted by professional assessors where they are asked to make a decision
between two images given a textual prompt. The decision is made according to image quality and
textual alignment. For each evaluated pair, three responses are collected and the final prediction is
determined by majority voting. We present the evaluation interface in Figure 5.

C LIMITATIONS

Due to the limited computational resources and costly calibration and fine-tuning procedures for large
diffusion models, we only experiment with two popular diffusion models: SDXL and SDXL Turbo
that represent latent diffusion models based on the efficient U-Net architecture Podell et al. (2024).
In general, VQDM is applicable to arbitrary diffusion architectures, including the transformer-based
ones Peebles & Xie (2022) that have also become widespread in practice Esser et al. (2024); Chen
et al. (2023; 2024). We leave the application of our method to the transformer-based Peebles &
Xie (2022) diffusion models for future work. We also exclude the quantization of activations from
the scope of our work, as our primary goal is to reduce memory requirements for modern diffusion
models.

16

D BROADER IMPACT

In this study, we propose a method for nearly lossless compression of diffusion models to 3− 4 bits,
making the deployment of modern diffusion models feasible on general-purpose devices (e.g., gaming
consoles or smartphones). This paves the way for numerous new means to incorporate generative
technology into everyday life, such as text-controlled photo editing or augmented reality applications
based on diffusion models without sending data from the user device to the third-party server for
computation.

On the other hand, as our method is applicable to all diffusion-based generative models, it also shares
all the possible negative societal impacts of this technology, such as the generation of fake images and
videos or the spread of social and cultural biases inherited by diffusion models. However, we believe
that our method does not introduce any new possibly harmful use cases for distributing text-to-image
generation technology and would have a positive societal impact.

E ALGORITHMS

In this section, we describe both the quantization process (Algorithm 1) and the fine-tuning process
(Algorithm 2). First, the layers in the U-Net are quantized using Algorithm 1. Then, we fine-tune the
trainable weights of the quantized model to mimic the teacher’s output (see Algorithm 2).

Algorithm 1 VQDM: Quantization stage.
Require: unet, prompt_embed
1: for block ∈ unet.blocks do
2: Xblock = collect_block_inputs(unet,prompt_embed) // sampling with current

unet
3: for layer in get_linear_and_conv(block) do
4: W := layer.weight
5: X := get_layer_inputs(layer,Xblock)
6: C, b, s := initialize_codebooks(W) // k-means
7: while L > τ do
8: C, s := train_Cs_adam(X,W, C, b, s)
9: b := beam_search(X,W, C, b, s) (Egiazarian et al., 2024)

10: end while
11: layer.weight := QuantizedLayer(C, b, s)
12: end for
13: end for

Algorithm 2 VQDM: Quantization-aware fine-tuning.
Require: unet_teacher, unet_student, prompt_embed
1: dataset := get_sampling_trajectory(unet_teacher, prompt_embed)
2: for i = 1, . . . ,num_epochs do
3: for latents_batch in dataset do
4: calculate_loss(unet_teacher, unet_student, latents_batch, prompt_embed)
5: optimize(unet_student)
6: end for
7: end for
func calculate_loss
Require: unet_teacher, unet_student, latents, prompt_embeds
1: Yteacher = unet_teacher(latents, prompt_embeds)
2: Ystudent = unet_student(latents_batch, prompt_embeds)
3: loss = ||Ystudent −Yteacher||22

17

	Introduction
	Related work
	Method
	Vector Quantization of Text-to-Image Models
	Calibrating Vector-Quantized Diffusion Models
	Inference procedure

	Experiments
	Experimental setup
	Comparison with baseline methods
	Inference performance
	Ablation
	Distilled diffusion models

	Conclusion
	Implementation details
	Human evaluation setup
	Limitations
	Broader Impact
	Algorithms

