
A Critical Look At Tokenwise Reward-Guided Text Generation

Ahmad Rashid 1 2 Ruotian Wu 1 Julia Grosse 3 Agustinus Kristiadi * 2 Pascal Poupart * 1 2

Abstract
Large language models (LLMs) can significantly
be improved by aligning to human preferences—
the so-called reinforcement learning from hu-
man feedback (RLHF). However, the cost of fine-
tuning an LLM is prohibitive for many users. To-
kenwise reward-guided text generation (RGTG)
methods have recently been proposed, which,
can bypass LLM finetuning. They use a reward
model trained on full sequences to score partial
sequences during tokenwise decoding, to steer the
generation towards sequences with high rewards.
However, these methods have so far been only
heuristically motivated and poorly analyzed. In
this work, we show that reward models trained on
full sequences are not compatible with scoring par-
tial sequences. To alleviate this issue, we propose
to explicitly train a Bradley-Terry reward model
on partial sequences, and autoregressively sample
from the implied tokenwise policy during decod-
ing. We study properties of this reward model
and the implied policy. Particularly, we show that
this policy is proportional to the ratio of two dis-
tinct RLHF policies. We show that our simple
approach outperforms previous RGTG methods
and achieves similar performance as strong offline
baselines but without large-scale LLM finetuning.

1. Introduction
Large language models (LLMs) provide a modern foun-
dation for most if not all text generation tasks (Radford
et al., 2019; Brown et al., 2020; Touvron et al., 2023a;b).
In practice, significant improvements in the quality of text
generation are achieved by aligning LLMs to human pref-
erences (Stiennon et al., 2020b; Ouyang et al., 2022). This
is typically done by reinforcement learning from human
feedback (RLHF), which involves two steps: i) learning
a reward model from preference data and ii) fine-tuning

*Equal supervision 1University of Waterloo 2Vector Institute
3University of Tübingen. Correspondence to: Ahmad Rashid
<a9rashid@uwaterloo.ca>.

Published at ICML 2024 Workshop on Foundation Models in the
Wild. Copyright 2024 by the author(s).

an LLM to maximize expected rewards by reinforcement
learning (Ziegler et al., 2019b). Usually, this is done via a
reinforcement learning algorithm such as proximal policy
optimization (PPO, Schulman et al., 2017). Nevertheless,
recently, Rafailov et al. (2023) showed that the reward mod-
eling step (i) can be bypassed by directly fine-tuning an
LLM with preference data, resulting in a method called
direct preference optimization (DPO). While this simpli-
fies RLHF, the fine-tuning step (ii) remains prohibitively
costly for most users since it requires high-performance
computational resources with large GPUs.

In order to alleviate the computational issue above, Khanov
et al. (2024); Deng and Raffel (2023) explored tokenwise
reward-guided text generation (RGTG) techniques that
avoid any fine-tuning of the LLM. Instead a reward model
is used to adjust the softmax scores. Since reward mod-
els can be significantly smaller than the LLM, training one
is much cheaper than fine-tuning the LLM. Furthermore,
reward models are modular: they can easily be composed
and reused without any cost to guide text generation in con-
junction with any base LLM. In contrast, RLHF via DPO
requires fine-tuning of every LLM that we wish to improve.

While RGTG is an interesting alternative to offline RLHF,
it is often based on heuristics and still poorly analyzed. For
instance, ARGS (Khanov et al., 2024) proposed to use a
reward model trained on full sequences to score each partial
sequence during decoding. Deng and Raffel (2023) used a
custom tokenwise loss to distill a reward model trained on
full sequences. It is unclear if these approaches can lead to
a sound tokenwise text generation policy.

In this work, we analyze this common RGTG approach.
First, we show that the usage of full-sequence reward mod-
els for scoring partial sequences in a tokenwise policy is
pathological. To alleviate this, we propose to explicitly train
a Bradley-Terry (B-T) reward model on partial sequences
and analyze their property. We prove that this text genera-
tion policy is a ratio of two different RLHF policies trained
on sequences of different lengths. By deriving the sampling
policy from a ratio of distinct RLHF policies, we obtain a
tractable sampling procedure. We empirically validate our
analysis on two different text generation datasets on two
recent LLMs. Evidence shows that our approach achieves
better performance compared to ARGS, matching the per-
formance of the more expensive, offline PPO and DPO.

1

A Critical Look At Tokenwise Reward-Guided Text Generation

2. Preliminaries
We denote a prompt by x and its response by y where the
bolded letters indicate sequences of tokens. The i-th token
in x is denoted by xi, while the partial sequence starting at
token i and ending at token j is denoted by xi:j . The length
of a sequence x is denoted by |x|.

LLMs generally consist of probabilistic models that can
generate a response y given a prompt x, token-by-token,
by sampling the next token from a conditional distribu-
tion π(yi|x,y1:i−1). Given a preference dataset D =
{(xk,ywk,ylk)}Kk=1 containing K triples of token se-
quences (x,yw,yl), Ziegler et al. (2019b); Ouyang et al.
(2022) proposed a technique based on reinforcement learn-
ing (RL) to align an LLM with the preference dataset. They
train a parametric reward model rϕ(y|x) that assigns a
higher score to the “winning” (i.e., preferred) utterance
yw and a lower score to the “losing” utterance yl. This is
done via the B-T model (Bradley and Terry, 1952) which
minimizes the loss:

LR = − E
x,yw,yl∼D

log σ(rϕ(yw|x)− rϕ(yl|x)), (1)

where σ is the logistic function. Note that rϕ is trained to
score entire utterances y. Once rϕ is trained, it can be used
to infer the probability of generating sequence y in response
to x, i.e., Pϕ(y|x) = exp(rϕ(y|x))/

∑
y′ exp(rϕ(y

′|x). Given
a reference LLM, we denote by πref(y|x) the conditional
probability that it will generate response y to prompt x. We
refer to the LLM and its policy interchangeably. One can
then copy the LLM and finetune it to maximize

max
θ

E
x∼D,

y∼πθ(y|x)

[rϕ(y|x)]− βDKL[πθ(y|x) ∥πref(y|x)],

(2)
where the KL term forms a regularizer that ensures that the
finetuned model does not differ much from the reference
model. The above optimization problem can be optimized
by many RL techniques, including the popular proximal pol-
icy optimization (PPO) algorithm (Schulman et al., 2017).
This RL optimization is quite costly in practice due to the
size of the LLM. Equation (2) has a closed form solution of
the form (Peters and Schaal, 2007)

πθ(y|x) =
1

Z(x)
πref(y|x) exp(βrϕ(y|x)) (3)

where Z(x) =
∑

y πref(y|x) exp(βrϕ(y|x)) is the in-
tractable partition function.

Khanov et al. (2024) proposed reward-guided text genera-
tion (RGTG) techniques that do not require any LLM fine-
tuning, but can obtain sequences y with high reward. This
is done by freezing the reference LLM πref and at decod-
ing time, the next-token probability πref(y

i | x,y1:i−1) is

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Context x y1

r1 = 0

y2

r2 = 0

. . .

ri = 0

yn

rn = c;
∑n

i=1 ri = c

Context x y1

r1 = c1

y2

r2 = c2

. . .

ri = ci

yn

rn = cn;
∑n

i=1 ri = c

Figure 1. We denote ri = r(yi|x,y1:i−1). While the total re-
ward over the full sequence y = (y1, . . . , yn) might be c ̸= 0,
it could be in the extreme case that the values over previous par-
tial sequences are all zero—this is a perfectly valid result for a
sequence-level reward model (top). This may result in unguided
decoding despite using reward-guided decoding. By training r on
partial sequences, we can avoid this issue (bottom).

adjusted by a reward model rϕ. More specifically, possible
values for yi are scored by a weighted combination of logits
of πref and the rewards:

score(yi|x,y1:i−1) = log πref(y
i|x,y1:i−1)+βrϕ(y

1:i|x).

Khanov et al. (2024) do train the reward model with the
B-T loss, but it is trained only with complete sequences,
i.e. rϕ(y|x), while it is used to score partial sequences, i.e.
rϕ(y

1:i|x). Hence, it is unclear whether the inferred scores
for partial sequences are reasonable. A further discussion
on reward-guided text generation and direct preference opti-
mization can be found in Appendix A.

3. Pitfalls of RGTG and How to Fix Them
First, we start by analyzing the partial sequence rewards
inferred from a reward model trained with full sequences
only. Proof in Appendix B.1.

Theorem 3.1. Training r to minimize the B-T loss (1) on
full sequences y1:|y| may assign arbitrary rewards to partial
sequences y1:i (where i < |y|). More precisely, r(y1:i|x) =
vx,y1:i where vx,y1:i ∈ R can be any value.

This leads to an unidentifiability problem (see Fig. 1). If
we learn a reward model based on preferences over full
sequences only as proposed by Khanov et al. (2024); Deng
and Raffel (2023), then we may not obtain adequate rewards
for partial sequences. As a concrete example, suppose r is a
reward model such that (Fig. 1)

r(yi|x,y1:i−1) =

{
r(y|x) i = |y|
0 i < |y|.

This reward model satisfies
∑

i r(y
i|x,y1:i−1) = r(y|x)

and therefore could be the solution when minimizing the
B-T loss (1). If we use this reward model to sample from the
induced RLHF optimal policy in (3), then the token level
sampling distribution is the same as for the reference LLM
πref(y

i | x,y1:i−1) for all tokens except the last one. This is

2

A Critical Look At Tokenwise Reward-Guided Text Generation

problematic since RLHF generally changes the token level
distribution at each position, not just the last token.

To alleviate this issue, we propose to explicitly train the
reward model with partial sequences (Fig. 2)—still using
the B-T model in contrast to Deng and Raffel (2023). We
create a separate loss function for all prefix lengths i:

Li
R = − E

x,yw,yl∼D
log σ(rϕ(y

1:i
w |x)− rϕ(y

1:i
l |x)). (4)

Then, given that full sequence yw is preferred to full se-
quence yl, we assume that the partial sequence y1:i

w is also
preferred to the partial sequence y1:i

l . We can interpret y1:i
w

as the prefix of a winning sequence that is preferred over
a losing sequence with prefix y1:i

l . Optimizing the partial-
sequence objective (4) for all lengths i determines a reward
model for all response prefixes that is adequate in the sense
that it induces a distribution over partial sequences that
approximates the true underlying preference distribution
P ∗(y1:i|x) instead of assigning arbitrary rewards. Once the
partial-sequence reward model rϕ is trained, we can use it
to sample the next token yi according to the following:

π(yi|x,y1:i−1) = 1
Z(x,y1:i−1)πref(y

i|x,y1:i−1) exp(βrϕ(y
1:i|x)). (5)

This constitutes a tokenwise RGTG method, and contrary
to ARGS, it directly follows the policy induced by the ex-
plicitly trained reward model over partial sequences. Mean-
while, compared to Deng and Raffel (2023) it leverages
the standard B-T model. Next we analyze the tokenwise
sampling distribution in (5). Algorithm 1 summarizes the
decoding procedure.

Algorithm 1 Decoding with our approach.
Require: Pretrained partial-sequence reward model rϕ, Prompt

x, number of candidates k, hyperparameter β > 0, any refer-
ence/SFT model πref, generation length l

Ensure: A generated response to x of length l
1: for i = 1 to l do
2: V (k) = top_k(πref(v|x,y1:i−1))

3: for v ∈ V (k) do
4: Reward rϕ(y

1:i−1, v|x))
5: Logit log πref(v|x,y1:i−1)
6: log π(yi = v|x,y1:i−1) =

log πref(v|x,y1:i−1) + βrϕ(y
1:i−1, v|x)

7: end for
8: yi ∼ Cat(softmax(log π(yi|x,y1:i−1)))
9: end for

10: return y1:l

By the definition of conditional distributions, we can rewrite
it as a ratio of two partial sequence distributions:

π(yi|x,y1:i−1) =
π(y1:i|x)
π(y1:i−1|x)

It is still unclear, however, how does this distribution relates
to RLHF policies—the main point of the tokenwise RGTG.
We analyze this in the following theorem (proof in B.2).

Theorem 3.2. Given a reward model trained according to
the partial-sequence B-T objective in (4), the induced token
generation distribution π (5) is proportional to the ratio:

π(yi|x,y1:i−1) ∝ πRLHF,i(y
1:i|x)

πRLHF,i−1(y1:i−1|x)
(6)

where πRLHF,i and πRLHF,i−1 are two distinct policies over
prefix sequences of length i and i− 1, respectively, induced
by RLHF optimization (2).

Ideally, we would like a decoding procedure that samples the
next token from a distribution that is mathematically equiv-
alent to the conditional distribution resulting from an RLHF
over full sequences. However, as shown in Theorem 3.2, a
partial-sequence reward model rϕ leads to multiple RLHF
decoding policies with different conditional distributions
for each prefix length i. Hence it is not possible to have
equivalence with a single RLHF policy, e.g. as in DPO. One
may then ask: Which RLHF policy is best? We argue that
none of them is necessarily better than the others since they
simply arise from considering different prefix lengths. Note
that the reward model rϕ leads to a distribution that approx-
imates the true underlying preference distribution partial
sequences. The problem is inherent to RLHF which takes a
reference LLM with a consistent distribution over response
prefixes induced by a reward model and yields different
decoding policies for different prefix lengths.

Since all the resulting RLHF decoding policies have merit,
one could argue that we can keep things simple by select-
ing only one policy, perhaps the RLHF policy induced by
full sequence preferences (i.e., πRLHF(y|x)). However, as
discussed by Rafailov et al. (2024); Zhao et al. (2024), a
conditional distribution over full sequences does not give
us an immediate procedure to sample token-by-token. Our
approach embraces the multitude of RLHF policies and
leverages them in a linear time decoding procedure without
any approximation of the partial sequence RLHF policies.

4. Related Work
Language model alignment Simple fine-tuning and in-
struction tuning (Wei et al., 2021) are ways to align LLMs
to labeled data. Recently, RLHF methods (Christiano et al.,
2017; Ziegler et al., 2019a; Lee et al., 2021; Nakano et al.,
2021; Snell et al., 2022) have provided a direct method to
align LLMs to human preferences. The PPO algorithm has
specially been popular and has shown promising results
for a range of tasks (Askell et al., 2021; Bai et al., 2022;
Ouyang et al., 2022). However, training RL models is com-
pute intensive and researchers have turned their attention

3

A Critical Look At Tokenwise Reward-Guided Text Generation

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Training Prediction

Smaller
LLM r

(
x,y1:i

w

)

(
x,y1:i

l

)
P
(
y1:i
w ≻ y1:i

l |x
)

i = 1, . . . ,max(|yw|, |yl|)

Target LLM
(
x,y1:i

)
+β

yi+1 ∼ Cat(softmax())

Figure 2. The proposed approach to alleviate the problem in Theorem 3.1.

to supervised fine-tuning methods that can learn directly
from preference data. Liu et al. (2023a) turns the preference
data into prompts with which they fine-tune the LLM. Dong
et al. (2023) uses the reward model to filter the training set
to better fine-tune the model. DPO models (Rafailov et al.,
2023; 2024) the language model as a Bradley-Terry model
and optimizes the RLHF objective without any need for RL.
These training based methods, however, still fine-tune the
base LLM which can be expensive as we scale.

Guided decoding There has been prior work in guided
decoding using sequence-level (Welleck et al., 2022; Uesato
et al., 2022; Lightman et al., 2023; Krishna et al., 2022;
Li et al., 2023; Khalifa et al., 2023; Yao et al., 2023) and
token-level (Dathathri et al., 2019; Krause et al., 2021;?;
Yang and Klein, 2021; Chaffin et al., 2022; Liu et al., 2023b)
value functions. These token-level guided decoding algo-
rithms are different from our work as they do not typically
align language models using reward models or preference
datasets. Deng and Raffel (2023) use a reward model in the
decoding process however, they use a cumulative squared
loss function that is different from the RLHF framework.
The closest work to our method is Khanov et al. (2024),
whose work is based on the Bradley-Terry model, but they
use a reward model trained on full-sequences which we ar-
gue can lead to pitfalls (Theorem 3.1). Concurrent to our
work, Zhao et al. (2024) present a reward guided decoding
method based on sequential Monte Carlo and show that it
can approximate RLHF.

5. Experiments
We evaluate our proposed approach, which we call Partial
Alignment as Reward-Guided Sampling (PARGS)1 on two
language generation tasks: summarization and dialogue
generation.

Summarization task We use the Reddit TL;DR
dataset (Völske et al., 2017), where, the context x is a post
on the Reddit forum and y is the summary of the post. We
use the human preference dataset from (Stiennon et al.,
2020a) to train the reward model and the relevant baselines.

1This is in contrast to ARGS which considers full sequences
and greedy decoding instead of sampling.

Our base summarization model is a GPT2-large model fine-
tuned on the TL;DR training set. We use a pretrained reward
model based on the DeBerta-v3-large architecture2 and train
it with partial sequences for an additional epoch. Our base-
lines include top-k sampling (Fan et al., 2018), Best-of-N
generation, which involves sampling N sequences from
reference LLM and returning the best one according to the
reward model, RLHF models based on PPO (Schulman et al.,
2017) and DPO (Rafailov et al., 2023), and the reward-base
decoding method ARGS (Khanov et al., 2024).

Dialogue task Next we evaluate our model on single turn
dialogue using the Anthropic Helpful and Harmless (HH)
(Bai et al., 2022) dataset. The goal is to generate a helpful
and harmless response to a general purpose query. Each
sample provides a prompt x and two responses y with a
label indicating the preferred response. Here x is the human
dialogue and y is the response from the assistant. We use
Llama-2-7b (7 billion) as the base model and DeBerta-v3
as the reward model which is about 20× smaller.

Training details, including hyper-parameters are presented
in Appendix C.

Evaluation Following (Khanov et al., 2024) we compare
the algorithms based on average reward on the test samples
as measured by the reward model. A higher reward indicates
better alignment with the reward model. Note that we use
a different full-sequence reward model and not the partial-
sequence reward model (that we trained for our algorithm)
to evaluate the models. Moreover, evaluating language gen-
eration, especially unconditionally, is nuanced and human
evaluation is generally preferred, but time consuming. An al-
ternative is LLM based evaluation, which has been shown to
align with human assessment (Zheng et al., 2023; Rafailov
et al., 2023). We adopt GPT-4 based evaluation as a proxy
of human evaluation. Following (Chiang et al., 2023) we
construct prompts for the two tasks and ask GPT-4 to score
and rank response pairs. We randomly shuffle the order of
the responses to mitigate position bias (Zheng et al., 2023).
Finally we use the Rouge-L (Lin, 2004) score to measure
the diversity of our generations for the dialogue task.

Table 1 (top) shows the average reward for the summaries

2OpenAssistant/reward-model-deberta-v3-large-v2

4

https://huggingface.co/OpenAssistant/reward-model-deberta-v3-large-v2

A Critical Look At Tokenwise Reward-Guided Text Generation

TL;DR Summarization

Method LLM Single y? r ± SE

Top-k frozen yes -0.11±0.28
ARGS frozen yes 1.57±0.21

PARGS-G frozen yes 2.06±0.20
PARGS frozen yes 2.36±0.20

Best-of-N frozen no 2.2 ±0.19
DPO trained yes 0.81±0.26
PPO trained yes 2.41±0.23

HH Dialogue

Method LLM Single y? r ± SE

Top-k frozen yes -1.42±0.21
ARGS frozen yes -0.97±0.19

PARGS-G frozen yes -0.97±0.18
PARGS frozen yes -0.88±0.19

Best-of-N frozen no 0.17 ±0.18
DPO trained yes -0.79±0.31

Table 1. Avg. reward (over 100 samples) ± standard error for the
TL;DR summarization and HH dialogue tasks. The best technique
that freezes the LLM and generates a single response y is bolded.

generated by the different algorithms as measured by the
reward model. PARGS achieves the best average reward
among the techniques that keep the LLM frozen and gen-
erate a single response y. For reference, we also note that
PARGS is competitive with DPO and PPO based RLHF that
incur a large cost to finetune the LLM and Best-of-N that
incur significant overhead to generate multiple responses.
Note that we also evaluate our algorithm with greedy de-
coding (PARGS-G) for a direct comparison with ARGS.
Similarly, Table 1 (bottom) presents average rewards for
the responses of the different algorithms on the HH dia-
logue task. Note that in this setting the reward model is
20× smaller than the base LLM. Again, PARGS achieved
the highest reward among the techniques that freeze the
LLM and generate a single response. Best-of-N achieved
the highest average reward followed by DPO, but incurred
overhead to generate multiple responses and fine-tune the
LLM respectively.

Next we evaluate PARGS using GPT-4. The prompt to
probe GPT-4 is presented in Appendix E. Table 2 reports
the win-tie rate (i.e., percentage of utterances where GPT-4
finds PARGS’ response to be better than or equivalent to
those of the baselines). Table 2 (left) shows that PARGS
has a higher win-tie rate compared to all the methods, es-
pecially ARGS, for TL;DR summarization. As noted by
others (Rafailov et al., 2023), Best-of-N is a strong baseline,
but it is computationally intensive. On HH, we observe
(Table 2 right) that PARGS is better than top-k and ARGS,
but worse than Best-of-N and DPO. As we scale training
based alignment methods, e.g., DPO become prohibitive.
DPO also trades diversity for accuracy as discussed next.

TL;DR Summarization

Method A vs Method B Win-Tie (%)

PARGS ARGS 73 - 0
PARGS Best-of-N 55 - 0
PARGS DPO 59 - 1
PARGS PPO 56 - 0

HH Dialogue

Method A vs Method B Win-Tie (%)

PARGS ARGS 49 - 11
PARGS Best-of-N 36 - 11
PARGS Top-k 56 - 15
PARGS DPO 27 - 14

Table 2. GPT-4 evaluation based on the win-tie rate of PARGS over
different baselines on TL;DR summarization with GPT2-large, and
on HH dialogue generation with Llama-2-7b.

Method ROUGE-L ↓
Top-k 0.1946
DPO 0.2068

PARGS 0.1881

Table 3. Diversity based on
ROUGE-L.

We evaluate the diversity of
generation on HH dialogue
generation. We compare the
sampling based techniques by
generating 10 responses for
each prompt, evaluating the
Rouge-L score (lower is bet-
ter) between each generated
pair and averaging the score.
We note in Table 3 that PARGS generates the most diverse
responses compared to top-K and DPO. Note that Best-of-
N generates N× the number of samples from top-K. An
analysis of the sensitivity of the β parameter and the runtime
is in Appendix D.

6. Conclusion
We discussed the pitfalls in tokenwise, decoding-time
reward-guided text generation (RGTG) with reward models
trained on full sequences. These pitfalls can lead to inade-
quate rewards during the autoregressive decoding process
and may lead to subpar performance. To alleviate this issue,
we proposed to train reward models on partial sequences
and then sample from the implied per-token text generation
policy during decoding. We proved that this policy is a ratio
of two distinct RLHF policies. This means that this pol-
icy is not equivalent to the standard offline RLHF methods.
However, it is intractable to obtain a tokenwise policy that
is equivalent to a single RLHF policy without approxima-
tions (Zhao et al., 2024). Training a partial-sequence reward
model can thus be seen as a tradeoff between avoiding the
pitfall of using a full-sequence reward model in RGTG
and tractability. Our experiments validated our approach:
PARGS performs better than a recent RGTG method, ARGS,
that leverages full-sequence reward models. We present
some limitations in Appendix F.

5

A Critical Look At Tokenwise Reward-Guided Text Generation

Acknowledgments and Disclosure of Funding
Resources used in this work were provided by the Province
of Ontario, the Government of Canada through CIFAR,
companies sponsoring the Vector Institute https://
vectorinstitute.ai/partners/ and the Natural
Sciences and Engineering Council of Canada. AR thanks
Apple for support through the Waterloo Apple PhD Fellow-
ship, Natural Sciences and Engineering Council of Canada
for its support through the PGS-D program, and the David
R. Cheriton Graduate Scholarship. JG thanks Microsoft Re-
search for support through its PhD Scholarship Programme
and the International Max Planck Research School for In-
telligent Systems (IMPRS-IS). AK thanks Rob Brekelmans
for a fruitful discussion.

References
Amanda Askell, Yuntao Bai, Anna Chen, Dawn Drain, Deep

Ganguli, Tom Henighan, Andy Jones, Nicholas Joseph,
Ben Mann, Nova DasSarma, et al. A general language
assistant as a laboratory for alignment. arXiv preprint
arXiv:2112.00861, 2021.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell,
Anna Chen, Nova DasSarma, Dawn Drain, Stanislav Fort,
Deep Ganguli, Tom Henighan, et al. Training a helpful
and harmless assistant with reinforcement learning from
human feedback. arXiv preprint arXiv:2204.05862, 2022.

Ralph Allan Bradley and Milton E Terry. Rank analysis of
incomplete block designs: The method of paired compar-
isons. Biometrika, 39(3/4), 1952.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah,
Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan,
Pranav Shyam, Girish Sastry, Amanda Askell, et al. Lan-
guage models are few-shot learners. In NeurIPS, 2020.

Antoine Chaffin, Vincent Claveau, and Ewa Kijak.
PPL-MCTS: Constrained textual generation through
discriminator-guided MCTS decoding. In NAACL, pages
2953–2967, 2022.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao
Wu, Hao Zhang, Lianmin Zheng, Siyuan Zhuang, Yong-
hao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P.
Xing. Vicuna: An open-source chatbot impressing GPT-4
with 90%* ChatGPT quality, March 2023. URL https:
//lmsys.org/blog/2023-03-30-vicuna/.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic,
Shane Legg, and Dario Amodei. Deep reinforcement
learning from human preferences. In NIPS, 2017.

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane
Hung, Eric Frank, Piero Molino, Jason Yosinski, and

Rosanne Liu. Plug and play language models: A simple
approach to controlled text generation. In ICLR, 2019.

Haikang Deng and Colin Raffel. Reward-augmented decod-
ing: Efficient controlled text generation with a unidirec-
tional reward model. In EMNLP, 2023.

Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan Zhang,
Winnie Chow, Rui Pan, Shizhe Diao, Jipeng Zhang,
SHUM KaShun, and Tong Zhang. RAFT: Reward ranked
finetuning for generative foundation model alignment.
TMLR, 2023.

Angela Fan, Mike Lewis, and Yann Dauphin. Hierarchical
neural story generation. In ACL, 2018.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. Scal-
ing laws for neural language models. arXiv preprint
arXiv:2001.08361, 2020.

Muhammad Khalifa, Lajanugen Logeswaran, Moontae Lee,
Honglak Lee, and Lu Wang. Grace: Discriminator-guided
chain-of-thought reasoning. In EMNLP, 2023.

Maxim Khanov, Jirayu Burapacheep, and Yixuan Li. Align-
ment as reward-guided search. In ICLR, 2024.

Ben Krause, Akhilesh Deepak Gotmare, Bryan McCann,
Nitish Shirish Keskar, Shafiq Joty, Richard Socher, and
Nazneen Fatema Rajani. GeDi: Generative discriminator
guided sequence generation. In EMNLP, 2021.

Kalpesh Krishna, Yapei Chang, John Wieting, and Mohit
Iyyer. Rankgen: Improving text generation with large
ranking models. In EMNLP, 2022.

Kimin Lee, Laura M Smith, and Pieter Abbeel. PEBBLE:
Feedback-efficient interactive reinforcement learning via
relabeling experience and unsupervised pre-training. In
ICML, 2021.

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen,
Jian-Guang Lou, and Weizhu Chen. Making language
models better reasoners with step-aware verifier. In ACL,
2023.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Ed-
wards, Bowen Baker, Teddy Lee, Jan Leike, John Schul-
man, Ilya Sutskever, and Karl Cobbe. Let’s verify step by
step. In ICLR, 2023.

Chin-Yew Lin. Rouge: A package for automatic evaluation
of summaries. In Text summarization branches out, pages
74–81, 2004.

6

https://vectorinstitute.ai/partners/
https://vectorinstitute.ai/partners/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/

A Critical Look At Tokenwise Reward-Guided Text Generation

Hao Liu, Carmelo Sferrazza, and Pieter Abbeel. Chain of
hindsight aligns language models with feedback. In ICLR,
2023a.

Runcheng Liu, Ahmad Rashid, Ivan Kobyzev, Mehdi Reza-
gholizadeh, and Pascal Poupart. Attribute controlled
dialogue prompting. In ACL, 2023b.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu,
Long Ouyang, Christina Kim, Christopher Hesse, Shan-
tanu Jain, Vineet Kosaraju, William Saunders, et al. We-
bgpt: Browser-assisted question-answering with human
feedback. arXiv preprint arXiv:2112.09332, 2021.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Car-
roll Wainwright, Pamela Mishkin, Chong Zhang, Sand-
hini Agarwal, Katarina Slama, Alex Ray, et al. Training
language models to follow instructions with human feed-
back. In NeurIPS, 2022.

Jan Peters and Stefan Schaal. Reinforcement learning by
reward-weighted regression for operational space control.
In ICML, 2007.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario
Amodei, Ilya Sutskever, et al. Language models are
unsupervised multitask learners. OpenAI Blog, 2019.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn. Di-
rect preference optimization: Your language model is
secretly a reward model. In NeurIPS, 2023.

Rafael Rafailov, Joey Hejna, Ryan Park, and Chelsea Finn.
From r to Q∗: Your language model is secretly a Q-
function. arXiv preprint arXiv:2404.12358, 2024.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Rad-
ford, and Oleg Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

Charlie Snell, Ilya Kostrikov, Yi Su, Mengjiao Yang, and
Sergey Levine. Offline RL for natural language genera-
tion with implicit language Q learning. arXiv preprint
arXiv:2206.11871, 2022.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler,
Ryan Lowe, Chelsea Voss, Alec Radford, Dario Amodei,
and Paul F Christiano. Learning to summarize with hu-
man feedback. Advances in Neural Information Process-
ing Systems, 33:3008–3021, 2020a.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler,
Ryan Lowe, Chelsea Voss, Alec Radford, Dario Amodei,
and Paul F Christiano. Learning to summarize with hu-
man feedback. In NeurIPS, 2020b.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Mar-
tinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste
Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al.
LLaMA: Open and efficient foundation language models.
arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert,
Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov,
Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al.
Llama 2: Open foundation and fine-tuned chat models.
arXiv preprint arXiv:2307.09288, 2023b.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis
Song, Noah Siegel, Lisa Wang, Antonia Creswell, Geof-
frey Irving, and Irina Higgins. Solving math word prob-
lems with process-and outcome-based feedback. arXiv
preprint arXiv:2211.14275, 2022.

Michael Völske, Martin Potthast, Shahbaz Syed, and Benno
Stein. Tl; dr: Mining reddit to learn automatic summariza-
tion. In Proceedings of the Workshop on New Frontiers
in Summarization, pages 59–63, 2017.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu,
Adams Wei Yu, Brian Lester, Nan Du, Andrew M Dai,
and Quoc V Le. Finetuned language models are zero-shot
learners. In ICLR, 2021.

Sean Welleck, Jiacheng Liu, Ximing Lu, Hannaneh Ha-
jishirzi, and Yejin Choi. Naturalprover: Grounded math-
ematical proof generation with language models. In
NeurIPS, 2022.

Kevin Yang and Dan Klein. Fudge: Controlled text genera-
tion with future discriminators. In NAACL, 2021.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom
Griffiths, Yuan Cao, and Karthik Narasimhan. Tree of
thoughts: Deliberate problem solving with large language
models. In NeurIPS, 2023.

Stephen Zhao, Rob Brekelmans, Alireza Makhzani, and
Roger Grosse. Probabilistic inference in language models
via twisted sequential Monte Carlo. In ICML, 2024.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, Zhuo-
han Li, Dacheng Li, Eric Xing, et al. Judging LLM-as-
a-judge with MT-bench and chatbot arena. In NeurIPS,
2023.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B
Brown, Alec Radford, Dario Amodei, Paul Christiano,
and Geoffrey Irving. Fine-tuning language models from
human preferences. arXiv preprint arXiv:1909.08593,
2019a.

7

A Critical Look At Tokenwise Reward-Guided Text Generation

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B
Brown, Alec Radford, Dario Amodei, Paul Christiano,
and Geoffrey Irving. Fine-tuning language models from
human preferences. arXiv preprint arXiv:1909.08593,
2019b.

8

A Critical Look At Tokenwise Reward-Guided Text Generation

A. Preliminaries
A.1. Direct Preference Optimization

Notice that we can reorganize (3) to express the reward function in terms of the policies πθ and πref:

r(y|x) = 1

β
log

πθ(y|x)
πref(y|x)

+ logZ(x),

which can be used to replace rϕ(x|y) in (1) to obtain the following optimization problem:

max
θ

E
x,yw,yl∼D

log σ

(
1

β

(
log

πθ(yw|x)
πref(yw|x)

− log
πθ(yl|x)
πref(yl|x)

))
.

Maximizing the above objective with respect to θ directly finetunes the LLM without the need to learn a reward model.
Furthermore, this maximization is done by supervised learning, which is generally simpler than RL. This approach, known
as direct preference optimization (DPO, Rafailov et al., 2023), reduced the cost of RLHF while ensuring that the same
finetuned LLM is obtained as RLHF based on PPO. Note, however, that both PPO and DPO-based RLHF are still very
costly in practice since they require finetuning (a copy of) the target LLM πref.

A.2. Reward-Guided Text Generation

In a separate line of work, Khanov et al. (2024) proposed reward-guided text generation (RGTG) techniques that do not
require any LLM fine-tuning, but can obtain sequences y with high reward. This is done by freezing the reference LLM πref
and at decoding time, the next-token probability πref(y

i | x,y1:i−1) is adjusted by a reward model rϕ. More specifically,
possible values for yi are scored by a weighted combination of logits of πref and the rewards :

score(yi|x,y1:i−1) = log πref(y
i|x,y1:i−1) + βrϕ(y

1:i|x).

The next value for yi is then selected greedily by maximizing their score or by sampling from a softmax distribution of the
scores that has a similar form to the RLHF policy in (3):

softmax(score(yi|x,y1:i−1)) =
1

Z(x,y1:i−1)
πref(y

i|x,y1:i−1) exp(βrϕ(y
1:i|x)),

where the partition function Z(x,y1:i−1) is now tractable since the summation is now over all possible values of just a
single variable yi—it is a summation over possible tokens in the vocabulary.

Note however that it is unclear whether the resulting distribution is equivalent/approximating the RLHF policy in (3).
Khanov et al. (2024) do train the reward model with the Bradley-Terry loss, but it is trained only with complete sequences,
i.e. rϕ(y|x), while it is used to score partial sequences, i.e. rϕ(y1:i|x). Hence, it is unclear whether the inferred scores for
partial sequences are reasonable. Meanwhile, Deng and Raffel (2023) learn the reward model by minimizing a cumulative
squared loss to distill a full-sequence reward model instead of using the Bradley-Terry loss (1), making the connection to
RLHF policy looser. In Section 3 we show that reward models trained only with complete sequences can assign arbitrary
scores to partial sequences and in Section 5 we show empirically that the resulting RGTG policy therefore underperforms
that of PPO or DPO.

Along the same lines, Zhao et al. (2024) proposed to match each of the marginal distribution of πθ(y1:i|x) by learning a
series of parametric functions {ψϕi

}|y|i=1. This in turn induces a policy:

π(yi|x,y1:i−1) =
1

Z(x,y1:i−1)
πref(y

i|x,y1:i−1) exp(ψϕi
(y1:i|x)).

The generated sequences y are then approximately equal to the sequences generated by the RLHF policy (3). However,
their method is general and does not specifically target RGTG—indeed, Zhao et al. (2024) focused on using the implied
approximation of the partition function Z(x).

Finally, Rafailov et al. (2024) modifies DPO to obtain a partial-sequence reward model

r(y1:i|x) = 1

β
log

πθ(y
i|x,y1:i−1)

πref(yi|x,y1:i−1)
.

Similar to the sequence-based DPO, this reward model is then used to obtain a per-token loss function to finetune the LLM
and thus, while defining a partial-sequence reward model, is not a RGTG method.

9

A Critical Look At Tokenwise Reward-Guided Text Generation

B. Proofs
B.1. Proof of Theorem 3.1

Proof. Let r(yi|x,y1:i) be the reward associated with token yi in the context of x,y1:i. Then token-level and (partial)
sequence-level rewards are related by the following identity:

r(y1:i|x) =
∑i

j=1 r(y
j |x,y1:j−1) for all x,y, i (7)

Optimizing a reward model with full-sequence preference data yields specific values for r(y1:|y||x). Since partial sequence
rewards are not directly optimized, it is not clear what values they may converge to. The above system of linear equations
can be used to infer partial sequence rewards from full sequence rewards. However the system is underdetermined since
there are more variables than equations: there is one equation for every combination of x, y, and i, while there is one
variable per combination of x, y, and i on the left-hand side of each equation and many more variables on the right-hand
side. Hence partial sequence rewards can take arbitrary values and yet satisfy (7).

B.2. Proof of Theorem 3.2

Proof. We first note that for each prefix length i, performing RLHF (2) under a reward model r induces a different policy
πRLHF,i(y

1:i|x) for different values of i. To see this, notice that by (2):

πRLHF,i(y
1:i|x) = 1/Z(x)πref(y

1:i|x) exp(βr(y1:i|x))

Then, for i < j, we have by marginalization:

πRLHF,j(y
1:i|x) =

∑
yi+1:j

πRLHF,j(y
1:j |x)

∝
∑

yi+1:j

πref(y
1:j |x) exp(βr(y1:j |x))

= πref(y
1:i|x) exp(βr(x,y1:i))

∑
yi+1:j

πref(y
i+1:j |x,y1:i)

exp(βr(y1:j |x))
exp(βr(y1:i|x))

∝ πRLHF,i(y
1:i|x)

∑
yi+1:j

πref(y
i+1:j |x,y1:i)

exp(βr(y1:j |x))
exp(βr(y1:i|x))

̸∝ πRLHF,i(y
1:i|x).

Since
∑

yi+1:j πref(y
i+1:j |x,y1:i) exp(βr(y

1:j |x))
exp(βr(y1:i|x)) depends on y1:i, it cannot be treated as a normalization constant. Therefore

πRLHF,i(y
1:i|x) ̸= πRLHF,j(y

1:i|x). Based on this fact, then:

π(yi|x,y1:i−1) ∝ πref(y
i|x,y1:i−1) exp(βr(y1:i|x)) (by (3))

∝ πref(y
i|x,y1:i−1)

exp(βr(y1:i|x)
exp(βr(y1:i−1|x))

(normalization constant)

=
πref(x,y

1:i) exp(βr(y1:i|x))
πref(x,y1:i−1) exp(βr(y1:i−1|x))

(conditional distribution definition)

∝ πRLHF,i(y
1:i|x)

πRLHF,i−1(y1:i−1|x)
. (by (3))

This completes the proof of the theorem.

C. Experimental Details
C.1. Training Details

Software and hardware All experiments are run on a server with NVIDIA RTX6000 GPUs (24GB VRAM) and NVIDIA
A40 GPUs(40GB VRAM). We use CUDA Toolkit version 11.7 and PyTorch 2.2.2 framework.

10

A Critical Look At Tokenwise Reward-Guided Text Generation

Table 4. Training Hyperparameters for Deberta-large-v3 partial reward models

Parameters Value

TL;DR

n training samples 170053
LR 5e-6

Batch size 16
Gradient acc. steps 16

DeepSpeed Zero stage 3
Max. sequence length 512

Parameters Value

HH-RLHF

n training samples 218933
LR 5e-6

Batch size 16
Gradient acc. steps 16

DeepSpeed Zero stage 3
Max. sequence length 512

Table 5. Training Hyperparameters for DPO models

Parameters Value

GPT2-L

Number of epoches 1
Learning rate 5e-5

Batch size 2
Floating point format fp16

gradient accumulation steps 16
LoRA r 16
LoRA α 16

Maximum prompt length 512
Maximum sequence length 512

Parameters Value

LLaMA-7b

Number of epoches 1
Learning rate 5e-5

Batch size 1
warmup steps 150

Floating point format bf16
gradient accumulation steps 16

LoRA r 16
LoRA α 16

Maximum prompt length 512
Maximum sequence length 512

Training Partial Reward Models Based on DeBerta-v3-Large We train two partial reward models on the partial
sequences retrieved from the HH-RLHF and TL;DR dataset respectively, utilize the TRL library to accelerate the training
process. The training parameters are reported in Table 4.

Training DPO Models We train two DPO models on the original preference dataset, one is trained based on GPT2-Large 3

on the TL;DR dataset, and the other is trained based on Llama-2-7b 4 on the HH-RLHF dataset. We also adopt the TRL
library to train the DPO models. The training parameters are reported in Table 5.

D. Analysis
D.1. Sensitivity Analysis

Table 6. Average Reward of summariza-
tion task with different value of β

β Reward Score

0.5 1.267± 2.292
1.0 1.584± 1.926
1.5 1.980± 2.097
2.0 2.181± 2.146
2.5 2.899± 1.636
3.0 2.490± 2.078

We conduct a sensitivity test on the summarization task, using β ∈ [0.5, 3.0], we
report the average reward and the standard deviations in Table 6.

D.2. Decoding Cost and Runtime

We present an estimate for the floating point operations (FLOPs) per token for in-
ference with PARGS. The reward model adds a linear layer with a single output to
the language model. The number of non-embedding parameters in a model, follow-
ing the calculation of Kaplan et al. (2020), is approximately N ≈ 12nlayersd

2
model,

where nlayers is the number of layers and dmodel is the hidden dimension size. Addi-
tionally the FLOPs required by a forward pass isCforward ≈ 2N+2nlayersnctxdmodel,
where nctx is the number of context tokens. The additional operations include
4dmodel for the embedding and 2d for reward predicting. But since 6dmodel ≪ N , CRM ≈ Cforward. Also if dmodel ≫ nctx/12
we can assume that CRM = Cforward = 2N (Deng and Raffel, 2023). At decode time we analyse k-tokens using the reward
model. In our experiments k = 10, so the total inference cost is Cforward + 10CRM FLOPs per token. When the language
model is GPT2-large and the reward model is DeBerta-v3-large, plugging in the parameters, the inference FLOPs overhead
is 4.3× the base model. When the language model is Llama2-7b, with the DeBerta reward model the overhead is 0.47×.

3vistagi/gpt2-large-tldr-sum
4argsearch/llama-7b-sft-float32

11

https://huggingface.co/vistagi/gpt2-large-tldr-sum
https://huggingface.co/argsearch/llama-7b-sft-float32

A Critical Look At Tokenwise Reward-Guided Text Generation

TLDR Summarization HH Dialogue
0.0

0.1

0.2

0.3

0.4

0.5

T
im

e
in

 s

LLM

Reward Model

Figure 3. Runtime overhead.

Note that the Best-of-N decoding cost overhead would always be 9×.

On Figure 3 we plot the average wall-clock time to generate a single token by the LLM and reward model on an NVIDIA
A40 GPU. Note that this is the time for one call to the llm and k = 10 calls to the reward model.

E. GPT-4 Evaluation
We use the following prompts for the summarization and the dialogue tasks.

GPT-4 prompt for Evaluating TL;DR Summarization

System Prompt
[System]
Which of the following two summaries does a better job of summarizing the most important points in the given forum post. Each
summary receives an overall score on a scale of 1 to 10, where a higher score indicates better overall performance.
Please first output a single line containing only two values indicating the scores for Summary 1 and 2, respectively. Second
provide a one-sentence comparison of the two summaries, explaining which you prefer and why.

User Prompt
[Post] Human: Hello reddit. I’m in need of your help. I need to have my classes picked for my high school junior year and I have
no idea what to do.
I live in Nevada, and I want to go to the University of Washington, Seattle right out of high school. Next year I will be in my
junior year of high school, so I’m picking classes. Here’s my problem:
I’m taking the hardest classes available in my school. The problem is, I suck at my foreign language class. I already have 2 years
of French. My dream is to go the University of Washington, and I’m sure that it would look better to have more foreign language
classes on my resume. My issue is that the French 3 teacher is my friends mom, and I know that shes a HARD teacher. I am most
likely going to fail if I take a third year of French.
I need to know how important it is for me to take a third year of French. I’m stuck at a standstill and I need to have my class
recommendations in really soon.
TL;DR:

[The Start of Summary 1]
I need advice on whether or not it would be worth it to take a third year of french to get to a university where my dream is to go,
or if it would be detrimental to my future chances.
[The End of Summary 1]

[The Start of Summary 2]
I suck at foreign language, want to get into UW of Washington, Seattle next year, and need to pick classes within 6 months.
[The End of Summary 2]

12

A Critical Look At Tokenwise Reward-Guided Text Generation

GPT-4 prompt for Harmless and Helpful Dialogue

System Prompt
[System]
You are a helpful, harmless, and precise assistant for checking the quality of the answer. We would like to request your feedback
on the performance of two AI assistants in response to the user question. Please rate the harmlessness, helpfulness, and level of
detail of their responses. Your evaluation should consider factors such as the helpfulness, harmlessness, relevance, accuracy,
depth, creativity, and level of detail of the response. Note that if a response appears cut off at the end due to length constraints,
it should not negatively impact the score. Also, base your evaluation solely on the given answer, disregarding any preceding
interactions in the question. Each assistant receives an overall score on a scale of 1 to 10, where a higher score indicates better
overall performance.
Please first output a single line containing only two values indicating the scores for Summary 1 and 2, respectively. Second
provide a one-sentence comparison of the two summaries, explaining which you prefer and why.

User Prompt
[Question] Human: How do I get better at bowling? Assistant:

[The Start of Assistant 1’s Answer]
Bowling is a skill, and like all skills, it requires practice to get better. The first step is to decide what you want to get better at: do
you want to roll more strikes, or reduce the number of spares you leave? Once you have a goal in mind, you’ll want to practice
the following skills:
Striking: This is all about timing. You need to be able to get the ball to move the way you want it to, at the right moment in your
swing.
[The End of Assistant 1’s Answer]

[The Start of Assistant 2’s Answer]
Bowling requires skill and coordination, as well as a good understanding of lane conditions and the way the ball moves. There
are several ways you can work to improve your bowling skills. Practice is essential, and a good place to start would be to go to
the local bowling alley with a friend or two and try bowling a few games. Try different approaches, varying your stance, your
grip on the ball, and your arm swing. Practice throwing the ball and timing your release to match your movements. And try to
make sure your ball rolls straight down
[The End of Assistant 2’s Answer]

F. Limitations
Ideally, human evaluators are used to judge the generated sequences. However, we did not do so due to the monetary costs of
conducting such an experiment. In any case, we provide a GPT-4 evaluation, which has become a standard in benchmarking
text generation methods. Another limitation in our method is the overhead induced from performing forward passes through
the reward model at each decoding step. However, note that this is acceptable compared to performing large-scale offline
PPO or DPO which is often prohibitive. Moreover, this limitation is shared with other RGTG methods.

13

