

000  
 001  
 002  
 003  
 004  
 005  
 006  
 007  
 008  
 009  
 010  
 011  
 012  
 013  
 014  
 015  
 016  
 017  
 018  
 019  
 020  
 021  
 022  
 023  
 024  
 025  
 026  
 027  
 028  
 029  
 030  
 031  
 032  
 033  
 034  
 035  
 036  
 037  
 038  
 039  
 040  
 041  
 042  
 043  
 044  
 045  
 046  
 047  
 048  
 049  
 050  
 051  
 052  
 053

# “What Is The Performance Ceiling of My Classifier?”

## UTILIZING CATEGORY-WISE INFLUENCE FUNCTIONS

## FOR PARETO FRONTIER ANALYSIS

Anonymous authors

Paper under double-blind review

### ABSTRACT

Data-centric learning seeks to improve model performance from the perspective of data quality, and has been drawing increasing attention in the machine learning community. Among its key tools, influence functions provide a powerful framework to quantify the impact of individual training samples on model predictions, enabling practitioners to identify detrimental samples and retrain models on a cleaner dataset for improved performance. However, most existing work focuses on the question “what data benefits the learning model?” In this paper, we take a step further and investigate a more fundamental question: “what is the performance ceiling of the learning model?” Unlike prior studies that primarily measure improvement through overall accuracy, we emphasize category-wise accuracy and aim for Pareto improvements, ensuring that every class benefits, rather than allowing tradeoffs where some classes improve at the expense of others. To address this challenge, we propose category-wise influence functions and introduce an influence vector that quantifies the impact of each training sample across all categories. Leveraging these influence vectors, we develop a principled criterion to determine whether a model can still be improved, and further design a linear programming-based sample reweighting framework to achieve Pareto performance improvements. Through extensive experiments on synthetic datasets, vision, and text benchmarks, we demonstrate the effectiveness of our approach in estimating and achieving a model’s performance improvement across multiple categories of interest.

## 1 INTRODUCTION

Data-centric learning has recently emerged as a central research topic in the machine learning community (Feldman & Zhang, 2020; Chhabra et al., 2024; Richardson et al., 2023), shifting attention from purely algorithmic model design towards improving the quality of training data. Unlike conventional preprocessing techniques such as normalization or outlier removal, that operate independently of the learning algorithm, data-centric learning is tightly coupled with the downstream model. Its primary goal is to assess whether each training sample is beneficial or detrimental with respect to a specific learning objective, thereby guiding principled data curation and optimization.

Sample influence estimation is a fundamental task in data-centric learning. A straightforward approach for estimating influence involves training the model twice—once with and once without a target sample, and then comparing the change in model performance on a validation set. However, this approach is computationally expensive and often infeasible for large-scale datasets/models. To address this challenge, the seminal work of Koh & Liang (2017) introduced *influence functions*, a technique from robust statistics (Hampel, 1974; Cook & Weisberg, 1982) that enables approximate influence estimation without retraining. This approach allows efficient estimation of sample influence, inspiring a series of follow-up studies and variants on its applications on deep models (Schioppa et al., 2022; Chhabra et al., 2025; Kwon et al., 2024; Wang et al., 2025).

Broadly speaking, sample influence estimation seeks to answer the question: “*which training samples help the model, and which ones harm it* (Chhabra et al., 2024)?” In practice, samples identified as detrimental are removed, and the model is retrained on the refined dataset, often resulting in mea-

054 surable performance gains. This naturally raises deeper questions: *can the model’s performance be*  
 055 *improved even further by iteratively repeating this process? And if so, what is the ultimate perfor-*  
 056 *mance ceiling of the learning model?*

057 In this paper, we focus on the multi-class classification setting: given a training set, a validation  
 058 set, and a classification model, we aim to answer two key questions from the data perspective: (1)  
 059 has the classifier already reached its maximum potential performance, and (2) if not, how can its  
 060 performance be further improved? Importantly, the notion of “improvement” in our work does not  
 061 simply refer to an increase in overall accuracy. Instead, we adopt a *Pareto improvement* perspective:  
 062 we seek performance gains where every class benefits, avoiding tradeoff scenarios in which some  
 063 classes improve at the expense of others. We summarize our contributions as follows:

- 064 • We tackle a fundamental yet largely overlooked question: “*What is the performance ceiling*  
 065 *of a classifier?*” Specifically, we determine whether a given classifier has already reached its  
 066 maximum potential performance and, if not, how it can be further improved.
- 067 • We introduce category-wise<sup>1</sup> influence functions to assess the model’s Pareto frontier on each  
 068 category and systematically analyze its performance ceiling. Leveraging these influence scores,  
 069 we further propose a linear programming-based sample reweighting framework to achieve  
 070 Pareto performance improvements across classes of interest.
- 071 • We validate our category-wise influence functions on synthetic and benchmark datasets and  
 072 present detailed case studies showing how to determine whether a classifier has reached its  
 073 performance ceiling using our linear programming-based sample reweighting framework.

## 075 2 RELATED WORK

076 **Sample Influence Estimation.** Influence functions comprise a set of methods from robust statistics  
 077 (Hampel, 1974; Cook & Weisberg, 1982) that can be used to approximately estimate influence with-  
 078 out requiring retraining, i.e., they can help create a conceptual link that traces model performance  
 079 to samples in the training set. For gradient-based models trained using empirical risk minimization,  
 080 the seminal work by Koh & Liang (2017) utilizes a Taylor-series approximation and LiSSA  
 081 optimization (Agarwal et al., 2017) to compute sample influences and relies on the Hessian matrix.  
 082 Follow-up works such as Representer Point (Yeh et al., 2018) and Hydra (Chen et al., 2021) im-  
 083 prove influence estimation performance for deep learning models. More recently, efficient influence  
 084 estimation methods such as DataInf (Kwon et al., 2024), Arnoldi iteration (Schioppa et al., 2022),  
 085 and Kronecker-factored approximation curvature (Grosse et al., 2023) have been proposed which  
 086 can even be employed for larger models. Some other approaches directly utilize the gradient space  
 087 to measure influence (Pruthi et al., 2020; Charpiat et al., 2019), while others use some ensemble  
 088 methods (Bae et al., 2024; Kim et al., 2024; Dai & Gifford, 2023). Recent work has also found that  
 089 *self-influence* only on the training set can be a useful measure for detecting sample influence (Bejan  
 090 et al., 2023; Thakkar et al., 2023). Influence functions have been widely used in the community for  
 091 a number of data-centric applications (Feldman & Zhang, 2020; Chhabra et al., 2024; Richardson  
 092 et al., 2023), but the focus of these works has predominantly been on using the overall accuracy  
 093 of the model as a proxy for performance measurement. This contrasts with the main motivation  
 094 in our paper, where we seek to study how different samples in the training set influence different  
 095 categories/classes of the data. Such class-wise tradeoff analysis based on the Pareto frontier is of  
 096 paramount importance in multiple applications, such as category-aware domain adaptation (Xiao  
 097 et al., 2024) and fair classification (Lees et al., 2019; Martinez et al., 2020).

098 **Pareto frontier Analysis.** Pareto frontier analysis is widely employed in many domains, where  
 099 multiple objectives need to be optimized simultaneously, necessitating solutions that can effectively  
 100 measure the tradeoffs between each of the objectives. For instance, Edelman et al. (2023) analyzed  
 101 Pareto tradeoffs across resources for model training including data, model architectures, and com-  
 102putation. Lin et al. (2019) introduced Pareto multi-task learning, where multiple Pareto-optimal  
 103 solutions are generated efficiently to help practitioners choose the best one according to their trade-  
 104 off preferences. Other work, such as the Iterated Pareto Referent Optimization method proposed  
 105 by Röpke et al. (2025) for multi-objective reinforcement learning, decomposes the search for op-  
 106 timal paths into a sequence of single objectives. Similarly, Cai et al. (2023) handled distributional  
 107 pareto-optimal policies in reinforcement learning under uncertainty. Pareto-optimal tradeoffs have

<sup>1</sup>We use the terms *category* and *class* interchangeably throughout the paper.

108 also been studied in other problem domains, such as neural architecture search (Elsken et al., 2019).  
 109 As is evident, none of these works investigate category-wise tradeoffs during training and analysis  
 110 of the Pareto-front for assessing the performance ceiling of a given classifier, unlike our work.  
 111

112 **Other Data-Centric Learning.** Many works in data-centric learning study research questions be-  
 113 yond Pareto frontier analysis and category-wise influence estimation. *Datamodels* (Ilyas et al., 2022)  
 114 estimate training sample contributions as well, but only for one test sample at a time. Other ap-  
 115 proaches such as (Jain et al., 2023; Paul et al., 2021; Killamsetty et al., 2021) aim to accelerate  
 116 deep learning training time via subset/coreset selection. Data pruning, augmentation, and relabeling  
 117 approaches (Yang et al., 2022; Tan et al., 2024; Kong et al., 2021; Chhabra et al., 2022; Richardson  
 118 et al., 2023) and model pruning approaches (Lyu et al., 2023) based on influence analysis have also  
 119 been proposed. Another related area of research is *active learning* (Cohn et al., 1996), which seeks  
 120 to iteratively identify optimal samples to annotate given a large unlabeled training data pool (Liu  
 121 et al., 2021; Nguyen et al., 2022; Wei et al., 2015).

### 122 3 PROPOSED APPROACH

#### 124 3.1 PRELIMINARIES

126 Let  $T = \{z_i\}_{i=1}^n$  be a training set, where  $z_i = (x_i, y_i)$  includes the input space sample features  $x_i$   
 127 and output space label  $y_i$ . A classifier trained using empirical risk minimization on the empirical  
 128 loss  $\ell$  can be written as:  $\hat{\theta} = \arg \min_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^n \ell(z_i; \theta)$ . Influence functions (Koh & Liang, 2017)  
 129 constitute methods from robust statistics (Hampel, 1974; Cook & Weisberg, 1982; Martin & Yohai,  
 130 1986) that can help measure the effect of changing an infinitesimal weight of training samples on  
 131 the model utility/performance. Downweighting a training sample  $z_j$  by a very small fraction  $\epsilon$  leads  
 132 to a model parameter:  $\hat{\theta}(z_j; -\epsilon) = \arg \min_{\theta \in \Theta} \frac{1}{n} (\sum_{i=1}^n \ell(z_i; \theta) - \epsilon \ell(z_j; \theta))$ . By evaluating the  
 133 limit as  $\epsilon$  approaches 1, we can estimate the *influence score* associated with the removal of  $z_j$  from  
 134 the training set in terms of loss on the validation  $V$  set, without undertaking any computationally  
 135 expensive leave-one-out re-training as:

$$136 \quad \mathcal{I}^{\hat{\theta}}(z_j, V) = \sum_{z \in V} \nabla_{\hat{\theta}} \ell(z; \hat{\theta})^T \mathbf{H}_{\hat{\theta}}^{-1} \nabla_{\hat{\theta}} \ell(z_j; \hat{\theta}). \quad (1)$$

138 where  $\nabla_{\hat{\theta}} \ell(z_j; \hat{\theta})$  is the gradient of sample  $z_j$  to model parameters, and  $\mathbf{H}_{\hat{\theta}} = \sum_{i=1}^n \nabla_{\hat{\theta}}^2 \ell(z_i; \hat{\theta})$  de-  
 139 notes the Hessian. Higher values of  $\mathcal{I}^{\hat{\theta}}(z_j, V)$  indicate a more positively influential sample (i.e.,  
 140 one that decreases the overall classification loss) and conversely, lower values correspond to a more  
 141 negatively influential sample. Also note that while influence functions have demonstrated their ben-  
 142 efits in deep learning non-convex models, such as on BERT (Han et al., 2020), ResNets (Liu et al.,  
 143 2021; Yang et al., 2022), and CNNs (Koh & Liang, 2017; Schioppa et al., 2022), there is ongoing  
 144 research that studies their suitability to these models (Bae et al., 2022; Basu et al., 2020; Epifano  
 145 et al., 2023; Schioppa et al., 2024). While this research question regarding applicability is not the  
 146 focus of our paper we employ influence function formulations that have been shown to work well  
 147 for deep models (Grosse et al., 2023; Kwon et al., 2024).  
 148

#### 149 3.2 RESEARCH QUESTION

151 While measuring the influence of training samples on the predictive performance of a model can  
 152 serve as a powerful tool for numerous data-centric learning applications, prior work (Koh & Liang,  
 153 2017; Chhabra et al., 2024; Han et al., 2020; Kwon et al., 2024; Schioppa et al., 2024; Liu et al.,  
 154 2021; Yang et al., 2022; Chhabra et al., 2025) has undertaken this analysis using only the *overall*  
 155 *accuracy* of the model as an indicator for performance. However, this is a restrictive scenario,  
 156 and it can be beneficial for users/developers to consider a category-wise analysis for fine-grained  
 157 understanding model’s performance.

158 The basis for category-wise analysis stems from the fact that different training samples can lead  
 159 the model to learn different predictive patterns, and hence, they can impact their own class and  
 160 other classes in varying ways. Following this rationale, it should be possible to ascertain how  
 161 different samples in the training set impact different categories of the dataset and therefore,  
 utilize this information as a model developer to make relevant tradeoffs that are desirable for the

given application at hand. These tradeoffs appear in numerous learning problems—such as *fair classification* (Lees et al., 2019; Martinez et al., 2020), where performance of multiple different categories need to be maximized jointly and *category-aware active domain adaptation* (Xiao et al., 2024), where performance impacts across different categories/classes need to be individually identified, among several others. In contrast to past work which focuses solely on overall class accuracy, this forms the main motivation for our research focus in this work, where we seek to study how performance can be improved for certain classes by potentially sacrificing performance of others. The space of solutions that describe these different tradeoffs between categories is also known as the *Pareto frontier* (Lotov & Miettinen, 2008).

In this paper, we consider whether a given classifier has already reached its maximum potential performance, i.e., Pareto frontier, if not, how it can be further improved. We will now discuss our proposed methods for obtaining the Pareto frontier (and thus, the classifier’s performance ceiling).

### 3.3 CATEGORY-WISE INFLUENCE VECTOR ESTIMATION

We now discuss our proposed approach for obtaining the Pareto frontier for the classifier across different categories. Analytically, the Pareto frontier for a training sample can be described using an *influence vector*  $P(z) \in \mathbb{R}^K$  of length  $K$  (given  $K$  classes/categories) where each cell  $P^k(z)$  for  $k \in [K]$  is the impact to the category  $k$  when the sample  $z$  is removed from the training set. Next, we will develop category-wise influence scores for obtaining this Pareto frontier vector.

Let the subset of samples of set  $S$  that belong to class  $k$  be denoted as  $S^k$ . We can then measure the influence score for training sample  $z$  as  $P^k(z) = \mathcal{I}^\theta(z, S^k)$  for all  $k \in [K]$  using Eq. (1). It is important to note that the category-wise influence vector  $P(z)$  is a useful solution aimed at answering the research question (*what is the classifier’s performance ceiling?*) we had formulated above. More specifically, the influence vector allows users/developers to easily gauge the classifier’s performance ceiling—if all values of  $P(z) > 0$ , the sample  $z$  is *beneficial* to all categories and if all values of  $P(z) \leq 0$ , the sample  $z$  is *detrimental* to all categories. The third case is when  $P(z)$  takes on *mixed* values that are both positive and negative.

Without loss of generalizability, consider the case scenario with two categories:  $\mathcal{C}_1$  and  $\mathcal{C}_2$ . Given a model, we can calculate the influence vector for all training samples, and visualize the influence vector in Figure 1. Training samples located in the joint negative region are expected to hinder performance in both categories; thus, their removal could lead to simultaneous improvements in both aspects. Conversely, samples in the joint positive region can be further leveraged or retrained to enhance performance. These observations imply that the presence of samples in either the joint negative or positive regions indicates room for Pareto improvement, suggesting that the current model has not yet reached the Pareto frontier. However, an important question arises: *if no samples exist in the joint negative or positive regions, does this imply that the Pareto frontier has been achieved?* This question motivates further investigation into the geometric conditions and theoretical guarantees for achieving the Pareto frontier. The answer to the above question is no, indicating that the current model can still be improved. At the individual sample level, if all samples may be located within tradeoff regions, involving or removing any sample will lead the tradeoff effect. However, when samples are considered collectively as a set, combining certain samples can yield a new sample that falls into the joint positive region. For example, as shown by the red arrows  $z_1$  and  $z_2$  in Figure 1, these two training samples lie in different tradeoff regions. Yet, when combined, the new sample becomes jointly beneficial to both categories. This observation suggests that a reweighting strategy can be employed to modify the training set for Pareto improvements. Unlike approaches that simply decide whether to include or exclude individual samples, reweighting considers combinations of samples, providing a more general and flexible mechanism for optimization. Based on this insight, we can establish a new condition for achieving the Pareto frontier: all samples are close to the line  $y = -x$  (the dashed green line). In the following, we will provide a reweighting framework based on the influence vector to achieve Pareto improvement.



Figure 1: Influence space for 2 categories. A 2D plot with axes  $\mathcal{C}_1$  (vertical) and  $\mathcal{C}_2$  (horizontal). A dashed green line  $y = -x$  separates the Joint Positive Region (top-right) from the Joint Negative Region (bottom-left). The plot is divided into four quadrants by solid lines. The top-right quadrant is the Joint Positive Region, the bottom-left is the Joint Negative Region, the top-left is the Tradeoff Region, and the bottom-right is the Tradeoff Region. A point  $z'$  is shown in the Joint Positive Region. Two points,  $z_1$  and  $z_2$ , are shown in the Joint Negative Region. Red arrows point from  $z_1$  and  $z_2$  towards  $z'$ , indicating that their combination moves them into the Joint Positive Region.

---

216 **Algorithm 1** PARETO-LP-GA

---

217   **Input:** Training set  $T$ , model parameters  $\hat{\theta}^e$  for epoch  $e$ , influence vector  $P(z)$ ,  $\forall z \in T$ , target  
 218    set  $\mathcal{C}_{\text{target}}$ , GA iterations  $G$   
 219   **Output:** Optimized per-sample weights  $w^*$ , optimized class-wise performance thresholds  $\alpha^*$   
 220   1: **initialize** population  $\alpha^0 = \{\alpha_k^0\}_{k \in [K]}$  randomly  
 221   2: **for**  $g \in [G]$  **do**  
 222    3:   **for** candidate threshold set  $\alpha^g$  in current population **do**  
 223    4:     **solve** the following LP to obtain  $w$ :  
 224         
$$\max_w \sum_{k \in \mathcal{C}_{\text{target}}} \sum_{z_i \in T} w_i P^k(z_i)$$
  
 225         subject to   
$$\sum_{z_i \in T} w_i P^k(z_i) \geq \alpha_k^g \sum_{z_i \in T} P^k(z_i), \quad \forall k \in [K]$$
  
 226    5:      $\hat{\theta}^{e+1} \leftarrow \text{TRAINONEEPOCH}(\hat{\theta}^e, T, w)$   
 227    6:     **compute** relative change in performance  $\Delta_k^{e+1}$  from  $\hat{\theta}^e$  to  $\hat{\theta}^{e+1}$  for  $k \in [K]$   
 228    7:     **compute** fitness  $F(\alpha^g)$  for current candidate threshold set as follows:  
 229         
$$F(\alpha^g) = \frac{1}{|\mathcal{C}_{\text{target}}|} \sum_{k \in \mathcal{C}_{\text{target}}} \mathbb{1}_{[\Delta_k^{e+1} \leq 0]}(-\infty) + \frac{1}{|\mathcal{C} \setminus \mathcal{C}_{\text{target}}|} \sum_{k \notin \mathcal{C}_{\text{target}}} \mathbb{1}_{[\Delta_k^{e+1} < 0]}(\Delta_k^{e+1})$$
  
 230    8:     **end for**  
 231    9:     **apply** selection, crossover, and mutation operations on population  
 232   10:    **store**  $\alpha^*$  and  $w^*$  that maximizes fitness so far  
 233   11: **end for**  
 234   12: **return**  $w^*, \alpha^*$

---

241  
 242   **3.4 PARETO-LP-GA: IMPROVING PARETO PERFORMANCE USING INFLUENCE VECTORS**  
 243

244   We now aim to utilize our category-aware influence vector  $P(z)$ ,  $\forall z \in T$  to improve the performance  
 245   of a given classifier. More specifically, we utilize the category-wise influence vector to obtain per-  
 246   sample weights for training losses that improve performance on a target subset of categories while  
 247   controlling degradation on the remaining categories, via *linear programming* (LP) (Dantzig, 2002).  
 248   Furthermore, while influence scores are useful estimators for tuning category-wise performance,  
 249   they cannot be utilized to obtain class-wise performance thresholds (equivalently, *slack variables*  
 250   in the linear program). Hence, we utilize a *genetic algorithm* (GA) (Forrest, 1996) to help identify  
 251   these class-specific slack variables and ensure that the weighted LP obtains highly optimized solu-  
 252   tions. We thus propose our approach PARETO-LP-GA, which is an influence vector-guided linear  
 253   programming approach for training sample weight optimization combined with a GA search.

254   We apply this weighted model in the context of two different settings: (a) *Direct Improvement (DI)*:  
 255   this refers to improving specific categories in a particular epoch as desired by the model developer  
 256   where target categories are selected by the developer based on current per-class accuracy observa-  
 257   tions; and (b) *Course Correction (CC)*: the developer while training the model observes accuracy  
 258   drops in a certain epoch, and decides to modify the training trajectory for the detrimental epoch  
 259   identified. A detrimental epoch means one after which the accuracy of some classes decreases sig-  
 260   nificantly, indicating potential Pareto-optimal class/category tradeoffs.

261   The PARETO-LP-GA procedure is provided in Algorithm 1. Denoting the full set of  $K$  classes  
 262   as  $\mathcal{C}$ , let  $\mathcal{C}_{\text{target}}$  be the target subset of categories we wish to improve the performance for, while  
 263   ensuring minimal performance degradation in other classes  $\mathcal{C} \setminus \mathcal{C}_{\text{target}}$ . Algorithm 1 takes in as input  
 264   the training set  $T$ , the model parameters trained until a certain epoch  $e$ , our category-aware influence  
 265   vector  $P(z)$ , the target classes  $\mathcal{C}_{\text{target}}$  to improve performance for, the total iterations  $G$ . First, we  
 266   initialize the population variable that controls for class-wise performance threshold along the Pareto  
 267   frontier randomly, denoted as  $\alpha_k$ ,  $\forall k \in [K]$ . Then, for each iteration of the genetic algorithm (GA),  
 268   we solve a linear program (Line 4) that seeks to optimize for the per-sample weights by ensuring  
 269   estimated performance via the category-aware influence vector is maximized on target classes while  
 270   ensuring class-wise performance is above each category/class threshold ( $\alpha_k$ ). Subsequently, we train  
 271   the model for the next epoch ( $e + 1$ ) by applying the current optimized weight set (Line 5). We then



Figure 2: Validation of our category-wise influence function methods for analyzing the Pareto frontier on two synthetic binary classification datasets with logistic regression. Subfigures **A-C** showcase results on a synthetic dataset that is linearly separable and contains noisy detrimental training samples, where performance can improve by mislabeled sample removal. Subfigures **D-F** detail results for our method on a non-linearly separable dataset without any noisy samples, where performance improvements cannot be made for either class without sacrificing performance for the other. Subfigures **A** and **D** showcase the distribution of training samples for each of the two datasets with blue and orange denoting the ground-truth class labels. Subfigures **B** and **E** showcase the category-wise influence score distribution for both datasets. Further, subfigures **C** and **F** map the influence values to the training samples using color intensity in accordance with class colors to denote the influence magnitudes, where the original class color means positive and red color means negative.

measure relative change in performance ( $\Delta_k^{e+1}$ ) between epochs  $e \rightarrow e + 1$  for *Direct Improvement* (for *Course Correction* this performance change  $\Delta_k^{e+1}$  is instead calculated between the original epoch  $e + 1$  and the newly weighted epoch  $e + 1$ ; the rest of the procedure remains identical). Now, while we have optimized the weight set, we still need to obtain the optimal class-wise thresholds via the GA search. Hence, we formulate the fitness function (Line 7) such that if performance for  $\mathcal{C}_{\text{target}}$  decreases at all (i.e.,  $\Delta_k^{e+1} \leq 0$ ) the fitness is set to a large-magnitude negative value (denoted as  $-\infty$ ). Moreover, for non-target classes  $\mathcal{C} \setminus \mathcal{C}_{\text{target}}$ , if performance decreases, the fitness score reflects the degree of degradation. Thus, the GA  $\alpha$  search also optimizes for performance improvement along desired target classes while ensuring minimal performance reduction across non-target classes. Post this step, we apply the standard GA operations (selection, crossover, mutation, etc.) on the population. Eventually, the algorithm return the optimized weight set  $w^* = [w_1^*, \dots, w_n^*]$  for the training set, that will be applied to the loss computation during next epoch training.

#### 4 SYNTHETIC DATA VERIFICATION

We now analyze the efficacy of our criterion on the model’s performance ceiling with two synthetic binary classification datasets using logistic regression, as shown in Figure 2. The top row subfigures **A-C** denote a linearly separable dataset which consists of noisy samples that are mislabeled. The dataset consists of 300 blue class samples and 300 orange class samples,<sup>2</sup> generated using a circular uniform distribution. Noises were added to the training set by choosing random points from each group, 50 from blue and 20 from orange, and then flipping their label. Clearly, removing these noisy samples should improve performance and our category-wise influence functions should reflect their detrimental influence for both classes/categories. The large majority of non-noisy samples should positively influence one of the classes and negatively influence the other class. Hence, removing these samples should sacrifice performance for one of the classes and should be reflected in the

<sup>2</sup>The descriptions of data and models can be seen in Appendix A.



Figure 3: Real-world data experiments on *CIFAR10* (Krizhevsky et al., 2009). Subfigures **(A, D)** denote predicted category-wise influence and **(B, E)** actual accuracy changes when removing beneficial (top) or detrimental (bottom) samples. Subfigures **(C, F)** denote scatter plots showing the correlation between predicted influence and actual performance shifts.

category-wise influence distribution. As can be observed in subfigures **B** and **C** which showcase the category-wise influences and the samples corresponding to those influence values, respectively, this is indeed the case. Essentially, the mislabeled noisy samples from both categories possess negative influence for both categories, and hence, removing those should improve performance as expected. Additionally, a large number of non-noisy samples are positively/negatively influential for the blue/orange class (and vice-versa), validating our criterion further.

The bottom row consisting of subfigures **D-F** denotes a dataset that is non-linearly separable where performance improvements for both categories/classes cannot be jointly made. Here, the dataset consists of 350 samples for the blue category and 350 samples for the orange category, generated using a circular uniform distribution. For the orange samples, the radius of the distribution was changed depending on the angle from the center. In the ideal scenario, the Pareto frontier obtained via our category-wise influence functions should indicate that samples are positively influential for one class and negatively influential for the other class. Moreover, the samples with the maximum influence magnitude are those that appear around the decision boundary and ones that will inadvertently be misclassified due to the linear logistic regression classifier. In subfigures **E** and **F**, we can see that this holds true with the Pareto frontier visualized. The influence vectors of all training samples form a roughly straight line. As we demonstrate through these results, category-wise influence vectors can reveal the Pareto frontier for the two datasets accurately, and help users/developers make tradeoffs as required depending on the needs of their given application.

## 5 REAL-WORLD DATA EXPERIMENTS

In this section, we present our experimental results on real-world datasets in two parts: a validation of the effectiveness of category-wise influence functions and an evaluation of our PARETO-LP-GA for Pareto performance improvement.

### 5.1 CATEGORY-WISE INFLUENCE FUNCTIONS

We evaluate the category-wise influence using four widely adopted benchmark datasets with 4-10 categories: two vision datasets (*CIFAR-10* (Krizhevsky et al., 2009) and *STL-10* (Coates et al., 2011)) and two text datasets (*Emotion* (Saravia et al., 2018) and *AG\_News* (Zhang et al., 2015)). For

Figure 4: Real-world data experiments on *Emotion* (Saravia et al., 2018) text dataset.

calculating category-wise sample influence vectors, we employ EKFAC (Grosse et al., 2023) due to its fast implementation on deep models.

First, we evaluate whether category-wise influence serves as an effective indicator for measuring performance changes. To achieve this, we select the top 10% of beneficial and detrimental samples for each category, remove these samples from the training set, and retrain the model to observe the performance change. Figures 3 and 4 illustrate the performance changes for *CIFAR-10* and *Emotion*. Similar phenomena are observed for *STL-10* and *AG\_News*, and these results are deferred to Appendix B.4. In these figures, Subfigures **A** and **D** illustrate the cumulative influence values of the removed training samples for beneficial and detrimental samples, respectively. Subfigures **B** and **E** display the corresponding performance changes after retraining without these samples. The results are presented as heat maps, with diagonal blocks representing the targeted categories, highlighted using bold boundaries and distinct textures.

The phenomena observed in the diagonal blocks reveal clear and consistent patterns: removing beneficial samples with positive influence on a target category leads to a performance drop in the corresponding category, while removing detrimental samples with negative influence results in a performance increase. This confirms the effectiveness of category-wise influence in predicting performance changes for both beneficial samples and detrimental samples. Beyond the diagonal blocks, the patterns are more mixed, as the selected samples based on one category may have varying impacts on other categories. To further analyze these non-diagonal patterns, we plot scatter diagrams of the cumulative influence for each category against their performance changes in Subfigures **C** and **F**. Subfigure **C** is derived from Subfigures **A** and **B**, while Subfigure **F** is based on Subfigures **D** and **E**. The Spearman correlation coefficient exceeding 0.8 indicates a strong relationship between sample influence and performance change, not only within the target category but also across categories. This demonstrates that category-wise influence functions can serve as an effective indicator for inferring performance changes. Moreover, they can be utilized to evaluate whether a classifier has reached its performance ceiling across different categories, providing valuable insights for targeted model improvement. We also present the numbers of beneficial and detrimental samples for each classes in Appendix B.4, where the beneficial samples mainly come from their category but detrimental samples come from other categories.

## 5.2 PERFORMANCE CEILING CHECK AND IMPROVEMENT

We evaluate our PARETO-LP-GA method using the *CIFAR10* dataset and ResNet model to showcase performance improvements for both *Direct Improvement (DI)* and *Course Correction (CC)* settings. The reason we chose *CIFAR10* for experiments was because during training multiple

432  
433  
434  
435  
436Table 1: Comparison of category-wise accuracies for performance improvement in the *Direct Improvement* (left) and *Course Correction* (right) settings. Target classes are highlighted in blue. As can be observed, performance in target categories increases significantly while non-target classes see minimal reductions (or potential gains).

| Category | Epoch-10 | Epoch-11 (DI) | Change (%) | Category | Epoch-15 | Epoch-16 | Epoch-16 (CC) | Change (%) |
|----------|----------|---------------|------------|----------|----------|----------|---------------|------------|
| 0        | 0.699    | 0.811         | +16.02     | 0        | 0.876    | 0.876    | 0.889         | +1.48      |
| 1        | 0.888    | 0.881         | -0.78      | 1        | 0.866    | 0.868    | 0.870         | +0.23      |
| 2        | 0.667    | 0.743         | +11.39     | 2        | 0.651    | 0.741    | 0.736         | -0.67      |
| 3        | 0.647    | 0.632         | -2.31      | 3        | 0.582    | 0.678    | 0.677         | -0.14      |
| 4        | 0.729    | 0.720         | -1.2       | 4        | 0.729    | 0.783    | 0.785         | +0.25      |
| 5        | 0.755    | 0.755         | +0.00      | 5        | 0.821    | 0.785    | 0.798         | +1.65      |
| 6        | 0.802    | 0.845         | +5.73      | 6        | 0.859    | 0.859    | 0.855         | -0.46      |
| 7        | 0.849    | 0.848         | -0.11      | 7        | 0.885    | 0.837    | 0.848         | +1.31      |
| 8        | 0.948    | 0.920         | -2.90      | 8        | 0.909    | 0.929    | 0.917         | -1.29      |
| 9        | 0.817    | 0.818         | +0.12      | 9        | 0.917    | 0.864    | 0.888         | +2.77      |

444

445  
446  
447  
448  
449

epochs exhibit major Pareto tradeoffs across categories, while ensuring there is room for potential improvement. In contrast, for our text datasets (*Emotion* and *AG\_News*), the NLP models achieved accuracies exceeding 90% across all classes within the first epoch, leading to little room for Pareto frontier improvement. Similarly, *STL-10* consists of *cleaner* images than *CIFAR10*, generally leading to better performance.

450  
451  
452  
453  
454

Before demonstrating performance improvements, we first examine whether the influence vectors of the training samples approximately lie on a hyperplane. To this end, we apply Principal Component Analysis (Wold et al., 1987) and compute the explained variance ratio of the first principal component. Across all targeted cases, this ratio consistently exceeds 0.2, indicating that the influence vectors do not fit a hyperplane and suggesting room for Pareto improvement.

455  
456  
457  
458  
459  
460  
461  
462  
463

We present results for *DI* and *CC* in Table 1. For *DI* in *CIFAR10*, we identified two categories (0 and 2) with relatively lower accuracy after observing performance at *Epoch 10* (0.699 for class-0, and 0.667 for class-2). These two classes will constitute our target categories. Then, we employ PARETO-LP-GA to obtain a weight set and apply weighted training to achieve *Epoch 11*. The results demonstrate that PARETO-LP-GA significantly enhances performance on the target categories, achieving improvements of 16.02% and 11.39% for classes 0 and 2, respectively. Notably, several non-target categories also experienced performance gains, such as category 6, which improved by 5.73%. However, for the non-target categories, performance degradation remains very minimal, showcasing the performance ceiling of the classifier via the Pareto improvement.

464  
465  
466  
467  
468  
469  
470  
471  
472  
473  
474  
475

For *CC*, we identified *Epoch 16* as detrimental for classes 5, 7, and 9, where accuracies declined substantially (from *Epoch 15*). That is, between Epochs 15 and 16, performance for class 5 drops from 0.821 → 0.785; for class 7 drops from 0.885 → 0.837; and for class 9, drops from 0.917 → 0.864. Thus, these classes constitute our target categories for *CC*. We obtain the weight set using PARETO-LP-GA and after applying weighted training, we seek to obtain a new Epoch 16 that optimizes for the Pareto-optimal class tradeoffs as desired. This can be observed in our results – accuracy improves by 1.65%, 1.31%, and 2.77% in target categories 5, 7, and 9, respectively, reversing the original trends and bringing slight improvements. Additionally, class-0, class-1, and class-4 experienced 1.48%, 0.23%, and 0.25% performance enhancement, respectively, and there were only modest accuracy reductions in other categories ( $\leq 1.29\%$ ). Overall, our proposed PARETO-LP-GA method demonstrates its ability to enhance training performance in specific target categories with minor accuracy tradeoffs in non-target categories.

476  
477

## 6 CONCLUSION

478  
479  
480  
481  
482  
483  
484  
485

In this paper, we extended the conventional influence function to a category-wise influence function and introduced the concept of an influence vector, which quantifies the impact of each training sample across all categories. Building on this formulation, we analyzed whether a classifier has already reached its maximum potential performance: formally, the Pareto frontier across categories, and design a linear programming-based sample reweighting framework for Pareto improvements. We validated the correctness of our performance-ceiling criterion through experiments on synthetic datasets, and further demonstrated the effectiveness of the proposed category-wise influence function on real-world datasets. Finally, we presented case studies that showcase how our sample reweighting approach can lead to tangible Pareto improvements across multiple categories.

486 7 REPRODUCIBILITY STATEMENT  
487488 We provide our code and implementation in a GitHub repository: <https://anonymous.4open.science/r/Classifier-Performance-Ceiling-C7FB/>. All the experiments  
489 were run multiple times to ensure reproducibility. Additionally, any parameters required for repro-  
490 ducibility (e.g., seeds) are provided in the repo and in Appendix A. The experiments were conducted  
491 on a Linux server with 8x NVIDIA A6000 GPUs.  
492494 8 ETHICS STATEMENT  
495496 In this paper, we study category-aware influence functions for classification models and propose  
497 methods that can utilize them for Pareto-optimal performance improvements across classes. Our  
498 work is beneficial for the community as it enables developers to navigate the performance ceiling of  
499 the classifier depending on the needs of their given application. Our methods are broadly applicable  
500 to any classification application domains (e.g., text and vision), further underscoring the positive  
501 impact of our methods.  
502503 REFERENCES  
504505 Naman Agarwal, Brian Bullins, and Elad Hazan. Second-order stochastic optimization for machine  
506 learning in linear time. *The Journal of Machine Learning Research*, 2017.  
507  
508 Juhan Bae, Nathan Ng, Alston Lo, Marzyeh Ghassemi, and Roger B Grosse. If influence functions  
509 are the answer, then what is the question? *Advances in Neural Information Processing Systems*,  
510 2022.  
511 Juhan Bae, Wu Lin, Jonathan Lorraine, and Roger Grosse. Training data attribution via approximate  
512 unrolled differentiation. *arXiv preprint arXiv:2405.12186*, 2024.  
513  
514 Samyadeep Basu, Phil Pope, and Soheil Feizi. Influence Functions in Deep Learning Are Fragile.  
515 In *International Conference on Learning Representations*, 2020.  
516  
517 Irina Bejan, Artem Sokolov, and Katja Filippova. Make every example count: On the stability and  
518 utility of self-influence for learning from noisy nlp datasets. In *Conference on Empirical Methods  
in Natural Language Processing*, 2023.  
519  
520 Xin-Qiang Cai, Pushi Zhang, Li Zhao, Jiang Bian, Masashi Sugiyama, and Ashley Llorens. Distri-  
521 butional pareto-optimal multi-objective reinforcement learning. *Advances in Neural Information  
Processing Systems*, 2023.  
522  
523 Guillaume Charpiat, Nicolas Girard, Loris Felardos, and Yuliya Tarabalka. Input similarity from the  
524 neural network perspective. *Advances in Neural Information Processing Systems*, 2019.  
525  
526 Yuanyuan Chen, Boyang Li, Han Yu, Pengcheng Wu, and Chunyan Miao. Hydra: Hypergradient  
527 data relevance analysis for interpreting deep neural networks. In *AAAI Conference on Artificial  
528 Intelligence*, 2021.  
529  
530 Anshuman Chhabra, Adish Singla, and Prasant Mohapatra. Fair clustering using antidote data. In  
531 *Algorithmic Fairness through the Lens of Causality and Robustness Workshop*, 2022.  
532  
533 Anshuman Chhabra, Peizhao Li, Prasant Mohapatra, and Hongfu Liu. “what data benefits my clas-  
534 sifier?” enhancing model performance and interpretability through influence-based data selection.  
535 In *International Conference on Learning Representations*, 2024.  
536  
537 Anshuman Chhabra, Bo Li, Jian Chen, Prasant Mohapatra, and Hongfu Liu. Outlier gradient analy-  
538 sis: Efficiently identifying detrimental training samples for deep learning models. In *International  
539 Conference on Machine Learning*, 2025.  
540  
541 Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised  
542 feature learning. In *International Conference on Artificial Intelligence and Statistics*, 2011.

540 David A Cohn, Zoubin Ghahramani, and Michael I Jordan. Active learning with statistical models.  
 541 *Journal of Artificial Intelligence Research*, 1996.

542

543 R Dennis Cook and Sanford Weisberg. *Residuals and influence in regression*. New York: Chapman  
 544 and Hall, 1982.

545

546 Zheng Dai and David K Gifford. Training data attribution for diffusion models. *arXiv preprint*  
 547 *arXiv:2306.02174*, 2023.

548

549 George B Dantzig. Linear programming. *Operations research*, 50(1):42–47, 2002.

550

551 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep  
 552 bidirectional transformers for language understanding. *CoRR*, abs/1810.04805, 2018.

553

554 Benjamin Edelman, Surbhi Goel, Sham Kakade, Eran Malach, and Cyril Zhang. Pareto frontiers in  
 555 deep feature learning: Data, compute, width, and luck. *Advances in Neural Information Processing*  
 556 *Systems*, 2023.

557

558 Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey.  
 559 *Journal of Machine Learning Research*, 20(55):1–21, 2019.

560

561 Jacob R Epifano, Ravi P Ramachandran, Aaron J Masino, and Ghulam Rasool. Revisiting the  
 562 fragility of influence functions. *Neural Networks*, 162:581–588, 2023.

563

564 Vitaly Feldman and Chiyuan Zhang. What neural networks memorize and why: Discovering the  
 565 long tail via influence estimation. *Advances in Neural Information Processing Systems*, 2020.

566

567 Stephanie Forrest. Genetic algorithms. *ACM Computing Surveys*, 28(1):77–80, 1996.

568

569 Roger Grosse, Juhan Bae, Cem Anil, Nelson Elhage, Alex Tamkin, Amirhossein Tajdini, Benoit  
 570 Steiner, Dustin Li, Esin Durmus, Ethan Perez, et al. Studying large language model generalization  
 571 with influence functions. *arXiv preprint arXiv:2308.03296*, 2023.

572

573 Frank R Hampel. The influence curve and its role in robust estimation. *Journal of the American  
 574 Statistical Association*, 1974.

575

576 Xiaochuang Han, Byron C Wallace, and Yulia Tsvetkov. Explaining black box predictions and  
 577 unveiling data artifacts through influence functions. In *Annual Meeting of the Association for  
 578 Computational Linguistics*, 2020.

579

580 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recogni-  
 581 tion. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 2016.

582

583 Andrew Ilyas, Sung Min Park, Logan Engstrom, Guillaume Leclerc, and Aleksander Madry. Data-  
 584 models: Predicting predictions from training data. *arXiv preprint arXiv:2202.00622*, 2022.

585

586 Eeshaan Jain, Tushar Nandy, Gaurav Aggarwal, Ashish V. Tendulkar, Rishabh K Iyer, and Abir  
 587 De. Efficient Data Subset Selection to Generalize Training Across Models: Transductive and  
 588 Inductive Networks. *Advances in Neural Information Processing Systems*, 2023.

589

590 Krishnateja Killamsetty, Xujiang Zhao, Feng Chen, and Rishabh Iyer. Retrieve: Coreset selection  
 591 for efficient and robust semi-supervised learning. *Advances in Neural Information Processing*  
 592 *Systems*, 2021.

593

594 SungYub Kim, Kyungsu Kim, and Eunho Yang. Gex: A flexible method for approximating influence  
 595 via geometric ensemble. *Advances in Neural Information Processing Systems*, 2024.

596

597 Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In  
 598 *International Conference on Machine Learning*, 2017.

599

600 Shuming Kong, Yanyan Shen, and Linpeng Huang. Resolving training biases via influence-based  
 601 data relabeling. In *International Conference on Learning Representations*, 2021.

602

603 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.  
 604 *University of Toronto*, 2009.

594 Yongchan Kwon, Eric Wu, Kevin Wu, and James Zou. DataInf: Efficiently Estimating Data In-  
 595 fluence in LoRA-tuned LLMs and Diffusion Models. In *International Conference on Learning*  
 596 *Representations*, 2024.

597

598 Alyssa Whitlock Lees, Ananth Balashankar, Chris Welty, and Lakshminarayanan Subramanian.  
 599 What is fair? exploring pareto-efficiency for fairness constraint classifiers. In *arxiv*, 2019.

600

601 Xi Lin, Hui-Ling Zhen, Zhenhua Li, Qing-Fu Zhang, and Sam Kwong. Pareto multi-task learning.  
 602 *Advances in Neural Information Processing Systems*, 2019.

603

604 Zhuoming Liu, Hao Ding, Huaping Zhong, Weijia Li, Jifeng Dai, and Conghui He. Influence  
 605 selection for active learning. In *IEEE/CVF International Conference on Computer Vision*, 2021.

606

607 Alexander V Lotov and Kaisa Miettinen. Visualizing the pareto frontier. In *Multiobjective Opti-*  
 608 *mization: Interactive and Evolutionary Approaches*. 2008.

609

610 Hyeonsu Lyu, Jonggyu Jang, Sehyun Ryu, and Hyun Jong Yang. Deeper understanding of black-box  
 611 predictions via generalized influence functions. *arXiv preprint arXiv:2312.05586*, 2023.

612

613 R Douglas Martin and Victor J Yohai. Influence functionals for time series. *The Annals of Statistics*,  
 614 1986.

615

616 Natalia Martinez, Martin Bertran, and Guillermo Sapiro. Minimax pareto fairness: A multi objective  
 617 perspective. In *International Conference on Machine Learning*, 2020.

618

619 Vu-Linh Nguyen, Mohammad Hossein Shaker, and Eyke Hüllermeier. How to measure uncertainty  
 620 in uncertainty sampling for active learning. *Machine Learning*, 2022.

621

622 Mansheej Paul, Surya Ganguli, and Gintare Karolina Dziugaite. Deep learning on a data diet: Find-  
 623 ing important examples early in training. *Advances in Neural Information Processing Systems*,  
 624 2021.

625

626 Garima Pruthi, Frederick Liu, Satyen Kale, and Mukund Sundararajan. Estimating training data  
 627 influence by tracing gradient descent. *Advances in Neural Information Processing Systems*, 2020.

628

629 Brianna Richardson, Prasanna Sattigeri, Dennis Wei, Karthikeyan Natesan Ramamurthy, Kush  
 630 Varshney, Amit Dhurandhar, and Juan E Gilbert. Add-remove-or-relabel: Practitioner-friendly  
 631 bias mitigation via influential fairness. In *ACM Conference on Fairness, Accountability, and*  
 632 *Transparency*, 2023.

633

634 Willem Röpke, Mathieu Reymond, Patrick Mannion, Diederik M Roijers, Ann Nowé, and Roxana  
 635 Rădulescu. Divide and conquer: Provably unveiling the pareto front with multi-objective rein-  
 636 forcement learning. In *International Conference on Autonomous Agents and Multiagent Systems*,  
 637 2025.

638

639 Elvis Saravia, Hsien-Chi Toby Liu, Yen-Hao Huang, Junlin Wu, and Yi-Shin Chen. Carer: Context-  
 640 ualized affect representations for emotion recognition. In *Conference on Empirical Methods in*  
 641 *Natural Language Processing*, 2018.

642

643 Andrea Schioppa, Polina Zablotskaia, David Vilar, and Artem Sokolov. Scaling up influence func-  
 644 tions. In *AAAI Conference on Artificial Intelligence*, 2022.

645

646 Andrea Schioppa, Katja Filippova, Ivan Titov, and Polina Zablotskaia. Theoretical and practical  
 647 perspectives on what influence functions do. *Advances in Neural Information Processing Systems*,  
 2024.

648

649 Haoru Tan, Sitong Wu, Fei Du, Yukang Chen, Zhibin Wang, Fan Wang, and Xiaojuan Qi. Data  
 650 pruning via moving-one-sample-out. *Advances in Neural Information Processing Systems*, 2024.

651

652 Megh Thakkar, Tolga Bolukbasi, Sriram Ganapathy, Shikhar Vashishth, Sarath Chandar, and Partha  
 653 Talukdar. Self-influence guided data reweighting for language model pre-training. In *Conference*  
 654 *on Empirical Methods in Natural Language Processing*, 2023.

648 Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Andrew Ilyas, and Aleksander Madry. From  
649 imangenet to image classification: Contextualizing progress on benchmarks, 2020. URL <https://arxiv.org/abs/2005.11295>.  
650

651 Jiachen T Wang, Prateek Mittal, Dawn Song, and Ruoxi Jia. Data shapley in one training run. In  
652 *International Conference on Learning Representations*, 2025.  
653

654 Kai Wei, Rishabh Iyer, and Jeff Bilmes. Submodularity in data subset selection and active learning.  
655 In *International Conference on Machine Learning*, 2015.  
656

657 Svante Wold, Kim Esbensen, and Paul Geladi. Principal component analysis. *Chemometrics and*  
658 *intelligent laboratory systems*, 2(1-3):37–52, 1987.  
659

660 Wenxiao Xiao, Jiuxiang Gu, and Hongfu Liu. Category-aware active domain adaptation. In *Inter-*  
661 *national Conference on Machine Learning*, 2024.  
662

663 Shuo Yang, Zeke Xie, Hanyu Peng, Min Xu, Mingming Sun, and Ping Li. Dataset pruning: Reduc-  
664 ing training data by examining generalization influence. In *International Conference on Learning*  
665 *Representations*, 2022.  
666

667 Chih-Kuan Yeh, Joon Kim, Ian En-Hsu Yen, and Pradeep K Ravikumar. Representer point selection  
668 for explaining deep neural networks. *Advances in Neural Information Processing Systems*, 2018.  
669

670 Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text clas-  
671 sification. 2015.  
672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

## APPENDIX

## A DETAILED INFORMATION ON DATASETS AND MODEL TRAINING

We describe dataset details, model training, and other information used in the main paper, below.

## A.1 DATASETS

We introduce the synthetic datasets and real-world datasets used in the experiments.

## A.1.1 SYNTHETIC DATASETS

The datasets in Figure 2A is synthetic dataset that is linearly separable and contains noisy detrimental training samples. It consists of 300 blue class samples and 300 orange class samples, generated using a circular uniform distribution. Noise was added to the training set by choosing random points from each group, 50 from blue and 20 from orange, and then flipping their labels.

Similarly, the datasets in Figure 2D is is non-linearly separable where performance improvements for both categories cannot be joint made. This datasets consists of 350 samples for the blue category and 350 samples for the orange category, generated using a circular uniform distribution. For the orange samples, the radius of the distribution was changed depending on the angle from the center. There is no flip-labeled samples in this dataset.

## A.1.2 REAL-WORLD DATASETS

We use four widely adopted real-world benchmark datasets with 4-10 categories: two image datasets (*CIFAR-10* (Krizhevsky et al., 2009) and *STL-10* (Coates et al., 2011)) and two text datasets (*Emotion* (Saravia et al., 2018) and *AG\_News* (Zhang et al., 2015)).

## A.2 MODELS

We train *bert-base-cased* (Devlin et al., 2018) for the *Emotion* and *AG\_News* NLP datasets, and *ResNet-9* (He et al., 2016) for the *CIFAR10* and *STL-10* vision datasets in our experiments.

## A.3 PARAMETER DETAILS

Table 2 summarizes the hyperparameters used in all of our experiments.

Table 2: Hyperparameters for each dataset and algorithm.

| Dataset        | Hyperparameters       | Algorithm    | Hyperparameters           |
|----------------|-----------------------|--------------|---------------------------|
| <i>CIFAR10</i> | train.batch_size: 512 | PARETO-LP-GA | train.batch_size: 512     |
|                | eval.batch_size: 1024 |              | eval.batch_size: 1024     |
|                | learning_rate: 0.4    |              | learning_rate: 0.0001     |
|                | weight_decay: 0.001   |              | weight_decay: 0.0001      |
|                | num_train_epochs: 25  |              | num_train_epochs: 20      |
| <i>STL-10</i>  | train.batch_size: 512 |              | GA_iterations: 20         |
|                | eval.batch_size: 1024 |              | Population_size: 24       |
|                | learning_rate: 0.4    |              | crossover_rate: 1.0       |
|                | weight_decay: 0.001   |              | mutation_rate: 0.25       |
|                | num_train_epochs: 30  |              | mutation_strength: 0.25   |
| <i>Emotion</i> | train.batch_size: 512 |              | num_elites: 6             |
|                | eval.batch_size: 1024 |              | num_mutated_elites: 6     |
|                | learning_rate: 0.4    |              | num_randoms: 6            |
|                | weight_decay: 0.001   |              | num_crossover_children: 6 |
|                | num_train_epochs: 25  |              |                           |
| <i>AG_News</i> | train.batch_size: 512 |              |                           |
|                | eval.batch_size: 1024 |              |                           |
|                | learning_rate: 0.4    |              |                           |
|                | weight_decay: 0.001   |              |                           |
|                | num_train_epochs: 25  |              |                           |

756 **B ADDITIONAL EXPERIMENTS**  
757758 **B.1 ADDITIONAL EXPERIMENTS ON SYNTHETIC DATA**  
759760 In the experiment shown in Figure 2, Subfigures **ABC**, the technique of identifying the noisy training  
761 points using their influence scores was discussed. Specifically, the removal of points which had  
762 negative influence scores with respect to both groups. In this experiment, we continue this path  
763 through to completion on the same dataset situation. We present the results in Figure 5. The dataset  
764 and model used are identical to the same from Subfigures **ABC** in Figure 2. The following method  
765 was applied: Create a linear regression model on the training set, calculate the category-aware in-  
766 fluence scores of each training point, remove any training points with negative scores, and retrain  
767 the model on the new training set. It is shown that with each iteration of this technique, the model  
768 moves closer to the performance frontier.  
769770 **B.2 FINAL EPOCH REFINEMENT ON CIFAR10**  
771772 We further applied our method at the final training stage (Epoch 19) of CIFAR-10 to demonstrate  
773 its effectiveness as a "final polish" for deployed models. Table 3 demonstrates the results. In the  
774 *Direct Improvement* setting, we targeted classes with lower relative performance (Classes 2, 3, 4,  
775 5). We achieved significant gains, such as a **+4.88%** increase for Class 5 and **+3.71%** for Class 4.  
776 In the *Course Correction* setting, we targeted Classes 3 and 7, which experienced minor regression  
777 in the standard final epoch; our method successfully recovered their performance without retraining  
778 the model from scratch.  
779780 **Table 3: Comparison of category-wise accuracies for CIFAR-10 Final Epoch (Ep-19) improvement**  
781 in *Direct Improvement* (left) and *Course Correction* (right). Target classes are highlighted in blue.

| Class | Ep-18 | Ep-19 (DI) | Change (%)   | Class | Ep-18 | Ep-19 | Ep-19 (CC) | Change (%)   |
|-------|-------|------------|--------------|-------|-------|-------|------------|--------------|
| 0     | 0.904 | 0.895      | -1.00        | 0     | 0.904 | 0.897 | 0.897      | +0.00        |
| 1     | 0.838 | 0.868      | <b>+3.50</b> | 1     | 0.838 | 0.871 | 0.863      | -0.92        |
| 2     | 0.703 | 0.704      | <b>+0.14</b> | 2     | 0.703 | 0.725 | 0.711      | -1.93        |
| 3     | 0.724 | 0.733      | <b>+1.24</b> | 3     | 0.724 | 0.700 | 0.703      | <b>+0.42</b> |
| 4     | 0.781 | 0.810      | <b>+3.71</b> | 4     | 0.781 | 0.786 | 0.784      | -0.25        |
| 5     | 0.758 | 0.795      | <b>+4.88</b> | 5     | 0.758 | 0.810 | 0.814      | <b>+0.49</b> |
| 6     | 0.869 | 0.879      | <b>+1.15</b> | 6     | 0.869 | 0.872 | 0.879      | <b>+0.80</b> |
| 7     | 0.832 | 0.819      | -1.56        | 7     | 0.832 | 0.827 | 0.831      | <b>+0.48</b> |
| 8     | 0.918 | 0.919      | <b>+0.11</b> | 8     | 0.918 | 0.923 | 0.920      | -0.32        |
| 9     | 0.881 | 0.898      | <b>+1.92</b> | 9     | 0.881 | 0.892 | 0.905      | <b>+1.56</b> |

792 **B.3 EXPERIMENTS ON IMAGENET SUBSET**  
793794 To validate the scalability of our approach, we conducted experiments on a subset of ImageNet (55k  
795 training samples, 11 Superclasses (Tsipras et al., 2020)). We illustrate two scenarios in Table 4:  
796 *Direct Improvement* (Left) targeting Superclasses 6, 8, 9, and 10; and *Course Correction* (Right)  
797 targeting Superclasses 0, 2, 3, and 8 to recover performance lost during standard training.  
798799 In the Direct Improvement setting, we observe a gain for Class 10 (**+13.7**) and Class 7 (**+8.4**), boost-  
800 ing the overall average accuracy by **2.0**. In the Course Correction setting, our method successfully  
801 reversed the performance degradation observed in standard Epoch 19, improving Class 0 by **13.1**  
802 relative to the baseline. We demonstrate the performance gains in a bar plot in Figure 6.  
803804 **B.4 ADDITIONAL EXPERIMENTS ON REAL-WORLD DATA**  
805806 Figures 7 and 8 illustrate the performance changes for *STL-10* and *AG\_News* by removing beneficial  
807 and detrimental samples according to influence vectors. They provide similar phenomena with the  
808 results on *CIFAR-10* and *Emotion*, which we illustrate in the main paper.  
809810 Figure 9 present the numbers of beneficial and detrimental samples for each classes on *CIFAR-10*  
811 dataset, where the beneficial samples mainly come from their category but detrimental samples come  
812 from other categories.  
813



Figure 5: Experiment demonstrating the use of the category-wise influence function for dataset augmentation. The dataset used in this demonstration is identical to that in the top row of Figure 1. Each row displays the state of the dataset, the changes that our method will make, and the result, of the dataset trimming procedure discussed in Appendix A. Subfigures A, D, and G display the state of the training dataset. The color of each point indicates its label. The linear decision boundary is drawn, and its accuracy across both classes is shown in the legend. Subfigures B, E, and H show the category-wise influence score of each training point. Training data points in green are indicated by the score to be detrimental to model performance on both classes. These points will be removed by the improvement procedure. Subfigures C, F, and H show the training dataset after removal. The resulting decision boundary and its accuracy is also indicated. Note how the noise furthest from the decision boundary is removed first, since these have the largest effect on the decision boundary. Additionally, through each iteration, the accuracy of the linear model is improved when using the trimmed dataset. After three iterations, all noise has been removed and the model is at the performance ceiling.

864  
865  
866  
867  
868  
869

Figure 6: ImageNet performance shifts.

Table 4: Comparison of category-wise accuracies for the **ImageNet Subset** in *Direct Improvement* (left) and *Course Correction* (right). Target classes are highlighted in blue.

| Class | Ep-18 | Ep-19 (DI) | Change | Class | Ep-18 | Ep-19 | Ep-19 (CC) | Change |
|-------|-------|------------|--------|-------|-------|-------|------------|--------|
| 0     | 49.7  | 57.0       | +7.3   | 0     | 49.7  | 43.6  | 56.7       | +13.1  |
| 1     | 43.0  | 37.9       | -5.1   | 1     | 43.0  | 41.9  | 34.3       | -7.6   |
| 2     | 54.4  | 49.7       | -4.7   | 2     | 54.4  | 41.5  | 49.6       | +8.1   |
| 3     | 52.1  | 53.7       | +1.6   | 3     | 52.1  | 43.0  | 51.1       | +8.1   |
| 4     | 54.6  | 48.1       | -6.5   | 4     | 54.6  | 61.4  | 51.6       | -9.8   |
| 5     | 41.0  | 40.9       | -0.1   | 5     | 41.0  | 43.6  | 37.3       | -6.3   |
| 6     | 12.9  | 18.6       | +5.7   | 6     | 12.9  | 17.0  | 17.0       | +0.0   |
| 7     | 43.1  | 51.5       | +8.4   | 7     | 43.1  | 54.8  | 57.0       | +2.2   |
| 8     | 31.0  | 32.8       | +1.8   | 8     | 31.0  | 26.4  | 30.6       | +4.2   |
| 9     | 32.1  | 32.5       | +0.4   | 9     | 32.1  | 31.1  | 32.1       | +1.0   |
| 10    | 26.7  | 40.4       | +13.7  | 10    | 26.7  | 32.7  | 42.7       | +10.0  |

914  
915  
916  
917

918

919

920

921

Figure 7: Real-world data experiments on *STL-10* (Coates et al., 2011) image dataset.Figure 8: Real-world data experiments on *AG\_News* (Zhang et al., 2015) text dataset.

968

969

970

971



Figure 9: The numbers of beneficial and detrimental samples for each classes on *CI-FAR10* (Krizhevsky et al., 2009) image dataset.