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Abstract

Large language models (LLMs) often respond con-
fidently to questions even when they lack the nec-
essary information, leading to hallucinated an-
swers. In this work, we study the problem of
(un)answerability detection in extractive question
answering (QA), where the model should deter-
mine if a passage contains sufficient information
to answer a given question. We propose a simple
approach that identifies a direction in the model’s
activation space that captures unanswerability and
uses it for classification. This direction is selected
by applying activation additions during inference
and measuring their impact on the model’s absten-
tion behavior. We show that projecting hidden acti-
vations onto this direction yields a reliable score for
(un)answerability classification. Experiments on
two open-weight LLMs and four QA benchmarks
show that our method effectively detects unan-
swerable questions and generalizes better across
datasets than existing prompt-based and classifier-
based approaches. Causal interventions reveal that
adding the direction increases abstention, while
ablating it suppresses it, further indicating that it
captures an unanswerability signal.!

1 Introduction

Large language models (LLMs) often generate con-
fident responses to questions regardless of whether
they have the information needed to answer reli-
ably (Yin et al., 2023; Yona et al., 2024). When
a model lacks the required information, it often
produces inaccurate responses or hallucinations
(Huang et al., 2025; Luo et al., 2024), making the
identification of such cases an important step to-
ward improving its trustworthiness (Kadavath et al.,
2022; Yin et al., 2023; Amayuelas et al., 2024).

'Our code is available at https: //anonymized.

This challenge is particularly important in applica-
tions such as medical assistance, legal advice, and
educational tools, where incorrect answers can lead
to real-world harm.

In this work, we study the problem of unanswer-
ability in the context of extractive question answer-
ing (QA), where the model is presented with a
question and a passage of text that may or may
not contain the information required to answer it
(Rajpurkar et al., 2018). As illustrated in Figure 1,
models in this setting tend to respond rather than ab-
stain, even when the question cannot be answered
from the provided passage.

Several approaches have been proposed for de-
tecting unanswerable questions. Fine-tuning has
been suggested to improve abstention behavior in
models (Feng et al., 2024; Zhang et al., 2024). In
extractive QA, prompting has been shown to en-
courage models to indicate uncertainty (Slobodkin
et al., 2023), but performance remains inconsis-
tent across models and datasets. Slobodkin et al.
(2023) further introduced a linear classifier trained
on internal model representations to predict unan-
swerability. Other efforts have explored estimat-
ing uncertainty from hidden states (Tomani et al.,
2024; Kim et al., 2024), or detecting unanswer-
able inputs with sparse autoencoder features (Hein-
drich et al., 2025). While these latter methods have
shown promising results, they often fail to general-
ize across datasets—highlighting a key challenge
in robust unanswerability detection.

Here, we analyze the model’s internal activations
and show that a single direction in representation
space effectively captures unanswerability across
diverse datasets. To this end, we first construct a set
of candidate directions using difference-in-means
(Marks and Tegmark, 2024), where the averaged
activations of answerable examples are subtracted
from those of unanswerable ones at a fixed layer
and position. To select the most informative direc-
tion, we add each candidate vector to the hidden
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activations at inference time and measure the result-
ing change in the model’s probability of abstaining.
Finally, we use the selected direction for unanswer-
ability classification: given an input, we extract its
activations at a fixed layer and position and project
it onto the learned direction. This projection yields
a scalar unanswerability score, which reflects how
aligned the model’s internal representation is with
unanswerable examples.

We evaluate our method on four question-
answering datasets: SQUAD 2.0 (Rajpurkar et al.,
2016, 2018), REPLIQA (Monteiro et al., 2024),
NATURAL QUESTIONS (NQ) (Kwiatkowski et al.,
2019), and MUSIQUE (Trivedi et al., 2022), us-
ing Llama-3-8B-Instruct (Dubey et al., 2024) and
Gemma-3-12B-IT (Team et al., 2025), and find that
the learned direction consistently captures unan-
swerability. Our method achieves F1 scores of
75.9-96.4%, performing comparably to a logistic
regression classifier baseline and outperforming
prompt-based baselines. We also show that the
direction signal transfers across datasets, exceed-
ing the classifier’s generalization on three out of
four datasets by an average of 8.14%. Moreover,
a simple threshold calibration using the validation
split of each evaluation dataset further improves
performance by 9.73% on average. These results
highlight the robustness of the learned direction
and its ability to generalize across datasets. We
further validate the signal encoded by the direction
through causal interventions, where adding the di-
rection vector to the residual stream at a sufficient
magnitude causes the model to abstain in nearly all
cases (96%), while ablating it pushes the model to
answer even when the context is insufficient.

Beyond classification, our method provides in-
sight into how unanswerability is internally repre-
sented by the model, revealing a native signal em-
bedded directly in the representation space. Analy-
sis of failure cases further supports the reliability
of this signal. In several instances (26%), we found
that the provided labels were incorrect. Also, in
24% of cases labeled as answerable, the answer ap-
peared in the passage but not in the context of the
specific question, making the instance difficult to
classify. A smaller portion (6%) included questions
with grammatical issues, rendering their answer-
ability unclear and dependent on interpretation.

To conclude, we introduce a lightweight and in-
terpretable method for detecting unanswerability
in LLMs by uncovering a direction in the model’s
activation space that captures an unanswerability
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Figure 1: Abstention rate (recall) on unanswerable ques-
tions under Standard and Abstain-aware prompts, evalu-
ated on Llama-3-8B-Instruct and Gemma-3-12B-IT.

signal. We demonstrate the utility of this approach
for classifying unanswerable inputs across diverse
datasets, and show that the learned direction gener-
alizes better than prompt-based and classifier-based
baselines. We also show that we can use this direc-
tion to control the model’s tendency to abstain.

2 Problem Setup

We address the task of unanswerability detection
in extractive QA. Given a context (e.g., passage
or document) c and a question ¢, the goal is to
determine whether the context contains sufficient
information to answer the question. Formally, the
input is a pair (¢, ¢), and the objective is to predict a
binary label y € {0, 1}, where y = 1 indicates that
the question is unanswerable based on the context,
and y = 0 indicates that it is answerable. Examples
of answerable and unanswerable cases are shown
in Table 1.

3 Method

We take inspiration from prior observations that
certain abstract concepts, such as sentiment, re-
fusal, or truthfulness, are linearly encoded within a
language model’s internal representations (Tigges
et al., 2023; Arditi et al., 2024; Marks and Tegmark,
2024, inter alia), and aim to identify a direction in
the model’s activation space that captures unan-
swerability. If such a direction exists, it can be
used to distinguish answerable from unanswerable
instances by measuring the alignment between their
internal representations and this direction. We now
describe our methodology for finding such direc-
tions in LLMs.



Question (q)

Label (y)

Dataset Context (c)

SQUAD In England, the period of Norman architecture imme-
diately succeeds that of the Anglo-Saxon and precedes
the Early Gothic...

REPLIQA  ...One such partnership was formed with the Greenleaf
Cafe, a popular downtown eatery, which now orga-
nizes ’Saturday Morning Miles’...

NQ The National Professional Soccer League II , which
awarded two points for all goals except those on the
power play , also used a three - point line...

MUSIQUE Ye Rongguang (born October 3, 1963 in Wenzhou,

Zhejiang) ... Sanjiang Church was a Christian church
located in Yongjia County, near Wenzhou, in Zhejiang

What architecture type came af-
ter Early Gothic?

What specific event does the
Greenleaf Cafe organize as part
of Newville’s fitness initiative?

when did the nba add the three
point line ?

What county was Ye Rongguang
born in?

1 (unanswerable)

0 (answerable)

1 (unanswerable)

0 (answerable)

Province, China...

Table 1: Example context—question pairs from each dataset used in our experiments, labeled as answerable (0) or

unanswerable (1).

3.1 Deriving Potential Directions

To identify potential directions encoding unan-
swerability, we follow prior work that uses dif-
ferences in mean activations between two input
sets (Marks and Tegmark, 2024; Belrose, 2024;
Rimsky et al., 2024). Given a model with L lay-
ers and hidden dimension d, for each input (c, q)
we extract the hidden activations hy, € R? at
each layer ¢ € {1,..., L} and token position p
after the instruction segment.> Let {(c;,¢;)}Y,
be answerable and {(c;, qj)}jj‘/il unanswerable ex-

amples, and let h( ) be the hidden activations for
the ¢-th input. We deﬁne the candidate direction
Vip € R at each layer ¢ and token position p as
the difference between the mean activations over
unanswerable and answerable examples:

Vip =

1 < L) ()
M-Zl i Nzh
]: :

This yields a set of L x Npos directions {vy,},
where Vs is the number of token positions con-
sidered.

3.2 Selecting a Direction for Unanswerability

We employ causal steering (Li et al., 2023; Turner
et al., 2023; Rimsky et al., 2024) to choose the
direction that best represents unanswerability. The
selection is done on a separate validation set from
the examples used to find the candidate directions.

*These positions correspond to tokens from a chat template
that wraps chat models’ inputs and appear before the model’s
response, see §4.1 for details

Activation intervention For each candidate di-
rection v, and context-question pair (c, ¢) in the
validation set, we modify the hidden activations at
the corresponding layer ¢ and position p as follows:

hé’p = hf,P + VZ?I"

The modified activations are propagated forward
through the model. We repeat this procedure for
each candidate direction and analyze its effect on
the model’s outputs and abstention behavior.

Steering score Let {(c;, ¢;)}1, denote the vali-
dation set, consisting of K context-question pairs.
To approximate abstention behavior, we identify
the first token of the word unanswerable as it is
tokenized by the model (e.g., “un”), and denote
it as tyn € V. This token is used as a proxy for
abstention since the model is prompted to respond
with the word unanswerable when it cannot answer
the question based on the provided context.

For each validation example, we extract the
model’s next-token distribution under the interven-
tion. Let pgl) denote the probability of token ¢ for
the ¢-th validation example, the steering score 1geer
of a direction vy, is then defined as:

—log Z pgi)

teV\{tun}

S (i)

(2

Usteer = E Z log Pty
=1

This score quantifies how much more likely the

model is, on average, to generate ¢, rather than any

other token in the vocabulary, when steered with

the candidate direction. Higher values indicate a
stronger abstention-inducing effect.



Direction selection We evaluate all L x N5 can-
didate directions and select the one with the highest
steering score. The final unanswerability direction,
denoted v*, corresponds to the pair (¢*,p*) that
maximizes geer. This selected direction is used in
all downstream evaluations and analyses.

3.3 Unanswerability Classification

We use the selected direction v* to define a scalar
scoring function that quantifies how strongly a
given input aligns with the unanswerability sig-
nal; this score is then used to classify new inputs
as answerable or unanswerable.

Unanswerability score Let v* denote the nor-
malized direction selected in the previous step. For
a given context-question pair (¢, ¢), we extract the
hidden activations h* € R? from the selected layer
£* and position p*. The unanswerability score is
computed as the dot product between this hidden
state and the normalized direction:

¢unans = <h*7{’*>

This scalar is intended to reflect how strongly the
input aligns with the learned unanswerability signal.
Since it is unbounded and varies across models and
datasets, we next describe how we interpret this
value for classification.

Thresholding the unanswerability score To
establish a classifier, we select the threshold 7
on the unanswerability score using the validation
set. Specifically, we compute the ROC curve and
choose 7 to minimize the Euclidean distance to the
ideal point (TPR = 1, FPR = 0). At inference time,
for a given input (¢, q), if Gunans €xceeds 7, then
the input is classified as unanswerable; otherwise,
it is classified as answerable.

4 Experiments

We evaluate our method against three baselines
and report classification accuracy and generaliza-
tion across datasets, as well as a causal analysis of
the learned direction. Our results show that: (1)
the direction-based method achieves strong perfor-
mance when derived and evaluated on the same
dataset, close to a trained classifier and outper-
forming prompt-based baselines; (2) the direction
generalizes more robustly across datasets than the
classifier, especially after a lightweight threshold
calibration; and (3) the selected directions causally
influence the model’s abstention behavior.

4.1 Experimental Setup

Datasets We evaluate our method on four ques-
tion answering benchmarks—SQUAD 2.0 (Ra-
jpurkar et al., 2018), REPLIQA (Monteiro et al.,
2024), NQ (Kwiatkowski et al., 2019), and
MUSIQUE (Trivedi et al., 2022)—all structured
as context-question pairs.

SQUAD 2.0 and REPLIQA natively include
explicitly labeled answerable and unanswerable
examples. SQUAD 2.0 augments the original
SQUAD dataset, which is based on Wikipedia arti-
cles, with unanswerable questions that appear plau-
sible given the context. REPLIQA is constructed
from human-written reference documents across
diverse topics not found on the web, so models
cannot rely on their parametric knowledge.

For NQ and MUSIQUE, we use the versions of
the datasets curated by Slobodkin et al. (2023).
NQ consists of real user questions paired with
Wikipedia paragraphs, while MUSIQUE contains
multi-hop questions created by composing seed
questions from various datasets. The curated ver-
sion retains the original answerable examples and
constructs unanswerable ones by replacing gold
paragraphs with semantically similar ones that do
not answer the question. (see §A for more details).

For each dataset, we sample a total of 4,000 ex-
amples, which we split into training (1,200), devel-
opment (800), and test (2,000) sets, with an equal
number of answerable and unanswerable instances
in each split. Table 1 provides representative exam-
ples from each dataset.

Models We experiment with two instruction-
tuned models: Llama-3-8B-Instruct (Dubey et al.,
2024) and Gemma-3-12B-IT (Team et al., 2025).
Both were trained with chat templates that wrap the
user instruction (see §A.2 for the full templates). In
our analysis, we focus on hidden activations at the
positions of the template tokens that immediately
follow the user instruction, as they represent the
model’s internal state after processing the full con-
text and question and just before it begins generat-
ing a response. In addition, all inputs are formatted
using the Abstain-aware Prompt (see §4.1).

Method We find that the token “un” corresponds
to the first token in unanswerable in both Llama-3-
8B-Instruct and Gemma-3-12B-IT, and set it as ¢,;.
We apply the method described in §3.2 to select the
layer and token position for each model-dataset
pair, and find that the selected layers consistently
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Figure 2: Unanswerable prompts recall (abstention rate) across datasets using three methods: a trained classifier, a
direction-based method with a fixed threshold, and a calibrated threshold variant. Each heatmap shows generalization
performance from training on one dataset (rows) to evaluating on another (columns). Results are shown for both
Llama-3-8B-Instruct (top) and Gemma-3-12B-IT (bottom).

lie near the middle of the model. This is consis-
tent with prior work suggesting that middle layers
in transformer models tend to capture abstract se-
mantic properties, in contrast to lower layers which
focus on lexical patterns and upper layers which are
more task-specific (Geva et al., 2021; Vuli¢ et al.,
2020; Tenney et al., 2019; Jawahar et al., 2019).
Classification thresholds are set using ROC curves
on the validation sets (see §A.5 for direction and
threshold selection details).

Baselines We compare our method against the
following baselines:

 Standard Prompt: A prompt-only baseline
where the model is given the context and ques-
tion without any additional instruction.

* Abstain-aware Prompt: A prompt augmenta-
tion baseline, in which an instruction is added
encouraging the model to abstain if the ques-
tion is unanswerable (Slobodkin et al., 2023).

* Classifier: A logistic regression model trained
on hidden activations to predict unanswer-
ability (Slobodkin et al., 2023). The classi-
fier is trained using cross-validation on the
combined training and validation sets, with

model inputs formatted using the Abstain-
aware Prompt.

Full prompt templates for the prompt-based base-
lines are provided in §A.3.

Evaluation metrics We measure precision, re-
call, and F1 score separately for the answerable
and unanswerable classes. We also report macro-
average F1 score, which balances precision and re-
call across both classes equally. Since the prompt-
based baselines generate textual output, we first
classify each response as either an abstention or
an attempt to answer the question. To do so, we
use GPT-40 mini (OpenAl, 2024), prompted with
instructions and few-shot examples to make this de-
cision. The full prompt used and a manual analysis
validating this automatic evaluation are in §A.4.

4.2 (Un)answerability Classification

We evaluate how effectively our method distin-
guishes answerable and unanswerable questions.

Direction-based method effectively detects unan-
swerable questions Figure 2 (left and middle)
shows the recall on unanswerable examples for our
direction-based method and the classifier baseline,
across all combinations of evaluation and source
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Figure 3: Macro-average F1 scores across datasets using three methods: a trained classifier, a direction-based method
with a fixed threshold, and a calibrated threshold variant. Each heatmap shows generalization performance from
training on one dataset (rows) to evaluating on another (columns). Results are shown for both Llama-3-8B-Instruct

(top) and Gemma-3-12B-IT (bottom).

datasets. Figure 1 shows the recall on unanswerable
examples for the Standard Prompt and the Abstain-
aware Prompt baselines. Both the classifier and
our method outperform the prompt-based baselines.
When the training and test splits are from the same
dataset, the classifier achieves the highest overall
recall, averaging 87% for Llama-3-8B-Instruct and
86.4% for Gemma-3-12B-IT. Our direction-based
method is slightly below, with an average recall of
83.6% and 81.9%, respectively. However, when
evaluated on unseen datasets, the classifier perfor-
mance drops by an average of 30.2%, while our
method drops by only 7.4%, demonstrating better
generalization.

Direction-based classification outperforms base-
lines on unseen datasets Figure 3 (left and mid-
dle) presents the macro-average F1 scores for
our method and the classifier baseline across all
source—evaluation dataset pairs, and Figure 4 re-
ports scores for the prompt-based baselines. We
observe the same trends in F1 scores: when the
direction is evaluated on the same dataset is was
derived from, it achieves 83.7% on average on
Llama-3-8B-Instruct and 82.4% on Gemma-3-12B-
IT, compared to 86.5% and 87.8%, respectively, for
the classifier. However, our method demonstrates
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Figure 4: Macro-average F1 scores on answerable and
unanswerable questions under Standard and Abstain-
aware prompts, evaluated on Llama-3-8B-Instruct and
Gemma-3-12B-IT.

stronger generalization than the classifier baseline
when evaluated on unseen datasets. Specifically, on
SQUAD, REPLIQA, and NQ, it outperforms the
classifier by 1.8%—11.9%, averaged per evaluation
dataset. The only exception is MUSTQUE, where
the classifier generalizes better by 8.4-12.2%. We
will next show that these results can be improved
with a simple threshold calibration, indicating that
even in cases where the direction appears not to
generalize well, the issue lies in the decision bound-
ary rather than in the quality of the signal itself.



Threshold calibration further improves gener-
alization To understand whether the weaker gen-
eralization results reflect that the direction cap-
tured a dataset-specific signal, or simply a need
for threshold calibration, we visualize the unan-
swerability scores ¢unans across datasets (see §C).
We observe that the direction consistently induces
a separation between answerable and unanswerable
examples, however, the optimal decision threshold
varies between datasets. This motivates refining the
threshold using the validation set of each evaluation
dataset, without modifying the learned direction it-
self, following the procedure described in §3.3.

As shown in Figures 2 and 3, with dataset-
specific thresholding, the direction-based method
achieves consistent performance across evaluation
datasets, regardless of its source. This simple cal-
ibration improves generalization results by 2.7—
23.7% across evaluation datasets, achieving per-
formance only 2.6% lower on average than that of
directions derived from the same datasets. These
results suggests that the unanswerability signal cap-
tured by the direction is robust and consistently
encoded across datasets.

4.3 Steering Effectiveness

To further show that the selected direction captures
an unanswerability signal and to observe whether
it can influence abstention, we assess its causal im-
pact. To do so, We perform activation space inter-
ventions at the chosen layer £* and token position
p*, for each dataset and model. For a given context—
question pair (¢, q) formatted with the Abstain-
aware Prompt, we modify the hidden activations
at layer ¢* and position p* by adding the selected
direction, normalized scaled by «:

h* =h*"+ av”

where a € [—2,2] controls the strength and po-
larity of the intervention. We use GPT-40 mini to
determine if the model abstained or attempted to
answer the question (see §A.4), and measure the ab-
stention rate on both answerable and unanswerable
validation examples under each intervention (see
Figure 5). In all cases, increasing « leads to a sharp
rise in abstention on both unanswerable and an-
swerable inputs, with mean abstention rates (across
all datasets) reaching 96.8% and 95.2%, respec-
tively, at « = 2.0. Conversely, when o« = —2.0,
abstention drops to 2.0% for answerable prompts
and 19.4% for unanswerable ones. These results
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Figure 5: Effect of activation interventions on model ab-
stention rates across steering strengths («;). Results are
shown for both answerable and unanswerable validation
examples, for each dataset and model.

provide strong evidence that the direction causally
influences the model’s decision to abstain.

5 Error Analysis

To better understand the limitations of our method,
we conducted a manual categorization of 100 mis-
classified examples: 50 from SQUAD and 50 from
NQ, evenly split between answerable and unan-
swerable instances. Each was assigned to one of
five categories:

* Direction Failure: the direction score led to
an incorrect prediction despite a correct label
and well-formed input.

e Incorrect Label: the ground-truth annotation
appears wrong.

* Required Title: (SQUAD only) the document
title (not included in our inputs) was necessary
to interpret the passage.

* Grammar “Mistake”: ungrammatical phras-
ing or ambiguity made the input difficult to
interpret.

* Answer Not in Context: the answer exists in
the passage but is not clearly in the context of
the question.

Table 2 shows the results. We find that 53% of
the errors are due to direction failures, and 26%



SQUAD NQ Overall

Category

Ans Unans Ans Unans %
Direction 14 20 7 12 53
failure
Incorrect 5 3 7 11 26
label
Required 3 0 0 0 3
title
Grammar 0 2 2 2 6
“mistake”
Answer not 3 0 9 0 12
in context

Table 2: Manual categorization of 100 direction-based
classification errors, evenly sampled from SQUAD and
NQ (with 25 answerable and 25 unanswerable examples
from each).

stem from annotation errors, especially among NQ
unanswerable examples. Notably, 24% of the mis-
classified answerable examples fall into the “an-
swer not in context” category, most of them in NQ.
Overall, this categorization reveals that many of
the model’s errors arise from ambiguous inputs or
limitations in the dataset, rather than clear failures
of the method itself. Representative examples from
each category are included in §D.

6 Related Work

Prior work has explored methods to improve absten-
tion behavior in models: Lan et al. (2020) improved
reasoning with a pretraining loss, leading to im-
proved performance on QA tasks, including unan-
swerable questions, whereas Zhang et al. (2021) in-
troduced a verification process to detect when ques-
tions cannot be answered. Fine-tuned approaches
have also been proposed to reduce hallucinations
by improving the model’s ability to abstain (Zhang
et al., 2024; Feng et al., 2024). In contrast, we
detect unanswerability by interpreting internal rep-
resentations of the model, leaving it unchanged.
Several works (Tomani et al., 2024; Kim et al.,
2024) evaluated model uncertainty as a signal for
whether a question could be answered given the
context. We, however, focus directly on unanswer-
ability detection, without estimating uncertainty.
Prompt manipulations were also proposed to de-
tect unanswerability, but showed unstable perfor-
mance across datasets and models (Slobodkin et al.,
2023; Zhou et al., 2023). Slobodkin et al. (2023)
further identified an unanswerability-related sub-

space by training a logistic regression classifier on
last-layer hidden representations. Here, we aim to
identify a direction in activation space that influ-
ences the model’s abstention behavior and captures
unanswerability consistently across datasets. An-
other approach used sparse autoencoder features
to classify unanswerable inputs (Heindrich et al.,
2025). Though effective on the training dataset,
the generalization ability of the last two methods
proved inconsistent. In contrast, our approach of-
fers a lightweight method for unanswerability clas-
sification and demonstrates stronger generalization
across datasets.

Extracting linear directions from model activa-
tion has been a common technique for analyzing
and modifying model behavior (Bolukbasi et al.,
2016; Li et al., 2023; Marks and Tegmark, 2024;
Hong et al., 2025; Cohen et al., 2025). In this work,
we show that similar techniques can be applied to
identify a direction associated with unanswerabil-
ity, and demonstrate how we can use this direction
to classify whether a question can be answered
from the given context.

7 Conclusion

Our work introduces a method for identifying a di-
rection in the model’s activation space that captures
unanswerability, using difference-in-means and a
selection criterion based on activation steering. We
introduce a simple classification method that uses
this direction to detect unanswerable questions.
We compare our method to existing approaches
and find that, while the strongest baseline achieves
slightly higher performance when evaluated on its
training dataset, our method generalizes more ef-
fectively across datasets. We also show that causal
interventions along the direction induce abstention
behavior of the model. These findings support the
view that abstract properties such as unanswerabil-
ity are linearly encoded in the intermediate repre-
sentations of language models, and show that this
signal can be leveraged for both interpretation and
practical use.

Limitations

Our approach assumes that unanswerability is me-
diated by a linear direction from a fixed layer and
token position. While we capture a strong signal,
it is possible that unanswerability is represented
in more complex patterns, such as across multiple
layers or within a circuit, which our method cannot



identify. In addition, we use a simple threshold
over the projection onto the direction for classifica-
tion and do not explore more expressive functions,
which could potentially better exploit this signal.
Finally, our evaluation is limited to extractive QA
tasks. It remains to be seen how well the method
extends to other settings, such as open-ended gen-
eration.
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A Experimental Setup - Additional
Details

This section provides additional details about our
experimental setup, including further details on the
curated datasets and prompt templates used in our
experiments

A.1 Curated Versions of NQ and MUSIQUE

We use the curated versions of NQ and MUSIQUE
introduced by Slobodkin et al. (2023). In NQ, each
example consists of a real user question paired with
a paragraph from a Wikipedia article. Answerable
instances are drawn from questions that include
both a long and short answer; the long answer is
used as context. Unanswerable instances are con-
structed by replacing the context with a semanti-
cally similar paragraph from the same article that
is not annotated as the long answer. Paragraphs are
ranked using cosine similarity over Sentence-BERT
embeddings.
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Model Chat Template
<|start_header_id|>user
Llama-3-8B- <|end_header_id|>{instruction}
Instruct <|eot_id|><|start_header_id|>
assistant<|end_header_id|>
G 3128 <start_of_turn>user
H?,mma- ) ) {instruction}<end_of_turn>

<start_of_turn>model

Table 3: Chat templates used to format the user instruc-
tion during inference.

MUSIQUE is a multi-hop QA benchmark in
which each instance includes a complex question,
a decomposition into sub-questions, and a set of
candidate paragraphs. In the curated version, an-
swerable examples are formed by concatenating the
gold paragraphs aligned with each sub-question. To
generate unanswerable examples, one or more of
these gold paragraphs are replaced with the most
semantically similar but incorrect paragraphs, iden-
tified using the same retrieval method applied in

NQ.

A.2 Model Chat Templates

Llama-3-8B-Instruct and Gemma-3-12B-IT are
instruction-tuned using system-defined chat tem-
plates that wrap the user instruction before response
generation.we use these same templates in our ex-
periments, as shown in Table 3. As described in
§4.1, we extract hidden activations at the template
positions following the user instruction.

A.3 Prompt-based Baseline Prompts

Table 4 shows the prompt used in the standard
prompt-based baseline, which contains only the
context and question. Table 5 presents the modified
version used in the abstention-instruction baseline,
which encourages the model to abstain when the
question cannot be answered from the passage.

Given the following passage and question, answer
the question.

Passage: <passage>
Question: <question>

Answer:

Table 4: Prompt used in the standard prompt-based
baseline.
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Given the following passage and question, answer
the question.

First make sure if it can be answered by the passage.

If it cannot be answered based on the passage, reply
"unanswerable".

Passage: <passage>
Question: <question>

Answer:

Table 5: Prompt used in the abstention-instruction base-
line.

A.4 Evaluating Prompt-Based Baselines with
GPT-40 mini

Table 6 displays the full prompt given to GPT-40-
mini to determine whether a model’s response con-
stitutes an abstention. The prompt includes de-
tailed instructions and few-shot examples. To as-
sess the reliability of this evaluation method, we
conducted a manual evaluation over 50 model re-
sponses: 25 express abstention and 25 attempt to
answer. The responses were sampled from model
outputs generated for inputs from our datasets and
labeled manually. GPT-40-mini correctly classified
all 50 examples.

A.5 Direction and Threshold Selection

Table 7 shows the layer and token position selected
for each model—dataset pair, based on the method
described in §3.2. For Llama-3-8B-Instruct, the
same layer and position (layer 16, position —1)
were selected across all datasets. For Gemma-
3-12B-IT, the selected layers range from 26 to
27, with positions —1 or —4, depending on the
dataset. Since Llama-3-8B-Instruct has 32 layers
and Gemma-3-12B-IT has 48, the selected layers
lie near the middle of each model.

We compute ROC curves on the validation sets
(Figure 6) to select classification thresholds based
on the separation between answerable and unan-
swerable examples. The chosen threshold mini-
mizes the distance to the ideal point and is applied
at test time.

B Full Classification Results

We report the full classification results in Tables 8,
9, 10, and 11. For each direction, derived from
SQUAD, REPLIQA, NQ, and MUSIQUE, we
present precision, recall, and F1 scores for both
the answerable and unanswerable classes, across
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Figure 6: ROC curves across datasets using Llama-3-
8B-Instruct and Gemma-3-12B-IT. The x-axis shows
the false positive rate (answerable instances classified
as unanswerable), and the y-axis shows the true positive
rate (unanswerable instances correctly identified). Each
curve is annotated with its AUC, and markers indicate
the selected classification threshold per dataset.

all evaluation datasets and for both Llama-3-8B-
Instruct and Gemma-3-12B-IT. Results are re-
ported both with the original threshold and after
applying threshold calibration.

C Unanswerability Score Distributions

To visualize how well the unanswerability direc-
tion separates answerable and unanswerable exam-
ples, we plot the unanswerability scores ¢ypans, i.€
the results of the projection of hidden activations
onto a direction derived from a specific dataset.
For each target dataset, we display the distribution
of scores for both classes using a fixed direction.
Figure 7 show the distributions for Llama-3-8B-
Instruct using directions derived from SQUAD and
NQ, respectively. In both cases, the direction in-
duces clear separation between the answerable and
unanswerable classes. However, the score distri-
butions vary across datasets, suggesting that the
optimal decision threshold differs depending on
the evaluation set.



You will be shown a model’s response to a question. Your task is to decide whether the model attempted to answer the
question.

It is considered to abstain if it explicitly says it cannot answer the question, indicates uncertainty, or refuses to provide an
answer because the context is insufficient.

Otherwise, it is considered to have answered the question.
Respond with "yes" if the model attempted to answer the question.
Respond with "no" if the model abstained.

You will respond with a single word: "yes" or "no". Do not provide any explanation or extra text.

Examples:
Model response: "1598"

Answer: yes

Model response: "abc"

Answer: yes

Model response: "The answer can be answered by the passage. According to the passage, Fort Coligny was destroyed in
1560."

Answer: yes

Model response: "According to the passage, problems capable of theoretical solutions but consuming unreasonable time in
practical application are known as intractable problems"

Answer: yes

Model response: "The passage does not mention BSkyB agreeing with any claim. In fact, it states that BSkyB denied Virgin
Media’s claim that they had substantially increased the asking price for the channels. Therefore, the answer is iinanswerable."

Answer: no

Model response: "The passage does not answer the question. The passage only mentions that the five counties (Los Angeles,
Orange, San Diego, San Bernardino, and Riverside) are among the top 15 most populous counties in the United States, but it
does not provide the actual names of the five most populous counties in the United States."

Answer: no

Model response: "The passage does not mention the birth year of Reguier de la Plancha. It only mentions that he died in
1560, but does not provide his birth year."

Answer: no

Table 6: Prompt used to instruct GPT-40 mini to classify model responses as either abstentions or answer attempts.
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Model Dataset Layer Position

Llama-3-8B- All 16 1
Instruct
SQUAD 27 -1
Gemma-3- REPLIQA 26 -1
12B-IT NQ 27 1
MUSIQUE 27 4

Table 7: Selected layer and token position from which
hidden activations were extracted to compute the unan-
swerability direction for each model-dataset pair.

Distributions of Unanswerability Scores
Direction from SQUAD

Direction from NQ

J

20 T

\

-2 -1 [ 1 2

Bunans

—— RepLiQA Answerable —— SQUAD Unanswerable MuSiQue Answerable
~—— RepLiQA Unanswerable = —— NQ Answerable —— MusSiQue Unanswerable
—— SQUAD Answerable —— NQ Unanswerable === Threshold

Figure 7: Distribution of unanswerability scores ¢ynans
across datasets using the directions derived from
SQUAD and NQ in Llama-3-8B-Instruct.

D Failure Case Examples

Table 12 provides one representative example for
each of the error categories described in §5. Each
row includes the input question, context, predicted
label, and a brief explanation of the failure.

E Resources and Packages

In our experiments, we used models and data from
the transformers (Wolf et al., 2020) and datasets
(Lhoest et al., 2021) packages. Al models (specif-
ically ChatGPT) were used to implement certain
helper functions. All the experiments were con-
ducted using a single H100 80GB GPU.
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Llama 3 Gemma 3

Eval Dataset Class | Original Threshold | + Calibration Original Threshold | + Calibration
P R F1 P R F1 P R F1 P R F1

Ans 81.2 852 832 - - - |/ 825 86.8 84.6 - - -

SQUAD  Unans | 844 803 823 | - - - ||s61 sl6 838 | - - -
REPLIQA Ans 90.7 929 91.8 [91.9 909 914 94.1 80.8 869 |89.2 90.8 90.0
Unans | 92.7 90.5 91.6 |[91.0 92.0 91.5| 832 949 838.7 |90.6 89.0 89.8
NQ Ans 814 67.1 73.6 |78.1 76.1 77.1|86.1 634 73.0 |80.8 82.5 81.6
Unans | 72.0 847 779 |76.77 787 777 71.0 89.8 79.3 |82.1 804 81.3
MUSIQUE Ans 88.7 164 277 |768 772 77.0|( 8.8 23.0 364 |76.7 79.1 779
Unans | 53.9 979 69.6 |77.1 76.7 769 556 965 70.6 |784 759 77.1

Table 8: Full classification results using the direction derived from SQUAD. For each evaluation dataset and class,
we report precision (P), recall (R), and F1 score for Llama-3-8B-Instruct and Gemma-3-12B-IT, under the original
threshold and after applying threshold calibration.

Llama 3 Gemma 3

Eval Dataset Class | Original Threshold | + Calibration Original Threshold | + Calibration
P R F1 P R F1 P R F1 P R F1
SQUAD Ans 76.6 90.1 82.8 |81.5 813 8141|783 797 79.0 |77.5 81.7 79.6
Unans | 88.0 72.5 79.5 81.3 81.5 8141793 779 178.6 80.7 76.3 784

Ans 96.1 96.7 964 — — — 904 874 88.9 — - —

REPLIQA  Uhans | 967 961 964 | — - - ||878 907 892 | - - -
NQ Ans 81.3 676 738 |78.8 762 775 8.4 615 719 |81.2 729 76.8
Unans | 72.3 844 779 |77.0 79.5 7821/ 70.1 903 789 |754 83.1 79.1
MUSIQUE Ans 87.7 21.3 343 |758 743 75.1|/80.0 21.2 335 |72.6 684 704
Unans | 552 97.0 704 |74.8 763 7551 54.6 947 69.3 |70.1 742 72.1

Table 9: Full classification results using the direction derived from REPLIQA. For each evaluation dataset and class,
we report precision (P), recall (R), and F1 score for Llama-3-8B-Instruct and Gemma-3-12B-IT, under the original
threshold and after applying threshold calibration.

Llama 3 Gemma 3
Eval Dataset Class | Original Threshold | + Calibration Original Threshold | + Calibration
P R F1 P R F1 P R F1 P R F1
SQUAD Ans | 747 926 827 |742 933 8261 705 946 80.8 |785 86.5 823
Unans | 90.3 68.7 78.0 |91.0 675 7751 91.8 60.5 729 |850 763 804
REPLIQA Ans 86.5 97.8 918 |[854 979 912|735 903 81.0 |78.1 858 81.8
Unans | 97.5 847 90.6 |97.5 83.3 89.9| 874 674 76.1 |842 759 799
NQ Ans |795 773 784 - - - |/ 824 779 80.1 - - -
Unans | 77.9 80.0 789 - - - || 79.1 834 812 - - -
MUSIQUE Ans 87.6 282 427 |875 293 439 80.6 520 632 |742 740 74.1
Unans | 572 96.0 71.7 |57.5 958 719|646 875 743 |74.1 743 742

Table 10: Full classification results using the direction derived from NQ. For each evaluation dataset and class, we
report precision (P), recall (R), and F1 score for Llama-3-8B-Instruct and Gemma-3-12B-IT, under the original
threshold and after applying threshold calibration.
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Llama 3 Gemma 3

Eval Dataset Class | Original Threshold | + Calibration Original Threshold | + Calibration
P R F1 P R F1 P R F1 P R F1
SQUAD Ans 550 99.6 709 |799 87.0 833|627 973 763 |69.3 81.4 749
Unans | 979 185 31.1 | 857 78.1 817|940 42.1 582 |77.5 64.0 70.1
REPLIQA Ans 61.3 999 76.0 [91.0 90.7 90.8 | 70.8 984 824 |84.7 86.8 85.7
Unans | 99.7 37.0 54.0 |90.7 91.0 909|974 595 739 |86.5 843 854
NQ Ans 573 967 72.0 |76.1 78.8 774 764 827 794 |79.4 78.0 78.7
Unans | 89.5 28.0 427 |78.0 752 76.6| 81.1 744 77.6 |784 79.7 79.0

Ans 715 765 770 - - - || 74.0 80.0 76.9 - - -

MUSIQUE  Unans [ 768 778 773 | - - - ||782 719 749 | - - -

Table 11: Full classification results using the direction derived from MUSIQUE. For each evaluation dataset and
class, we report precision (P), recall (R), and F1 score for Llama-3-8B-Instruct and Gemma-3-12B-IT, under the
original threshold and after applying threshold calibration

Category

Dataset Label

Context

Question

Comment

Direction Failure

SQUAD Unanswerable

The topic of language for
writers from Dalmatia and
Dubrovnik... These facts under-

Prior to the 19th
century where
did Croatians

The direction predicts
“answerable,” but the
context passage does

mine the Croatian language pro- and Serbians not answer the question.
ponents’ argument that modern- live?
day Croatian is based on a lan-
guage called Old Croatian.

Incorrect Label  NQ Unanswerable The ileum is the third and final Where is the Based on the passage,
part of the small intestine... It ileum located in the ileum is located
ends at the ileocecal junction...  the body? in the small intestine,

specifically as the third
and final part of it.
Therefore, the label is
incorrect.

Required Title SQUAD Answerable  During the latter half of the 20th Southampton’s Without the passage ti-
century, a more diverse range of range of indus- tle (“Southampton”), it
industry also came to the city, tries includes is unclear that “the city”
including aircraft and car manu- the manufacture refers to the correct sub-
facture... of cars and ject.

what other
transport?

Grammar SQUAD Unanswerable ..MCA agent Lew Wasserman Who was a The question refers

“Mistake” made a deal with Universal for MAC agent? to “MAC” while the
his client James Stewart... passage only mentions

“MCA” so the correct
label is unanswerable.
However, the model
may have treated this as
a minor typo, leading
the direction to misclas-
sify it as answerable.

Answer Not NQ Answerable  The Speaker, Majority Leader, Top 5 leader- The roles are listed, but

in Context Minority Leader, Majority Whip ship positions the passage does not

and Minority Whip all receive
special office suites...

in the House
of Representa-
tives?

clearly frame them as
leadership positions rel-
evant to the question.

Table 12: Representative misclassified examples from each failure category. Each includes the dataset, gold label,
and a brief explanation of the error.
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