
Exploring Under Constraints with Model-Based
Actor-Critic and Safety Filters

Ahmed Agha
Volkswagen Group

Germany
ahmed.agha@volkswagen.de

Baris Kayalibay
Volkswagen Group

Germany
baris.kayalibay@volkswagen.de

Atanas Mirchev
Volkswagen Group

Germany
atanas.mirchev@volkswagen.de

Patrick van der Smagt
Volkswagen Group

Germany

Justin Bayer
Volkswagen Group

Germany
justin.bayer@volkswagen.de

Abstract: Applying reinforcement learning (RL) to learn effective policies on
physical robots without supervision remains challenging when it comes to tasks
where safe exploration is critical. Constrained model-based RL (CMBRL)
presents a promising approach to this problem. These methods are designed
to learn constraint-adhering policies through constrained policy optimization ap-
proaches. Yet, such policies often fail to meet stringent safety requirements dur-
ing learning and exploration. Our solution “CASE” aims to reduce the instances
where constraints are breached during the learning phase. Specifically, CASE
integrates techniques for optimizing constrained policies and employs planning-
based safety filters as backup policies, effectively lowering constraint violations
during learning and making it a more reliable option than other recent constrained
model-based policy optimization methods.

Keywords: Model-based RL, Safe RL, Safety Filter, Exploration

1 Introduction

Many real-world robotic systems can be effectively modeled as constrained Markov decision pro-
cesses (CMDPs) [1], particularly in contexts where safety is paramount, and robots must adhere
to specific conditions while learning to accomplish tasks. In addition, CMDPs offer a structured
framework for injecting inductive biases into the policy optimization process, thereby reducing the
number of interactions required to learn effective policies. Thus, developing deep RL algorithms
for solving CMDPs has the promise of unlocking RL’s potential across various real-world robotic
applications where safety is an issue. However, applying RL to systems that must operate under
constraints all the time, even as they explore and learn, remains an open challenge.

Model-free constrained policy optimization methods have primarily adapted actor-critic techniques
to the constrained setting, employing Lagrangian relaxation, such as the augmented Lagrangian
method, to train constrained policies. While these algorithms are appealing for their relative sim-
plicity, they face significant challenges, particularly in terms of sensitivity to Lagrangian multipliers
[2]. Moreover, model-free RL approaches for CMDPs often suffer from high sample complexity,
making them ill-suited for constrained environments where a high number of interactions during

8th Conference on Robot Learning (CoRL 2024), Munich, Germany.

learning constrained policies leads to a high number of constraint violations as well as increased
wear and tear, reducing their suitability for learning without supervision on physical robots.

Various authors have proposed applying model-based RL methods to constrained settings to tackle
the challenge posed by the high sample complexity of model-free approaches. These methods fall
into two main categories. The first category includes methods that improve learning efficiency and
reduce constraint violations during exploration by using differentiable models [3, 4]. These models
act as simulators for both learning the policy and the value function. However, despite their advan-
tages, they often face difficulties with the instability that comes with constrained policy optimization.
The second category involves methods that incorporate planning [5, 6, 7, 8] possibly alongside the
primary, unconstrained policies. This approach helps in preventing constraint violations throughout
the learning phase. We find that combining the ability of learned models to act as simulators for
constrained policy optimization with the possibility of using learned models in look-ahead control
schemes remains a largely unexplored direction. Furthermore, we find that most CMBRL methods
do not consider epistemic uncertainty, which is essential in cases where the policy is exploring online
and needs to reason about the effect of epistemic uncertainty on its ability to satisfy constraints.

Our Contributions In this work, we combine constrained model-based policy optimization with
a planning-based safety filter that acts as a backup policy to minimize constraint violations during
exploration. In addition, we introduce modifications to the constrained model-based policy opti-
mization training to ensure stable training. We also modify the safety filter’s objective to consider
the behavior of the constrained base policy during planning. We evaluate our method on constrained
tasks from the Omnisafe [9], RWRL [10], and the safe-control-gym [11] benchmarks and show that
our combination of constrained policy optimization and planning can lead to significantly reducing
constraint violations during training in comparison with other model-free and model-based methods.

2 Preliminaries

2.1 Problem Setting

We consider a CMDP, which is defined by the tuple (S , A , p , ρ0 , r , γ , c , γsafe). S and A are
the state and action spaces respectively. The discount factor and the safety discount factor are
represented by γ and γsafe. The dynamics of the system are represented by p(st+1 | st, at), and
the initial state distribution is represented by ρ0. The reward function is represented by r(st, at),
and the constraint cost function is represented by c(st). In this work, we consider constraint costs
represented with the indicator function I(st) where the unsafe state is represented as Sunsafe =
{st | I(st) = 1} and the safe states are represented as Ssafe = {st | I(st) = 0}.

The challenge in CMDPs is maximizing the performance of the agent while satisfying constraints

J(π) = E
at∼π,s0∼ρ0

[∞∑
t=0

γtr(st, at)

]
such that Jc(π) = E

at∼π,s0∼ρ0

[∞∑
t=0

γtsafeI(st)

]
≤ l,(1)

where l is a problem-specific threshold.

2.2 Constrained Model-based Reinforcement Learning

In constrained model-based RL, we use transition tuples in the form of {st, at, rt, ct, st+1} to learn
a transition model p. The transition model can then be used in online planning as done in [12, 13],
or by amortizing decision-making by offline training of a parametric policy using an actor-critic
approach as in [14, 15].

Recent methods [3, 4] have shown the effectiveness of MBRL in solving CMDPs as formulated
in Eq. (1). Both methods adapt previous model-based RL methods to the constrained setting;
LAMBDA [3] is based on Dreamer [14], where the RSSM model from PLANET [13] is used as
a differentiable simulator for on-policy actor-critic training to learn a policy πθ and a critic vπ;

2

Model

Critic

Safety Filter
Policy

Safety Critic

Trigger
Filter ?

No

Yes

Figure 1: Overview of CASE. A dynamics model is used to train a constrained policy, a critic, and
a constraint critic. The task policy is used alongside a safety filter to ensure low constraint violation
rates during exploration.

safeSLAC [4] is based on SLAC [16], where the model is used to fill a replay buffer used in an
off-policy algorithm. Both methods extend their base MBRL algorithm by adding a constraint critic
vπ,safe and using a Lagrangian relaxation to train a constrained policy by optimizing

min
λ≥0

max
πθ

Es0∼ρ0 [J(s0)] + λEs0∼ρ0 [Jc(s0)]. (2)

We follow a similar constrained model-based actor-critic (CMBAC) scheme to LAMBDA. However,
we do not follow a similarly complex approach to the multiplier updates; rather, we add some minor
modifications to the calculation of the value functions in constrained policy optimization to ensure
the stability of the multiplier updates using gradient descent. Additionally, we avoid learning the
policy πθ using a pessimistic constraint cost, which leads to learning an overtly conservative policy
[4].

3 Approach

Algorithm 1 Pseudocode of CASE

Initialize parameters θ, ϕ, ξ, ψ
for N episodes do

for t timesteps do
sample at from policy πθ(st)
if st ∈ Srecovery according to (4) then

Trigger filter and optimize filter objective
in (5) resulting in plan {ut, . . . , ut+H}
Apply ut

else
Appy at

end if
end for
Add Depisode to D
update Pψ , πθ, Vϕ, V safe

ξ

end for

In CASE, we combine CMBAC with
a planning-based safety filter to lower
constraint violation rates while exploring
CMDPs. Our motivation is to leverage
the advantages of look-ahead control and
the computational efficiency of actor-critic
methods to explore the CMDP while keep-
ing constraint violations to a minimum.
This combination of learning and planning
has been studied in recent work [6, 17, 18],
leveraging the ability of actor-critic meth-
ods to learn parametric policies and critics
efficiently and compensating for the bias
and limited expressiveness of an amor-
tized parametric policy with look-ahead
control using the model. We learn a proba-
bilistic ensemble transition model Pψ sim-
ilar to that introduced in PETS [12], which
we discuss further in appendix B. We use
the learned dynamics model in a model-based actor-critic algorithm as a learned simulator for con-
strained on-policy actor-critic training. Online exploration is performed primarily using the con-
strained parametric policy; in addition, we implement a pessimistic planning-based safety filter to
avoid violating constraints. An overview of our methods can be seen in figure 1 and algorithm 1.

3

3.1 Constrained Model-based Actor-Critic

Our approach to policy optimization is most similar to [3, 4], where CMBAC methods were shown
to result in data-efficient learning of constrained policies. For the policy optimization, we learn a
parameterized policy πθ. In addition, we follow [19] and learn an ensemble value function Vϕ =
{vϕ1

, . . . , vϕB}, where vϕi are individual ensemble members, similarly, we learn an ensemble safety
critic V safe

ξ = {vsafe
ξ1
, . . . , vsafe

ξB
}.

Learning Dynamics Model We adapt the probabilistic ensembles from PETS [12] for solving
CMDPs. We add predictions heads for rewards p(rt|st), constraint cost p(It|st), and termination
flags p(dt|st) for environments with early termination conditions. We model the reward distribution
p(rt|st) as a Gaussian distribution, while the binary constraint cost It and termination flag dt are
modeled as Bernoulli distributions.

Learning Critics For learning of value function ensemble members, we use imagined rollouts
τi,st using respective transition ensemble members pψi and branching off real states st. This ap-
proach leads to the disagreement of critic ensemble members capturing the epistemic uncertainty
in the transition function ensemble Pψ similar to the approach followed in [20]. We use TD(λ) to
calculate the targets for the value function similar to Dreamer [14] and train each member in the
value function ensemble on its own independent targets as done in [21]

min
ϕi

Est′∼pψ,i,at′∼πθ

[
t+Hv∑
t′=t

1

2

∥∥vϕ,i(st′)−Ri(st′)
∥∥2] , where

Ri(st) = rt + γ(1− dt)
(
(1− λreward)vϕ,i(st) + λrewardRi(st+1)

)
, Rit+Hv = vϕ,i(st+Hv).

Similarly we learn the safety critic ensemble V safe
ξ using TD(λ) targets We note that the termination

flag dt is only included in calculating the task critic targets. We do not include it in the constraint
critic’s training, which would lead the constraint critic to underestimate the cost for states near
termination states. We discuss this design choice further in the ablation studies in appendix A.

Constrained policy optimization For solving the constrained problem in equation (1), we resort
to Lagrangian relaxation by including the constraint cost term in the policy objective weighted by
the Lagrangian multiplier λ, thus turning the problem into an unconstrained problem as in equation
(2), where we solve a min-max optimization over the policy πθ and the Lagrangian multiplier λ

min
λ≥0

max
πθ

1

1 + λ
Eat′∼π,st∼Ssafe,st′∼Pψ

[
R(st+k) + λC(st+k) | st

]
, (3)

where R and C are the means over the TD(λ) returns from the different ensemble members Ri

and Ci for the rewards and the constraint costs respectively. Designing stable update rules for La-
grangian multipliers is a challenging task in the model-based setting, as using biased model rollouts
for updating the multipliers can lead to a rapid increase in their magnitudes, thus derailing training.
Furthermore, model rollouts in MBRL normally use observations from the replay buffer as starting
states, which can lead to the multipliers being updated to reflect the behavior of the policy used to
collect the data rather than the optimized policy πθ. In [3], a complicated optimization scheme is
used to decelerate the updates of the multipliers. In [4], the multipliers are updated solely using
real online rollouts, presumably to avoid inaccuracies in the model from causing erroneous multi-
plier updates. We follow a more straightforward scheme and update the multipliers using stochastic
gradient descent with no additional heuristics.

Our changes center around the calculation of the policy’s objective and are highlighted in objective
(3) in cyan. We only use constraint-satisfying states Ssafe as initial states for our rollouts and only
include the tail of the rollouts in the calculation of the terms in the objective, thus avoiding situations
where the agent is already doomed but starts in a safe state. Thus giving the policy enough time to
steer the system away from constraint-violating regions. Over time, these changes decelerate the
increase in the multipliers and prevent them from exploding in value. In addition, we normalize the

4

whole objective by a factor of 1 + λ, which helps keep the absolute value of the loss in the same
scale as the multiplier λ increases in value similar to [2].

3.2 Exploration with Safety Filter

Our aim is to enable safer online exploration. Thus, we do not use conservatism to prevent the policy
from exploring online as in [22, 23, 3], which would lead the policy to learn an overtly conservative
behavior. In contrast, we rely on a conservative safety filter MPC as a backup policy that intervenes
to prevent constraint violation, guided by the critic.

Trigger To trigger the filter, we rely on the ensemble transition model and use it to roll out the
learned policy πθ for horizon Hfilter starting from the current state st, generating separate imagined
trajectories {(sit′ , ait′)}

t+Hfilter

t using each member pθ,i. We use the worst-case value of the ensemble
safety critic V safe

max = max
st′∈Pψ

V safe(st′) to define a pessimistic recovery set

Srecovery = {(st) ∈ S : V safe
max(s

i
t′) ≥ ϵsafe}, (4)

where V safe
max is the maximum prediction of the ensemble critic across the look-ahead trajectories.

Our pessimistic formulation of the objective and the trigger of the safety filter consider the epistemic
uncertainty inherent in the exploration task, where the filter is more likely to be triggered in situations
with high epistemic uncertainty due to the effect of considering the worst case prediction of the
ensemble safety critic.

We roll out separate trajectories starting from current state st with each separate transition ensemble
member pψ,i and evaluate the states sit′ in each trajectory with its respective safety critic vξ,i. The
state st is considered part of Srecovery in case the worst case prediction of V safe of the imagined
trajectories starting from st exceeds the threshold ϵsafe.

Optimization The safety filter used in this paper solves the optimization problem

min
ut...ut+m

E st+1..t+m∼Pψ(.|st′ ,ut′)
st+m+1..t+H∼Pψ(.|st′ ,πθ(st′))

[
t+Hfilter∑
t′=t

V safe
max(st′)

]
. (5)

This MPC-filtering approach is similar to the recovery RL method [7], which minimizes the safety
critic along the look-ahead horizon, thus enabling a longer look-ahead at a reduced computational
cost. In addition, we use pessimism in triggering the filtering and optimizing its objective. Thus
taking epistemic uncertainty into consideration. Furthermore, our objective includes rollouts from
the base policy πθ in the objective, thus encouraging the MPC to drive the systems to regions of the
state space where the base policy is predicted to keep the system safe. We optimize the objective in
(5) using gradient descent where we optimize the whole term for the actions {ut, . . . , ut+m}.

4 Results

4.1 Experimental Setup

We compare our method with model-free baselines on constrained locomotion tasks from the Om-
nisafe [9] benchmark and model-based baselines on the RWRL [10] and safe-control-gym [11]
benchmarks. We run each method on four seeds and show the mean and the 95% confidence in-
terval performance in figure 2. We explain our experimental setup and hyperparameters in more
detail in appendix D.

4.2 Comparison to Model-free Baselines

For benchmarking against model-free baselines, we use the constrained velocity control tasks from
the Omnisafe benchmark, where the goal is to solve locomotion tasks while maintaining the sys-
tem below a maximum velocity. We choose different constrained RL baselines based on TD3 [24]

5

0 1 2 3 4 5
1e5

0

2000

4000

6000

8000

re
wa

rd

halfcheetah

0 1 2 3 4 5
1e5

0

1000

2000

3000

4000
walker

0 1 2 3 4 5
1e5

1000

0

1000

2000

3000

ant

0 1 2 3 4 5
1e5

0

500

1000

1500

2000

2500

3000

hopper

CASE (ours) SAC Lagrangian TD3 Lagrangian SAC PID TD3 PID

0 1 2 3 4 5
envitonment steps 1e5

0

20

40

60

80

100

co
ns

tra
in

t v
io

la
tio

n
ra

te
 [%

]

0 1 2 3 4 5
envitonment steps 1e5

0
2
4
6
8

10
12
14

0 1 2 3 4 5
envitonment steps 1e5

0

10

20

30

40

50

0 1 2 3 4 5
envitonment steps 1e5

0

20

40

60

80

Figure 2: Performance of CASE compared to other constrained RL methods on constrained envi-
ronments from the Omnisafe benchmark. We find that constraint violation rates during exploration
are reduced significantly while maintaining competitive task performance in comparison with other
constrained RL methods..

and SAC [25]. We first compare the performance of CASE with the model-free baselines SAC-
Lagrangian and TD3-Lagrangian, which extend SAC and TD3 with a constrained policy optimiza-
tion scheme using Lagrangian relaxation. In addition, we compare CASE to SAC-PID and TD3-PID,
which use the Lagrange multipliers updating scheme presented in [2]. CASE generally reaches the
same task performance as the model-free baselines while maintaining comparatively low constraint
violation rates throughout training. However, we still see that even with the addition of a planner as
a safety policy, we are still not able to completely avoid constraint violations.

The baselines eventually learn to solve the task while having low constraint violation rates. However,
as constrained policy optimization tends to have instabilities during training, they have high rates
of constraint violation during exploration. This is compounded by the implementation in Omnisafe,
which only starts updating the Lagrange multipliers after 100 warm-up epochs, corresponding to
200k environment steps. This initial warm-up phase ensures the off-policy methods have enough
variety in the replay buffer. In cases where the robot needs to learn in the wild, such exploration
behavior might not be acceptable.

The results from our experiments put into question the suitability of the model-free method for
safe reinforcement tasks, where the agent needs to learn online. Although model-free methods
might have advantages in their asymptotic performance compared to model-based methods [12],
they lack the ability of model-based methods to do look-ahead controlling and deciding online to
avoid actions where the robot might be uncertain or that might be deemed to be possibly dangerous.
Making model-based methods more suitable for learning on physical robots, especially when the
robot needs to explore under certain restrictions.

4.3 Comparison to Model-based Baselines

We compare our method to two similar model-based approaches: LOOP [6] and the model-based
version of Recovery RL [7].

LOOP integrates learned value functions with planning for decision-making. Unlike our method,
LOOP uses look-ahead control to maximize rewards and minimize constraint violations at each
step, does not account for epistemic uncertainty in planning, and assumes access to the ground-truth
constraint cost function. Despite this, CASE outperforms or matches LOOP in constraint adherence
without access to the real constraint cost function. Additionally, CASE demonstrates superior task
performance, except in the cartpole environment, where LOOP has a higher constraint violation rate.
As LOOP requires optimising a look-ahead control problem in every environment step, we find that

6

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1e5

0

200

400

600

800

re
wa

rd

cartpole

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1e5

0

200

400

600

800

1000 walker

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1e5

200

400

600

800

1000
quadruped

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1e5

0

50

100

150

200

quad_3D_stab

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1e5

50

100

150

200

quad_2D_track

CASE (ours) LOOP Recovery RL

0.0 0.5 1.0 1.5 2.0 2.5 3.0
envitonment steps 1e5

0

20

40

60

80

100

co
ns

tra
in

t v
io

la
tio

n
ra

te
 [%

]

0.0 0.5 1.0 1.5 2.0 2.5 3.0
envitonment steps 1e5

0

5

10

15

0.0 0.5 1.0 1.5 2.0 2.5 3.0
envitonment steps 1e5

0

20

40

60

80

100

0.0 0.5 1.0 1.5 2.0 2.5 3.0
envitonment steps 1e5

0

20

40

60

80

0.0 0.5 1.0 1.5 2.0 2.5 3.0
envitonment steps 1e5

0

10

20

30

40

50

60

Figure 3: CASE outperforms both LOOP and Recovery RL in terms of constraint violations across
constrained environments in the RWRL and Safe-Control-Gym benchmarks. Although CASE shows
slightly higher violations in the walker environment compared to LOOP (still under 5%), it has the
added challenge of predicting constraint costs using the learned model. In contrast, LOOP uses the
environment’s ground-truth constraint function to calculate costs, giving it an advantage in constraint
adherence that CASE achieves without such prior knowledge.

it is much less compute efficient than CASE, we discuss the differences in frequency between CASE
and similar methods in appendix C.

In contrast, Recovery RL uses a model-free approach to learn an unconstrained task-solving policy
and a safety critic. The model-based version introduces a forward model for triggering interventions
and to design a look-ahead recovery controller. However, Recovery RL suffers from conflicts be-
tween the task-solving policy and the recovery policy, leading to worse performance compared to
CASE, as seen in figure 3.

5 Related Work

Constrained model-based reinforcement learning Different RL methods have been introduced
targeting CMDPs [26, 27, 28]. The most common variants are papers leveraging the augmented
Lagrangian method for learning constrained policies. CPO [29] extended TRPO to CMDP, and
building on that work [30] combined the Lagrangian method with PPO to learn constrained policy.
Using an on-policy method rendered the method unsuitable for learning in the real world, where
sample efficiency is essential. In [31], the authors implemented a similar approach but replaced
the on-policy algorithm with an off-policy approach to reduce sample complexity. Saute RL [32]
provides an alternative to using Lagrangian relaxation for solving CMDPs by using state space aug-
mentation. Different papers proposed MBRL methods combining learned models with constrained
policy optimization. In [3], the authors use a Bayesian approximation of an RSSM [13] as a model.
The posterior of the transition is used to learn an optimistic objective regarding the rewards but pes-
simistic regarding the constraint cost. A similar approach was introduced in [4] where the authors
extend SLAC [16] to the constrained setting. Concurrent with our work, safeDreamer proposes
combining planning with CMBAC. However, SafeDreamer differs in not leveraging the planner as
a backup policy, as is the case with CASE. Further, safeDreamer does not consider the epistemic
uncertainty into decision-making, as proposed in our method.

Safety filters Learning a policy to satisfy constraints and, at the same time, maximize the agent’s
utility can be a challenging task. As a result, multiple methods have attempted to circumvent this
problem by introducing backup policies πsafe(st) that minimize constraint costs in addition to a task-
reward maximizing base policy π(st). Model-free methods that use a backup mechanism [7, 33]
generally use an off-policy critic to trigger the intervention mechanism. Critics tend to be sensitive
to out-of-distribution data and, in general, hard to learn. The two-policy setup is also investigated

7

in [34], where the authors improve on the safety layers approach [35] by replacing the layers with a
separate parametric policy that allows them to handle more complicated constraints.

The predictive safety filter paper [8] introduces an MPC wrapper to a base policy to prevent con-
straint violations during learning, relying on assumptions about the model and the system dynamics
and the availability of a controller that keeps the system in a predetermined safe terminal state to
have guarantees on constraint satisfaction. In [36], a control barrier function (CBF) is used in learn-
ing a safe policy, but their method is limited to control-affine systems and assumes prior knowledge
of a simplified model and access to a forward invariant safe set. In general, our method differs
from other safety filter methods based on CBFs and Hamilton-Jacobi reachability in that we do not
make any assumptions on the underlying CMDP and do not assume prior knowledge of the nom-
inal dynamics of the systems. This contrasts to CBF and HJ safety filters where it is common to
make assumptions on the dynamics [37, 38, 39, 40, 36, 41], Lipschitz continuity [37, 38, 39, 40, 36]
or existence of prior knowledge of prior safe sets [36]. SAILR [42] provides an advantage-based
intervention mechanism and derives performance bounds under the assumption of having an MDP
with an absorbing state. However, their model-based experiments seem to be based on engineered
models.

Online planning using offline learned functions Combining online planning with offline learned
functions has proven effective in several works [18, 6, 17]. Online planning suffers less from bias
compared to parameterized policies, and offline-learned functions can enhance the planner’s per-
formance [43]. The idea of planning using offline learned functions was shown to improve on
parametric policies in [18], and performance bounds were derived that show the benefits of using a
planner in combination with a value function. However, the methods and the bounds introduced all
used an unbiased dynamics model. In [6], these insights were extended to learned models.

6 Conclusions and Limitations

We present a method that combines constrained model-based policy optimization with a pessimistic
planning-based safety filter for exploration in CMDPs with the aim of facilitating the learning of
effective policies entirely on physical robots. We find that leveraging the ability of model-based
methods to function as a simulator for actor-critic methods and being used in look-ahead-control
schemes, thus combining the advantages of model-based actor-critic with low-bias properties of
planning, can lead to a significant reduction in constraint violation in comparison with model-free
and model-based baselines. We evaluated our method on different constrained RL benchmarks,
which show the versatility of our method in adapting to different task dimensionalities and its ability
in robotic tasks such as drone trajectory tracking and stabilization.

Our method differs from previous safety filtering methods [8, 7], where the base policy πθ is un-
aware of constraints and the agent’s safety is left to the backup mechanism, often causing oscillatory
behavior [44]. We assume no prior knowledge of the CMDP’s dynamics and make no assump-
tions regarding its properties as done in previous safety filtering methods [36, 8, 39] and aim for
a versatile method applicable to any CMDP, including those with contact dynamics discontinuities
and high dimensional observations such as images. We believe combining our approach with other
model-based actor-critic methods [45, 46] can enable efficient robot learning from high dimensional
observations with minimal supervision.

Limitations The main limitation of our method lies in the inability to guarantee constraint sat-
isfaction. Such guarantees would involve making assumptions on the target system, such as the
smoothness of the dynamics and the availability of a safe terminal set as in methods leveraging HJ
reachability and CBF [8, 36, 40, 37, 38]. Such assumptions might not be satisfied in many target
systems of interest. Although our method leads to less constraint violation than the baselines dur-
ing exploration, online planning can be computationally expensive. Furthermore, our design for the
learned transition model limits our method to fully observable systems, which we aim to rectify in
future work by leveraging models that can learn the dynamics of partially observable systems.

8

References
[1] E. Altman. Constrained Markov Decision Processes, volume 7. CRC Press, 1999.

[2] A. Stooke, J. Achiam, and P. Abbeel. Responsive safety in reinforcement learning by pid
lagrangian methods. In International Conference on Machine Learning, pages 9133–9143.
PMLR, 2020.

[3] Y. As, I. Usmanova, S. Curi, and A. Krause. Constrained policy optimization via bayesian
world models. In International Conference on Learning Representations, 2021.

[4] Y. Hogewind, T. D. Simão, T. Kachman, and N. Jansen. Safe reinforcement learning from
pixels using a stochastic latent representation. In The Eleventh International Conference on
Learning Representations, 2022.

[5] M. Wen and U. Topcu. Constrained cross-entropy method for safe reinforcement learning.
Advances in Neural Information Processing Systems, 31, 2018.

[6] H. Sikchi, W. Zhou, and D. Held. Learning off-policy with online planning. In Conference on
Robot Learning, pages 1622–1633. PMLR, 2022.

[7] B. Thananjeyan, A. Balakrishna, S. Nair, M. Luo, K. Srinivasan, M. Hwang, J. E. Gonzalez,
J. Ibarz, C. Finn, and K. Goldberg. Recovery rl: Safe reinforcement learning with learned
recovery zones. IEEE Robotics and Automation Letters, pages 4915–4922, 2021.

[8] K. P. Wabersich and M. N. Zeilinger. A predictive safety filter for learning-based control of
constrained nonlinear dynamical systems. Automatica, 129:109597, 2021.

[9] J. Ji, J. Zhou, B. Zhang, J. Dai, X. Pan, R. Sun, W. Huang, Y. Geng, M. Liu, and Y. Yang. Om-
nisafe: An infrastructure for accelerating safe reinforcement learning research. arXiv preprint
arXiv:2305.09304, 2023.

[10] G. Dulac-Arnold, N. Levine, D. J. Mankowitz, J. Li, C. Paduraru, S. Gowal, and T. Hester. An
empirical investigation of the challenges of real-world reinforcement learning. 2020.

[11] Z. Yuan, A. W. Hall, S. Zhou, L. Brunke, M. Greeff, J. Panerati, and A. P. Schoellig. Safe-
control-gym: A unified benchmark suite for safe learning-based control and reinforcement
learning in robotics. IEEE Robotics and Automation Letters, 7(4):11142–11149, 2022.

[12] K. Chua, R. Calandra, R. McAllister, and S. Levine. Deep reinforcement learning in a handful
of trials using probabilistic dynamics models. Advances in neural information processing
systems, 31, 2018.

[13] D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and J. Davidson. Learning latent
dynamics for planning from pixels. In International conference on machine learning, pages
2555–2565. PMLR, 2019.

[14] D. Hafner, T. Lillicrap, J. Ba, and M. Norouzi. Dream to control: Learning behaviors by latent
imagination. In International Conference on Learning Representations, 2019.

[15] P. Becker-Ehmck, M. Karl, J. Peters, and P. van der Smagt. Learning to fly via deep model-
based reinforcement learning. arXiv preprint arXiv:2003.08876, 2020.

[16] A. X. Lee, A. Nagabandi, P. Abbeel, and S. Levine. Stochastic latent actor-critic: Deep rein-
forcement learning with a latent variable model. Advances in Neural Information Processing
Systems, 33:741–752, 2020.

[17] N. A. Hansen, H. Su, and X. Wang. Temporal difference learning for model predictive control.
In International Conference on Machine Learning, pages 8387–8406. PMLR, 2022.

9

[18] K. Lowrey, A. Rajeswaran, S. Kakade, E. Todorov, and I. Mordatch. Plan online, learn offline:
Efficient learning and exploration via model-based control. In International Conference on
Learning Representations, 2018.

[19] X. Chen, C. Wang, Z. Zhou, and K. W. Ross. Randomized ensembled double q-learning:
Learning fast without a model. In International Conference on Learning Representations,
2020.

[20] C. E. Luis, A. G. Bottero, J. Vinogradska, F. Berkenkamp, and J. Peters. Model-based uncer-
tainty in value functions. In International Conference on Artificial Intelligence and Statistics,
pages 8029–8052. PMLR, 2023.

[21] K. Ghasemipour, S. S. Gu, and O. Nachum. Why so pessimistic? estimating uncertainties
for offline rl through ensembles, and why their independence matters. Advances in Neural
Information Processing Systems, 35:18267–18281, 2022.

[22] T. Yu, G. Thomas, L. Yu, S. Ermon, J. Y. Zou, S. Levine, C. Finn, and T. Ma. Mopo: Model-
based offline policy optimization. Advances in Neural Information Processing Systems, 33:
14129–14142, 2020.

[23] R. Kidambi, A. Rajeswaran, P. Netrapalli, and T. Joachims. Morel: Model-based offline re-
inforcement learning. Advances in neural information processing systems, 33:21810–21823,
2020.

[24] S. Fujimoto, H. Hoof, and D. Meger. Addressing function approximation error in actor-critic
methods. In International conference on machine learning, pages 1587–1596. PMLR, 2018.

[25] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. In International conference on machine
learning, pages 1861–1870. PMLR, 2018.

[26] K.-C. Hsu, D. P. Nguyen, and J. F. Fisac. Isaacs: Iterative soft adversarial actor-critic for safety.
In Learning for Dynamics and Control Conference, pages 90–103. PMLR, 2023.

[27] T. He, C. Zhang, W. Xiao, G. He, C. Liu, and G. Shi. Agile but safe: Learning collision-free
high-speed legged locomotion. arXiv preprint arXiv:2401.17583, 2024.

[28] K.-C. Hsu, V. Rubies-Royo, C. J. Tomlin, and J. F. Fisac. Safety and liveness guarantees
through reach-avoid reinforcement learning. arXiv preprint arXiv:2112.12288, 2021.

[29] J. Achiam, D. Held, A. Tamar, and P. Abbeel. Constrained policy optimization. In International
conference on machine learning, pages 22–31. PMLR, 2017.

[30] A. Ray, J. Achiam, and D. Amodei. Benchmarking safe exploration in deep reinforcement
learning. arXiv preprint arXiv:1910.01708, 7(1):2, 2019.

[31] S. Ha, P. Xu, Z. Tan, S. Levine, and J. Tan. Learning to walk in the real world with minimal
human effort. arXiv preprint arXiv:2002.08550, 2020.

[32] A. Sootla, A. I. Cowen-Rivers, T. Jafferjee, Z. Wang, D. H. Mguni, J. Wang, and H. Ammar.
Sauté rl: Almost surely safe reinforcement learning using state augmentation. In International
Conference on Machine Learning, pages 20423–20443. PMLR, 2022.

[33] H. Bharadhwaj, A. Kumar, N. Rhinehart, S. Levine, F. Shkurti, and A. Garg. Conservative
safety critics for exploration. In International Conference on Learning Representations, 2020.

[34] H. Yu, W. Xu, and H. Zhang. Towards safe reinforcement learning with a safety editor policy.
Advances in Neural Information Processing Systems, 35:2608–2621, 2022.

10

[35] G. Dalal, K. Dvijotham, M. Vecerik, T. Hester, C. Paduraru, and Y. Tassa. Safe exploration in
continuous action spaces. arXiv preprint arXiv:1801.08757, 2018.

[36] R. Cheng, G. Orosz, R. M. Murray, and J. W. Burdick. End-to-end safe reinforcement learning
through barrier functions for safety-critical continuous control tasks. In Proceedings of the
AAAI conference on artificial intelligence, volume 33, pages 3387–3395, 2019.

[37] K.-C. Hsu, H. Hu, and J. F. Fisac. The safety filter: A unified view of safety-critical control in
autonomous systems. Annual Review of Control, Robotics, and Autonomous Systems, 7, 2023.

[38] L. Brunke, M. Greeff, A. W. Hall, Z. Yuan, S. Zhou, J. Panerati, and A. P. Schoellig. Safe learn-
ing in robotics: From learning-based control to safe reinforcement learning. Annual Review of
Control, Robotics, and Autonomous Systems, 5(1):411–444, 2022.

[39] J. Choi, F. Castaneda, C. J. Tomlin, and K. Sreenath. Reinforcement learning for safety-
critical control under model uncertainty, using control lyapunov functions and control barrier
functions. arXiv preprint arXiv:2004.07584, 2020.

[40] C. Dawson, B. Lowenkamp, D. Goff, and C. Fan. Learning safe, generalizable perception-
based hybrid control with certificates. IEEE Robotics and Automation Letters, 7(2):1904–1911,
2022.

[41] N.-M. Kokolakis, K. G. Vamvoudakis, and W. Haddad. Reachability analysis-based safety-
critical control using online fixed-time reinforcement learning. In Learning for Dynamics and
Control Conference, pages 1257–1270. PMLR, 2023.

[42] N. C. Wagener, B. Boots, and C.-A. Cheng. Safe reinforcement learning using advantage-based
intervention. In International Conference on Machine Learning, pages 10630–10640. PMLR,
2021.

[43] A. Mesbah, K. P. Wabersich, A. P. Schoellig, M. N. Zeilinger, S. Lucia, T. A. Badgwell, and
J. A. Paulson. Fusion of machine learning and mpc under uncertainty: What advances are on
the horizon? In 2022 American Control Conference (ACC), pages 342–357. IEEE, 2022.

[44] F. P. Bejarano, L. Brunke, and A. P. Schoellig. Multi-step model predictive safety filters:
Reducing chattering by increasing the prediction horizon. In 2023 62nd IEEE Conference on
Decision and Control (CDC), pages 4723–4730. IEEE, 2023.

[45] P. Wu, A. Escontrela, D. Hafner, P. Abbeel, and K. Goldberg. Daydreamer: World models for
physical robot learning. In Conference on robot learning, pages 2226–2240. PMLR, 2023.

[46] P. Lancaster, N. Hansen, A. Rajeswaran, and V. Kumar. Modem-v2: Visuo-motor world models
for real-world robot manipulation. In 2024 IEEE International Conference on Robotics and
Automation (ICRA), pages 7530–7537. IEEE, 2024.

[47] A. G. Wilson and P. Izmailov. Bayesian deep learning and a probabilistic perspective of gen-
eralization. Advances in neural information processing systems, 33:4697–4708, 2020.

[48] M. Janner, J. Fu, M. Zhang, and S. Levine. When to trust your model: Model-based policy
optimization. Advances in neural information processing systems, 32, 2019.

[49] J. Ji, B. Zhang, J. Zhou, X. Pan, W. Huang, R. Sun, Y. Geng, Y. Zhong, J. Dai, and Y. Yang.
Safety gymnasium: A unified safe reinforcement learning benchmark. Advances in Neural
Information Processing Systems, 36, 2023.

11

A Ablation Studies

halfcheetah ant hopper
0

500

1000

1500

2000

2500

reward

halfcheetah ant hopper
0

2

4

6

8

constraint violation rate [%]

CASE CASE w/o safety filter CASE w/o base policy rollout CASE w/o pessimism

Figure 4: For ablating design choices in the safety filter. We evaluate the average rewards per episode
in the last 10 evaluations (left) and the average percentage of steps with constraint violations in an
episode during exploration (right). We first evaluate the role of the safety filter in CASE. Exploring
with only πθ leads to a significant increase in constraint violations. Next, we evaluate the effect of the
base policy rollouts. We see a decrease in the average rewards reached after exploration, especially in
the ant environment. Finally, to evaluate the effect of pessimism in the filter, we optimize the filter
by using the mean over the ensemble predictions instead of considering the worst-case ensemble
prediction. Without pessimism, the filter tends to have higher constraint violation rates.

Effect of safety filter To assess the effect of the safety filter in our method, we explore CASE
without the safety filter. In figure 4, we see that exploring solely using the constrained policy πθ
leads to higher constraint violation rates. This indicates the necessity of the filtering mechanism
in our method. By looking at the maximum rewards reached after exploration in figure 4, we see
that the increase in rewards after removing the safety filter is insignificant except in the halfcheetah
environment, where the constraint violation rates more than double after removing the filter.

Effect of base policy term in the filter objective The filter objective in (5) includes rolling out
the base policy πθ in the tail of the look-ahead trajectory of the controller. We ablate this term by
replacing it at the tail of the look-ahead trajectory, thus maintaining a fixed total horizon length. This
equates to the following objective

min
ut...ut+H

Est+1..t+H∼Pψ(.|st′ ,ut′)

[
t+H∑
t′=t

V safe
max(st′)

]
.

The purpose of the base-policy rollout is to inform the look-ahead controller of the base policy’s
behavior and thus steer the system towards regions of the state space where the base policy can
perform without violating constraints. Removing the base policy rollouts leads to slightly worse
task performance, especially in the ant environment. However, the difference in task performance
is less significant than expected. In future work, exploring other possibilities for combining the
intervention controller with a constrained base policy, such as penalizing the difference between the
intervention mechanism’s actions and those of the base policy as done in [8], might be interesting.

Effect of pessimism in the safety filter In our safety filter design, we leverage a pessimistic loss
to consider the effect of epistemic uncertainty during exploration. To study the effect of pessimism
on the filter, we use the mean over the ensemble prediction constraint critic predictions V safe

mean, instead
of using the maximum aggregation over the ensemble of the constraint critic predictions V safe

max, intro-
duced in section 3.2. We found that in our setup, removing the pessimism leads to higher constraint
violation rates, especially in the more complex halfcheetah and ant environments.

Effect of Including Termination flag in Constraint Critic’s Targets The constraint critic target
described in 3.1 does not include the termination flag dt. The termination flag is usually needed
in environments with termination conditions, which assumes that terminating states are absorbing

12

(a) (b)

Figure 5: We compare the predictions of the constraint critic when including the terminal flag in its
target calculation in 5a and excluding the terminal flag in 5b for two different episodes with early
termination. The top row shows the ground truth constraint costs, and the bottom row shows the
constraint critic predictions for each state in the episodes. In 5a, we see the effect of adding the
termination flags in the targets, where the critic predicts a lower constraint cost near the terminal
state. Excluding the terminal state flag leads the constraint critic in 5b to avoid this effect.

quad2D stab quad2D track
LOOP 12.01± 0.86 11.68± 0.75

LOOP Slow 0.94± 0.01 0.55± 0.01
Table 1: Comparing FPS for LOOP and LOOP Slow. We see that reducing the controller budget
massively increases the FPS while having no effect on the performance, as seen in figure 7.

states. Including the termination flag in the task critic V leads the critic to predict low values for
such states, incentivizing the policy to avoid termination. This effect is not desired in the constraint
critic V safe as it would lead the constraint critic to assign erroneous cost-to-gos to states near the
termination states, which would have an adverse effect on the safety filter and the constrained policy
optimization. We compare the predictions of two constraint critics in figure 5. The first in figure 5a
is trained using targets including the termination flag dt

Ci(st) = It + γsafe(1− dt)
(
(1− λsafe)vsafe

ξ,i (st) + λsafeCi(st+1)
)

where,

Ci(st+Hv) = vsafe
ξ,i (st+Hv).

The second in figure 5b is trained with the targets described in (5). We find that including dt in
TD (λ) returns has a negative effect on the constraint critic predictions where the critic assigns
much lower values to states near the termination state, despite constraint violations.

B Deep Ensemble Transition Models

Due to our focus on exploration, we need a model that can provide well-calibrated epistemic uncer-
tainties. Deep ensemble models present a straightforward approach to provide representations of the
epistemic uncertainty due to their ability to provide good approximations of the Bayesian posterior
predictive distribution of the neural network [47]. Thus, we rely on an ensemble of dynamic models
Pψ = {pψ,1, . . . , pψ,B}, where each ensemble member pψ,i is a neural network that predicts the
transition as a Gaussian distribution with a diagonal covariance pψ,i(st+1 | st, at) = N (st+1 |
µψ,i(st, at),Σψ,i). We optimize each ensemble member by minimizing the negative log-likelihood

Lpψ,i = −
T∑
t=1

log pψ,i(st+1 | st, at).

The use of ensemble-based transition models has already shown very good performance in model-
based RL papers such as [48] and [12]. In deep ensemble transition models, each ensemble member
pψ,i captures the aleatoric uncertainty of the ground-truth MDP. In contrast, the disagreement be-
tween the ensemble members captures the epistemic uncertainty on the learned transition function.

13

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
1e4

0

50

100

150

200

re
wa

rd

quadrotor_2D_stab

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
1e4

25

50

75

100

125

150

175

200
quadrotor_2D_track

LOOP LOOP Slow

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
envitonment steps 1e4

0

5

10

15
co

ns
tra

in
t v

io
la

tio
n

ra
te

 [%
]

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
envitonment steps 1e4

10

20

30

40

Figure 7: To reduce the runtime of LOOP seen in table 2, we tune the budget of the sampling-based
look-ahead control used in LOOP. LOOP Slow is LOOP with the original hyperparameters, LOOP
is the variant with the updated HPs. We see that both HP sets have similar results, and we see in
table 1 the massive increase in FPS with the new HPs.

C Runtime

halfcheetah walker ant hopper
0

10

20

30

40

50

60

FP
S

[H
z]

Figure 6: Average runtime for
CASE. We find that despite the on-
line computations, we maintain a
reasonable FPS that makes CASE
feasible to use in physical systems.

Although using a look-ahead planner as a safety filter helps
reduce the constraint violation rates of the reactive parametric
base policy, this comes at the cost of computational efficiency.
The safety filter involves an online optimizer that solves the
optimization problem in objective (5). We compare the fre-
quency of the filter across the different environments in figure
6, and we find that the filter performs around 50 Hz in all en-
vironments. Looking at other methods combining actor-critic
methods and planning, we find that TD-MPC [17], which does
not consider the constrained setting, performs similarly to our
method in runtime with about 50 Hz for the default setting.
LOOP [6], which also explores CMDPs among other settings,
reports a lower frequency 14.3 Hz. Generally, the low fre-
quency of planning-based methods represents the biggest dis-
advantage compared to methods leveraging only parametric
policies for decision-making.

D Experimental Setup Details

D.1 Benchmarks

We use the constrained velocity tasks from safety gymnasium [49] in our experiments. Specifically,
we use the half cheetah, hopper, walker, and ant tasks. These tasks are attractive as they pose
conflicting objectives, where the task reward incentivizes the agent to move with high velocity with
the correct pose, and the constraint cost punishes the agent for moving above a velocity limit.

D.2 Tuning LOOP for Safe Control Gym Tasks

In training LOOP [6] for the RWRL benchmark tasks, we used the hyperparameters (HPs) without
tuning (we also do not tune our method). We noticed that the runtime for LOOP is extremely
long and much worse than the latency mentioned in the paper when evaluated in high dimensional

14

cartpole walker quadruped
CASE (Ours) 70.5± 3.3 69.03± 1.83 79.7± 7.8

LOOP 7.9± 0.13 1.12± 0.03 0.88± 0.016
Table 2: FPS for CASE in comparison with LOOP [6]. We find that despite the online computations,
we maintain a reasonable FPS that makes CASE feasible to use in physical systems.

environments, as seen in table 2. We found that this is mostly due to the loops in the sampling-
based look-ahead controller in LOOP. To avoid the long LOOP training times in our experiments
in safe-control-gym, we tuned the look-ahead controller aiming to decrease LOOP’s latency while
maintaining the same performance. We compare the performance of the new LOOP HPs with the
original LOOP HPs on two of the safe-control-gym tasks in figure 7, and we compare their runtimes
in table 1.

D.3 Hyperparameters

Our method involves hyperparameters for the model training, the CMBAC, and the safety filtering.
We list our hyperparameters in table 3.

HalfCheetah Hopper Ant Walker
Model Pψ

number of bootstraps B 7
learning rate 1e−3

activation softsign
number of hidden layers 4
number of hidden units 200

Critic Vϕ and safety critic Vsafe
ξ

Horizon 12
Activation softsign
TD λreward 0.9
discount γ 0.99

safety critic discount γsafe 0.9
safety TD λsafe 0.75

number of hidden layers 2
number of hidden units 256

Policy πθ
Horizon 4

Activation ReLU
learning rate 5e−4

number of hidden layers 2
number of hidden units 256

Polyak factor 0.995
Learning step lagrangian multipliers 3e−4

Filter
Filter Horizon 5

number optimization steps 50
learning rate 1e−1

ϵsafe 0.5 0.5 0.5 2.5
Table 3: Hyperparameters for CASE

15

	Introduction
	Preliminaries
	Problem Setting
	Constrained Model-based Reinforcement Learning

	Approach
	Constrained Model-based Actor-Critic
	Exploration with Safety Filter

	Results
	Experimental Setup
	Comparison to Model-free Baselines
	Comparison to Model-based Baselines

	Related Work
	Conclusions and Limitations
	Ablation Studies
	Deep Ensemble Transition Models
	Runtime
	Experimental Setup Details
	Benchmarks
	Tuning LOOP for Safe Control Gym Tasks
	Hyperparameters

