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ABSTRACT

In this paper, we propose a novel policy gradient algorithm for deep reinforcement
learning. Unlike previous approaches, we focus on leveraging the Hessian trace
information in the policy parametric space to enhance the performance of trained
policy networks. Specifically, we introduce a metric tensor field that transforms
the policy parametric space into a general Riemannian manifold. We further de-
velop mathematical tools, deep learning algorithms, and metric tensor deep neural
networks (DNNs) to learn a desirable metric tensor field, with the aim to achieve
close-to-zero divergence on the policy gradient vector field of the Riemannian
manifold. As an important regularization mechanism, zero divergence nullifies
the principal differential components of the loss function used for training policy
networks. It is expected to improve the effectiveness and sample efficiency of
the policy network training process. Experimental results on multiple benchmark
reinforcement learning problems demonstrate the advantages of our metric tensor
regularized algorithms over the non-regularized counterparts. Moreover, our empir-
ical analysis reveals that the trained metric tensor DNN can effectively reduce the
absolute divergence towards zero on the Riemannian manifold.

1 INTRODUCTION

Policy gradient algorithms are an important family of deep reinforcement learning (DRL) techniques.
They help a DRL agent learn an optimal policy that maps any states the agent encounters to optimal
actions Schulman et al. (2017); Lillicrap et al. (2015). Unlike Q-learning and other value-based
methods, policy gradient algorithms directly train a deep neural network (DNN) known as a policy
network Sutton et al. (2000); Lillicrap et al. (2015). This is achieved by computing the policy gradient
w.r.t. the trainable parameters of the policy network, known as policy parameters, and updating the
parameters in the direction of optimizing an agent’s expected cumulative return.

Many state-of-the-art DRL algorithms rely primarily on the first-order information, including policy
gradient, to train policy networks Schulman et al. (2017); Fujimoto et al. (2018); Haarnoja et al.
(2018). Existing research showed that the estimation of policy gradient has a profound impact on
the performance of these algorithms Fujimoto et al. (2018); Wang et al. (2020); Lee et al. (2021).
Recently substantial efforts have been made to reduce the bias and variance of the estimated policy
gradient Haarnoja et al. (2018); Fan & Ramadge (2021); Zhang et al. (2020). Ensemble learning and
hybrid on/off-policy algorithms have also been developed to facilitate reliable estimation of policy
gradient for improved exploration and sample efficiency Lee et al. (2021); Januszewski et al. (2021);
Chen et al. (2021).

Different from these works, in this paper, we aim to explore the second-order Hessian information
to train policy networks effectively and efficiently. Several pioneering research works have been
reported lately to deepen our understanding of neural networks through the lens of the Hessian,
primarily for the supervised learning paradigm Yao et al. (2020); Dong et al. (2020). In the context
of DRL, we found that the Hessian information can vary substantially during the training of the
policy network. We hypothesize that properly utilizing and controlling the Hessian information can
noticeably improve the performance of DRL algorithms.

More concretely, the process of training a policy network can be conceived as an orbit in a high-
dimensional policy parametric space. Previous research either implicitly or explicitly treated this
parametric space as an Euclidean-like manifold Martens (2020); Zhang et al. (2019); Kunstner et al.
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(2019); Chen et al. (2015; 2014); Peng et al. (2020). Consequently, the metric tensor field denoted
as gab on the manifold does not match the differential structure of the policy network and its loss
function. Hence, the roughness of the loss function is translated directly to the roughness of the orbit,
leading to compromised and unreliable learning performance.

To address this issue, we focus on Hessian trace in this paper. In the Euclidean policy parametric
space, Hessian trace measures the divergence of the vector field w.r.t the policy gradient. Upon
generalizing the Euclidean policy parametric space into a Riemannian manifold, we propose to
achieve close-to-zero divergence as an important regularization mechanism, which helps to nullify the
principal differential components of the loss function used for training policy networks Kampffmeyer
et al. (2019); Schäfer & Lörch (2019); Liu et al. (2023); Chen (2020). It is hence expected to improve
the reliability and effectiveness of the policy network training process.

Driven by this goal, we develop new mathematical tools and DRL algorithms to learn a desirable
metric tensor field gab that induces close-to-zero divergence on the Riemannian manifold. Accord-
ingly, policy network training guided by its Levi-Civita connection (aka. torsion-free gab compatible
derivative operator) Kreyszig (2013) is expected to be smooth and reliable, resulting in improved
effectiveness and sample efficiency.

Notably, gab is a complex geometric structure, learning which is beyond the capability of existing
machine learning models Roy et al. (2018); Le & Cuturi (2015); Beik-Mohammadi et al. (2021). To
make gab regularized DRL feasible and effective, we design a new metric tensor DNN to significantly
reduce the complexity involved in learning gab. Specifically, Fourier analysis techniques Rippel
et al. (2015) are utilized to reduce the parametric space of the metric tensor DNN. We also propose
a parametric matrix representation of high-dimensional special orthogonal groups Gerken et al.
(2021); Hutchinson et al. (2021); Chen & Huang (2022) to further simplify the metric tensor DNN by
exploiting the symmetries of gab.

The above innovation paves the way to develop a new gab regularization algorithm that uses the
learned metric tensor DNN to compute gab regularized policy gradients for training policy networks.
It can be applied to many existing policy gradient algorithms, including Soft Actor Critic (SAC)
Haarnoja et al. (2018) and Twin Delayed Deep Deterministic (TD3) Fujimoto et al. (2018). Ex-
periments on multiple benchmark problems confirm that the new gab regularization algorithm can
effectively improve the performance and reliability of SAC and TD3.

Contributions: According to our knowledge, we are the first in literature to study mathematical and
deep learning techniques to learn gab and use gab regularization algorithms to train policy networks.
Our research extends the policy parametric space to a general Riemmanian manifold where critical
differential geometric information about policy gradients can be captured through the learned gab and
explicitly utilized to boost the learning performance.

2 RELATED WORKS

Many recent research works studied a variety of possible ways to estimate policy gradients for effective
DRL. For example, Generalized Proximal Policy Optimization (GePPO) introduces a general clipping
mechanism to support policy gradient estimation from off-policy samples, achieving a good balance
between stability and sample efficiency Queeney et al. (2021). Policy-extended Value Function
Approximator (PeVFA) enhances conventional value function approximator by utilizing additional
policy representations Tang et al. (2022). This enhancement improves the accuracy of the estimated
policy gradients. Efforts have also been made to control the bias and variance of the estimated policy
gradients Fujimoto et al. (2018); Haarnoja et al. (2018); Fan & Ramadge (2021); Zhang et al. (2020).
For instance, clipped double Q-learning Fujimoto et al. (2018), entropy regularization Haarnoja et al.
(2018), action normalization Wang et al. (2020), and Truncated Quantile Critics (TQC) Kuznetsov
et al. (2020) techniques have been proposed to effectively reduce the estimation bias. All of these
studies assume that the policy parametric space follows the Euclidean metric and is flat.

The development of natural policy gradient presents a major deviation from the flat policy parametric
space Liu et al. (2020); Ding et al. (2020). Its effective use on many challenging DRL problems
clearly reveals the importance of expanding the flat policy parametric space to a general Riemannian
manifold Grondman et al. (2012). However, since the metric tensor field gab is defined via the
Fisher information matrix w.r.t. the policy networks, critical differential geometric information
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regarding the DRL problems and their loss functions is not explicitly utilized to boost the learning
performance. Using the Fisher information matrix directly to compute the natural policy gradient is
also computationally costly in large policy parametric spaces.

In recent literature, notable efforts have been made towards understanding the influence of Hessian
information on deep learning models Yao et al. (2020); Dong et al. (2020); Wu et al. (2020); Shen
et al. (2019); Singla et al. (2019). For example, efficient numerical linear algebra (NLA) techniques
have been developed in Yao et al. (2020) to compute top Hessian eigenvalues, Hessian trace, and
Hessian eigenvalue spectral density of DNNs. In Dong et al. (2020), Hessian trace is also exploited
to determine suitable quantization scales for different layers of a DNN. Different from these works,
instead of examining Hessian information in an Euclidean parametric space, we develop the first time
in literature deep learning techniques to alter and improve the differential geometric structure of the
policy parametric space.

3 BACKGROUND

This paper studies DRL problems modeled as Markov Decision Processes (MDPs). An MDP is a
tuple (S,A, P,R, �) with the state space S, the action space A, and the discount factor � 2 (0, 1].
The state-transition probability function P (s, a) captures the probability of transiting to any possible
next state s0 ⇠ P (s, a) whenever the agent performs action a 2 A in state s 2 S. Meanwhile, a scalar
reward is determined according to the reward function R(s, a). A policy ⇡ : S ! A produces an
action a 2 A (or a probability distribution over A) w.r.t. any state s 2 S. Its performance is quantified
by a value function v⇡(s) that predicts the expected cumulative return obtainable by following ⇡ to
interact with the learning environment, starting from s 2 S. The DRL problem has the goal to find
an optimal policy ⇡

⇤ that maximizes its value function w.r.t. any possible initial state s0 2 S. Such
policy is often modeled as a parametric function in the form of a DNN, denoted as ⇡✓, where ✓ 2 Rn

stands for the n-dimensional policy parameter, n � 1.

4 METRIC TENSOR REGULARIZED POLICY GRADIENT

In this section, the n-dimensional policy parametric space is transformed into a general Riemannian
manifold (Rn

, gab), accompanied by a (0, 2)-type metric tensor field gab defined on Rn Petersen
(2006). We follow the abstract index notation commonly used in theoretical physics to represent
tensors and their operations Thorne & Blandford (2017). For any policy parameter ✓ 2 Rn, the
tangent vector space at ✓ is denoted as T✓. gab satisfies two important properties on T✓, 8✓ 2 Rn:

(1)8ua
, v

b
2 T✓, gabu

a
v
b = gbau

a
v
b;

(2)8vb 2 T✓, if ua satisfies the equation gabu
a
v
b = 0, then u

a = 0.

The first property above reveals the symmetric nature of gab. The second property requires gab to
be non-degenerate. Given any gab that is C1 on Rn, a torsion-free and gab compatible derivative
operator ra can always be uniquely determined such that ragbc = 0 on Rn. Unless otherwise
specified, ra always refers to this compatible derivative operator in this paper. Using ra, the
conventional policy gradient at 8✓ 2 Rn can be defined as a dual vector of ✓ below:

raEs0 [v⇡✓ (s0)] = @aEs0 [v⇡✓ (s0)] =
nX

µ=1

@Es0 [v⇡✓ (s0)]

@✓(µ)
(d✓(µ))a,

where ✓(µ) indicates the µ-th dimension of ✓. (d✓(µ))a is the basis dual vector of the dual vector space
T

⇤
✓ at ✓. @a is the ordinary derivative operator. The policy gradient vector w.r.t. raEs0 [v⇡✓ (s0)] is:

J
a
|✓ = g

ab
rbEs0 [v⇡✓ (s0)] =

nX

⌫=1

 
nX

µ=1

g
⌫µ @Es0 [v⇡✓ (s0)]

@✓(µ)

!✓
@

@✓(⌫)

◆a

,

where (@/@✓(⌫))a is the basis vector of the vector space T✓ at ✓. We shall use J
a
|✓ consistently as

the vector representation of the policy gradient on manifold (Rn
, gab). To obtain J

a
|✓, we need to

introduce the inverse metric tensor gab that satisfies

g
ab
gbc = �

a
c =

nX

µ=1

nX

⌫=1

�
µ
⌫

✓
@

@✓(µ)

◆a

(d✓(⌫))c,
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where �
a
c is the (1, 1)-type identity tensor such that �abv

b = v
a
, 8v

a
2 T✓, and �

a
bwa = wb, 8wa 2

T
⇤
✓ . Accordingly, �µ⌫ = 1 whenever 1  µ = ⌫  n and �

µ
⌫ = 0 otherwise. Given the matrix

representation of gab at any ✓ 2 Rn as G✓ = [gµ,⌫(✓)]nµ,⌫=1, gab is represented as the inverse matrix
G

�1
✓ . Hence the gab regularized policy gradient can be computed via a matrix expression below

~J |✓ = G
�1
✓ ·r✓Es0 [v⇡✓ (s0)]. (1)

The above vector is called a vector in linear algebra. To distinguish it from a vector in differential
geometry, we denote it as ~J instead of Ja. Each dimension of ~J corresponds to a separate trainable
parameter (or dimension) of ⇡✓. The definition of Ja

|✓ (and ~J |✓) above allows us to construct a vector
space of policy gradient on manifold (Rn

, gab), indicated as Ja. In differential geometry, divergence
captures essential information about Ja and is mathematically defined as

8✓ 2 Rn
, Div(Ja)|✓ = raJ

a
|✓.

It quantifies the distribution of policy gradient vectors on (Rn
, gab). If the vectors are moving away

from ✓ 2 Rn, the divergence at ✓ is positive. If they are converging towards ✓, the divergence is
negative. When the divergence is close-to-zero, the vectors are neither spreading nor converging at
✓. Appendix A shows that achieving close-to-zero divergence can potentially nullify the principal
differential components of the loss function used for training ⇡✓.

5 METRIC TENSOR REGULARIZATION ALGORITHM FOR TRAINING POLICY
NETWORKS

The new gab regularization algorithm comprises of two components, which will be introduced
respectively in Subsections 5.1 and 5.2. We will further apply the gab regularization method to SAC
and TD3 to develop practically useful DRL algorithms in Subsection 5.3.

5.1 LEARNING A DNN MODEL OF gab

Let G✓ = [gµ,⌫(✓)]nµ,⌫=1 be the matrix representation of gab at any ✓ 2 Rn. Each entry of this
symmetric matrix G✓, i.e. gµ,⌫(✓), is a function of ✓. Learning such a matrix representation of gab
directly is a challenging task, since n � 1 for most of policy networks used by DRL algorithms. To
make it feasible to learn gab, we impose a specific structure on G✓, as given below:

G✓ = In + ~u(✓) · ~u(✓)T (2)

where In stands for the n ⇥ n identity matrix. ~u(✓) : Rn
! Rn is a vector-valued function of ✓.

Hence ~u(✓) · ~u(✓)T produces an n⇥ n matrix. It is easy to verify that the simplified matrix G✓ in
equation 2 is symmetric and non-degenerate, suitable to serve as the matrix representation of gab. We
aim to learn gab that can induce zero divergence on the vector field J

a of manifold (Rn
, gab). For

this purpose, Proposition 1 below can be utilized to compute the divergence of Ja at any ✓ 2 Rn.

Proposition 1 Given a metric tensor field gab with its matrix representation defined in equation 2 on
manifold (Rn

, gab), the divergence of C1 vector field J
a at any ✓ 2 Rn, i.e. Div(Ja)|✓, is

Div(Ja)|✓ =
nX

µ=1

 
@ ~J

(µ)

@✓(µ)
+

~J
(µ)

1 + ~u(✓)T · ~u(✓)

nX

⌫=1

~u
(⌫)(✓)

@~u
(⌫)(✓)

@✓(µ)

!

where ~J
(µ) refers to the µ-th dimension of ~J |✓ at ✓. ✓(µ) and ~u

(⌫) represent respectively the µ-th
dimension of ✓ and ⌫-th dimension of ~u(✓). A proof of Proposition 1 is given in Appendix B.

While ~u(✓) in equation 2 can be arbitrary functions of ✓, to tackle the complexity of learning ~u(✓),
we can re-formulate ~u(✓) in the form of a parameterized linear transformation of ✓, i.e.

~u(✓) = S(✓,�1)R(✓,�2)✓ (3)

where S(✓,�1) stands for the n ⇥ n scaling (diagonal) matrix w.r.t. ✓ and parameterized by �1.
R(✓,�2) stands for the n ⇥ n rotation matrix w.r.t. ✓ and parameterized by �2. Meanwhile,
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dim(�1) + dim(�2) = m ⌧ n. S(✓,�1) and R(✓,�2) together define a linear transformation of ✓
that involves the two fundamental operations, i.e. scaling and rotation.

Concretely, S(✓,�1) = Diag(~!(✓,�1)) controls the magnitude of each dimension of ~u(✓). The
diagonal line of matrix S(✓,�1) forms an n-dimensional vector ~!(✓,�1). While it sounds straight-
forward to let ~!(✓,�1) = �1, this implies that dim(�1) = n, contradicting with the requirement that
m ⌧ n. To tackle this issue, we perform Fourier transformation of ~! and only keep the low-frequency
components of ~! which can be further controlled via �1. Specifically, define a series of n-dimensional
vectors ~⌦(i) using the trigonometrical function cos() as

~⌦(i) =

r
2

n

2

64
cos
�
2⇡i
n j
�
|j=0

...
cos
�
2⇡i
n j
�
|j=n�1

3

75 ,

where 1  i  m̃. Further define ⌦ as an n⇥ m̃ matrix:

⌦ = [~⌦(1)
, . . . , ~⌦(m̃)]

Then ~!(✓,�1) can be obtained through the matrix expression below:

~!(✓,�1) = ⌦ · ~̃w(✓,�1), (4)

where the parameterized m̃-dimensional vector ~̃w(✓,�1) controls the magnitude of the m̃ low-
frequency components of ~!. Consequently, the problem of learning the n⇥n scaling matrix S(✓,�1)
is reduced to the problem of learning �1 at ✓ 2 Rn with dim(�1) ⌧ n.

In group theory, any n⇥ n rotation matrix serves as the matrix representation of a specific element of
the n-dimensional Special Orthogonal (SO) group, denoted as SO(n) Hall (2013). Consider the Lie
algebra of SO(n), indicated as SO(n). SO(n) is defined mathematically below

SO(n) = {n⇥ n real-valued matrix A|A
T = �A}.

In other words, SO(n) is the set of all n⇥ n anti-symmetric matrices. Consequently, 8A 2 SO(n),
exp(A) must be an n⇥ n rotation matrix. In view of this, we further introduce Proposition 2 below
to simplify the parameterization of R(✓,�2). Its proof is given in Appendix C.

Proposition 2 8A 2 SO(n), there exist n⇥ n unitary matrices U and V such that

exp(A) = U · ⌃c · U
T
� V · ⌃s · U

T

where, w.r.t. an n-dimensional vector ~� = [�(1)
, . . . ,�

(n)]T , ⌃c and ⌃s are defined respectively as

⌃c =

2

64
cos(�(1)) 0

. . .
0 cos(�(n))

3

75 and ⌃s =

2

64
sin(�(1)) 0

. . .
0 sin(�(n))

3

75

Following Proposition 2, we can construct R(✓,�2). Notice that

(~⌦(i))T · ~⌦(j)
⇡

⇢
1, i = j

0, i 6= j
, 8i, j 2 {1, . . . , m̃}

⌦ can be utilized to approximate the first unitary matrix U in Proposition 2. Similarly, we can define
another series of n-dimensional vectors ~�(i) as

~�(i) =

r
2

n

2

64
sin
�
2⇡i
n j
�
|j=0

...
sin
�
2⇡i
n j
�
|j=n�1

3

75 ,

where 1  i  m̃. � = [~�(1)
, . . . , ~�(m̃)] gives a good approximation of the second unitary matrix V

in Proposition 2. However, different from U and V , which are n⇥ n matrices, ⌦ and � are n⇥ m̃
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matrices. To cope with this difference in dimensionality, we introduce a parameterized m̃-dimensional
vector ~̃�(✓,�2). Assume that functions cos() and sin() are applied elementary-wise to ~̃�(✓,�2), then

⌃̃c = Diag(cos(~̃�(✓,�2))) and ⌃̃s = Diag(sin(~̃�(✓,�2)))

are m̃⇥ m̃ diagonal matrices. Subsequently, define n⇥ n matrix

R̃(✓,�2) = ⌦ · ⌃̃c · ⌦
T
� �⌃̃s · ⌦

T
. (5)

Similar to the construction of the scaling matrix, equation 5 also draws inspiration from frequency
analysis, as clearly revealed by Proposition 3 below, which is proved in Appendix D.

Proposition 3 Given A 2 SO(n), assume that exp(A) = ⌦̂ ·⌃c · ⌦̂T
� �̂ ·⌃s · ⌦̂T as in Proposition

2, where ⌦̂ and �̂ are defined similarly as ⌦ and � with the additional requirement that m̃ = n.
Hence ⌦̂ and �̂ are n⇥ n unitary matrices. Under this assumption, for any n-dimensional vector ~a,

exp(A) · ~a =
nX

i=1

⌘i

r
2

n

2

64
cos
�
2⇡i
n j + ~�

(i)
|j=0

�

...
cos
�
2⇡i
n j + ~�

(i)
|j=n�1

�

3

75

where ⌘i = (~⌦(i))T · ~a stands for the magnitude of the i-th frequency component of ~a1.

Proposition 3 indicates that, upon multiplying the rotation matrix exp(A) with any vector ~a, this will
result in independent phase shift of each frequency component of ~a, controlled by the respective
dimension of vector ~� in Proposition 2. Therefore, R̃(✓,�2) in equation 5 only shifts/rotates the
first m̃ low frequency components of a vector upon multiplying it with the vector. In view of this, a
full-ranked parameterized rotation matrix can be constructed as

R(✓,�2) = R̃(✓,�2) + In � ⌦ · ⌦T
. (6)

Whenever R(✓,�2) in equation 6 is multiplied with any vector ~a, only the low-frequency components
of ~a is phase shifted/rotated. The high-frequency components of ~a remain untouched. Subsequently,
the problem of learning the n⇥ n rotation matrix R(✓,�2) is reduced to the problem of learning the
m̃-dimensional vector ~̃�(✓,�2) parameterized by �2.

Given the parameterized model of G✓ based on equation 3, equation 4, equation 5 and equation 6 and
using Proposition 1, the problem of learning gab can be formulated as an optimization problem:

min
�1,�2

(Div(Ja)|✓)
2 = min

�1,�2

 
nX

µ=1

 
@ ~J

(µ)

@✓(µ)
+

~J
(µ)

1 + ~u(✓,�)T · ~u(✓,�)

nX

⌫=1

~u
(⌫)(✓,�)

@~u
(⌫)(✓,�)

@✓(µ)

!!2

(7)
Driven by this problem, �1 and �2 can be repeatedly updated towards minimizing (Div(Ja)|✓)2, so
as to bring the divergence of Ja close to 0. For this purpose, we design a metric tensor DNN (see
Appendix G) that processes ✓ as its input and produces ~̃!(✓,�1) and ~̃�(✓,�2) as its output. �1 and
�2 are the trainable parameters of this DNN.

5.2 USING LEARNED gab MODEL TO COMPUTE REGULARIZED POLICY GRADIENT

Using the metric tensor DNN as a deep model of gab, we develop two alternative methods to compute
gab regularized policy gradient. The first method directly follows equation 1. Specifically, according
to the Sherman-Morrison formula Press et al. (2007),

G
�1
✓ = In �

~u(✓,�) · ~u(✓,�)T

1 + ~u(✓,�)T · ~u(✓,�))

Consequently,
~J |✓ = r✓Es0 [v⇡✓ (s0)]�

~u(✓,�)T ·r✓Es0 [v⇡✓ (s0)]

1 + ~u(✓,�)T · ~u(✓,�))
~u(✓,�) (8)

1Vector ~a in Proposition 3 is treated as a signal indexed by its dimensions.
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The second method aims to update ✓ along the direction of the geodesic Kreyszig (2013), which is
jointly and uniquely determined by the learned gab|✓ and ~J |✓. Geodesics generalize straight lines
for solving optimization problems on high-dimensional manifolds (Rn

, gab) Hu et al. (2020). For
simplicity and clarity, we use the term geodesic regularized policy gradient ~T |✓ to indicate the
direction of the geodesic at ✓, in order to clearly distinguish it from gab regularized policy gradient
~J |✓ in equation 8. Proposition 4 provides an efficient way to estimate ~T |✓.

Proposition 4 Given the manifold (Rn
, gab) of the policy parametric space, at any ✓ 2 Rn, a

geodesic � that passes through ✓ can be uniquely and jointly determined by gab and the gab regularized
policy gradient vector Ja

|✓ at ✓. Assume that gab changes smoothly and stably along �2, there exist
⇣1, ⇣2 > 0 such that the geodesic regularized policy gradient at ✓ can be approximated as

~T
(�)

|✓ ⇡ (1 + ⇣1) ~J
(�)

|✓ + ⇣2

nX

⇢=1

g
�⇢(✓)

nX

µ=1

nX

⌫=1

@gµ⌫(✓)

@✓(⇢)
~J
(µ)

|✓
~J
(⌫)

|✓

where ~T
(�)

|✓ stands for the �-th dimension of the geodesic regularized policy gradient ~T at ✓,
0  �  n. A proof of this proposition is given in Appendix E.

~T |✓ in Proposition 4 is obtained by updating ~J |✓ with a new term controlled by ⇣2. We treat ⇣2
1+⇣1

as
a hyper-parameter of our gab regularization algorithm to adjust the influence of this new term.

5.3 DRL ALGORITHMS BASED ON gab REGULARIZED POLICY GRADIENT

Following the mathematical and algorithmic developments in Subsections 5.1 and 5.2, a new gab

regularization algorithm is designed to compute gab regularized policy gradients, as presented in
Algorithm 1 and further explained in Appendix F. Building on Algorithm 1, we can modify existing
DRL algorithms to construct their gab regularized counterparts. We specifically considered two
DRL algorithms, namely SAC and TD3, due to their widespread popularity Haarnoja et al. (2018);
Fujimoto et al. (2018). It remains as an important future work to study the effective use of Algorithm
1 in other DRL algorithms. Algorithm 2 in Appendix F presents the details of gab regularized DRL
algorithms. Following Algorithm 2, we can identify four algorithm variants, including SAC-J and
TD3-J that use gab regularized policy gradients, as well as SAC-T and TD3-T that use geodesic
regularized policy gradients. All these variants are experimentally examined in Section 6.

6 EXPERIMENTS

Implementation: We use the popular OpenAI Spinning Up repository Achiam (2018) to implement
gab regularized DRL algorithms introduced in the previous section. To learn the complex geometric
structure of gab, we introduce a new metric tensor DNN architecture parameterized by both �1 and
�2 in Appendix G. It transforms the n-dimensional policy parameter of a policy network ⇡✓ into two
m̃-dimensional vectors ~̃!(✓,�1) and ~̃�(✓,�2), which are used to build the scaling matrix S(✓,�1)
and the rotation matrix R(✓,�2) in equation 3 respectively.

Our implementation follows closely all hyper-parameter setting and network architectures reported
in Haarnoja et al. (2018); Fujimoto et al. (2018). Since calculating the Hessian trace precisely can
pose significant computation burden on existing deep learning libraries such as PyTorch, we adopt a
popular Python library named PyHessian Yao et al. (2020), where Hutchinson’s method Avron &
Toledo (2011); Bai et al. (1996) is employed to estimate the Hessian trace efficiently. See Appendix
H for the detailed experiment setup.

Experiments have been conducted on multiple challenging continuous control benchmark problems
provided by OpenAI Gym Brockman et al. (2016) and PyBullet Ellenberger (2018–2019). Each
benchmark problem has a maximum episode length of 1000 timesteps. Each DRL algorithm is trained
for 300k timesteps. To obtain the cumulative returns, we average the results of 10 independent testing
episodes after every 1000 training timesteps for each individual algorithm run. Every competing
algorithm was also run for 5 different seeds to determine its average performance.

2See Appendix E for the precise definition of this assumption.
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Performance Comparison: The comparison between SAC and its metric tensor regularized vari-
ations, SAC-J and SAC-T, is presented in Table 1 and Figure 1. As indicated in the table, SAC-T
outperforms both SAC and SAC-J on majority of the benchmark problems, except Walker2D-v0,
where SAC-T achieved 99% of the highest cumulative returns obtained by SAC. Furthermore, in the
case of the Walker2D-v3 problem, SAC-T achieved on average over 60% higher cumulative returns
in comparison to SAC and over 100% higher cumulative returns when compared to SAC-J.

Similar results can be observed upon comparing TD3, TD3-J, and TD3-T. As reported in Table 1
and Figure 1, although TD3-T only achieved over 85% of the highest cumulative returns obtained
by TD3-J on AntPyBullet and Walker2D-v3, TD3-T doubled the cumulative returns compared to
TD3 and TD3-J on the InvertedDoublePendulum-v2 problem. This observation not only supports
our previous findings but also demonstrates the broad applicability of our proposed metric tensor
regularization algorithm.

We also found that using gab regularized policy gradient alone may not always lead to noticeable
performance gains since SAC-J outperformed SAC on two benchmark problems (i.e. Ant-v0 and
InvertedDoublePendulum-v2) but also performed worse on two benchmark problems (i.e. Walker2D-
v3 and Walker2D-v0). These results suggest that it is more desirable to train policy parameters in the
direction of the geodesics in a general Rimannian manifold (Rn

, gab) in order for gab regularized
policy gradient to effectively improve the performance of DRL algorithms. This observation agrees
well with existing optimization techniques on Rimennian manifolds Hu et al. (2020).

Table 1: Final performance of competing algorithms on 4 benchmark problems after 300k timesteps.

Benchmark problems SAC SAC-J SAC-T TD3 TD3-J TD3-T
InvertedDoublePendulum-v2 (Mujoco) 9312.77 9356.47 9356.91 3129.28 4679.69 8731.77

Walker2D-v3 (Mujoco) 1689.15 1290.35 2762.51 3325.71 3879.81 3333.42
Ant-v0 (PyBullet) 780.69 798.89 837.47 2734.56 2848.43 2754.12

Walker2D-v0 (PyBullet) 945.72 905.28 938.68 1327.33 1364.34 1727.88

(a)
InvertedDoublePendulum-
v2 (Mujoco)

(b) Walker2D-v3 (Mujoco) (c) Ant-v0 (PyBullet) (d) Walker2D-v0 (PyBullet)

(e)
InvertedDoublePendulum-
v2 (Mujoco)

(f) Walker2D-v3 (Mujoco) (g) Ant-v0 (PyBullet) (h) Walker2D-v0 (PyBullet)

Figure 1: Learning curves of SAC, TD3 and their metric tensor regularized variants on four benchmark
RL problems over 300k timsteps.

Further analysis of the metric tensor learning technique: We experimentally show the effective-
ness of using the proposed metric tensor DNN to learn gab|✓ at any ✓ 2 Rn so that |Div(Ja)|✓| can
be made closer to zero. For this purpose, we introduce a new quantity named the divergence ratio.
It is defined as the absolute ratio between the divergence of Ja in the general manifold (Rn

, gab)
and the Hessian trace of the policy gradient, which is the divergence of Ja in the Euclidean policy
parametric space (Rn

, �ab). �ab is the identity metric tensor.
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The divergence ratio quantifies the relative divergence changes upon extending the Euclidean policy
parametric space into a general Riemannian manifold with the introduction of the metric tensor field
gab. Specifically, whenever the divergence ratio is less than 1 and close to 0, the absolute divergence
|Div(Ja)|✓| in the manifold (Rn

, gab) is smaller than the absolute divergence in the Euclidean policy
parametric space, implying that the policy gradient vector field becomes smoother in the manifold
(Rn

, gab). As demonstrated by the above experiment results, this is expected to allow policy network
training to be performed effectively and stably. On the other hand, if the divergence ratio is above 1,
it indicates that the policy gradient vector field becomes less smooth in the manifold (Rn

, gab). In
this case, our metric tensor regularized policy gradient algorithms will resort to using normal policy
gradients in the Euclidean policy parametric space to train policy networks.

(a) InvertedDoublePendulum-v2 (Mujoco) (b) Walker2D-v0 (PyBullet)

Figure 2: Divergence ratios obtained by TD3-T during the training process, where the divergence
ratio is defined as the absolute ratio between Div(Ja)|✓ and the Hessian trace.

Figure 2 presents the divergence ratios obtained by TD3-T on two benchmark problems. Evidenced
by the figure, using the trained metric tensor DNN and the corresponding gab, TD3-T successfully
reduces a significant portion of the divergence ratios to below 1 during the training process. Over 75%
of the divergence ratios obtained by TD3-T during policy training are less than 1 on both benchmark
problems. Detailed experiment results can be found in Appendix I. Our results demonstrate the
effectiveness of using the metric tensor regularization algorithm to train the metric tensor DNN to
achieve close-to-zero divergence on the policy parametric space.

We further present the Hessian trace obtained by SAC and TD3 on several benchmark problems
respectively in Appendix J. Interestingly, the results show that the Hessian trace obtained by using
the same algorithm such as SAC-T can vary greatly on different benchmark problems. Meanwhile,
even on the same benchmark problem, the Hessian traces produced by different algorithms such as
SAC-T and TD3-T can be significantly different. Driven by this observation, we believe the impact
of Hessian trace on the performance of policy gradient algorithms should never be neglected. Our
metric tensor regularized policy gradients present the first attempt in the literature towards utilizing
and controlling the Hessian trace for effective training of policy networks. Finally, sensitivity analysis
of three key hyper-parameters of our new algorithms is reported in Appendix K.

7 CONCLUSIONS

In this paper, we studied policy gradient techniques for deep reinforcement learning. Most of the
existing policy gradient algorithms rely primarily on the first-order policy gradient information to train
policy networks. We developed new mathematical and deep learning techniques to effectively utilize
and control the Hessian trace associated with the policy gradient, in order to improve the performance
of these algorithms. Hessian trace gives the divergence of the policy gradient vector field on the
Euclidean policy parametric space. We can effectively reduce the absolute divergence towards zero
so as to smoothen the policy gradient vector field. This was achieved by using our newly developed
mathematical and deep learning techniques and our metric DNN in this paper. Armed with these
new technical developments, we have further created new metric tensor regularized policy gradient
algorithms based on SAC and TD3. The newly proposed algorithms were evaluated experimentally
on several benchmark RL problems. Our experiment results confirmed that the new algorithms can
significantly outperform their counterparts that do not use our metric tensor regulization techniques.
Additional experiment results also confirmed that the trained metric tensor DNN in our algorithms
can effectively reduce the absolute divergence towards zero on the general Riemmanian manifold.
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