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Abstract001

002

Large language models (LLMs) often respond con-003

fidently to questions even when they lack the nec-004

essary information, leading to hallucinated an-005

swers. In this work, we study the problem of006

(un)answerability detection in extractive question007

answering (QA), where the model should deter-008

mine if a passage contains sufficient information009

to answer a given question. We propose a simple010

approach that identifies a direction in the model’s011

activation space that captures unanswerability and012

uses it for classification. This direction is selected013

by applying activation additions during inference014

and measuring their impact on the model’s absten-015

tion behavior. We show that projecting hidden acti-016

vations onto this direction yields a reliable score for017

(un)answerability classification. Experiments on018

two open-weight LLMs and four QA benchmarks019

show that our method effectively detects unan-020

swerable questions and generalizes better across021

datasets than existing prompt-based and classifier-022

based approaches. Causal interventions reveal that023

adding the direction increases abstention, while024

ablating it suppresses it, further indicating that it025

captures an unanswerability signal.1026

1 Introduction027

Large language models (LLMs) often generate con-028

fident responses to questions regardless of whether029

they have the information needed to answer reli-030

ably (Yin et al., 2023; Yona et al., 2024). When031

a model lacks the required information, it often032

produces inaccurate responses or hallucinations033

(Huang et al., 2025; Luo et al., 2024), making the034

identification of such cases an important step to-035

ward improving its trustworthiness (Kadavath et al.,036

2022; Yin et al., 2023; Amayuelas et al., 2024).037

1Our code is available at https://anonymized.

This challenge is particularly important in applica- 038

tions such as medical assistance, legal advice, and 039

educational tools, where incorrect answers can lead 040

to real-world harm. 041

In this work, we study the problem of unanswer- 042

ability in the context of extractive question answer- 043

ing (QA), where the model is presented with a 044

question and a passage of text that may or may 045

not contain the information required to answer it 046

(Rajpurkar et al., 2018). As illustrated in Figure 1, 047

models in this setting tend to respond rather than ab- 048

stain, even when the question cannot be answered 049

from the provided passage. 050

Several approaches have been proposed for de- 051

tecting unanswerable questions. Fine-tuning has 052

been suggested to improve abstention behavior in 053

models (Feng et al., 2024; Zhang et al., 2024). In 054

extractive QA, prompting has been shown to en- 055

courage models to indicate uncertainty (Slobodkin 056

et al., 2023), but performance remains inconsis- 057

tent across models and datasets. Slobodkin et al. 058

(2023) further introduced a linear classifier trained 059

on internal model representations to predict unan- 060

swerability. Other efforts have explored estimat- 061

ing uncertainty from hidden states (Tomani et al., 062

2024; Kim et al., 2024), or detecting unanswer- 063

able inputs with sparse autoencoder features (Hein- 064

drich et al., 2025). While these latter methods have 065

shown promising results, they often fail to general- 066

ize across datasets—highlighting a key challenge 067

in robust unanswerability detection. 068

Here, we analyze the model’s internal activations 069

and show that a single direction in representation 070

space effectively captures unanswerability across 071

diverse datasets. To this end, we first construct a set 072

of candidate directions using difference-in-means 073

(Marks and Tegmark, 2024), where the averaged 074

activations of answerable examples are subtracted 075

from those of unanswerable ones at a fixed layer 076

and position. To select the most informative direc- 077

tion, we add each candidate vector to the hidden 078
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activations at inference time and measure the result-079

ing change in the model’s probability of abstaining.080

Finally, we use the selected direction for unanswer-081

ability classification: given an input, we extract its082

activations at a fixed layer and position and project083

it onto the learned direction. This projection yields084

a scalar unanswerability score, which reflects how085

aligned the model’s internal representation is with086

unanswerable examples.087

We evaluate our method on four question-088

answering datasets: SQUAD 2.0 (Rajpurkar et al.,089

2016, 2018), REPLIQA (Monteiro et al., 2024),090

NATURAL QUESTIONS (NQ) (Kwiatkowski et al.,091

2019), and MUSIQUE (Trivedi et al., 2022), us-092

ing Llama-3-8B-Instruct (Dubey et al., 2024) and093

Gemma-3-12B-IT (Team et al., 2025), and find that094

the learned direction consistently captures unan-095

swerability. Our method achieves F1 scores of096

75.9–96.4%, performing comparably to a logistic097

regression classifier baseline and outperforming098

prompt-based baselines. We also show that the099

direction signal transfers across datasets, exceed-100

ing the classifier’s generalization on three out of101

four datasets by an average of 8.14%. Moreover,102

a simple threshold calibration using the validation103

split of each evaluation dataset further improves104

performance by 9.73% on average. These results105

highlight the robustness of the learned direction106

and its ability to generalize across datasets. We107

further validate the signal encoded by the direction108

through causal interventions, where adding the di-109

rection vector to the residual stream at a sufficient110

magnitude causes the model to abstain in nearly all111

cases (96%), while ablating it pushes the model to112

answer even when the context is insufficient.113

Beyond classification, our method provides in-114

sight into how unanswerability is internally repre-115

sented by the model, revealing a native signal em-116

bedded directly in the representation space. Analy-117

sis of failure cases further supports the reliability118

of this signal. In several instances (26%), we found119

that the provided labels were incorrect. Also, in120

24% of cases labeled as answerable, the answer ap-121

peared in the passage but not in the context of the122

specific question, making the instance difficult to123

classify. A smaller portion (6%) included questions124

with grammatical issues, rendering their answer-125

ability unclear and dependent on interpretation.126

To conclude, we introduce a lightweight and in-127

terpretable method for detecting unanswerability128

in LLMs by uncovering a direction in the model’s129

activation space that captures an unanswerability130
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Figure 1: Abstention rate (recall) on unanswerable ques-
tions under Standard and Abstain-aware prompts, evalu-
ated on Llama-3-8B-Instruct and Gemma-3-12B-IT.

signal. We demonstrate the utility of this approach 131

for classifying unanswerable inputs across diverse 132

datasets, and show that the learned direction gener- 133

alizes better than prompt-based and classifier-based 134

baselines. We also show that we can use this direc- 135

tion to control the model’s tendency to abstain. 136

2 Problem Setup 137

We address the task of unanswerability detection 138

in extractive QA. Given a context (e.g., passage 139

or document) c and a question q, the goal is to 140

determine whether the context contains sufficient 141

information to answer the question. Formally, the 142

input is a pair (c, q), and the objective is to predict a 143

binary label y ∈ {0, 1}, where y = 1 indicates that 144

the question is unanswerable based on the context, 145

and y = 0 indicates that it is answerable. Examples 146

of answerable and unanswerable cases are shown 147

in Table 1. 148

3 Method 149

We take inspiration from prior observations that 150

certain abstract concepts, such as sentiment, re- 151

fusal, or truthfulness, are linearly encoded within a 152

language model’s internal representations (Tigges 153

et al., 2023; Arditi et al., 2024; Marks and Tegmark, 154

2024, inter alia), and aim to identify a direction in 155

the model’s activation space that captures unan- 156

swerability. If such a direction exists, it can be 157

used to distinguish answerable from unanswerable 158

instances by measuring the alignment between their 159

internal representations and this direction. We now 160

describe our methodology for finding such direc- 161

tions in LLMs. 162
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Dataset Context (c) Question (q) Label (y)

SQUAD In England, the period of Norman architecture imme-
diately succeeds that of the Anglo-Saxon and precedes
the Early Gothic...

What architecture type came af-
ter Early Gothic?

1 (unanswerable)

REPLIQA ...One such partnership was formed with the Greenleaf
Cafe, a popular downtown eatery, which now orga-
nizes ’Saturday Morning Miles’...

What specific event does the
Greenleaf Cafe organize as part
of Newville’s fitness initiative?

0 (answerable)

NQ The National Professional Soccer League II , which
awarded two points for all goals except those on the
power play , also used a three - point line...

when did the nba add the three
point line ?

1 (unanswerable)

MUSIQUE Ye Rongguang (born October 3, 1963 in Wenzhou,
Zhejiang) . . . Sanjiang Church was a Christian church
located in Yongjia County, near Wenzhou, in Zhejiang
Province, China...

What county was Ye Rongguang
born in?

0 (answerable)

Table 1: Example context–question pairs from each dataset used in our experiments, labeled as answerable (0) or
unanswerable (1).

3.1 Deriving Potential Directions163

To identify potential directions encoding unan-164

swerability, we follow prior work that uses dif-165

ferences in mean activations between two input166

sets (Marks and Tegmark, 2024; Belrose, 2024;167

Rimsky et al., 2024). Given a model with L lay-168

ers and hidden dimension d, for each input (c, q)169

we extract the hidden activations hℓ,p ∈ Rd at170

each layer ℓ ∈ {1, . . . , L} and token position p171

after the instruction segment.2 Let {(ci, qi)}Ni=1172

be answerable and {(cj , qj)}Mj=1 unanswerable ex-173

amples, and let h(i)
ℓ,p be the hidden activations for174

the i-th input. We define the candidate direction175

vℓ,p ∈ Rd at each layer ℓ and token position p as176

the difference between the mean activations over177

unanswerable and answerable examples:178

vℓ,p =
1

M

M∑
j=1

h
(j)
ℓ,p −

1

N

N∑
i=1

h
(i)
ℓ,p179

This yields a set of L×Npos directions {vℓ,p},180

where Npos is the number of token positions con-181

sidered.182

3.2 Selecting a Direction for Unanswerability183

We employ causal steering (Li et al., 2023; Turner184

et al., 2023; Rimsky et al., 2024) to choose the185

direction that best represents unanswerability. The186

selection is done on a separate validation set from187

the examples used to find the candidate directions.188

2These positions correspond to tokens from a chat template
that wraps chat models’ inputs and appear before the model’s
response, see §4.1 for details

Activation intervention For each candidate di- 189

rection vℓ,p and context-question pair (c, q) in the 190

validation set, we modify the hidden activations at 191

the corresponding layer ℓ and position p as follows: 192

h̃ℓ,p = hℓ,p + vℓ,p. 193

The modified activations are propagated forward 194

through the model. We repeat this procedure for 195

each candidate direction and analyze its effect on 196

the model’s outputs and abstention behavior. 197

Steering score Let {(ci, qi)}Ki=1 denote the vali- 198

dation set, consisting of K context-question pairs. 199

To approximate abstention behavior, we identify 200

the first token of the word unanswerable as it is 201

tokenized by the model (e.g., “un”), and denote 202

it as tun ∈ V . This token is used as a proxy for 203

abstention since the model is prompted to respond 204

with the word unanswerable when it cannot answer 205

the question based on the provided context. 206

For each validation example, we extract the 207

model’s next-token distribution under the interven- 208

tion. Let p(i)t denote the probability of token t for 209

the i-th validation example, the steering score ψsteer 210

of a direction vℓ,p is then defined as: 211

ψsteer =
1

K

K∑
i=1

log p(i)tun
− log

∑
t∈V\{tun}

p
(i)
t

 212

This score quantifies how much more likely the 213

model is, on average, to generate tun rather than any 214

other token in the vocabulary, when steered with 215

the candidate direction. Higher values indicate a 216

stronger abstention-inducing effect. 217
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Direction selection We evaluate all L×Npos can-218

didate directions and select the one with the highest219

steering score. The final unanswerability direction,220

denoted v∗, corresponds to the pair (ℓ∗, p∗) that221

maximizes ψsteer. This selected direction is used in222

all downstream evaluations and analyses.223

3.3 Unanswerability Classification224

We use the selected direction v∗ to define a scalar225

scoring function that quantifies how strongly a226

given input aligns with the unanswerability sig-227

nal; this score is then used to classify new inputs228

as answerable or unanswerable.229

Unanswerability score Let v̂∗ denote the nor-230

malized direction selected in the previous step. For231

a given context-question pair (c, q), we extract the232

hidden activations h∗ ∈ Rd from the selected layer233

ℓ∗ and position p∗. The unanswerability score is234

computed as the dot product between this hidden235

state and the normalized direction:236

ϕunans = ⟨h∗, v̂∗⟩237

This scalar is intended to reflect how strongly the238

input aligns with the learned unanswerability signal.239

Since it is unbounded and varies across models and240

datasets, we next describe how we interpret this241

value for classification.242

Thresholding the unanswerability score To243

establish a classifier, we select the threshold τ244

on the unanswerability score using the validation245

set. Specifically, we compute the ROC curve and246

choose τ to minimize the Euclidean distance to the247

ideal point (TPR = 1, FPR = 0). At inference time,248

for a given input (c, q), if ϕunans exceeds τ , then249

the input is classified as unanswerable; otherwise,250

it is classified as answerable.251

4 Experiments252

We evaluate our method against three baselines253

and report classification accuracy and generaliza-254

tion across datasets, as well as a causal analysis of255

the learned direction. Our results show that: (1)256

the direction-based method achieves strong perfor-257

mance when derived and evaluated on the same258

dataset, close to a trained classifier and outper-259

forming prompt-based baselines; (2) the direction260

generalizes more robustly across datasets than the261

classifier, especially after a lightweight threshold262

calibration; and (3) the selected directions causally263

influence the model’s abstention behavior.264

4.1 Experimental Setup 265

Datasets We evaluate our method on four ques- 266

tion answering benchmarks—SQUAD 2.0 (Ra- 267

jpurkar et al., 2018), REPLIQA (Monteiro et al., 268

2024), NQ (Kwiatkowski et al., 2019), and 269

MUSIQUE (Trivedi et al., 2022)—all structured 270

as context-question pairs. 271

SQUAD 2.0 and REPLIQA natively include 272

explicitly labeled answerable and unanswerable 273

examples. SQUAD 2.0 augments the original 274

SQUAD dataset, which is based on Wikipedia arti- 275

cles, with unanswerable questions that appear plau- 276

sible given the context. REPLIQA is constructed 277

from human-written reference documents across 278

diverse topics not found on the web, so models 279

cannot rely on their parametric knowledge. 280

For NQ and MUSIQUE, we use the versions of 281

the datasets curated by Slobodkin et al. (2023). 282

NQ consists of real user questions paired with 283

Wikipedia paragraphs, while MUSIQUE contains 284

multi-hop questions created by composing seed 285

questions from various datasets. The curated ver- 286

sion retains the original answerable examples and 287

constructs unanswerable ones by replacing gold 288

paragraphs with semantically similar ones that do 289

not answer the question. (see §A for more details). 290

For each dataset, we sample a total of 4,000 ex- 291

amples, which we split into training (1,200), devel- 292

opment (800), and test (2,000) sets, with an equal 293

number of answerable and unanswerable instances 294

in each split. Table 1 provides representative exam- 295

ples from each dataset. 296

Models We experiment with two instruction- 297

tuned models: Llama-3-8B-Instruct (Dubey et al., 298

2024) and Gemma-3-12B-IT (Team et al., 2025). 299

Both were trained with chat templates that wrap the 300

user instruction (see §A.2 for the full templates). In 301

our analysis, we focus on hidden activations at the 302

positions of the template tokens that immediately 303

follow the user instruction, as they represent the 304

model’s internal state after processing the full con- 305

text and question and just before it begins generat- 306

ing a response. In addition, all inputs are formatted 307

using the Abstain-aware Prompt (see §4.1). 308

Method We find that the token “un” corresponds 309

to the first token in unanswerable in both Llama-3- 310

8B-Instruct and Gemma-3-12B-IT, and set it as tun. 311

We apply the method described in §3.2 to select the 312

layer and token position for each model–dataset 313

pair, and find that the selected layers consistently 314
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Figure 2: Unanswerable prompts recall (abstention rate) across datasets using three methods: a trained classifier, a
direction-based method with a fixed threshold, and a calibrated threshold variant. Each heatmap shows generalization
performance from training on one dataset (rows) to evaluating on another (columns). Results are shown for both
Llama-3-8B-Instruct (top) and Gemma-3-12B-IT (bottom).

lie near the middle of the model. This is consis-315

tent with prior work suggesting that middle layers316

in transformer models tend to capture abstract se-317

mantic properties, in contrast to lower layers which318

focus on lexical patterns and upper layers which are319

more task-specific (Geva et al., 2021; Vulić et al.,320

2020; Tenney et al., 2019; Jawahar et al., 2019).321

Classification thresholds are set using ROC curves322

on the validation sets (see §A.5 for direction and323

threshold selection details).324

Baselines We compare our method against the325

following baselines:326

• Standard Prompt: A prompt-only baseline327

where the model is given the context and ques-328

tion without any additional instruction.329

• Abstain-aware Prompt: A prompt augmenta-330

tion baseline, in which an instruction is added331

encouraging the model to abstain if the ques-332

tion is unanswerable (Slobodkin et al., 2023).333

• Classifier: A logistic regression model trained334

on hidden activations to predict unanswer-335

ability (Slobodkin et al., 2023). The classi-336

fier is trained using cross-validation on the337

combined training and validation sets, with338

model inputs formatted using the Abstain- 339

aware Prompt. 340

Full prompt templates for the prompt-based base- 341

lines are provided in §A.3. 342

Evaluation metrics We measure precision, re- 343

call, and F1 score separately for the answerable 344

and unanswerable classes. We also report macro- 345

average F1 score, which balances precision and re- 346

call across both classes equally. Since the prompt- 347

based baselines generate textual output, we first 348

classify each response as either an abstention or 349

an attempt to answer the question. To do so, we 350

use GPT-4o mini (OpenAI, 2024), prompted with 351

instructions and few-shot examples to make this de- 352

cision. The full prompt used and a manual analysis 353

validating this automatic evaluation are in §A.4. 354

4.2 (Un)answerability Classification 355

We evaluate how effectively our method distin- 356

guishes answerable and unanswerable questions. 357

Direction-based method effectively detects unan- 358

swerable questions Figure 2 (left and middle) 359

shows the recall on unanswerable examples for our 360

direction-based method and the classifier baseline, 361

across all combinations of evaluation and source 362
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Figure 3: Macro-average F1 scores across datasets using three methods: a trained classifier, a direction-based method
with a fixed threshold, and a calibrated threshold variant. Each heatmap shows generalization performance from
training on one dataset (rows) to evaluating on another (columns). Results are shown for both Llama-3-8B-Instruct
(top) and Gemma-3-12B-IT (bottom).

datasets. Figure 1 shows the recall on unanswerable363

examples for the Standard Prompt and the Abstain-364

aware Prompt baselines. Both the classifier and365

our method outperform the prompt-based baselines.366

When the training and test splits are from the same367

dataset, the classifier achieves the highest overall368

recall, averaging 87% for Llama-3-8B-Instruct and369

86.4% for Gemma-3-12B-IT. Our direction-based370

method is slightly below, with an average recall of371

83.6% and 81.9%, respectively. However, when372

evaluated on unseen datasets, the classifier perfor-373

mance drops by an average of 30.2%, while our374

method drops by only 7.4%, demonstrating better375

generalization.376

Direction-based classification outperforms base-377

lines on unseen datasets Figure 3 (left and mid-378

dle) presents the macro-average F1 scores for379

our method and the classifier baseline across all380

source–evaluation dataset pairs, and Figure 4 re-381

ports scores for the prompt-based baselines. We382

observe the same trends in F1 scores: when the383

direction is evaluated on the same dataset is was384

derived from, it achieves 83.7% on average on385

Llama-3-8B-Instruct and 82.4% on Gemma-3-12B-386

IT, compared to 86.5% and 87.8%, respectively, for387

the classifier. However, our method demonstrates388
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stronger generalization than the classifier baseline 389

when evaluated on unseen datasets. Specifically, on 390

SQUAD, REPLIQA, and NQ, it outperforms the 391

classifier by 1.8%–11.9%, averaged per evaluation 392

dataset. The only exception is MUSIQUE, where 393

the classifier generalizes better by 8.4–12.2%. We 394

will next show that these results can be improved 395

with a simple threshold calibration, indicating that 396

even in cases where the direction appears not to 397

generalize well, the issue lies in the decision bound- 398

ary rather than in the quality of the signal itself. 399
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Threshold calibration further improves gener-400

alization To understand whether the weaker gen-401

eralization results reflect that the direction cap-402

tured a dataset-specific signal, or simply a need403

for threshold calibration, we visualize the unan-404

swerability scores ϕunans across datasets (see §C).405

We observe that the direction consistently induces406

a separation between answerable and unanswerable407

examples, however, the optimal decision threshold408

varies between datasets. This motivates refining the409

threshold using the validation set of each evaluation410

dataset, without modifying the learned direction it-411

self, following the procedure described in §3.3.412

As shown in Figures 2 and 3, with dataset-413

specific thresholding, the direction-based method414

achieves consistent performance across evaluation415

datasets, regardless of its source. This simple cal-416

ibration improves generalization results by 2.7–417

23.7% across evaluation datasets, achieving per-418

formance only 2.6% lower on average than that of419

directions derived from the same datasets. These420

results suggests that the unanswerability signal cap-421

tured by the direction is robust and consistently422

encoded across datasets.423

4.3 Steering Effectiveness424

To further show that the selected direction captures425

an unanswerability signal and to observe whether426

it can influence abstention, we assess its causal im-427

pact. To do so, We perform activation space inter-428

ventions at the chosen layer ℓ∗ and token position429

p∗, for each dataset and model. For a given context–430

question pair (c, q) formatted with the Abstain-431

aware Prompt, we modify the hidden activations432

at layer ℓ∗ and position p∗ by adding the selected433

direction, normalized scaled by α:434

h̃∗ = h∗ + α v̂∗435

where α ∈ [−2, 2] controls the strength and po-436

larity of the intervention. We use GPT-4o mini to437

determine if the model abstained or attempted to438

answer the question (see §A.4), and measure the ab-439

stention rate on both answerable and unanswerable440

validation examples under each intervention (see441

Figure 5). In all cases, increasing α leads to a sharp442

rise in abstention on both unanswerable and an-443

swerable inputs, with mean abstention rates (across444

all datasets) reaching 96.8% and 95.2%, respec-445

tively, at α = 2.0. Conversely, when α = −2.0,446

abstention drops to 2.0% for answerable prompts447

and 19.4% for unanswerable ones. These results448
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Figure 5: Effect of activation interventions on model ab-
stention rates across steering strengths (α). Results are
shown for both answerable and unanswerable validation
examples, for each dataset and model.

provide strong evidence that the direction causally 449

influences the model’s decision to abstain. 450

5 Error Analysis 451

To better understand the limitations of our method, 452

we conducted a manual categorization of 100 mis- 453

classified examples: 50 from SQUAD and 50 from 454

NQ, evenly split between answerable and unan- 455

swerable instances. Each was assigned to one of 456

five categories: 457

• Direction Failure: the direction score led to 458

an incorrect prediction despite a correct label 459

and well-formed input. 460

• Incorrect Label: the ground-truth annotation 461

appears wrong. 462

• Required Title: (SQUAD only) the document 463

title (not included in our inputs) was necessary 464

to interpret the passage. 465

• Grammar “Mistake”: ungrammatical phras- 466

ing or ambiguity made the input difficult to 467

interpret. 468

• Answer Not in Context: the answer exists in 469

the passage but is not clearly in the context of 470

the question. 471

Table 2 shows the results. We find that 53% of 472

the errors are due to direction failures, and 26% 473
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Category
SQUAD NQ Overall

%Ans Unans Ans Unans

Direction
failure

14 20 7 12 53

Incorrect
label

5 3 7 11 26

Required
title

3 0 0 0 3

Grammar
“mistake”

0 2 2 2 6

Answer not
in context

3 0 9 0 12

Table 2: Manual categorization of 100 direction-based
classification errors, evenly sampled from SQUAD and
NQ (with 25 answerable and 25 unanswerable examples
from each).

stem from annotation errors, especially among NQ474

unanswerable examples. Notably, 24% of the mis-475

classified answerable examples fall into the “an-476

swer not in context” category, most of them in NQ.477

Overall, this categorization reveals that many of478

the model’s errors arise from ambiguous inputs or479

limitations in the dataset, rather than clear failures480

of the method itself. Representative examples from481

each category are included in §D.482

6 Related Work483

Prior work has explored methods to improve absten-484

tion behavior in models: Lan et al. (2020) improved485

reasoning with a pretraining loss, leading to im-486

proved performance on QA tasks, including unan-487

swerable questions, whereas Zhang et al. (2021) in-488

troduced a verification process to detect when ques-489

tions cannot be answered. Fine-tuned approaches490

have also been proposed to reduce hallucinations491

by improving the model’s ability to abstain (Zhang492

et al., 2024; Feng et al., 2024). In contrast, we493

detect unanswerability by interpreting internal rep-494

resentations of the model, leaving it unchanged.495

Several works (Tomani et al., 2024; Kim et al.,496

2024) evaluated model uncertainty as a signal for497

whether a question could be answered given the498

context. We, however, focus directly on unanswer-499

ability detection, without estimating uncertainty.500

Prompt manipulations were also proposed to de-501

tect unanswerability, but showed unstable perfor-502

mance across datasets and models (Slobodkin et al.,503

2023; Zhou et al., 2023). Slobodkin et al. (2023)504

further identified an unanswerability-related sub-505

space by training a logistic regression classifier on 506

last-layer hidden representations. Here, we aim to 507

identify a direction in activation space that influ- 508

ences the model’s abstention behavior and captures 509

unanswerability consistently across datasets. An- 510

other approach used sparse autoencoder features 511

to classify unanswerable inputs (Heindrich et al., 512

2025). Though effective on the training dataset, 513

the generalization ability of the last two methods 514

proved inconsistent. In contrast, our approach of- 515

fers a lightweight method for unanswerability clas- 516

sification and demonstrates stronger generalization 517

across datasets. 518

Extracting linear directions from model activa- 519

tion has been a common technique for analyzing 520

and modifying model behavior (Bolukbasi et al., 521

2016; Li et al., 2023; Marks and Tegmark, 2024; 522

Hong et al., 2025; Cohen et al., 2025). In this work, 523

we show that similar techniques can be applied to 524

identify a direction associated with unanswerabil- 525

ity, and demonstrate how we can use this direction 526

to classify whether a question can be answered 527

from the given context. 528

7 Conclusion 529

Our work introduces a method for identifying a di- 530

rection in the model’s activation space that captures 531

unanswerability, using difference-in-means and a 532

selection criterion based on activation steering. We 533

introduce a simple classification method that uses 534

this direction to detect unanswerable questions. 535

We compare our method to existing approaches 536

and find that, while the strongest baseline achieves 537

slightly higher performance when evaluated on its 538

training dataset, our method generalizes more ef- 539

fectively across datasets. We also show that causal 540

interventions along the direction induce abstention 541

behavior of the model. These findings support the 542

view that abstract properties such as unanswerabil- 543

ity are linearly encoded in the intermediate repre- 544

sentations of language models, and show that this 545

signal can be leveraged for both interpretation and 546

practical use. 547

Limitations 548

Our approach assumes that unanswerability is me- 549

diated by a linear direction from a fixed layer and 550

token position. While we capture a strong signal, 551

it is possible that unanswerability is represented 552

in more complex patterns, such as across multiple 553

layers or within a circuit, which our method cannot 554
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identify. In addition, we use a simple threshold555

over the projection onto the direction for classifica-556

tion and do not explore more expressive functions,557

which could potentially better exploit this signal.558

Finally, our evaluation is limited to extractive QA559

tasks. It remains to be seen how well the method560

extends to other settings, such as open-ended gen-561

eration.562
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A Experimental Setup - Additional814

Details815

This section provides additional details about our816

experimental setup, including further details on the817

curated datasets and prompt templates used in our818

experiments819

A.1 Curated Versions of NQ and MUSIQUE820

We use the curated versions of NQ and MUSIQUE821

introduced by Slobodkin et al. (2023). In NQ, each822

example consists of a real user question paired with823

a paragraph from a Wikipedia article. Answerable824

instances are drawn from questions that include825

both a long and short answer; the long answer is826

used as context. Unanswerable instances are con-827

structed by replacing the context with a semanti-828

cally similar paragraph from the same article that829

is not annotated as the long answer. Paragraphs are830

ranked using cosine similarity over Sentence-BERT831

embeddings.832

Model Chat Template

Llama-3-8B-
Instruct

<|start_header_id|>user

<|end_header_id|>{instruction}

<|eot_id|><|start_header_id|>

assistant<|end_header_id|>

Gemma-3-12B-
IT

<start_of_turn>user

{instruction}<end_of_turn>

<start_of_turn>model

Table 3: Chat templates used to format the user instruc-
tion during inference.

MUSIQUE is a multi-hop QA benchmark in 833

which each instance includes a complex question, 834

a decomposition into sub-questions, and a set of 835

candidate paragraphs. In the curated version, an- 836

swerable examples are formed by concatenating the 837

gold paragraphs aligned with each sub-question. To 838

generate unanswerable examples, one or more of 839

these gold paragraphs are replaced with the most 840

semantically similar but incorrect paragraphs, iden- 841

tified using the same retrieval method applied in 842

NQ. 843

A.2 Model Chat Templates 844

Llama-3-8B-Instruct and Gemma-3-12B-IT are 845

instruction-tuned using system-defined chat tem- 846

plates that wrap the user instruction before response 847

generation.we use these same templates in our ex- 848

periments, as shown in Table 3. As described in 849

§4.1, we extract hidden activations at the template 850

positions following the user instruction. 851

A.3 Prompt-based Baseline Prompts 852

Table 4 shows the prompt used in the standard 853

prompt-based baseline, which contains only the 854

context and question. Table 5 presents the modified 855

version used in the abstention-instruction baseline, 856

which encourages the model to abstain when the 857

question cannot be answered from the passage. 858

Given the following passage and question, answer
the question.

Passage: <passage>

Question: <question>

Answer:

Table 4: Prompt used in the standard prompt-based
baseline.
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Given the following passage and question, answer
the question.

First make sure if it can be answered by the passage.

If it cannot be answered based on the passage, reply
"unanswerable".

Passage: <passage>

Question: <question>

Answer:

Table 5: Prompt used in the abstention-instruction base-
line.

A.4 Evaluating Prompt-Based Baselines with859

GPT-4o mini860

Table 6 displays the full prompt given to GPT-4o-861

mini to determine whether a model’s response con-862

stitutes an abstention. The prompt includes de-863

tailed instructions and few-shot examples. To as-864

sess the reliability of this evaluation method, we865

conducted a manual evaluation over 50 model re-866

sponses: 25 express abstention and 25 attempt to867

answer. The responses were sampled from model868

outputs generated for inputs from our datasets and869

labeled manually. GPT-4o-mini correctly classified870

all 50 examples.871

A.5 Direction and Threshold Selection872

Table 7 shows the layer and token position selected873

for each model–dataset pair, based on the method874

described in §3.2. For Llama-3-8B-Instruct, the875

same layer and position (layer 16, position −1)876

were selected across all datasets. For Gemma-877

3-12B-IT, the selected layers range from 26 to878

27, with positions −1 or −4, depending on the879

dataset. Since Llama-3-8B-Instruct has 32 layers880

and Gemma-3-12B-IT has 48, the selected layers881

lie near the middle of each model.882

We compute ROC curves on the validation sets883

(Figure 6) to select classification thresholds based884

on the separation between answerable and unan-885

swerable examples. The chosen threshold mini-886

mizes the distance to the ideal point and is applied887

at test time.888

B Full Classification Results889

We report the full classification results in Tables 8,890

9, 10, and 11. For each direction, derived from891

SQUAD, REPLIQA, NQ, and MUSIQUE, we892

present precision, recall, and F1 scores for both893

the answerable and unanswerable classes, across894
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NQ (AUC = 0.87)
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Figure 6: ROC curves across datasets using Llama-3-
8B-Instruct and Gemma-3-12B-IT. The x-axis shows
the false positive rate (answerable instances classified
as unanswerable), and the y-axis shows the true positive
rate (unanswerable instances correctly identified). Each
curve is annotated with its AUC, and markers indicate
the selected classification threshold per dataset.

all evaluation datasets and for both Llama-3-8B- 895

Instruct and Gemma-3-12B-IT. Results are re- 896

ported both with the original threshold and after 897

applying threshold calibration. 898

C Unanswerability Score Distributions 899

To visualize how well the unanswerability direc- 900

tion separates answerable and unanswerable exam- 901

ples, we plot the unanswerability scores ϕunans, i.e 902

the results of the projection of hidden activations 903

onto a direction derived from a specific dataset. 904

For each target dataset, we display the distribution 905

of scores for both classes using a fixed direction. 906

Figure 7 show the distributions for Llama-3-8B- 907

Instruct using directions derived from SQUAD and 908

NQ, respectively. In both cases, the direction in- 909

duces clear separation between the answerable and 910

unanswerable classes. However, the score distri- 911

butions vary across datasets, suggesting that the 912

optimal decision threshold differs depending on 913

the evaluation set. 914
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You will be shown a model’s response to a question. Your task is to decide whether the model attempted to answer the
question.

It is considered to abstain if it explicitly says it cannot answer the question, indicates uncertainty, or refuses to provide an
answer because the context is insufficient.

Otherwise, it is considered to have answered the question.

Respond with "yes" if the model attempted to answer the question.

Respond with "no" if the model abstained.

You will respond with a single word: "yes" or "no". Do not provide any explanation or extra text.

Examples:

Model response: "1598"

Answer: yes

Model response: "abc"

Answer: yes

Model response: "The answer can be answered by the passage. According to the passage, Fort Coligny was destroyed in
1560."

Answer: yes

Model response: "According to the passage, problems capable of theoretical solutions but consuming unreasonable time in
practical application are known as intractable problems"

Answer: yes

Model response: "The passage does not mention BSkyB agreeing with any claim. In fact, it states that BSkyB denied Virgin
Media’s claim that they had substantially increased the asking price for the channels. Therefore, the answer is ünanswerable.̈"

Answer: no

Model response: "The passage does not answer the question. The passage only mentions that the five counties (Los Angeles,
Orange, San Diego, San Bernardino, and Riverside) are among the top 15 most populous counties in the United States, but it
does not provide the actual names of the five most populous counties in the United States."

Answer: no

Model response: "The passage does not mention the birth year of Reguier de la Plancha. It only mentions that he died in
1560, but does not provide his birth year."

Answer: no

Table 6: Prompt used to instruct GPT-4o mini to classify model responses as either abstentions or answer attempts.
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Model Dataset Layer Position

Llama-3-8B-
Instruct

All 16 −1

Gemma-3-
12B-IT

SQUAD 27 −1

REPLIQA 26 −1

NQ 27 −1

MUSIQUE 27 −4

Table 7: Selected layer and token position from which
hidden activations were extracted to compute the unan-
swerability direction for each model–dataset pair.
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Figure 7: Distribution of unanswerability scores ϕunans
across datasets using the directions derived from
SQUAD and NQ in Llama-3-8B-Instruct.

D Failure Case Examples915

Table 12 provides one representative example for916

each of the error categories described in §5. Each917

row includes the input question, context, predicted918

label, and a brief explanation of the failure.919

E Resources and Packages920

In our experiments, we used models and data from921

the transformers (Wolf et al., 2020) and datasets922

(Lhoest et al., 2021) packages. AI models (specif-923

ically ChatGPT) were used to implement certain924

helper functions. All the experiments were con-925

ducted using a single H100 80GB GPU.926
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Eval Dataset Class
Llama 3 Gemma 3

Original Threshold + Calibration Original Threshold + Calibration
P R F1 P R F1 P R F1 P R F1

SQUAD Ans 81.2 85.2 83.2 – – – 82.5 86.8 84.6 – – –
Unans 84.4 80.3 82.3 – – – 86.1 81.6 83.8 – – –

REPLIQA Ans 90.7 92.9 91.8 91.9 90.9 91.4 94.1 80.8 86.9 89.2 90.8 90.0
Unans 92.7 90.5 91.6 91.0 92.0 91.5 83.2 94.9 88.7 90.6 89.0 89.8

NQ Ans 81.4 67.1 73.6 78.1 76.1 77.1 86.1 63.4 73.0 80.8 82.5 81.6
Unans 72.0 84.7 77.9 76.7 78.7 77.7 71.0 89.8 79.3 82.1 80.4 81.3

MUSIQUE
Ans 88.7 16.4 27.7 76.8 77.2 77.0 86.8 23.0 36.4 76.7 79.1 77.9
Unans 53.9 97.9 69.6 77.1 76.7 76.9 55.6 96.5 70.6 78.4 75.9 77.1

Table 8: Full classification results using the direction derived from SQUAD. For each evaluation dataset and class,
we report precision (P), recall (R), and F1 score for Llama-3-8B-Instruct and Gemma-3-12B-IT, under the original
threshold and after applying threshold calibration.

Eval Dataset Class
Llama 3 Gemma 3

Original Threshold + Calibration Original Threshold + Calibration
P R F1 P R F1 P R F1 P R F1

SQUAD Ans 76.6 90.1 82.8 81.5 81.3 81.4 78.3 79.7 79.0 77.5 81.7 79.6
Unans 88.0 72.5 79.5 81.3 81.5 81.4 79.3 77.9 78.6 80.7 76.3 78.4

REPLIQA Ans 96.1 96.7 96.4 – – – 90.4 87.4 88.9 – – –
Unans 96.7 96.1 96.4 – – – 87.8 90.7 89.2 – – –

NQ Ans 81.3 67.6 73.8 78.8 76.2 77.5 86.4 61.5 71.9 81.2 72.9 76.8
Unans 72.3 84.4 77.9 77.0 79.5 78.2 70.1 90.3 78.9 75.4 83.1 79.1

MUSIQUE
Ans 87.7 21.3 34.3 75.8 74.3 75.1 80.0 21.2 33.5 72.6 68.4 70.4
Unans 55.2 97.0 70.4 74.8 76.3 75.5 54.6 94.7 69.3 70.1 74.2 72.1

Table 9: Full classification results using the direction derived from REPLIQA. For each evaluation dataset and class,
we report precision (P), recall (R), and F1 score for Llama-3-8B-Instruct and Gemma-3-12B-IT, under the original
threshold and after applying threshold calibration.

Eval Dataset Class
Llama 3 Gemma 3

Original Threshold + Calibration Original Threshold + Calibration
P R F1 P R F1 P R F1 P R F1

SQUAD Ans 74.7 92.6 82.7 74.2 93.3 82.6 70.5 94.6 80.8 78.5 86.5 82.3
Unans 90.3 68.7 78.0 91.0 67.5 77.5 91.8 60.5 72.9 85.0 76.3 80.4

REPLIQA Ans 86.5 97.8 91.8 85.4 97.9 91.2 73.5 90.3 81.0 78.1 85.8 81.8
Unans 97.5 84.7 90.6 97.5 83.3 89.9 87.4 67.4 76.1 84.2 75.9 79.9

NQ Ans 79.5 77.3 78.4 – – – 82.4 77.9 80.1 – – –
Unans 77.9 80.0 78.9 – – – 79.1 83.4 81.2 – – –

MUSIQUE
Ans 87.6 28.2 42.7 87.5 29.3 43.9 80.6 52.0 63.2 74.2 74.0 74.1
Unans 57.2 96.0 71.7 57.5 95.8 71.9 64.6 87.5 74.3 74.1 74.3 74.2

Table 10: Full classification results using the direction derived from NQ. For each evaluation dataset and class, we
report precision (P), recall (R), and F1 score for Llama-3-8B-Instruct and Gemma-3-12B-IT, under the original
threshold and after applying threshold calibration.
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Eval Dataset Class
Llama 3 Gemma 3

Original Threshold + Calibration Original Threshold + Calibration
P R F1 P R F1 P R F1 P R F1

SQUAD Ans 55.0 99.6 70.9 79.9 87.0 83.3 62.7 97.3 76.3 69.3 81.4 74.9
Unans 97.9 18.5 31.1 85.7 78.1 81.7 94.0 42.1 58.2 77.5 64.0 70.1

REPLIQA Ans 61.3 99.9 76.0 91.0 90.7 90.8 70.8 98.4 82.4 84.7 86.8 85.7
Unans 99.7 37.0 54.0 90.7 91.0 90.9 97.4 59.5 73.9 86.5 84.3 85.4

NQ Ans 57.3 96.7 72.0 76.1 78.8 77.4 76.4 82.7 79.4 79.4 78.0 78.7
Unans 89.5 28.0 42.7 78.0 75.2 76.6 81.1 74.4 77.6 78.4 79.7 79.0

MUSIQUE
Ans 77.5 76.5 77.0 – – – 74.0 80.0 76.9 – – –
Unans 76.8 77.8 77.3 – – – 78.2 71.9 74.9 – – –

Table 11: Full classification results using the direction derived from MUSIQUE. For each evaluation dataset and
class, we report precision (P), recall (R), and F1 score for Llama-3-8B-Instruct and Gemma-3-12B-IT, under the
original threshold and after applying threshold calibration

Category Dataset Label Context Question Comment

Direction Failure SQUAD Unanswerable The topic of language for
writers from Dalmatia and
Dubrovnik... These facts under-
mine the Croatian language pro-
ponents’ argument that modern-
day Croatian is based on a lan-
guage called Old Croatian.

Prior to the 19th
century where
did Croatians
and Serbians
live?

The direction predicts
“answerable,” but the
context passage does
not answer the question.

Incorrect Label NQ Unanswerable The ileum is the third and final
part of the small intestine... It
ends at the ileocecal junction...

Where is the
ileum located in
the body?

Based on the passage,
the ileum is located
in the small intestine,
specifically as the third
and final part of it.
Therefore, the label is
incorrect.

Required Title SQUAD Answerable During the latter half of the 20th
century, a more diverse range of
industry also came to the city,
including aircraft and car manu-
facture...

Southampton’s
range of indus-
tries includes
the manufacture
of cars and
what other
transport?

Without the passage ti-
tle (“Southampton”), it
is unclear that “the city”
refers to the correct sub-
ject.

Grammar
“Mistake”

SQUAD Unanswerable ...MCA agent Lew Wasserman
made a deal with Universal for
his client James Stewart...

Who was a
MAC agent?

The question refers
to “MAC” while the
passage only mentions
“MCA” so the correct
label is unanswerable.
However, the model
may have treated this as
a minor typo, leading
the direction to misclas-
sify it as answerable.

Answer Not
in Context

NQ Answerable The Speaker, Majority Leader,
Minority Leader, Majority Whip
and Minority Whip all receive
special office suites...

Top 5 leader-
ship positions
in the House
of Representa-
tives?

The roles are listed, but
the passage does not
clearly frame them as
leadership positions rel-
evant to the question.

Table 12: Representative misclassified examples from each failure category. Each includes the dataset, gold label,
and a brief explanation of the error.
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