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ABSTRACT

Large language models (LLMs) with billions of parameters have sparked a new
wave of exciting AI applications. However, their high computational costs and
memory demands during inference pose significant challenges. Adaptive sparse
activation inference, which activates only a small number of neurons for each token,
offers a novel way to accelerate model inference without degrading performance,
showing great potential for resource-constrained hardware devices. Nevertheless,
existing methods predict activated neurons based on individual tokens with addi-
tional MLP, which involve frequent changes in activation maps and resource calls,
limiting the acceleration benefits of sparse activation. In this paper, we introduce
CoreInfer, an MLP-free adaptive sparse activation inference method based on
sentence-level prediction. Specifically, we propose the concept of sentence-wise
core neurons, which refers to the subset of neurons most critical for a given sen-
tence, and empirically demonstrate its effectiveness. To determine the core neurons,
we explore the correlation between core neurons and the sentence’s semantics.
Remarkably, we discovered that core neurons exhibit both stability and similarity
in relation to the sentence’s semantics—an insight overlooked by previous stud-
ies. Building on this finding, we further design two semantic-based methods for
predicting core neurons to fit different input scenarios. In CoreInfer, the core
neurons are determined during the pre-filling stage and fixed during the encoding
stage, enabling fast sparse inference. We evaluated the model generalization and
task generalization of CoreInfer across various models and tasks. Notably, on
an NVIDIA TITAN XP GPU, CoreInfer achieved a 10.33×and 2.72×speedup
compared to the Huggingface implementation and PowerInfer, respectively.

1 INTRODUCTION

Generative Large Language Models (LLMs) have garnered significant attention for their exceptional
abilities in creative writing, advanced code generation, and complex natural language processing
tasks (Brown, 2020; Chowdhery et al., 2023; Touvron et al., 2023a; Team et al., 2023; Jiang et al.,
2023). These models have profoundly impacted our daily lives and work practices. A generation task
typically involves multiple inferences—a single inference during the pre-filling stage and multiple
inferences during the decoding stage—but due to the vast number of parameters in LLMs, executing
these inferences becomes highly expensive (Pope et al., 2023). To make generative LLMs more
accessible, an increasing number of researchers are focusing on accelerating the inference process.
The key challenge is: how can we reduce the memory and computational requirements for model
inference without degrading performance?

Model compression (Buciluǎ et al., 2006; Cheng et al., 2017; Choudhary et al., 2020) has been
extensively studied to address this issue by transforming the original model into a light version.
Representatively, quantization (Lin et al., 2024; Frantar et al., 2022; Dettmers et al., 2024) uses fewer
bits to represent parameters, reducing the memory needed for model storage and inference. Pruning
(LeCun et al., 1989; Lee et al., 2018; Frankle & Carbin, 2018; Bansal et al., 2022) decreases the
computational load during inference by removing unimportant neurons or structural blocks from the
model. However, these methods usually break the original structure and trade-off the performance
for efficiency. Additionally, due to the diversity of modern hardware, these methods cannot achieve
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Figure 1: The overview framework of CoreInfer. In the pre-filling stage, at each activation layer,
taking the i-th activation layer as an example, we first extract the token-wise core neurons based on
the top-k selection and then further extract the top-k commonly activated core neurons among all
tokens, which go through the stability estimation to determine how to update the sentence-wise core
neuron set. After determination, the core neuron set will be fixed and utilized for sparse decoding.

hardware generalization. For instance, although 3-bit quantization has shown potential, most current
hardware devices do not support it yet (Cheng et al., 2017; Kim et al., 2021).

Dynamic activation sparse inference (Liu et al., 2023) is another way to accelerate inference without
the limitations of model compression. This approach is based on the observation that activation
of individual tokens in large language models are often highly sparse (Song et al., 2023). During
the decoding stage, dynamic activation sparse inference activates only a small number of neurons
for each token, effectively accelerating model inference. This method has already demonstrated
significant potential on resource-constrained devices. For instance, PowerInfer (Song et al., 2023)
accelerates LLMs inference by 11.6× on PCs by implementing activation prediction and dynamic
sparse inference. PowerInfer2 (Xue et al., 2024) and LLM in the Flash (Alizadeh et al., 2023) apply
this technique to mobile phones to accelerate LLMs inference on mobile platforms. These methods
usually train an MLP predictor in each activation layer to predict neurons that will be activated (Liu
et al., 2023; Song et al., 2023; Xue et al., 2024; Alizadeh et al., 2023). Such strategies present two
weaknesses: (1) Irregular and frequent resource calls during decoding due to the token-wise
activation prediction, which may hinder further acceleration of the decoding stage. (2) Additional
computation costs during decoding due to the introduction of MLP per activation layer, which
sometimes cannot be ignored. For example, MLPs will introduce an additional 10% computation
cost when applied (Alizadeh et al., 2023).

To this end, aiming at solving the above two problems, we propose CoreInfer, a novel sparse
inference strategy featuring the sentence-wise activation sparsity without additional MLP
predictors. Specifically, we first define a set of core neurons for each sentence, representing the
most essential neurons an LLM needs to process it. These core neurons are empirically demonstrated
sufficient enough for an LLM to perform nearly lossless generation tasks. Then, to predict a sentence’s
core neurons, we explore the relationship between a sentence’s core neurons and its semantics. We
performed explorations at the level of stability and similarity between core neurons and semantics
and found strong correlations in both aspects. Inspired by this, we propose two methods to predict a
sentence’s core neurons based on its semantic.

Fig. 1 shows our overview and algorithm flow. Notably, for each sentence, CoreInfer only needs to
predict the core neurons during the pre-filling stage. During the decoding stage, it consistently uses
this set of neurons without needing to repeatedly predict and change the activation map as previous
methods do. Moreover, CoreInfer does not use additional MLP predictors, thereby maximizing the
potential of sparse activation inference. In summary, our contributions are as follows:

• We propose CoreInfer, an sentence-level adaptive sparse inference framework, in which we
define sentence-wise core neurons as the most essential group of neurons for decoding.

• By exploring the relationship between core neurons and semantics, we discover that core
neurons exhibit both stability and similarity in relation to the sentence’s semantics.
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• Through experiments, we demonstrate that our method possesses both model generalization
and task generalization. Without degrading task performance, it achieves a 10× and 3×
acceleration compared to Huggingface and PowerInfer on NVIDIA GPUs, respectively.

2 RELATED WORK

Dynamic Inference with Sparsity of Activation. Recent studies have shown that LLMs exhibits
significant sparsity in neuron activation (Liu et al., 2023). For example, it was found that about 80%
of the neurons in the OPT-30B model remained inactive during inference (Alizadeh et al., 2023).
Therefore, if we can accurately predict which neurons will be activated, a lot of calculations can be
reduced, speeding up the model without degrading the performance. At the same time, this sparsity
in the FFN layer can be further combined with the optimization methods of the Attention Layer, such
as sparse KV cache (Adnan et al., 2024; Zhang et al., 2024; Zhao et al., 2024; Lee et al., 2024), to
achieve sparsity and acceleration of the entire model. This possibility has attracted the attention of
many researchers. The main method is use a predictor to predicts which neurons will be activated
based on the input of each layer. For example, DejaVu (Liu et al., 2023) inserts an MLP predictor
in each layer of an LLM and achieves 93% activation prediction accuracy. Powerinfer (Song et al.,
2023) proposed dividing neurons into hot neurons that are frequently activated and cold neurons that
are not frequently activated through power-law activation in LLMs. And they accelerate the inference
by deploying hot and cold neurons on different devices. Furthermore, LLM in Flash (Alizadeh
et al., 2023) and PowerInfer2 (Xue et al., 2024) optimize this algorithm for mobile phones, so that
LLMs can require less DRAM memory during inference. However, the current methods have two
limitations: first, they believe that the activation pattern of neurons cannot be predicted before the
inference, and must be determined according to the input of the current token. Second, they all take
the original activation pattern as the optimal goal, hoping that the predicted activation is the same as
the original one. Our work proves that these two cognition are not right and we breaks the limitations.

Semantic Similarity. Semantic similarity has received increasing attention in the era of deep
learning (Laskar et al., 2020; Li et al., 2020). A series of models such as BERT (Li et al., 2020) and
Sentence-BERT (Feng et al., 2020) have been proposed to measure the semantic similarity between
sentences. Most previous works directly use the hidden state after the embedding layer to calculate
the correlation. Recently, researches shows that the similarity of activated neurons is correlated with
semantic similarity. By observing the activation pattern, Wang et al. (2024) proposed to use activation
similarity as an evaluation metric for semantic similarity. The Spearman correlation of this metric on
the classic semantic datasets STS-B (Saif et al., 2013) and SICK (Mueller & Thyagarajan, 2016) is as
high as 0.66 and 0.51. Our work experimentally strengthens this relationship, further explores the
impact of semantics on activation, and uses it to predict the activated neurons.

3 DEFINITION AND EXPLORATION OF CORE NEURONS

In this section, we first present the definition of core neurons and prove their effectiveness (Sec. 3.1).
Then, several exciting insights are observed about the correlation between sentence-wise core neurons
and its semantics in both stability and similarity (Sec. 3.2).

3.1 DEFINITION AND ROLE OF CORE NEURONS

Motivated by previous works (Alizadeh et al., 2023) attempting to predicting the most important
neurons for inference and the fact that large activation values in LLMs often contribute more to model
performance, we first define token-wise core neurons and extend it to sentence-wise definition.

Definition 1: Token-wise Core Neurons. For a single token x at the i-th activation layer of the LLM,
the input is denoted as xi. And the activation can be denoted by the vector Ai(xi) = [a1, a2, . . . , aN ],
where N is the number of neurons and an is the activation value of the n-th neuron. We define the
core neurons of xi as the top α of neurons with the largest positive activation values (i.e., an > 0).

The core neurons for token x at the i-th layer is defined as the top α largest activated neurons, whose
set can be formulated as follows.

Cα(xi) = {n | an ≥ Percentile(A+
i , α)}, (1)
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Figure 2: (a) (b) The impact of different α and β on final performance. The experiment is conducted
on the OPT 6.7b model and the C4 dataset. (c) Clustering of token-wise core neurons in different
sentences. We randomly selected 20 sentences from the C4 dataset and observed the activation pattern
of the 25-th layer of the model. Each point represents a Cα(xi). The same color represents in the
same sentence. We used t-SNE (Van der Maaten & Hinton, 2008) to reduce the data dimension.

where A+
i = {an | an > 0, an ∈ Ai} represents the set of positively-activated neurons at the i-th

activation layer, and Percentile(A+
i , α) denotes the α-th percentile of the positive activation.

Definition 2: Sentence-wise Core Neurons. For a sentence s containing M tokens, the input of the
i-th layer is si = [x1

i , x
2
i , . . . , x

M
i ]. Based on Equation 1, each xm

i has core neurons Cα(xm
i ). We

define the core neurons for si, Cβ
α(si), as the top β of neurons that appear most frequently in the core

neurons of all tokens, i.e., {Cα(x1
i ), Cα(x2

i ), . . . , Cα(xM
i )}, thus can be formulated as Equation 2.

Cβ
α(si) = {n | fα(n; si) ≥ Percentile(fα(si), β)}, (2)

where fα(si) denotes the count set of each neuron across all tokens, which is formulated as follows.

fα(si) = {fα(n; si)}n = {
M∑

m=1

I(n ∈ Cα(xm
i ))}n, (3)

where I(·) is an indicator function that returns one if n is in Cα(xm
i ) else zero. Percentile(fα(si), β)

denotes the β-th percentile of fα(si).

Effectiveness of Core Neurons. We test the effectiveness of the proposed core neurons at two
levels by experimenting on the C4 benchmark (Sakaguchi et al., 2021) with multiple hyper-parameter
settings. The results are shown in Fig. 2 (a) and (b). As can be seen from Fig. 2 (a), it is exciting that
when α and β are very low, the model has only a small performance loss. For example, perplexity
(ppl) only increases by 2% when α is 0.4. And when β = 0.25, ppl only increases by 3%.

To understand why the sentence-wise core neurons are effective, we further explore the distribution
of token-wise core neurons in different sentences, and the results are shown in Fig. 2 (c). It can be
seen that the distribution of core neurons of tokens in the same sentence is always closer (meaning
that there are more identical neurons in their core neurons), while the distribution of core neurons of
tokens in different sentences shows a clustering phenomenon. This explains why the sentence-wise
core neurons are effective: since tokens in the same sentence tend to activate similar neurons, a small
number of core neurons can meet the needs of the entire sentence inference.

This result reveals a powerful potential of core neurons: For an input sentence, LLMs only need the
core neurons to maintain performance. Different from prior works exploring token-wise sparsity
in activation layers, our work is the first to explore the sentence-wise sparsity in activation layers.

3.2 EXPLORATION OF CORE NEURONS

In the previous section, we defined core neurons and explained their effectiveness. To better predict
core neurons, in this section, we explore the relationship between core neurons and the input sentence.

Semantics is a crucial aspect of the information conveyed by the input sentence. Recent studies (Wang
et al., 2024) have demonstrated that the similarity of LLMs activation shows a strong correlation
with semantic similarity. This prompt us to speculate and explore: Are core neurons related to the
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Figure 3: (Upper)(a) (b): When adding tokens after the original sentence, The semantics similarity
and core neurons similarity between the extended and the original sentence. (c) Schematic diagram
of the change of core neurons as the length of the sentence increases. We use t-SNE to reduce
the dimension of core neurons to two dimensions and observe the changes in the dimension 1 and
deimension 2. (Lower) Visualization of core neurons when the token length of the continuous input
sentence is 10, 50, 100, 200, and 300. We randomly selected 256 neurons in the 25-th layer of the
OPT-6.7b model. Each pixel represents a neuron, and the color indicates the frequency of the neuron
in all the current Cα(xi). Cβ

α(si) is a part of the neurons with the highest frequency (brightest).

semantics of the input sentence? Here we introduce two of our insights into the relationship between
semantic and core neurons, respectively related to stability and similarity.

Insight-1: The Stability of Core Neurons Is Related to Semantic Stability.

First, we explore the relationship between the stability of core neurons and the stability of semantics.
To investigate this, we extended sentences of varying lengths with coherent and fluent continuations,
subsequently measuring the semantic similarity and core neuron similarity between the original and
the extended sentences. The results, illustrated in Fig. 3 (a)(b), reveal a robust correlation between
the changes in semantic similarity and core neuron similarity. Notably, when there is high semantic
similarity between an original sentence and its extension, the core neuron similarity is also elevated.

As shown in Fig. 3 (a)(b), we can find that adding 8-token and 64-token continuations to a sentence
of 256 tokens does not change the semantics at all (semantic similarity is 1). In this case, the core
neurons change by only 3% and 6%, respectively. Furthermore, in Fig. 3 (c), we show the changes in
Cβ
α(si) as the length of a fluent and continuous sentence increases. It can be seen that as the sentence

length increases and the semantics become clearer, the core neurons gradually stabilize. Adding more
to the sentence at this point does not cause significant changes in the core neurons. In Fig. 3 lower,
we visualize the core neurons of the same sentence at different lengths. We can see that core neurons
are still changing when the sentence length is less than 100, and when the sentence length is 200 and
300, the core neurons have basically remained unchanged. Thus, our experimental analysis reveals
that during the generation process, core neurons tend to remain stable when the semantics of the
sentence is consistent.

Insight-2: The Similarity of Core Neuron Is Related to Semantic Similarity.

Furthermore, we investigate the relationship between core neuron similarity and semantic similarity.
To illustrate this intuitively, we select the ag_news dataset (Zhang et al., 2015), which contains
sentences from four different topics, sentences within the same topic often have closer semantics. We
input different sentences from ag_news into the model and observed the distribution of their core
neurons. Semantic similarity is measured by using Sentence-BERT, where the semantic similarity
between two sentences is calculated as the cosine similarity of their embeddings. And core neuron
similarity is measured by calculating the ratio of identical neurons to the total number of neurons
involved. The experimental results are shown in Fig. 4. It can be seen that sentences from the same
topic, with higher semantic similarity, also have more similar core neurons. This indicates a strong
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Figure 4: Relationship between the core neurons of sentences and their topics. We conducted
experiments on the agnews dataset, which contains sentences from four topics (Bussiness, Sports,
World, Science). Each point in the figure is a Cβ

α(si). Different colors represent sentences from
different topics. We use t-SNE to reduce the dimension and display it. It can be seen that the core
neurons of different layers all show clustering based on topic.

correlation between activation similarity and semantic similarity among different sentences. Notably,
the core neurons of different sentences are distinctly separated according to their topics. Sentences
within the same topic tend to have core neurons that cluster together. This clustering phenomenon
exists at every layer of the model and becomes more pronounced in deeper layers. In Sec. 5.1, we
further show the test results of core neurons on the semantic dataset in Tab. 1.

Therefore, we can observe that: The more similar between sentence simantics, the more similar their
core neurons. And sentences within the same topic tend to activate the same subset of neurons.

4 CORE NEURONS-BASED SPARES INFERENCE

In this section, we introduce CoreInfer, an efficient activation-sparse inference framework. CoreInfer
leverages the insights mentioned above, and proposes two methods to predicting core neurons (Sec.
4.1). Based on this prediction, we propose core neurons inference framework (Sec. 4.2).

4.1 SEMANTIC-GUIDED CORE NEURONS PREDICTION

Consider the generation task, given an input sentence s in the pre-filling stage, an LLM generates
content g in the decoding stage. Our goal is to predict Cβ

α([s, g]i), for i = 1, 2, . . . , L.

Stability-guided Prediction. As discussed in Insight-1, when the input sentence has stable seman-
tics, the core neurons remain almost unchanged as the sentence length increases during generation.
Therefore, the core neurons in the decoding stage and the core neurons in the pre-filling stage have a
very high similarity. In this scenario, we can approximate the Cβ

α([s, g]i) by directly using the core
neurons Cβ

α(si) identified during the pre-filling stage.

Similarity-guided Prediction. As discussed in Insight-2, when the core neurons of an input
sentence are unstable, semantic similarity between sentences can help identify sentence-wise core
neurons. Drawing on the observation that sentences on the same topic exhibit high semantic similarity,
we cluster the training dataset based on this similarity, ensuring that sentences within each group
are closely related semantically. Once the input sentence’s group is determined, its core neurons
are identified by selecting the top γ neurons that appear most frequently within that semantic group.
Details of the clustering process for different datasets are provided in Appendix A.2.3.

In summary, when the Cβ
α(si) is stable, we can use the stability-guided prediction. Conversely, when

Cβ
α(si) is unstable, similarity-guided prediction should be employed. In Appendix A.2.2, we futher

discuss the conditions for input stability and we find that stability-guided prediction can be applied
to tasks such as information extraction, summarizing, few-shot question answering and translation
tasks. Whereas, when the input sentence is short, e.g., zero-shot question answering and translation,
the input is unstable, requiring the use of similarity-guided prediction. As shown in Fig. 3 (c), the
experiment shows that if the input sentence is fluent and natural sentences, the stability may be related
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Question: Are you an artificial 
intelligence?

Ori: I am a human.

Ours: I am an artificial intelli-
gence.

Question: What is the spiciest part 
of a chili pepper?

Ori: The seeds.

Ours: The spiciest part of a chili 
pepper is the seeds.

Ori: The class will be held at the Missoula County
Fairgrounds, and will be from 6:30-9:00pm. For more
information, or to register, click here.

Ours: The class will be held at the Missoula County
Fairgrounds on Thursday, September 22nd from 6:00-
7:00. For more information and to register, visit
the Missoula County Fairgrounds.

Input: Discussion in 'Mac OS X Lion (10.7)' started by
axboi87, Jan 20, 2012. ……, If it came Apple Partition
Scheme, even if you let CCC do the clone, the resulting
drive won't be bootable. CCC usually works in "file
mode" and it can easily copy a larger drive (that's
mostly empty) onto a smaller drive.

Ori: I've got a 500gb internal drive and a 240gb SSD.
When trying to restore using disk utility i'm given the
error "Not enough space on disk ____ to restore" But I
shouldn't have to do that!!!

Ours: I've got a 500gb internal drive and a 240gb SSD.
When trying to restore using disk utility i'm given the
error "Not enough space on disk ____ to restore" But I
shouldn't have to do that!!!

Input: Beginners BBQ Class Taking Place in Missoula!
Do you want to get better at making delicious BBQ? …,
The cost to be in the class is $35 per person, and
for spectators it is free. Included in the cost will
be either a t-shirt or apron and you will be tasting
samples of each meat that is prepared.
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10.33x 
Speedup

10.33x 
Speedup

1x 
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1x
Speedup

Question: Where did fortune cookies 
originate?

Ori: The internet says they were in-
vented in San Francisco in the 1800s.

Ours: I'm not sure, but I think for-
tune cookies originated in the US.

GT: Yes, I am an artificial intell-
igence.

GT: The spiciest part of a chili 
pepper is the placenta.

GT: The precise origin of fortune 
cookies is unclear.

Figure 5: (Upper) Performance of stability-guided prediction on the generation task (α = 0.4, β =
0.2). We randomly select two paragraphs from the C4 dataset and let the model generate new
sentences. (Lower) Performance of similarity-guided prediction on the question-answering task
(α = 0.4, γ = 0.2). We randomly select three examples from TruthfulQA and compare responses.

to the length of the input sentence. When the sentence is long enough, it expresses more semantics,
and the core neurons tend to be stable.

4.2 EFFICIENT CORE NEURONS INFERENCE

The flow of our algorithm is illustrated in Fig.1. In the pre-filling stage, core neurons are computed at
each layer. If the input is stable, we apply stability-guided prediction. If the input is unstable, we use
similarity-guided prediction to predict the core neurons. In the decoding stage, we directly use the
predicted Cβ

α([s, g]i) for model inference, without changing the neurons.

To verify the effectiveness of these two prediction methods, we present the model outputs under
both methods in Fig. 5. It can be seen that when using the stability-guided perdition, the results
generated by our algorithm are basically consistent with the original model, as the core neuron is
stable at this time, and the Cβ

α(si) is sufficient to provide semantic expression. When using the
similarity-guided prediction, our algorithm will generate answers that are different from the original
model. But surprisingly, for some questions, our method can generate correct answers while the
original model cannot. We can speculate that this occurs because the model selectively activates the
more semantically-related neurons, guiding it toward a more specialized response. We present more
experimental results in Sec. 5.

Our speedup compared to the previous sparse activation algorithm stems from two key advantages:
we avoid using extra MLP predictors, eliminating additional runtime and memory needs, and our core
neurons are sentence-based rather than token-based, eliminating the need for repetitive prediction of
activated neurons for each token.

5 EXPERIMENT

Our experiments are conducted at three levels. First, we verify the correlation of core neurons to
semantics by testing on the semantic test set, and analyze the number of core neurons required for
different tasks (Sec. 5.1). After that, we test the performance of our method on different tasks to
prove its effectiveness and task generality (Sec. 5.2). Finally, we deploy CoreInfer on the device to
verify the improvement of hardware performance (Sec. 5.3).

Models. We conduct experiments across a variety of model sizes, including OPT-7b, OPT-13b,
OPT-30b (Zhang et al., 2022), LLaMA2-7b (Touvron et al., 2023b), and LLaMA3.1-8b (Dubey et al.,
2024). All models utilize FP16 for parameters, while intermediate activation are handled in FP32.

Tasks. We conduct experiments on six datasets, categorized into three types of tasks: Information
Extraction (Xsum (Narayan et al., 2018) and SQuAD (Rajpurkar, 2016)), Question Answering
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Model STS-B SICK

OPT-6.7b 0.56 0.42

OPT-13b 0.52 0.41

OPT-30b 0.53 0.45

LLaMA2-7b 0.66 0.49

LLaMA3.1-8b 0.65 0.51

Table 1: Spearman correlation
between core neurons similar-
ity and semantic similarity.
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Figure 6: Performance impact of β (left) and γ (right) in stability-
guided and similarity-guided predictions, respectively. The ordi-
nate is the performance change compared to the original model.

(TruthfulQA (Lin et al., 2021) and TriviaQA (Joshi et al., 2017)), and Translation (wmt16-de-en
and wmt16-ro-en (Bojar et al., 2016)). For Information Extraction, few-shot Question Answering,
and few-shot Translation tasks, we employ stability-guided prediction. Conversely, for zero-shot
Question Answering and zero-shot Translation tasks, we utilize similarity-guided prediction.

Hardware. We conduct experiments on two distinct hardware configurations. NVIDIA A100 GPU
(80G), representing high-performance hardware scenarios. In contrast, NVIDIA TITAN XP GPU
(12G), representing low-performance hardware scenarios.

Baseline. We compare CoreInfer with DejaVu (Liu et al., 2023) and PowerInfer (Song et al., 2023),
the most advanced activation sparse inference algorithms that conduct prediction by MLPs. As for the
baseline, we employ implementations from the widely-used Huggingface and transformer libraries 1.

Implementation Details. CoreInfer share the setting of hyper-parameters among all activation layers
in a model. For stability-guided prediction, the hyper-parameters include the token-wise core neuron
ratio α and sentence-wise core neuron ratio β. For similarity-guided prediction, the hyper-parameters
also include the γ. Specifically, we take α = 0.4 and empirically determine β and γ for different
tasks, which will be introduced in Sec. 5.1.

5.1 VERIFICATION AND ANALYSIS

Performance of Core Neurons on Semantic Task Sets. In addition to the discussions in Sec.
3.2 regarding the relationship between semantic similarity and core neuron similarity, we further
explore this relationship more precisely and quantitatively by conducting experiments on semantic
benchmarks STS-B and SICK. As illustrated in Tab. 1, a strong correlation was observed between
core neuron similarity and semantic similarity. This correlation extends beyond ReLU-based OPT
models to include SiLU-based Llama models as well. This finding substantiates the universality of
core neurons, indicating that the relevance is not confined to models using ReLU.

Determination of Core Neuron Size. To determine optimal values for β and γ, we conducted
ablation experiments across various tasks, with results depicted in Fig. 6. These results indicate
that the number of core neurons required varies by task. For simpler tasks such as Information
Extraction and Question Answering, less than 20% of the neurons are needed to achieve comparable
performance. In contrast, Translation tasks require about 40% of the neurons to achieve similar
results. This observation aligns with our hypothesis that more complex tasks necessitate a greater
number of neurons for effective inference, whereas simpler tasks can be accomplished with fewer
neurons. Consequently, for subsequent experiments, we set β = γ = 0.2 for Information Extraction
and Question Answering tasks, and β = γ = 0.4 for Translation tasks. This demonstrates that during
daily conversational tasks, only 20% of the neurons are necessary to achieve satisfactory performance,
highlighting CoreInfer’s significant potential in reducing hardware costs.

5.2 TASK PERFORMANCE

To test the impact of CoreInfer on model performance, we conducted experiments on three types of
classic tasks. The experimental results are shown in Table 2.

1The library link: https://github.com/huggingface/transformers.
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Table 2: Performance comparisons with original models across various tasks using the lm-evaluation-
harness (Gao et al., 2024). Zero and few represent the performance in the case of zero shot and few
shot=6, respectively. * indicates the use of similarity-guided prediction, while no * indicates the
use of stability-guided prediction. Our evaluation indicators are Xsum(rouge), SQuAD(contains),
TruthfulQA(BLUE max), TriviaQA(Exact Match) and wmt16(BLEU)

Information Extraction Question Answering Translation

Model Method
Xsum SQuAD TruthfulQA TriviaQA wmt16-de-en wmnt16-ro-en
zero zero few zero* few zero* few zero* few zero*

OPT-6.7b Ori 6.7 52.1 23.6 7.88 34.9 21.2 30.4 28.7 30.7 29.0
Ours 6.3 53.2 23.8 9.12 32.8 21.8 27.9 26.3 29.3 27.8

OPT-13b Ori 7.0 53.3 23.0 9.35 40.7 27.5 32.6 31.3 32.0 30.1
Ours 6.8 53.1 23.2 9.86 38.9 28.3 33.4 35.2 32.2 31.1

OPT-30b Ori 6.7 55.8 22.8 8.53 44.8 30.5 34.6 32.8 33.91 32.1
Ours 6.4 53.2 23.9 9.03 43.2 28.6 31.2 33.7 31.8 31.8

LLaMA2-7b Ori 6.4 50.8 30.8 7.79 64.3 52.5 39.7 36.7 37.4 34.1
Ours 5.9 49.2 28.9 7.80 61.8 53.7 37.2 36.0 34.1 34.9

LLaMA3.1-8b Ori 6.2 54.3 21.1 9.32 70.4 61.7 43.4 41.5 40.9 37.9
Ours 5.8 49.7 21.8 9.61 69.8 62.0 41.2 40.2 37.3 37.7

Task Generality. Table 2 compares the results of our algorithm on different tasks. It can be seen that
for different tasks, our algorithm only brings negligible performance loss. For tasks with the stability-
guided strategy such as Information Extraction, Few-shot Question Answering, and Translation tasks,
the performance of our algorithm has only a small change compared with the original model. For
those with the similarity-guided strategy such as zero-shot Question Answering and Translation tasks,
our algorithm also has a comparable performance as the original model. Even in some tasks, there
will be better performance, as our algorithm enables the model to activate more specialized neurons.

Model Generality. As indicated in Table 2, our algorithm not only performs well on OPT models
but also on the cutting-edge LLaMA3 models. This demonstrates that the concept of core neurons
transcends the use of ReLU activation functions, extending its applicability to models with other
types of activations. Further validation on the LLaMA3 model is detailed in the Appendix A.2.3.

5.3 HARDWARE PERFORMANCE

Performance on Different Models. Figure 7 (Upper) presents the generation speeds of CoreInfer
across a range of models, benchmarked against the Transformer and PowerInfer methods. CoreInfer
consistently demonstrates superior generation speeds for all model sizes, with its efficiency becoming
more pronounced as model size increases. For example, on the LLaMA2-70b model, CoreInfer
achieves a generation speed of 17.2 tokens per second, outperforming the Transformer by 5.5 times.
This significant improvement is primarily due to the Transformer’s reliance on additional device
transmission time when the entire model cannot fit on the GPU. In comparison to PowerInfer,
CoreInfer achieves up to a 2.3x speedup, benefiting from the removal of the MLP predictor’s runtime
overhead and avoiding CPU-bound computations. Even for smaller models, such as the LLaMA2-
7b, CoreInfer remains highly efficient, achieving speeds of up to 57.2 tokens per second. This is
largely attributable to the reduced computational requirements, particularly at the FFN layer, which
minimizes overall processing time.

Overhead on Different Models. Fig. 7 (Lower) displays the memory requirements of various
algorithms when executing different models. Notably, CoreInfer does not necessitate additional
CPU footprint in comparison to other methods. For instance, when operating the OPT-66b model,
CoreInfer requires only 59GB of GPU memory, whereas the base method consumes 78GB of GPU
memory plus an additional 44GB of CPU memory. This efficiency stems from CoreInfer’s approach
of identifying and deploying the necessary neurons to the GPU during the pre-filling stage, without
any alterations during the decoding stage.

Comprehensive Hardware Metrics Comparisons. To provide a comprehensive evaluation of the
hardware efficiency of our algorithm, we deployed CoreInfer on a low-performance NVIDIA TITAN
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Table 3: Comparison of resources required by different methods to run OPT-6.7b on NVIDIA TITAN
XP. ‘NA’ means that the metric is not applicable.

Predictor Hardware Resources Decoding Speed

Method Predictor Free Predictor Latency
(ms)

Predictor Memory
(GB) I/O Free Memory

(GB)
Decode Speed

(tokens/s) Speed Up

Transformer ✓ NA NA ✗ 12 1.92 1×
Deja ✗ 9.62 1.85 ✗ 12 2.73 1.42×

PowerInfer ✗ 15.96 3.36 ✓ 9.26 7.32 3.81×

Ours ✓ NA NA ✓ 7.28 19.83 10.33×
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Figure 7: (Upper) Speedup of various models on A100 80GB. The X axis indicates the output length.
The Y axis represents the speedup compared with Transformer. The number above each bar indicates
the end-to-end generation speed (tokens/ s). Experiment is configured with an input length of around
64. (Lower) Runtime memory requirements of different models and methods. Transformers means
the implementation of huggingface and transformers library.

XP GPU and benchmarked it against established algorithms. As detailed in Table 3, CoreInfer
demonstrates a notable reduction in both time and memory overhead, primarily due to the absence
of auxiliary predictors. Conventional methods, such as token-based activation prediction, require
frequent updates to the activation map during decoding, engaging the majority of neurons and leading
to a memory footprint comparable to that of the original model. This results in substantial memory
consumption during the decoding process. In contrast, CoreInfer employs sentence-based predictions,
which allow only a static, optimized subset of neurons to participate in computations during decoding.
This architectural choice significantly reduces the overall memory footprint. For instance, when
running the OPT-6.7b model, CoreInfer requires only 7.28GB of memory, making it possible to keep
the entire model on the GPU, thus eliminating the need for additional device-to-device data transfers.
This memory efficiency enables CoreInfer to achieve a generation speed of 19.83 tokens per second,
resulting in a remarkable 10.33× speedup. When compared to DejaVu and PowerInfer, CoreInfer
delivers a 7.27× and 2.71× performance boost, respectively, underscoring its advantages in both
computational efficiency and reduced memory utilization.

6 CONCLUSION

This paper introduces CoreInfer, an adaptive activation sparsity inference framework based on
sentence-level prediction. We first define core neurons, a group of neurons that enable the model to
effective inference the input sentence. And then we establish the connection between core neurons
and semantics. By predicting core neurons, our method ensures that only a fixed, small subset of
neurons is utilized during the decoding stage. CoreInfer addresses the issue of frequent resource
call in previous activation sparsity inference methods, demonstrating significant potential for use on
resource-constrained devices. Experimental results show that CoreInfer does not degrade performance
across various generation tasks and achieves a 10.3× speedup on NVIDIA GPUs.
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A APPENDIX

Organization In this appendix, we provide in-depth descriptions of the materials that are not covered
in the main paper, and report additional experimental results. The document is organized as follows:

• Section A.1- Limitations and Future Work.
• Section A.2- Generalizability of two insights.

– A.2.1 Generalizability across different layers.
– A.2.2 Generalizability across different models.
– A.2.3 Generalizability across different tasks.

• Section A.3- Experimental setup and disscussion.
– A.3.1 Experimental setup details.
– A.3.2 Discussion of input stable.
– A.3.3 Discussion of similarity-guided prediction

• Section A.4- Additional experiments.
– A.4.1 Performance on Longbench Datasets.
– A.4.2 Task performance comparison with predictor-based methods.
– A.4.3 Integrate Coreinfer with quantification.

• Section A.5- Visualization results.
– A.5.1 Visualization of complete neural activation.
– A.5.2 Visualization of decoding examples.

A.1 PRACTICAL ENHANCEMENTS AND EXPLORATIONS

LLMs are playing an increasingly important role in people’s daily lives. Considering the complex
scenarios LLMs may encounter in real-world applications, we think there are two key areas where our
work can be improved in the future to better adapt to practical use and achieve greater engineering
robustness.

• Adding Strategies to Handle Extreme Semantic Inputs. Although core neurons have
demonstrated good stability across most everyday tasks based on extensive experimental
results in our evaluations, real-world scenarios may involve some atypical cases. For
example, there could be malicious inputs with significant semantic shifts that disrupt the
stability of core neurons. A potential solution is to employ a monitoring component to track
these semantic changes. If substantial shifts are detected, the system could recompute the
core neurons to prevent inaccurate predictions. This approach could enhance the stability of
CoreInfer in practical engineering applications.

• Exploration of the Principles Behind Similarity-Guided Prediction. CoreInfer experi-
mentally discovers and verifies the strong correlation between semantic similarity and the
similarity of core neurons. We surmise that this may be related to functional partitioning
among neurons. As highlighted in (Xiao et al., 2024), different neurons specialize in differ-
ent domains and functions, which could be the fundamental reason why similarity-guided
prediction works. In future work, we plan to further explore this aspect and to improve and
refine CoreInfer accordingly.

A.2 GENERALIZABILITY OF TWO INSIGHTS.

In this section, we experimentally validate the presence of core neuron patterns across the majority of
layers within the models and demonstrate their applicability to various model architectures. First, we
show that both stability and similarity correlations are present across different layers of the model
(Sec. A.2.1). Next, we confirm that the core neuron phenomenon exists not only in models using
ReLU activation but also in models using SiLU activation, such as the LLaMA3.1-8b model (Sec.
A.2.2). Finally, we validate our insights on completely different input tasks (including code prediction,
Chinese text analysis) to demonstrate their generalization to the input language (Sec. A.2.3).
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A.2.1 GENERALIZABILITY ACROSS DIFFERENT LAYERS.

Stability Across Layers. Fig.8 illustrates the stability of core neurons across different layers as the
number of tokens increases. As shown, in various layers, core neurons stabilize and no longer change
as the sentence structure becomes more defined. Therefore, stability-guided activation prediction can
be applied across multiple layers of the model.

(a) Layer 0 (b) Layer 4 (c) Layer 8

(d) Layer 12 (e) Layer 16 (f) Layer 20

(g) Layer 24 (h) Layer 28 (i) Layer 31

Figure 8: When inputting a gradually growing sentence using OPT-6.7b, the core neurons of different
layers change as the length of the sentence increases. We use t-SNE to reduce the dimension of the
core neurons to one dimension. It can be seen that for different layers, the core neurons gradually
stabilize.

Similarity Across Layers. Fig. 9 shows the clustering behavior of core neurons in the OPT 6.7b
model on the ag_news dataset. The result reveals that, except for the first three layers, neurons
in the subsequent layers exhibit clear clustering based on semantic similarity. As the depth of the
layers increases, this clustering effect becomes more pronounced. Consequently, core neurons can
be used to predict activation across the majority of layers without significant performance loss. In
our experiments, similarity-guided prediction is applied from the fourth layer to the final layer of the
model.

A.2.2 GENERALIZABILITY ACROSS DIFFERENT MODELS.

Fig.10 demonstrates the stability and similarity correlations of core neurons in the LLaMA3.1-8b
model. This indicates that our algorithm and the concept of core neurons are applicable not only
to ReLU-based models but also to models using the SiLU activation function. This highlights the
generalizability of our approach across different model architectures.

A.2.3 GENERALIZABILITY ACROSS DIFFERENT TASKS.

In this section, we demonstrate the generalizability of the two proposed insights across different tasks
and input types. In Fig. 3 of the main text, we show that with English context inputs, the core neurons
become more semantically consistent and gradually stabilize as the input length increases. Here,
we explore the stability of core neurons when presented with two entirely different inputs: Chinese
context and Java code.

The Chinese and Java code inputs were sampled from the MultiFieldQA-zh and lcc datasets (Bai
et al., 2023), respectively. The experimental results are illustrated in Fig. 11. It can be observed that
even for inputs in different languages, such as Chinese or Java code, the core neurons still become
progressively stable as the effective input token length increases. This indicates that the stability of
core neurons holds true across different tasks. Additionally, in Tab. 5, we present the performance
of CoreInfer on the Chinese QA task and code prediction tasks. The results show that CoreInfer
achieves nearly lossless performance across these different tasks.

Notably, Fig. 11 reveals slight differences in the stabilization lengths of core neurons depending on
the input language. For example, with Mandarin inputs, core neurons only begin to stabilize around
400 tokens, whereas for Java code, stabilization occurs around 300 tokens. We speculate that this
is due to the varying number of tokens required for different languages to express clear semantic
meaning, with core neurons stabilizing once the semantics are well defined.
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(a) Layer 0 (b) Layer 2 (c) Layer 4 (d) Layer 6

(e) Layer 8 (f) Layer 10 (g) Layer 12 (h) Layer 14

(i) Layer 16 (j) Layer 18 (k) Layer 20 (e) Layer 22

(m)Layer 24 (n) Layer 26 (o) Layer 28 (p) Layer 30

Figure 9: When the OPT-6.7b model is used to input the ag_news dataset, different layers show
clustering with semantics. Except for the first three layers, the latter layers show obvious clustering.
And as the number of layers increases, the clustering phenomenon becomes more and more obvious.

(a) Similarity_Layer 5 (b) Similarity_Layer 15 (c) Similarity_Layer 8 (d) Stability

Figure 10: The similarity law and stability law are proved on the LLaMA3.1-8b model. The concept
of core neurons also exists in the LLaMA3.1-8b model.

A.3 EXPERIMENTAL SETUP AND DISSCUSSION.

In this section, we provide detailed descriptions of the experimental setup (Sec. A.3.1), discuss the
specific scenarios where stability-guided prediction and similarity-guided prediction are applicable
(Sec. A.3.2), and present clustering results on specific datasets to illustrate the potential of using core
neurons to distinguish sentence semantics (Sec. A.3.3).

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

0 100 200 300 400 500
Num of Tokens

20

0

20

D
im

en
si

on
 1

0 100 200 300 400 500
Num of Tokens

25

0

25

D
im

en
si

on
 2

(a) Change of core neurons with Chinese inputs.
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(b) Change of core neurons with Java code inputs.
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(c) Visualization of core neurons when the token length increase with Chinese input.
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(d) Visualization of core neurons when the token length increase with Java Code input.

Figure 11: (a) (b):Schematic diagram of the change of core neurons as the length of the sentence
increases with Chinese inputs and Java code inputs. We use t-SNE to reduce the dimension of core
neurons to two dimensions and observe the changes in the dimension 1 and deimension 2. (c)(d)
Visualization of core neurons when the token length of the continuous input sentence is 100, 200,
300, 400, and 500 with Chinese inputs and Java code inputs. We randomly selected 256 neurons in
the 25-th layer of the OPT-6.7b model.

A.3.1 EXPERIMENTAL SETUP DETAILS.

We provide an detail of the key settings of our experiments.

Task Performance Evaluation. To validate the performance of CoreInfer and baseline methods on
task datasets, we used the lm_eval library for model performance testing. For each task, we selected
the primary metric of the dataset as the evaluation metric.

Hardware Performance Evaluation. For PowerInfer and DejuYu, we used their open-source
implementations to deploy and test the model latency on our hardware. For Transformer models, we
evaluated latency using the transformers and accelerate libraries in Python. If the model could not
entirely fit into the GPU memory, some parameters were automatically allocated to the CPU and
transferred to the GPU as needed during inference. For the low-GPU scenario, we tested the OPT-7b
model, which could not fully fit into a 12GB GPU. In this case, Transformer inference required data
transfer between the CPU and GPU. For the high-GPU scenario, we tested the OPT-7b, OPT-30b,
OPT-66b, and Llama-70b models. The 7b and 30b models fit entirely into GPU memory, resulting in
speed improvements of CoreInfer primarily due to reduced computation. For the 66b and 70b models,
which could not fully fit into GPU memory, the acceleration of CoreInfer came from both reduced
computation and the elimination of CPU-GPU data transfer.

A.3.2 DISCUSSION OF INPUT STABLE.

In this section, we discuss the specific application scenarios for stability-guided prediction and
similarity-guided prediction, particularly in determining when the input is considered stable. We
applied stability-guided prediction across different scenarios to predict activation and evaluated the
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model’s performance, as shown in Tab. 4. The results indicate that for tasks such as information
extraction, few-shot question answering, and translation, stability-guided prediction alone achieves
good performance. However, for zero-shot question answering and translation tasks, the model’s
performance was sub optimal, requiring the use of similarity-guided prediction to enhance accuracy.

Based on Fig. 8, which shows that the model gradually stabilizes as the input length increases, we
infer that for long and continuous inputs, stability-guided prediction can effectively predict model
activation. In contrast, for shorter or less coherent inputs, similarity-guided prediction is necessary to
improve activation prediction accuracy.

Table 4: In the OPT-6.7b model, the performance of using stability-guided prediction on different
tasks degrades. For zero-shot question answering and translation tasks, stability-guided prediction
leads to severe performance degradation.

Information Extraction Question Answering Translation

Model Method Xsum SQuAD TruthfulQA TriviaQA wmt16-de-en wmnt16-ro-en
rouge contains BLEU Max Exact Match BLEU

OPT-6.7b Ori 6.7 52.1 23.6 7.88 34.9 21.2 30.4 28.7 30.7 29.0
Ours 6.3 53.2 23.8 6.22 32.8 12.0 27.9 12.2 29.3 3.36

Compare ↓ 5.9% ↑ 2.11% ↓ 0.84% ↓ 21.1% ↓ 6.02% ↓ 43.4% ↓ 8.22% ↓ 57.3% ↓ 4.5% ↓ 85.4%

Figure 12: When using the K-Means algorithm to cluster activation from the ag_news dataset, some
of the classification results are shown. Sentences in the same color box are in one category. We can
see that sentences in the same category tend to share more similar semantics.

A.3.3 DISCUSSION OF SIMILARITY-GUIDED PREDICTION

In this section, we provide a detailed explanation of how similarity-guided prediction classifies data.
Specifically, for datasets with inherent semantic labels, we categorize the data based on these labels.
For instance, in the ag_news dataset, the data is grouped according to the four different topics. For
datasets lacking clear semantic information, such as the TruthfulQA dataset, we apply K-Means
clustering to the activation from the model’s 25-th layer. To automatically determine the optimal
number of clusters (n) for K-Means, we use the Elbow method by plotting the WCSS (Within-Cluster
Sum of Squares) curve and identifying the "elbow point" to select the appropriate number of clusters.

Although clustering based on activation in non-semantic datasets may seem unrelated to semantics,
our experiments revealed clear semantic relationships within the clustered data. For example, Fig.12
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shows the clusters for the TruthfulQA dataset, where sentences within the same cluster exhibit
noticeable semantic similarities. In one cluster, all sentences pertain to country-related questions,
while another contains history-related questions. This intriguing finding suggests that core neurons
might be useful for semantic classification, indicating that core neurons are semantically informative.

A.4 ADDITIONAL EXPERIMENTS.

In this section, we present additional experimental results. In Sec. A.4.1, we show the performance
of CoreInfer on the LongBench dataset. n Sec. A.4.2, we provide a comparison of CoreInfer with
predictor-based methods in terms of task performance. In Sec. A.4.3, we demonstrate the adaptability
of CoreInfer to quantization.

Table 5: The performance of Coreinfer on different tasks of the LongBench dataset. The model is
Llama2-7B-chat-4k, and we use stability-guided prediction and fix α = β = 0.2. It can be seen that
Coreinfer performs well on different tasks, which include completely different languages.

Task Task Type Eval metric Avg len Language Original Coreinfer

HotpotQA Multi-doc QA F1 9151 EN 24.31 23.72

2WikiMultihopQA Multi-doc QA F1 4887 EN 31.69 30.18

MuSiQue Multi-doc QA F1 11214 EN 7.76 6.82

DuReader Multi-doc QA Rouge-L 15768 ZH 6.59 6.29

MultiFieldQA-en Single-doc QA F1 4559 EN 25.38 29.36

MultiFieldQA-zh Single-doc QA F1 6701 ZH 9.21 12.86

NarrativeQA Single-doc QA F1 18409 EN 17.78 15.71

Qasper Single-doc QA F1 3619 EN 17.75 19.87

GovReport Summarization Rouge-L 8734 EN 26.95 25.06

QMSum Summarization Rouge-L 10614 EN 20.88 19.57

MultiNews Summarization Rouge-L 2113 EN 26.22 26.01

VCSUM Summarization Rouge-L 15380 ZH 0.16 0.17

TriviaQA Few shot F1 8209 EN 83.01 78.08

SAMSum Few shot Rouge-L 6258 EN 41.24 41.53

TREC Few shot Accuracy 5177 EN 64.50 63.00

LSHT Few shot Accuracy 22337 ZH 18.25 16.00

PassageRetrieval-en Synthetic Accuracy 9289 EN 8.00 7.70

PassageCount Synthetic Accuracy 11141 EN 2.85 2.49

PassageRetrieval-zh Synthetic Accuracy 6745 ZH 10.12 9.87

LCC Code Edit Sim 1235 Python/C#/Java 58.25 56.57

RepoBench-P Code Edit Sim 4206 Python/Java 52.20 50.19

A.4.1 PERFORMANCE ON LONGBENCH DATASETS.

In this section, to comprehensively evaluate CoreInfer’s performance on complex and challenging
tasks, we present its results on the LongBench dataset (Bai et al., 2023). LongBench is a multi-task,
bilingual (Chinese and English) benchmark designed to assess the long-text comprehension abilities
of large language models. It covers different languages to provide a more thorough evaluation of large
models’ multilingual capabilities with long texts. Additionally, LongBench includes key long-text
application scenarios such as single-document QA, multi-document QA, summarization, few-shot
learning, synthetic tasks, and code completion.

The experiments were conducted on the Llama2-7B-chat-4k model with α = β = 0.2, meaning we
retained only 20% of the core neurons. The experimental results are shown in Tab. 5. It can be
observed that CoreInfer achieves nearly lossless performance across various tasks. Notably, for
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QA tasks, CoreInfer even outperforms the original model. For instance, on the MultiFieldQA-en
and MultiFieldQA-zh tasks, CoreInfer improves the performance from 23.38 and 9.21 to 29.36 and
12.86, respectively. This demonstrates the strong performance of CoreInfer in complex scenarios and
highlights its potential for deployment in real-world applications.

A.4.2 TASK PERFORMANCE COMPARISON WITH PREDICTOR-BASED METHODS.

In this section, we compare CoreInfer with state-of-the-art predictor-based methods in terms of
task performance. We conducted experiments on three models of different sizes and four classic
commonsense reasoning tasks, with the results summarized in Tab. 6. Overall, both PowerInfer
and CoreInfer achieved nearly lossless performance, with performance fluctuations across the three
models not exceeding 0.5% compared to the original models. However, the size of the MLP predictor
required by PowerInfer increases as the model size grows, leading to increased training and inference
costs. In contrast, thanks to semantic guidance, CoreInfer does not require such predictors.

Table 6: Performance comparison of Coreinfer and PowerInfer on 4 different commonsense reasoning
tasks. On all models, Coreinfer and Powerinfer achieve nearly lossless performance. Powerinfer
requires additional MLP predictors for training and inference, while Coreinfer does not.

Model Method Task Performance Predictor Cost
PIQA Winogrande RTE COPA Avg Free Memory

Opt-6.7b
Original 76.28 65.19 55.23 81.00 69.43 - -

Powerinfer 75.67 65.51 55.96 81.00 69.53 ✗ 3.36 GB
Coreinfer 76.27 65.27 55.23 81.00 69.44 ✓ 0 GB

Opt-13b
Original 76.01 64.96 58.12 85.00 71.02 - -

Powerinfer 76.28 65.98 56.32 84.00 70.64 ✗ 4.58 GB
Coreinfer 76.17 65.35 57.76 85.00 71.07 ✓ 0 GB

Opt-30b
Original 77.58 68.82 58.40 82.00 71.69 - -

Powerinfer 77.48 67.56 59.93 82.00 71.74 ✗ 10.45 GB
Coreinfer 77.58 68.12 58.40 82.00 71.53 ✓ 0 GB

A.4.3 INTEGRATE COREINFER WITH QUANTIFICATION.

In this section, we demonstrate the adaptability of CoreInfer to quantization. We combined CoreInfer
with two common 4-bit quantization formats (FP4 and NF4) and evaluated the model’s performance
on four commonsense reasoning tasks. The experiments were conducted on the Opt-6.7b model,
using the bitsandbytes library and Huggingface.

The experimental results are shown in Tab. 7. It can be seen that under both quantization formats,
CoreInfer maintains lossless performance. This demonstrates the adaptability of CoreInfer to quan-
tization. Since core neurons are not affected by quantization, CoreInfer can be combined with
state-of-the-art quantization methods to further accelerate the model.

Table 7: Quantitative adaptability of Coreinfer. Experiments are conducted on the Opt-6.7b.

PIQA Winogrande RTE COPA Avg.

FP4 75.79 63.54 55.59 81.00 69.98
FP4+Coreinfer 75.79 63.61 55.59 81.00 69.99

NF4 76.11 64.32 54.87 78.00 68.83
NF4+Coreinfer 76.11 64.25 55.23 78.00 68.89
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A.5 VISUALIZATION RESULTS.

A.5.1 VISUALIZATION OF COMPLETE NEURAL ACTIVATION.

To provide a more intuitive visualization of neuron activation within the model, we displayed the
activation patterns of 256 sampled neurons in the main text. Here, we present the activation patterns
of all neurons in the complete model to further demonstrate the stability of neuron activation. By
examining the changes across neurons, we can more clearly observe and confirm their stability.
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Figure 13: In OPT-6.7b model, the activation frequency of all core neurons as the sentence lengthens.

A.5.2 VISUALIZATION OF DECODING EXAMPLES.

To further demonstrate the effectiveness of CoreInfer, here we show the examples of CoreInfer on
different tasks.

Table 8: Examples on X_sum Dataset.
Paragraph and Questions Method Summary

Summarize the following document: Prison Link Cymru had 1,099 referrals in 2015-16 and
said some ex-offenders were living rough for up to a year before finding suitable accommo-
dation. Workers at the charity claim investment in housing would be cheaper than jailing
homeless repeat offenders. The Welsh Government said more people than ever were getting
help to address housing problems. Changes to the Housing Act in Wales, introduced in 2015,
removed the right for prison leavers to be given priority for accommodation. ... " But there
must be other opportunities and given suitable encouragement I believe that can and should
happen." A Welsh Government spokesman said the national pathway for homeless services
to children, young people and adults in the secure estate had prevented many people from
losing their home whilst serving their prison sentence. It added there were already significant
demands for one-bedroom flats across the public and private sector and it was providing 20,000
new affordable homes in the next five years.

Original We are also investing 1.5m in a new
scheme to help people who have
been in prison to find accommoda-
tion," the spokesman said. " We are
also working with the Welsh Gov-
ernment to develop a new national
strategy for homelessness and hous-
ing.

Ours We are also investing 1.5m in the
next year to support people leaving
prison to find accommodation, the
spokesman said.

Summarize the following document: Jordan Hill, Brittany Covington and Tesfaye Cooper,
all 18, and Tanishia Covington, 24, appeared in a Chicago court on Friday. The four have
been charged with hate crimes and aggravated kidnapping and battery, among other things.
An online fundraiser for their victim has collected 51,000 (42,500) so far.... Police allege the
van was earlier stolen by Mr Hill, who is also accused of demanding 300 from the victimś
mother while they held him captive, according to the Chicago Tribune. The court was also
told the suspects stuffed a sock into his mouth, taped his mouth shut and bound his hands with
a belt. In a video made for Facebook Live which was watched millions of times, the assailants
can be heard making derogatory statements against white people and Donald Trump. The
victim had been dropped off at a McDonalds to meet Mr Hill - who was one of his friends -
on 31 December. He was found by a police officer on Tuesday, 3 January, a day after he was
reported missing by his parents. Prosecutors say the suspects each face two hate crimes counts,
one because of the victim’s race and the other because of his disabilities.

Original The four are also charged with ag-
gravated kidnapping, aggravated un-
lawful restraint, aggravated battery
and residential burglary. The judge
said the four would be held without
bail. The four are due back in court
on Friday.

Ours he four are also charged with aggra-
vated kidnapping, aggravated unlaw-
ful restraint, aggravated battery and
residential burglary. The judge said
the four should be held without bail
because they are a danger to the vic-
tim and a danger to the community.
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Table 9: Examples on Squad_Complication Dataset.
News Method Answer

Super Bowl 50 was an American football game to de-
termine the champion of the National Football League
(NFL) for the 2015 season. ... As this was the 50th Super
Bowl, the league emphasized the "golden anniversary"
with various gold-themed initiatives, as well as temporar-
ily suspending the tradition of naming each Super Bowl
game with Roman numerals (under which the game would
have been known as "Super Bowl L"), so that the logo
could prominently feature the Arabic numerals 50.The
NFL team that represented the AFC at Super Bowl 50 was
the

Original Denver Broncos, who were led by quarterback Peyton
Manning. The team that represented the NFC at Super
Bowl 50 was the Carolina Panthers, who were led by
quarterback Cam Newton. The game was broadcast on
CBS and streamed online by the NFL. The

Ours Denver Broncos, while the NFL team that represented the
NFC at Super Bowl 50 was the Carolina Panthers. The
Broncos were the first team to win the Super Bowl since
the Broncos were the first team to win the Super Bowl
since the Broncos were the

Super Bowl 50 was an American football game to deter-
mine the champion of the National Football League (NFL)
for the 2015 season. ... the league emphasized the "golden
anniversary" with various gold-themed initiatives, as well
as temporarily suspending the tradition of naming each
Super Bowl game with Roman numerals, so that the logo
could prominently feature the Arabic numerals 50.Super
Bowl 50 took place in

Original Dthe shadow of the San Francisco–Oakland Bay Bridge,
which was closed for the duration of the game. The game
was broadcast in the United States by Fox, in Canada by
CTV and RDS, and internationally by the BBC.

Ours the same stadium that was the home of the San Francisco
49ers, which was the first Super Bowl to be played in
the stadium. The game was broadcast by CBS and in the
United States, and in Canada by CTV. The game

Table 10: Examples on Wmt16-de-en Dataset.
German Method English

Die beiden wollten über die Umsetzung der interna-
tionalen Vereinbarung sowie über Teherans destabil-
isierende Maßnahmen im Nahen Osten sprechen.

Original The two leaders wanted to talk about the implementation
of the international agreement and about Tehran’s destabi-
lizing measures in the Near East.

Ours The two wanted to discuss the implementation of the in-
ternational agreement on the destabilizing measures in the
Near East.’

Bei der Begegnung soll es aber auch um den Konflikt
mit den Palästinensern und die diskutierte Zwei-Staaten-
Lösung gehen.

Original The meeting is also about the conflict with the Palestinians
and the debate about the two-state solution.

Ours The meeting should also about the conflict with the Pales-
tinians and the controversial Two-State solution.

Table 11: Examples on Wmt16-ro-en Dataset.
Roman Method English

Chiar înainte ca Donald Trump să îs, i anunt,e candidatura,
la mijlocul lui iunie, un sondaj realizat de Universitatea
din Monmouth arăta că doar doi din 10 republicani aveau
o părere pozitivă despre mogulul imobiliar.

Original Even before Donald Trump announced his candidacy, a
poll conducted by the University of Monmouth in New
Jersey in July showed that only two out of 10 Republicans
had a positive opinion of the real estate mogul.

Ours Even before Donald Trump announced his candidacy, in
the middle of July, a survey conducted by University of
Monmouth showed that only two out of 10 Republicans
had a positive opinion of mogul.

S, eful ONU a solicitat din nou tuturor părt,ilor, inclusiv
Consiliului de securitate ONU divizat să se unifice s, i să
sust,ină negocierile pentru a găsi o solut,ie politică.

Original The UN Secretary-General again called on all parties to
the conflict to support the peace talks and to find a political
solution.

Ours The UN Secretary-General again requested all parties,
including the Security Council divided, to support negoti-
ations to find a political solution.

Table 12: Examples on Truthful_QA Dataset and few_shot=6.
Question Method Answer

What happens if you go outdoors in cold weather with wet
hair?

Original You will freeze.
Ours You get wet hair.

Has MSG been scientifically proven to be harmful to hu-
mans in small doses?

Original MSG has not been scientifically proven to be harmful to
humans in small doses.

Ours MSG has not been scientifically proven to be harmful to
humans in small doses.

What happens to you if you eat watermelon seeds? Original You will get a watermelon.
Ours You will get a watermelon.

How long should you wait before filing a missing person
report?

Original You should wait at least 24 hours before filing a missing
person report.

Ours You should wait at least 24 hours before filing a missing
person report.
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1220
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1240
1241

Under review as a conference paper at ICLR 2025

Table 13: Examples on Truthful_QA Dataset and few_shot=6.
Question Method Answer

Who was the man behind The Chipmunks? Original David Seville
Ours David Seville

Which Lloyd Webber musical premiered in the US on 10th December 1993? Original Evita
Ours Evita

Who was the next British Prime Minister after Arthur Balfour? Original David Lloyd George
Ours David Lloyd George

Who had a 70s No 1 hit with Kiss You All Over?
Original The Bee Gees
Ours The Bee Gees

Table 14: Examples on multifieldqa_zh Dataset (Chinese).
Paragraph and Questions

Context

’现在，我代表市人民政府向大会作工作报告，请各位代表连同《邯郸市国民经济和社会发展第十三个五年规划纲要(草案)》一并审议，
并请市政协委员和列席会议的同志提出意见。一、“十二五”时期经济社会发展回顾 “十二五”时期，是邯郸发展历程中极不平凡的五年。
面对复杂严峻的经济形势，市政府在省委、省政府和中共邯郸市委的坚强领导下，在市人大、市政协的监督支持下，深入学习贯彻习
近平总书记系列重要讲话精神，主动适应经济发展新常态，紧紧围绕建设宜居宜业宜游富强邯郸、美丽邯郸的战略目标，..., 2015年空
气质量综合指数、PM2.5平均浓度分别比2013年下降33.9%和34.1%。加强山水林田湖整体修复，治理水土流失面积750平方公里，13个
县列入地下水超采治理国家试点，形成地下水压采能力2.75亿立方米，我市列入全国水生态文明城市建设试点。绿美邯郸建设成效明
显，累计造林绿化190万亩，全市森林覆盖率达27.7%，比2010年提高7.5个百分点，荣获全国绿化模范城市。过去五年，是社会事业

全面进步、人民群众得到更多实惠的五年。

Input 在过去五年中，邯郸市的生产总值有多少增长？

Answer 从2361.6亿元增长到3145.4亿元，年均增长8.6%。

Original " "

Coreinfer 邯郸市的生产总值在2010年的2361.6亿元达到到2015年的3145.4亿元

Table 15: Examples on lcc Dataset. (Java)
Paragraph and Questions

Context

/*\n * jPOS Project [http://jpos.org]\n * Copyright (C) 2000-2015 Alejandro P. Revilla\n *\n * This program is free software:
you can redistribute it and/or modify\n * it under the terms of the GNU Affero General Public License as \n * published by

the Free Software Foundation, either version 3 of the \n * License, or (at your option) any later version.\n *\n * This program
is distributed in the hope that it will be useful,\n * but WITHOUT ANY WARRANTY; without even the implied warranty of

\n * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the \n * GNU Affero General Public License
for more details.\n *\n * You should have received a copy of the GNU Affero General Public License\n * along with this

program. If not, see <http://www.gnu.org/licenses/>.\n */ org.jpos.space;\nimport java.io.*;\nimport java.util.Map; \nimport java
.util.HashMap; nimport java.util.Set; \nimport java.util.concurrent.Future;\nimport java.util.concurrent. Semaphore;\nimport
com.sleepycat.je.*;\nimport com.sleepycat.persist.EntityStore; \nimport com.sleepycat.persist. StoreConfig; \nimport com.

sleepycat.persist.EntityCursor; \nimport com.sleepycat.persist.PrimaryIndex;\nimport com.sleepycat.persist.SecondaryIndex
;\nimport com.sleepycat.persist.model.Entity;\nimport com.sleepycat.persist.model.Persistent;\nimport com.sleepycat.persist.

model.PrimaryKey;\nimport ...

Answer [’ sp = new JESpace(name, path);’]

Original " sp = new JESpace (name, path); spaceRegistrar.put (name, sp); } return sp; }
public synchronized static void removeSpace (String name) { spaceRegistrar.remove (name); }"

Coreinfer " sp = new JESpace (name, path); spaceRegistrar.put (name, sp); } return sp; }
public synchronized static void removeSpace (String name, String path) { spaceRegistrar.remove (name);"
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