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ABSTRACT

Neural solvers have achieved significant results in solving small-scale Traveling
Salesman Problems (TSP), but they are inefficient when handling large instances.
Based on the optimal substructure property of the TSP, the solving process can
be divided into global selection for the perspective of the whole route and local
fine-tuning for the perspective of the sub-route. The autoregressive model-based
Local Construction approach fails to explore the global action space well, and the
non-regressive model-guided MCTS approach focuses on exploring the global ac-
tion space, therefore there is still a lot of room for optimisation locally. In order
to achieve good results in both global selection and local fine-tuning, we propose
the MSLC (Monte Carlo Tree Search Sampling Guided Llocal Autoregressive
Construction) framework, which innovatively integrates the prediction sampling
module into MCTS (Monte Carlo Tree Search) to achieve efficient fusion with
local autoregressive construction. Taking advantage of the scalability of MCTS
and the accuracy of the autoregressive model, the global selection and local fine-
tuning steps are taken into account, and the Sampling module is used to balance
the speed of MCTS and local autoregressive construction, optimizing the effect
without losing time, greatly improving efficiency. MCTS can be guided by non-
autoregressive models, and this framework provides a new combination method
for autoregressive and non-autoregressive models. Experimental results demon-
strate that MSLC effectively balances time and solution quality, outperforming
state-of-the-art neural solvers. The performance gap of MSLC is reduced by at
least 29.4% (resp. 34.7% or 28.5%) on TSP-500 (resp. TSP-1000 or TSP-10000),
compared to SOTA neural methods.

1 INTRODUCTION

The Travelling Salesman Problem (TSP) is recognized as a classic combinatorial optimization prob-
lem with wide-ranging applications in such as logistics (Madani et al., 2021), chip manufacturing
(Kumar & Luo, 2003), or supply chain (Rao, 2017). The task involves determining the shortest
possible route that visits a set of cities exactly once before returning to the starting point. Tradi-
tional solvers, such as Concorde (Applegate et al., 2009) and LKH-3 (Helsgaun, 2017; Taillard &
Helsgaun, 2019), are based on heuristics derived from mathematical methods, requiring extensive
computational effort and expert domain knowledge. While high effectiveness has been demonstrated
by these solvers for smaller instances, limitations in scalability to larger, real-world datasets have
been observed due to the reliance on complex, hand-crafted rules and significant computational
demands.

In recent years, neural solvers have become increasingly popular for solving the TSP problem. Com-
pared to traditional solvers, neural solvers are characterized by their ability to learn quickly and
iteratively. Based on the optimal substructure property of the TSP (Papadimitriou, 1977), the route
π = (π1, π2, . . . , πN ) can be improved by adjusting the sub-route (πi, . . . , πj). In other words,
improving the local structure leads to a better global solution. So the process of solving large-scale
TSP problems can be divided into two parts: global selection and local fine-tuning. Global selection
focuses on optimisation from the perspective of the whole route, local fine-tuning focuses on opti-
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misation from the perspective of the sub-route. Good global selection determines the breadth of the
result, and good local fine-tuning determines the depth of the result; both are equally important.

Existing neural solvers can be classified into autoregressive construction heuristics solvers and non-
autoregressive construction heuristics solvers. Autoregressive Construction Heuristics Solvers face
the challenge of high time and space complexity in large-scale TSPs due to the sequential generation
scheme of autoregressive models and the quadratic complexity of self-attentive mechanisms. To
address this challenge, Kim et al. (2021); Pan et al. (2023); Ye et al. (2024) simply selects global
routes and focuses on optimising local sub-routes using Divide And Conquer, failing to fully explore
the global path space. Non-autoregressive Construction Heuristics Solvers to solve this scalability
issue by assuming conditional independence among variables in TSP, but this assumption limits
the ability to capture the multimodal nature (Gu et al., 2017; Khalil et al., 2017) of high-quality
solution distributions. Fu et al. (2021); Qiu et al. (2022); Min et al. (2023); Sun & Yang (2023) use
Monte-Carlo Tree Search (MCTS) to further improve the expressive power of the non-autoregressive
scheme. They focuse on searching global routes according to these heatmaps, but leaving significant
optimization space for local sub-routes. In summary, existing neural solvers focus on either global
or local levels. In order to do well at both, we introduce MSLC.

Both global selection and local fine-tuning are important, but since good global selection depends
on the scalability of MCTS, a large number of actions need to be simply searched to obtain a better
solution, while good local fine-tuning depends on the accuracy of the sequential generation of the
autoregressive model, and a large number of computationally intensive constructions are performed
to obtain a better solution. If one wants to achieve good results in both global selection and local
fine-tuning by combining MCTS and autoregressive models, the combination of the two will lead
to slower MCTS exploration and make the global selection step less effective due to the speed
mismatch between MCTS and autoregressive models.

To address this challenge, we introduce the MSLC framework, which effectively fuses MCTS for
global selection and local autoregressive construction for local fine-tuning. The sampling mod-
ule estimates the impact of subsequent tuning and discards part of the initial routes generated by
global selection, terminating the process early, thus balancing the speed of global selection and local
fine-tuning, optimising the results without loss of time, and improving the efficiency significantly.
Specifically, the MSLC framework combines MCTS for global selection with local autoregressive
construction for local fine-tuning, and evaluates the initial routes generated by MCTS through 2-
opt, because 2-opt can quickly and simply evaluate the optimization space of the initial route. If
the adjusted route is far away from the current optimal route, the MCTS search process of some
initial routes is terminated early, saving time. Notably, local autoregressive construction allows fur-
ther route optimisation based on MCTS, while sampling raises the threshold for the initial routes
generated by MCTS, thus achieving mutual enhancement. The ablation study shows that the pro-
posed MSLC framework significantly improves the performance and effectively enhances the results
without sacrificing time.

Contributions:

• This paper proposes the MSLC framework, which effectively combines the scalability of
MCTS and the precision of Local autoregressive construction by incorporating a Sampling
module into MCTS. This balances the speed of global selection and local fine-tuning, op-
timising the results without loss of time, and improving the efficiency significantly. The
framework offers a novel perspective for problems with optimal substructure, enabling
early filtering of global selections by estimating local fine-tuning effectiveness during the
global selection process.

• Our method provides an effective way to combine autoregressive and non-autoregressive
models. MCTS can be guided by non-autoregressive models, and Local autoregressive
construction is based on autoregressive models, laying the foundation for future research
on large-scale TSP problems.

• Experiments on TSP-500/1000/10000 demonstrate that the performance gap of MSLC is
reduced by at least 29.4% (resp. 34.7% or 28.5%) on TSP-500 (resp. TSP-1000 or TSP-
10000) compared to state-of-the-art neural methods.
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2 RELATED WORK

2.1 AUTOREGRESSIVE CONSTRUCTION HEURISTICS SOLVERS

After achieving great success in the field of NLP, autoregressive models have gradually been applied
to combinatorial optimization. However, due to the sequential generation scheme of autoregressive
models and the quadratic complexity of the self-attention mechanism, these models face significant
challenges in both time and space complexity when applied to large-scale TSP problems. Given
the optimal substructure property of the TSP, the divide-and-conquer approach has been adopted
for solving large-scale TSP. LCP (Kim et al., 2021) was the first to propose a decomposition and
reconstruction method, using seeders (autoregressive models) to construct initial routes, followed
by Local Construction. However, due to the speed limitations of seeders, it is difficult to scale this
approach to large problem sizes. GLOP (Ye et al., 2024) replaced the seeders in LCP with random
sampling, and then applied autoregressive models for decomposition and reconstruction, achieving
a reasonable solution in a shorter time. H-TSP (Pan et al., 2023) introduced a hierarchical policy
for interleaving route selection with Local Construction. Select and Optimize (Cheng et al., 2023)
proposed a destruction and repair technique to avoid getting trapped in local optima from a global
perspective.

2.2 NON-AUTOREGRESSIVE CONSTRUCTION HEURISTICS SOLVERS

Non-autoregressive neural solvers address large-scale TSP problems by assuming conditional inde-
pendence between variables. However, this assumption often leads to suboptimal local solutions,
making additional exploration necessary to enhance the expressiveness of non-autoregressive meth-
ods. Monte Carlo Tree Search (MCTS) (Coulom, 2006; Browne et al., 2012; Silver et al., 2016;
2017) is a versatile, adaptive algorithm applicable across various domains. It excels at fully ex-
ploring the action space under the guidance of non-autoregressive models, offering significant scal-
ability. ATT-GCN (Fu et al., 2021) combines MCTS with Graph Convolutional Networks (Joshi
et al., 2019) by training GCN through supervised learning on small-scale TSP instances. It then
generalizes to larger TSPs by generating sub-heatmaps, which are merged into a global heatmap.
MCTS, guided by the heatmap, effectively handles large-scale TSP problems. DIMES (Qiu et al.,
2022) introduced a compact continuous space to parametrize the underlying distribution of candi-
date solutions and proposed a meta-learning framework for combinatorial optimization instances.
This framework generates an approximate proxy distribution close to the true solution distribution
for TSP, though it takes much longer to compute solutions compared to the method by Fu et al.
(2021). UTSP (Min et al., 2023) employs an unsupervised learning framework using graph neural
networks to generate heatmaps. Its objective function consists of two parts: one encourages the
identification of the shortest path, and the other ensures that the solution forms a Hamiltonian cycle
covering all nodes. DIFUSCO (Sun & Yang, 2023) leverages the strengths of diffusion models to
generate heatmaps for high-quality solutions in combinatorial optimization. DIFUSCO enhances
the generation process by proposing TSP problems in the discrete {0, 1}-vector space and applying
denoising diffusion techniques with Gaussian and Bernoulli noise. SoftDist (Xia et al., 2024) is a
heatmap generation method that improves the MCTS process for solving large-scale TSPs. It eval-
uates the effectiveness of heatmaps in guiding MCTS by focusing on the probability distribution of
edges belonging to the optimal solution. Compared to various complex machine learning methods,
SoftDist demonstrates superior performance by emphasizing the generation of theoretically sound
and practical heatmaps, thereby improving the efficiency of strategies for solving combinatorial
problems.

Inspired by the strong performance of Autoregressive Construction Heuristics Solvers in local fine-
tuning and the effectiveness of Non-autoregressive Construction Heuristics Solvers in global se-
lection, we propose the MSLC framework. MSLC integrates MCTS, guided by non-autoregressive
models, with local autoregressive construction based on autoregressive models through the Sampling
module. This combination balances speed of global selection and local fine-tuning, significantly im-
proving overall efficiency.
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3 FORMULATION OF LARGE-SCALE TRAVELING SALESMAN PROBLEM

We focus on the classical two-dimensional Euclidean distance Traveling Salesman Problem (TSP)
by defining the TSP problem space as n vertices in a two-dimensional space, denoted by s =
{xi}Ni=1, where xi ∈ [0, 1]2. The objective is to find a permutation π = (π1, π2, . . . , πN ) that
forms a path visiting each vertex exactly once and returning to the starting point. The goal is to
minimize the total path length L(π), computed as follows:

L(π) = cost(πN , π1) +

N−1∑
i=1

cost(πi, πi+1). (1)

4 METHOD

Initialization Sampling Search Decomposition

Construction

Construction

Composition Store 
Best

Generate
Heatmap

TSP Heatmap Initial
Routes

Candidate
Route

Global Optimized 
Candidate Route

Sub-Routes Reconstructed
Sub-Routes

Composed
Route

Optimal
Route

MCST Sampling process Local Autoregressive Construction process

Figure 1: Pipeline.

This section describes a novel hierarchical fusion framework called MCTS Sampling Guide Local
Autoregressive Construction, which balances global selection with local fine-tuning through the
Sampling module (see Figure 1 for detail). During the global selection process, the MCTS Sampling
strategy generates candidate routes and performs evaluation sampling. In the local fine-tuning phase,
the Local Autoregressive Construction strategy reconstructs the sub-routes of the sampled candidate
routes to minimize the overall candidate routes. The final route is selected as the optimal route
among the candidate routes.

4.1 MCST SAMPLING PROCESS

In the global selection, the MCTS Sampling strategy generates an initial route based on the heatmap.
It uses 2-opt to estimate the initial route and samples the initial route based on the current optimal
candidate route. Routes that deviate significantly from the current optimal route are filtered out. The
sampled initial routes are then searched and saved as candidate routes.

Heatmap. To explore the global routing space effectively, we generate a heatmap to guide the
exploration process. The heatmap is an N ×N symmetric matrix, where Wi,j represents the corre-
lation between vertex i and vertex j. Higher values indicate a greater likelihood that vertices i and
j will be adjacent in the solution. Two methods are provided for generating the heatmap, depend-
ing on the trade-off between speed and quality. The first method, based on diffusion, follows Sun
& Yang (2023). We apply Bernoulli sampling on a trained non-autoregressive diffusion model to
generate discrete variables x as the heatmap. This approach produces high-quality heat maps, but at
a slower speed. The second method, following Xia et al. (2024), calculates edge scores to form the
heat map using the formula below:

Φi,j =
e−di,j/τ∑
k ̸=i e

−di,k/τ
, (2)
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Compared to the first method, this method generates the heatmap faster but at the cost of some
quality. Global selection is based on the heatmap, and a high-quality heat map can more efficiently
guide us to find a high-quality initial route and direct the MCTS process.

Initialization. This step generates the initial routes based on the heatmap. The global action space
is very large, and the initial routing plays a decisive role. We define two n× n symmetric matrices:
the weight matrix W (whose element Wij is initialized to 100 × Hij , controlling the probability
of selecting vertex j after vertex i) and the access matrix Q (whose element Qij is initialized to 0,
recording the number of times that edge (i, j) has been selected during the simulation). In addition,
the variable M , initialized to 0, is used to record the total number of operations simulated. The
weight Zi,j of each edge during the initial route construction is calculated as follows:

Zi,j =
Wi,j

Ωi
+ α

√
ln(M + 1)

Qi,j + 1
, (3)

where Ωi, the average weight of edges connected to vertex i, is defined as Ωi =
∑

j ̸=i Wi,j∑
j ̸=i 1

. Here,
α balances exploitation and exploration, and M is the total number of actions sampled so far. The
formula for the initial route construction probability is given by:

p(π) = p(π1)

n∏
i=2

p(πi|πi−1), (4)

where π1 is chosen at random, and p(πi|πi−1) is the conditional probability of choosing the next ver-
tex, calculated by the edge potential: p(πi|πi−1) =

Zπi−1,πi∑
l∈Xπi−1

Zπi−1,l
with Xπi−1 includes candidate

vertices connected to πi−1, selected based on their edge potential value.

Sampling. In this step, the initial routes are sampled, discarding those that are unlikely to become
optimal after optimization. The sampled routes are then saved as candidate routes. Specifically, the
probability of an initial route being saved as a candidate route is as follows:

p(π) =

{
1, if L(π)− I2-opt −G > L(πbest),

0, otherwise.
(5)

where I2−opt represents the change in length after applying the 2-opt adjustment to the initial route,
and G is a parameter used to control the sampling intensity. This step discards most of the suboptimal
initial routes, saving time on further adjustments.

k-opt Search. This step performs a global coarse-grained optimization on the candidate
routes based on k-opt moves. Each k-opt move is represented as a vertex decision sequence
(a1, b1, a2, b2, . . . , ak, bk, ak+1), where ak+1 = a1. This sequence involves removing k edges
(ai, bi) and adding k new edges (bi, ai+1), for 1 ≤ i ≤ k. After selecting bi, the next vertex ai+1 is
sampled according to Equation 4. The route π is transformed into πnew, and the metrics M , Qbi,ai+1 ,
and Qai+1,bi are updated accordingly.

Back-propagation. For each candidate route optimized by k-opt search, the matrices W and Q,
as well as the global action counter M , are updated. The matrix W is updated only for actions that
lead to improved states, thereby increasing the probability of these actions being selected in future
iterations.

4.2 LOCAL AUTOREGRESSIVE CONSTRUCTION PROCESS

In the local fine-tuning, the Local Autoregressive Construction strategy will use autoregressive mod-
els based on scales of 20/50/100 to iteratively reconstruct candidate routes T20/T50/T100 times.
For each candidate route, it is decomposed into sub-routes according to the applicable scale of the
autoregressive model and the number of reconstruction iterations T . Then, each sub-route is recon-
structed using AM(Kool et al., 2019), and the better sub-routes before and after reconstruction are
retained. Finally, the sub-routes are merged to form a new candidate route.

5
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Model Traning. To train the autoregressive model for Construction, we used the AM architecture
proposed by Kool et al. (2019) and trained using rollout baseline based reinforcement learning. Also
inspired by POMO (Kwon et al., 2020), we exploit the symmetry of the sub-routes. The path from
the head to the tail versus the path from the tail to the head, and their average values can define
the rollout baseline more accurately. so during training, our algorithm forces the network to set the
starting point as the head and the tail in the same batch of data, and the training loss function is
defined as follows:

∇L(θ|s) = Epθ(π|s) [(R(π)− b(s))∇ log pθ(π|s)] (6)

where the reward function R(π) = −L(π) and b(s) represents the average reward of the batch data.

Decomposition. To enable the autoregressive model to optimize large-scale routes locally, we
adopt a divide-and-conquer approach to decompose the large-scale routes. The goal of decomposi-
tion is to comprehensively cover sub-routes of size M based on the number of iterations I and the
scale M that the autoregressive model can handle. In the first iteration, we randomly select a starting
point and divide the route into N/M sub-routes, while the remaining segment of length N mod M
is kept unchanged. In subsequent iterations, we identify M/I points to the right of the starting point
from the last iteration and use one of these points as a new starting point to re-decompose the route
into sub-routes. This decomposition step aims to maximize the optimization space within a limited
number of iterations.

Construct. For each decomposed sub-route, we use the autoregressive model (AM) for recon-
struction. We simultaneously select both endpoints of the sub-route as the starting points for recon-
struction, following the strategy:

pR(πk+1:k+l|s) =
l∏

t=1

pθR(πk+t|πk:k+t−1, πk+l+1, s) (7)

where pθR is parameterized by the autoregressive model trained in the Model Training module.

Composition. We compare the initial sub-route with the two reconstructed sub-routes and retain
the L shortest sub-routes. The retained sub-routes are then connected to the tail sub-route at their
endpoints, and the merged route is saved as a candidate route.

5 EXPERIMENT

5.1 EXPERIMENTAL SETTINGS

Datasets To evaluate the efficiency of MSLC, we compare its performance against state-of-the-art
(SOTA) methods using the same instances. Specifically, we assess MSLC on uniformly sampled
large-scale instances of TSP500, TSP1000, and TSP10000, as utilized in the study by Fu et al.
(2021).

Settings During the generation of the heat map, we adopted the same parameter settings as Xia
et al. (2024). In the MCTS sampling process, for TSP500/1000/10000, we set G = 1/2/10; during
the local construction process, for TSP500/1000/10000, we set T20 = 2/2/5, T50 = 5/5/25, and
T100 = 5/5/20. For the generation of the autoregressive model, we used the same hyperparameters
as Kool et al. (2019).

Evaluation Metrics We use three metrics to compare the performance of different solutions: aver-
age trip length (Length), average relative performance gap (Gap), and total run time (Time). Notably,
the total runtime of the heatmap-based solution encompasses both the heatmap generation time and
the search time.

Hardware MSLC and the baseline methods are executed on a 64-core AMD EPYC 7T83 Proces-
sor and an NVIDIA RTX 4090 Graphics Card. We utilize as many threads as possible to prevent
the CPU from idling while waiting for GPU computations. Specifically, we employ 128 threads for
TSP500 and TSP1000, and 16 threads for TSP10000.

6
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Table 1: Results on large-scale TSP problems. Some methods list two terms for Time, corresponding
to heatmap generation and others.

METHOD TSP-500 TSP-1000 TSP-10000
LENGTH GAP TIME LENGTH GAP TIME LENGTH GAP TIME

CONCORDE 16.55∗ — 37.66M 23.12∗ — 6.65H N/A N/A N/A
LKH-3 16.55 0.00% 46.28M 23.12 0.00% 2.57H 71.78∗ — 8.8H
GUROBI 16.55 0.00% 45.63H N/A N/A N/A N/A N/A N/A

FARTHEST INSERTION 18.30 10.57% 0S 25.72 11.25% 0S 80.59 12.29% 6S

AM 22.64 36.84% 15.64M 42.80 85.15% 63.97M 431.58 501.27% 12.63M
POMO+EAS-EMB 19.24 16.25% 12.80H N/A N/A N/A N/A N/A N/A
POMO+EAS-LAY 19.35 16.92% 16.19H N/A N/A N/A N/A N/A N/A
POMO+EAS-TAB 24.54 48.22% 11.61H 49.56 114.36% 63.45H N/A N/A N/A

INVIT N/A N/A N/A 24.65 6.62% 4.80M 76.14 6.08% 10.30M

H-TSP N/A N/A N/A 24.57 6.31% 0.78M 77.75 7.32% 0.79M
SELECT AND OPTIMIZE 16.94 2.40% 0.25M 23.76 2.80% 0.42M 74.29 3.51% 7.61M

GLOP 16.91 1.99% 1.50M 23.84 3.11% 3.00M 75.29 4.90% 1.80M

UTSP 16.68 0.83% 3.04M
(1.37M+1.67M) 23.39 1.18% 6.69M

(3.35M+3.34M) N/A N/A N/A

ATT-GCN 16.82 1.64% 2.19M
(0.52M+1.67M) 23.67 2.37% 4.07M

(0.73M+3.34M) 74.50 3.80% 20.94M
(4.16M+16.78M)

DIMES 16.84 1.77% 2.64M
(0.97M+1.67M) 23.68 2.44% 5.42M

(2.08M+3.34M) 74.10 3.23% 21.43M
(4.65M+16.78M)

SOFTDIST 16.78 1.44% 1.67M
(0.00M+1.67M) 23.63 2.20% 3.34M

(0.00M+3.34M) 74.03 3.13% 16.78M
(0.00M+16.78M)

DIFUSCO 16.63 0.51% 5.28M
(3.61M + 1.67M) 23.39 1.18% 15.20M

(11.86M+3.34M) 73.76 2.77% 45.29M
(28.51M+16.78M)

OURS(SOFTDIST) 16.71 0.96% 1.67M
(0.00M+1.67M) 23.51 1.68% 3.34M

(0.00M+3.34M) 73.46 2.32% 16.78M
(0.00M+16.78M)

OURS(DIFUSCO) 16.61 0.36% 5.28M
(3.61M + 1.67M) 23.30 0.77% 15.20M

(11.86M+3.34M) 73.21 1.98% 45.29M
(28.51M+16.78M)

5.2 BASELINES

For the baselines, we use three types of methods: traditional heuristics, autoregressive construction
heuristics, and non-autoregressive construction heuristics. For traditional heuristics, we use LKH
(Helsgaun, 2017), Concorde (Applegate et al., 2009) and the commercial solver Gurobi,, which
focus on effectiveness, and farthest insertion (Golden et al., 1980), which emphasizes speed. For
autoregressive construction heuristics, we use AM (Kool et al., 2019), POMO (Kwon et al., 2020),
and InVit (Fang et al., 2024), which are based on sequential generation. Additionally, we use GLOP
(Ye et al., 2024), H-TSP (Pan et al., 2023), and Select and Optimize (Cheng et al., 2023), which are
based on divide-and-conquer strategies. For non-autoregressive construction heuristics, we employ
ATTGCN (Fu et al., 2021), DIMENS (Qiu et al., 2022), SOFTDIST (Xia et al., 2024), DIFUSCO
(Sun & Yang, 2023), and UTSP (Min et al., 2023) to guide MCTS. Our focus is to evaluate the
ability of MSLC to explore whether combining autoregressive and non-autoregressive models leads
to better performance than using autoregressive or non-autoregressive models alone. Since MSLC
uses SOFTDIST and DIFUSCO to bootstrap MCTS, we specifically compare its results with Xia
et al. (2024) and Sun & Yang (2023). Additionally, since the local autoregressive construction in
MSLC is based on Divide and Conquer, we concentrate on comparing the results with Ye et al.
(2024), Pan et al. (2023) and Cheng et al. (2023).

5.3 RESULTS

The experimental results are shown in Table 1, we firstly focus on the result comparison between
MSLC and autoregressive constructive heuristics, and find that MSLC far exceeds autoregressive
constructive heuristics in the test results of TSP500/1000/10000, and the experimental results proved
that MSLC, compared to the autoregressive constructive heuristics, has a greatly improved compared
to autoregressive construction heuristics. Secondly, we focus on the comparison between MSLC and
the non-autoregressive construction heuristic, and find that MSLC also improves substantially in the
TSP500/1000/10,000 test results, and the experimental results prove that MSLC has a better balance
between global selection and local fine-tuning than the non-autoregressive construction heuristic.

5.4 ABLATION STUDIES

In this section, we perform ablation studies on MSLC components. In Table 2, we perform ab-
lation experiments on three important components, MCTS, Sampling, and Local Autoregressive
Construction, and show the results for each case. We find that the combination of MCTS and Local
Autoregressive Construction does enhance the effect in some cases, while the introduction of the
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Sampling module further enhances the effect, suggesting that the Sampling module enables MCTS
and Local Autoregressive Construction.

Table 2: Ablation study of MSLC components on TSP (N = 500/1000/10000). The optimal gap
is measured by comparing it with LKH-3. MCTS is guided by DIFUSCO and Local Autoregressive
Construction is based on AM. The best performances are marked in bold.

Component of the MSLC TSP500 TSP1000 TSP10000

MCTS Sampling Local Autoregressive Construction cost gap cost gap cost gap

! 16.63 0.51% 23.39 1.18% 73.76 2.77%
! 16.91 1.99% 23.84 3.11% 75.29 4.90%

! ! 16.63 0.51% 23.37 1.08% 73.55 2.45%
! ! ! 16.61 0.36% 23.30 0.77% 73.21 1.98%

6 CONCLUSION AND FUTURE WORK

6.1 CONCLUSION

In this paper, we propose a novel DRL scheme, i.e., MSLC. based on the nature of the optimal
substructure of the TSP problem, the solution process is divided into coarse granularity selection
and fine-grained fine-tuning. Based on the scalability of MCTS to explore the coarse granularity
selection action space as much as possible, and the accuracy of autoregressive model to optimise
the fine granularity fine-tuning action space as much as possible. The scalability of MCTS and the
accuracy of autoregressive model are effectively combined by introducing the Sampling module.
substantially improve the experimental results without loss of speed, and outperform the current
SOTA on large-scale TSP problems.

6.2 FUTURE WORK

Future research will focus on two areas. The first area will continue to focus on solving the large-
scale traveller problem, and further research will be directed towards the introduction of a more
sophisticated Sampling module to combine the MCTS for global selection with the autoregressive
model for local construction, enhancing the scalability of the fused MCTS with the accuracy of
the autoregressive model. In the second area, other problems with optimal substructure properties
will be solved based on MSLC. For any problem with optimal substructure, the solution process
can be divided into two steps: global selection and local fine-tuning, exploring the global selection
action space as much as possible based on MCTS scalability, constructing local fine-tuning actions
as accurately as possible based on autoregressive model accuracy, and solving the problem by using
Sampling fusing the scalability of the MCTS with the accuracy of the autoregressive model.
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