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Abstract

Cognitive Diagnosis (CD) has become a crit-
ical task in Al-empowered education, sup-
porting personalized learning by accurately
assessing students’ cognitive states. How-
ever, traditional CD models often struggle in
cold-start scenarios due to the lack of student-
exercise interaction data. Recent NLP-based
approaches leveraging pre-trained language
models (PLMs) have shown promise by uti-
lizing textual features but fail to fully bridge
the gap between semantic understanding and
cognitive profiling. In this work, we pro-
pose Language Models as Zeroshot Cognitive
Diagnosis Learners (LMCD), a novel frame-
work designed to handle cold-start challenges
by harnessing large language models (LLMs).
LMCD operates via two primary phases: (1)
Knowledge Diffusion, where LLMs generate
enriched contents of exercises and knowledge
concepts (KCs), establishing stronger seman-
tic links; and (2) Semantic-Cognitive Fusion,
where LLMs employ causal attention mecha-
nisms to integrate textual information and stu-
dent cognitive states, creating comprehensive
profiles for both students and exercises. These
representations are efficiently trained with off-
the-shelf CD models. Experiments on two real-
world datasets demonstrate that LMCD signifi-
cantly outperforms state-of-the-art methods in
both exercise-cold and domain-cold settings.
The code is publicly available at https://
anonymous. 4open.science/r/LMCD-464C/

1 Introduction

Cognitive Diagnosis Models (CDMs) have become
pivotal in educational technology, offering data-
driven insights into students’ cognitive states across
different KCs,as shown in Figure 1(c). These mod-
els are indispensable for developing personalized
learning systems (Huang et al., 2019a; Yu et al.,
2024),computerized adaptive testing (Bi et al.,
2020; Wainer et al., 2000) and so on (Huang et al.,
2019b). Traditional CDMs such as Item Response
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Figure 1: An illustration of the cold-start problem in
cognitive diagnosis. (a) is hierarchical KC tree. (b) is
sparse student-exercise interaction matrix. (c) is typical
cognitive diagnosis framework for addressing cold-start
problems.

Theory (IRT) (Lord, 1952), Multi-dimensional
IRT (MIRT) (Reckase, 2006), Deterministic Input
Noisy "And" gate model (DINA) (De La Torre,
2009), and Neural Cognitive Diagnosis Model
(NCDM) (Wang et al., 2020a) have demonstrated
significant success in conventional settings where
abundant student-exercise interaction data is avail-
able.

However, these established approaches face sub-
stantial challenges in cold-start scenarios where
there is little or no historical interaction data (Wang
et al., 2024a). Cold-start refers to scenarios in-
volving either new students or new exercises in-
troduced into the system. Furthermore, new exer-
cises can be classified into two types of cold-start
problems based on whether their corresponding do-
main appears in the training data,as illustrated in
Figure 1. Specifically, exercise cold-start occurs
when the new exercises belong to the same domain
as those seen in the training data, whereas cross-
domain cold-start arises when new exercises orig-
inate from entirely unseen domains, posing a more
significant challenge.

As shown in Figure 1(c), current approaches
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addressing these cold-start challenges generally
fall into two categories: graph-based methods and
NLP-based methods. Graph-based approaches, ex-
emplified by works like ICDM (Liu et al., 2024a)
and TechCD (Gao et al., 2023), construct relation-
ships between exercises, KCs, and students to es-
tablish connections between unseen and seen enti-
ties through graph structures. Although innovative,
these methods are limited by the accuracy of KC
annotations and the scarcity of high-quality educa-
tional knowledge graphs.

NLP-based methods leverage pre-trained lan-
guage models(PLMs) to encode exercise texts and
KCs. These approaches have shown surprising ef-
fectiveness, sometimes achieving competitive or
superior results compared to SOTA models, as
demonstrated in TechCD (Gao et al., 2023) and
ZeroCD (Gao et al., 2024). Their ability to estab-
lish connections through semantic similarity makes
them particularly promising for cross-domain sce-
narios. However, these methods face fundamental
limitations in fully capturing cognitive complex-
ity. For instance, exercises in NIPS34 (Wang et al.,
2020b) with similar wording like "What is 4 writ-
ten as a fraction?" and "What is a third of a sev-
enth?" target entirely different KCs despite their
textual similarity. Additionally, vague KC labels
provide insufficient information for accurate repre-
sentation through simple encoding. Most critically,
these approaches struggle to effectively bridge se-
mantic space with individual students’ cognitive
states. Even the latest work leveraging large lan-
guage models (Liu et al., 2024b; Dong et al., 2025;
Liu et al., 2025) has not adequately addressed these
limitations.

Motivated by these challenges, we propose
LMCD (Language Models as Zeroshot Cognitive
Diagnosis Learners), a novel framework that lever-
ages large language models to address exercise-
cold and domain-cold scenarios—the most preva-
lent challenges in online education environments.
Specifically, the proposed LMCD operates in two
primary phases: (1) Knowledge Diffusion, where
LLMs generate enriched contents of exercises and
KCs, creating stronger semantic links; and (2)
Semantic-Cognitive Fusion, where we combine
original exercise text with generated content and
student-specific tokens as input to an LLM, us-
ing causal attention to create comprehensive repre-
sentations that fuse semantic space with cognitive
states. Finally, we align these representations with
conventional CDM parameters, modeling discrim-

ination, and relative difficulty (how challenging
each exercise is for each specific student) rather
than absolute difficulty, enabling more precise pre-
diction of student performance.

The major contributions of our work are as fol-
lows:

(1) We pioneer the use of LLMs’ causal attention
mechanisms to capture dynamic student-exercise
interactions, introducing the first explicit modeling
of relative difficulty in cognitive diagnosis.

(2) We develop a flexible LLM-based framework
that seamlessly integrates with off-the-shelf CDMs,
enhancing their performance while maintaining
their theoretical foundations.

(3) Through extensive experiments on two real-
world datasets, we demonstrate LMCD’s signifi-
cant performance improvements in both exercise
cold-start and cross-domain cold-start scenarios
compared to state-of-the-art methods.

2 Preliminary

2.1 Knowledge Structure

In practical educational scenarios, KCs are typi-
cally organized into hierarchical tree structures, as
illustrated in Figure 1(a). In a top-down manner,
the root node K° = (K, R) = U?ﬁ 11 D; represents
full dataset or its knowledge system (e.g., the node
"Math" in NIPS34), consisting of the complete
set of KCs K and the branch set R. Assuming
there are a total of M = M3 nodes at depth 1,
each of them is considered a distinct domain D; =
(K}, R}), Vi € [1, M?'], where K] = {kij |j €
[1,2,...,M!,1 € [1,2,..,max_depth]}, and
Ri = {(kips kig) | kip, kig € Ki}, (Kip, kig) is
a directed edge of the tree. Note that knowledge
across different domains is entirely isolated, that
is, K} N Kjl = (), Vi # j. The hierarchical rela-
tionship(s) from the root to the leaf node(s) repre-
senting fine-grained terminal KCs associated with
exercise v, is called its "knowledge route" /.

2.2 Task Description

Based on the previous subsection, we define two
cold-start scenarios as follows:

Exercise cold-start. Following TechCD (Gao
et al., 2023), we define the cold-start scenario by
randomly dividing data into hot (#) and cold (C)
subsets at the exercise level. For the hot subset

H, we define students Uy, = {u1,ug, -, U, |}
exercises Vy = {vi,ve, -, vy, ), and
KCs Ky = {kl, ko, -+, k|]KH|}- Student
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Figure 2: LMCD framework overview. (a) Knowledge Diffusion: LLMs generate enriched contents of exercises and
knowledge concepts. (b) Semantic-Cognitive Fusion: Causal attention mechanisms integrate textual information
with student-specific cognitive states to model relative difficulty.

exercise logs are represented as Ry
{(u, v, Ky, yun) | w € Upy,v € Vy }, where yy, €
{0,1} indicates whether student u answered ex-
ercise v correctly(y,, = 1) or not, respectively.
Similarly, for the cold subset C, we define Ue, V¢,
Ke, and Re = {(u, v, Ky, yuo) | © € U, v € Ve '}
Importantly, while exercises are separated between
subsets, KCs overlap between them (i NKe # (),
meaning exercises in V' and V¢ share some or all
of their knowledge domains.

Cross-domain cold-start. Based on ZeroCD do-
main level zero-shot cognitive diagnosis (DZCD)
(Gao et al., 2024), we define a more constrained
scenario than exercise cold-start. We partition K°
at depth 1 into hot domain(s) H and cold domain(s)
C. The set of KCs involved in H and C are defined
as Ky = UM% K} and K¢ = U}, K1, respec-
tively.This scenario satisfies both Ky N K¢ = ()
and Vi N Ve = (), meaning H and C are iso-
lated at both exercise and domain levels. Ad-
ditionally, all students from C must appear in
the hot subset, formalized as Ue C Uy, where
Ry = {(u,v, Ky, Yuw) | w € Up, v € Vi }.

Cognitive Diagnosis Model. CDMs infer stu-
dents’ proficiency of specific KCs by analyzing
their exercise responses. We define this generally
as Yu = M(u,v), where 3, € R? represents
student u’s performance on exercise v. The in-
teraction equation M typically follows the form
Yuw = o(B(p — d)), where p € R? represents

student u’s proficiency, while d and 5 denote the
exercise v’s difficulty and discrimination respec-
tively. The dimension d varies by model: 1 for
IRT, the size of K for NCDM, or a fixed value for
MIRT. Parameters « and 3 are model-dependent,
expressed as elements in R? or as scalars.

3 Methodology

3.1 Overview

Traditional CDMs face significant challenges in
cold-start scenarios due to weak connections be-
tween Vy and Ve. The proposed LMCD over-
comes these limitations with two core innovations.
First, Knowledge Diffusion, harnesses LLMs to en-
rich the content of exercises and KCs, strengthen-
ing semantic links (Section 3.2). Second, Semantic-
Cognitive Fusion, integrates the textual informa-
tion of the exercise with the student’s cognitive
state through Large Language Models (LLMs) to
generate a feedback representation of the student’s
response to the exercise.(Section 3.3). These en-
hanced representations are subsequently processed
by standard CDM heads to predict response proba-
bilities and knowledge proficiency, as illustrated in
Figure 2.

3.2 Knowledge Diffusion

NLP-based CDMs are limited by brief exercise
texts and vague KC labels, creating imprecise se-
mantic relationships. Similar-looking exercises of-



ten test different KCs, while generic KC labels pro-
vide insufficient information for accurate cold-start
diagnosis.

Our approach transforms concise educational
texts into detailed, explicit representations through
LLM-driven text-to-text generation. This process
uncovers implicit knowledge within the original
text, facilitating more precise differentiation and
linkage across domains. We call this process
"Knowledge Diffusion".

This process can be applied to both exercise
texts and KCs. As illustrated in Figure 2(a), we
take "KC diffusion" as an example, with the spe-
cific steps outlined as follows: (1) For each tar-
get knowledge concept kiqrger in K = Ky U Ko,
we identify a set of semantically similar concepts
Kneg = {kpegi k2egs - ke, } as negative exam-
ples, specifically selecting the top-N semantically
similar KCs from sibling nodes of kiqrget. (2) We
collect exercises Viqrget that assess Kyqrger and cor-
responding exercises V.., for each similar KC. (3)
We prompt the LLM to generate enriched KC de-
scriptions that explicitly distinguish between the
target concept and its related concepts:

k:t,arget =LLM (ktargeta Qtargeta Kneg> Qneg) (1)

This process yields the enriched knowledge con-
cept set K' = K, U K, establishing stronger se-
mantic bridges between historical and cold-start do-
mains. Notably, negative examples are crucial for
generating discriminative content, unlike other ap-
proaches (Liu et al., 2024b) that use only exercises
of Kitarget- Comparative examples are provided in
the Appendix A.3.

3.3 Semantic-Cognitive Fusion

As shown in Figure 2(b), we primarily focus on
modifying the embedding layer of language mod-
els to incorporate student cognitive state during
forward propagation, while adapting the LLM out-
put representation to various off-the-shelf CDMs.
Specifically, given exercise v and student u, we
leverage the LLM to generate a personalized feed-
back representation unique to each student-exercise
interaction. We then integrate these representations
into the difficulty parameter d of CDM, and that
can be considered as incorporating the student’s
cognitive state, representing a form of relative diffi-
culty.

Input Embedding. We defined a special token
for each student, for example, the token correspond-
ing to student u is stu,. We also constructed a

cognitive representation embedding layer, specifi-
cally used for encoding these student tokens, so the
cognitive representation of student u is as follows:

E,, = EMBLayer,,, (stu,,) 2)

cog(

Student Feedback. To generate personalized
feedback representations, we align student embed-
ding E, with the LLM’s semantic space. This
alignment enables the model to generate student-
specific feedback for each exercise v. Our approach
proceeds as follows: For a given exercise v, we first
encode all available textual information (including
LLM-generated knowledge concept descriptions)
using the LLM’s native embedding layer. Specifi-
cally:

E, = EMBLayery,,,(Concat[k’,v])  (3)

The dimension of F, is S x H, where S is the
length of the entire input text tokens, and H is the
hidden size of the LLM. We merge E,, into the last
dimension of E, to get Efsion:

E
Efusion = |:Ez:| (4)
where Efusion € RETUXH  We feed Ffysion into
the LLM backbone for forward propagation to ob-
tain the final representation Ofygion.

hO = Efusion
h; = FFN;(Attny(h;—q)), [=1,2,...,N
Ofusion = hl

5

where Attn and FFN represent the attention layer
and feed-forward network structure in the LLM
based on the Transformer architecture (Vaswani
et al., 2017), respectively, and N is the total num-
ber of layers in the LLM. Based on the obtained
Otusion, We define the following student feedback
representation and exercise representation:

Ofeedback = Ofusion[:7 _1] € RlXH (6)

Oy = Otusion[:, —2] € RVH (7

Leveraging the causal attention mechanism of
LLMs, Ofeedback €merges as the product of interac-
tion between student cognitive state F,, and exer-
cise semantic space F,. This interaction captures
how a specific student processes and responds to
a particular exercise’s content. Consequently, we
define Ofeedback as the personalized feedback repre-
sentation for student u on exercise v. In contrast,



O, is derived solely from the exercise’s textual
information processing, representing the context-
independent semantic encoding of exercise v.

Output Projection. Here, we map the obtained
representations to different CDM parameters and
define a general form of CDMs as follows::

yuv = fcdm(p7d75) (8)

where f.,q4(+) represents the interaction function
of different CDMs, p is the student’s proficiency, d
is the difficulty of exercise, (3 is the discrimination
parameter, and y,, is the predicted performance
result of student u on exercise v. We projectively
map the obtained Ofeedback, Fr, and O, to get d, p,
5 as follows:

d= duv = Wd(Ofeedback) (9)
p= Wp(Eu) (10)
B = W’U(O’U) (11)

We map Ofeegback to the difficulty and O, to the
discrimination, which are specific parameters of
CDMs. To preserve the independence of pro-
ficiency parameters (p), we ensure they remain
free from exercise-specific information by deriv-
ing them solely from student embeddings E,,. The
entire framework is optimized end-to-end using
cross-entropy loss:

L=- Zyuv 10g Yuv + (1 - yuv) log(l - yuv)

12)
where (u,v,Yyyy) € Ry. We froze the LLM
backbone parameters and fine-tuned it with LoRA
(Hu et al., 2022). To better enable cognitive
state and LLLM semantic space fusion, we activate
EMBLayer,,, and EMBLayer, during training.

4 Experimental

In this section, we conduct comprehensive experi-
ments to address the following research questions:

* RQ1 How powerful is LMCD for the exercise
cold-start task?

* RQ2 Can LMCD effectively establish links
across different domains?

* RQ3 How effective are the key components
of LMCD?

* RQ4 Is relative difficulty more reasonable
compared to absolute difficulty?

4.1 Experimental Setup

Datasets. We selected two open-source real-
world datasets: NIPS34 (Wang et al., 2020b) and
XES3G5M (Liu et al., 2023), both with exercise
text, KC identifiers and their structural relation-
ships. For cold-start experiments, we applied 5-
fold cross-validation for exercise cold-start while
3-fold for cross-domain task: In each data division,
1 fold served as cold-start data, with 20% used as
test set and 80% for validation or Oracle model
training, while the remaining folds were used as
training set. See Appendix A.1 for specific details
on data handling.

Baselines. Here we compared the following 7
methods, applicable to IRT/MIRT/NCDM predic-
tion heads.

* Oracle: Both training and test sets are from
the cold subset C, representing the theoretical
upper bound on the performance of CDMs in
cold-start scenarios.

* Random: Correspondingly, the lower bound
of prediction skill is measured by randomly
sampling from Uniform(0, 1) as the student’s
correct response probability.

e TechCD (Gao et al., 2023): TechCD utilizes
graphical relationships between KCs to estab-
lish connections between students’ practiced
and unseen exercises, generating student rep-
resentations through historical interactions.

* NLP-based: Unlike TechCD, which only uses
BERT (Devlin et al., 2019) as a baseline, we
further incorporate stronger baselines, includ-
ing RoBERTa (Liu et al., 2019) and BGE
(Xiao et al., 2024), to provide a more compre-
hensive evaluation of semantic-based meth-
ods, while ensuring fairness in the experimen-
tal setup by using the same textual content.

* KCD (Dong et al., 2025): As the current
SOTA method, KCD utilizes LLMs for rea-
soning, transforming textual content and in-
teraction records into prompts to extract infor-
mation and generate summaries. These sum-
maries are mapped to the behavioral space of
CDMs and optimized via contrastive loss.

All the experimental details of the baseline ap-
proach can be found in Appendix A.2.

Metrics and Training Settings. We adopt com-
monly used metrics, namely the Area Under Curve
(AUC), the Prediction Accuracy (ACC), and the
Root Mean Square Error (RMSE), to validate the



effectiveness of the CDMs. For all the metrics, 1
represents that a greater value is better, while |
represents the opposite. Qwen-Plus was utilized to
generate descriptions information for KCs, while
Qwen2.5-1.5B-base (Yang et al., 2024) serving as
the foundation model for our approach. Training
was conducted using the DeepSpeed (Rasley et al.,
2020) framework on 8 x A800 GPUs, with a maxi-
mum of 10 training epochs. The learning rate was
set to 0.0001 with a linear scheduler.

4.2 Performance on Exercise Cold-Start(RQ1)

We conducted exercise cold-start experiments on
the NIPS34 and XES3G5M datasets, with results
summarized in Table 1. The key observations are as
follows: (i) Our proposed LMCD consistently out-
performed other methods across most experiments.
Notably, the NLP-based approach utilizing BGE
embeddings achieved the second-best performance
in several cases, a result attributable to BGE’s
strong semantic representation capabilities. This
highlights the importance of LMCD’s strategy to
integrate exercise text with student cognitive states,
which surpasses methods relying solely on textual
information. (ii) The graph-based TechCD meth-
ods showed limited effectiveness in exercise cold-
start scenarios. This stems from TechCD’s heavy
reliance on topological relationships between KCs,
which are sparse in real-world datasets, limiting its
practical applicability.

4.3 Performance on Cross-Domain
Cold-Start(RQ2)

We conducted more challenging cross-domain ex-
periments on the NIPS34 dataset. Due to the spar-
sity of knowledge embedding in NCDM, which
cannot be transferred to cross-domain scenarios,
we only performed experiments on IRT and MIRT.
The specific results are reported in Table 2. We
observe that: In cross-domain cold-start scenarios,
LMCD achieved nearly optimal results in both Al-
gebra and Geometry experiments, while KCD per-
formed best in the Number domain. KCD works by
using LLMs to generate textual summaries of both
each student’s problem-solving behaviors and each
exercise’s user-interaction statistics for transfer to
CDMs during training. LMCD leverages textual
description of KCs while incorporating students’
cognitive information into problem representations.
By contrast, TechCD failed completely in cross-
domain scenarios mainly due to the fact that the
cold-start data is isolated from the training set both

at the KC and exercise level, and thus no transfer-
able knowledge among domains can be obtained
through the graph structure. In summary, exper-
imental results show LMCD demonstrates more
robust performance in cross-domain cold-start sce-
narios.

4.4 Ablation Studies (RQ3)

Impact of CDM parameter representation
strategies. We conducted ablation studies on
our proposed architecture to validate the effective-
ness of difficulty and discrimination representation.
Two LMCD variants were designed: substituting
Ofeedback With O,, in Eq.9, and conversely, replac-
ing O, with Ofeedpack in Eq.11. We employed IRT-
head on the NIPS34 for exercise cold-start. The
detailed results are reported in Table 3. The results
seem to reveal that optimal performance is achieved
when using Ofeedback t0 represent difficulty and O,
to represent discrimination. This finding suggests
that difficulty appears to be personalized.
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Figure 3: Impact of knowledge encoding strategies.

Impact of knowledge encoding strategies. Fig-
ure 3 demonstrates the effectiveness of our "knowl-
edge diffusion" approach across three experimental
conditions based on different inputs to Eq.3: Q (ex-
ercise text only), KQ (exercise text with knowledge
concept labels), and DKQ (adding LLM-generated
KC descriptions to KQ).

Results show that enriching encoding content
generally improves performance across models,
with LMCD and Roberta showing consistent gains
in AUC and reductions in RMSE. BERT, however,
performs worse with KQ than with Q alone, likely




IRT MIRT NCDM
ACCT AUCT RMSE| ACCt AUCT RMSE| ACCt AUCT RMSE|

Oracle 0.7074 0.7738 0.4383 0.7076 0.7741 0.4381 0.7068 0.7711 0.4418
Random 0.4957 0.4907 0.5002 0.4614 0.4947 0.5265 0.5016 0.5016 0.5205
Bert 0.6575 0.7153 0.4651 0.6638 0.7217 0.4642 0.6653 0.7159 0.4707
Roberta 0.6576 0.7165 0.4631 0.6631 0.7204 0.4609 0.6630 0.7204 0.4610
Bge 0.6708 0.7285 0.4581 0.6752 0.7361 0.4581 0.6741 0.7339 0.4598
TechCD 0.5548 0.5560 0.4964 0.5520 0.5554 0.4969 0.5414 0.5575 0.5280
KCD 0.6504 0.7031 0.4871 0.6146 0.7044 0.4898 0.6607 0.7209 0.5819
LMCD 0.6813 0.7440 0.4525 0.6823 0.7431 0.4527 0.6776 0.7407 0.4545

Oracle 0.7793 0.7597 0.3937 0.7782 0.7589 0.3946 0.7644 0.7166 0.4095
Random 0.4966 0.4998 0.5000 0.4980 0.4989 0.5001 0.4983 0.5068 0.5006
Bert 0.7528 0.6559 0.4218 0.7583 0.6615 0.4193 0.7220 0.6271 0.4470
Roberta 0.7578 0.6571 0.4194 0.7603 0.6578 0.4182 0.7100 0.6224 0.4622
Bge 0.7520 0.6593 0.4213 0.7601 0.6710 0.4182 0.7246 0.6261 0.4478
TechCD 0.7509 0.5232 0.4415 0.7509 0.5206 0.4448 0.7501 0.5545 0.4327
KCD 0.7584 0.6430 0.4725 0.7538 0.6542 0.4208 0.7602 0.6741 0.4162
LMCD 0.7560 0.6723 0.4181 0.7559 0.6742 0.4174 0.7436 0.6408 0.4284

Dataset Method

NIPS34

XES3G5M

Table 1: Performance of Exercise Cold Start on NIPS34 and XES3G5M datasets. The best performance is
highlighted in bold, and the the second-best performances is underlined.

CDM  Method Number as Target Algerbra as Target Geometry as Target
ACCT AUCT RMSE| ACCT AUCT RMSE| ACCT AUCT RMSE]
Oracle 0.7215 0.7931 0.4278 0.7108 0.7691 0.4379 0.7172 0.7851 0.4329
Random 0.4932 0.5022 0.5002 0.5019 0.5015 0.5001 0.4864 0.4929 0.5004
Bert 0.6092 0.6573 0.4903 0.6251 0.6689 0.4800 0.6120 0.6462 0.4863
IRT Roberta 0.6369 0.6824 0.4720 0.6483 0.6982 0.4692 0.6224 0.6718 0.4816
Bge 0.6204 0.6521 0.4957 0.5671 0.6496 0.5531 0.5979 0.6498 0.5145
TechCD 0.4827 0.5151 0.5059 0.4936 0.5071 0.5125 0.4959 0.5046 0.5084
KCD 0.6357 0.6945 0.4880 0.6505 0.7091 0.4857 0.6271 0.6726 0.4888
Our Method 0.6336 0.6837 0.4726 0.6518 0.7049 0.4658 0.6363 0.6843 0.4758
Oracle 0.7223 0.7942 0.4272 0.7116 0.7694 0.4377 0.7180 0.7860 0.4324
Random 0.4354 0.4938 0.5328 0.5064 0.4951 0.5154 0.4770 0.5010 0.5224
Bert 0.6339 0.6712 0.4814 0.6318 0.6818 0.4761 0.6212 0.6683 0.4828
MIRT Roberta 0.6195 0.6432 0.5125 0.6524 0.7045 0.4659 0.6096 0.6339 0.5308
Bge 0.6341 0.6681 0.4842 0.6366 0.6904 0.4819 0.6115 0.6682 0.4879
TechCD 0.5646 0.5267 0.4956 0.4936 0.5153 0.5009 0.5231 0.5014 0.4995
KCD 0.6500 0.6974 0.4715 0.5922 0.7120 0.4992 0.6025 0.6754 0.4994

LMCD 0.6269 0.6888 0.4778 0.6551 0.7082 0.4656 0.6277 0.6821 0.4783

Table 2: Performance Comparison of Cross Domain with IRT and MIRT on NIPS34. The best performance is
highlighted in bold, and the the second-best performances is underlined.

Method ACC AUC RMSE due to the ambiguity of concept labels without con-
Eq.90; gus 0,  0.6755 0.7387 0.4546 text. This pattern validates the necessity of our
Eq.110,0Opeqnee.~ 0-6792  0.7404  0.4549 "knowledge diffusion" approach, which provides
LMCD 0.6813 0.7440 0.4525 detailed KC descriptions rather than relying solely

on potentially ambiguous concept labels.
Table 3: Different strategies to representing p and 3.



4.5 "Difficulty' Analysis (RQ4)

Figure 4 compares exercise difficulty and student
performance using data from 5 randomly selected
students from NIPS34, each having completed over
50 exercises in the cold domain.The top panel
displays LMCD-modeled relative difficulty, while
the bottom shows BERT-based absolute difficulty.
Both models demonstrate that incorrect responses
(orange) typically exhibit higher difficulty levels
compared to correct responses (blue), which aligns
with intuitive expectations. However, LMCD’s rel-
ative difficulty measure demonstrates significantly
better discrimination, with less overlap between
correct and incorrect response distributions. This
clearer separation indicates that relative difficulty
modeling provides a more effective representation
for cognitive diagnosis and performance prediction.
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Figure 4: Relative difficulty vs Absolute difficulty.

5 Related Work

Cognitive Diagnosis. Cognitive diagnosis in edu-
cation has evolved from traditional psychometric
approaches to deep learning models. Early meth-
ods like IRT (Lord, 1952) and MIRT (Reckase,
2006) model student-exercise interactions through
logistic functions, while DINA (De La Torre, 2009)
introduce slip and guess parameters. These founda-
tional approaches offered interpretability but lim-
ited expressiveness. NCDM (Wang et al., 2020a)
mark a significant advancement by leveraging neu-
ral networks to capture more complex knowledge
representations. Recent research has expanded the

modeling scope by incorporating additional factors
such as emotional states (Wang et al., 2024b), unla-
beled data (Chen et al., 2023), and response time
(Maetal., 2025a). Despite advances, most methods
struggle in cold-start scenarios with limited data.

Cold-start in Cognitive Diagnosis. Solutions
primarily fall into two categories, graph-based and
NLP-based approaches. Graph-based methods (Liu
et al.,, 2024a; Gao et al., 2023, 2024) leverage
structural relationships between educational enti-
ties. TechCD (Gao et al., 2023) leverage tailored
knowledge concept graphs linking different do-
mains but requires overlapping students. ZeroCD
(Gao et al., 2024) utilizes early bird students in tar-
get domains to learn transferable cognitive signals,
though this requirement limits practical application.
NLP-based approaches show promising results by
utilizing language models like BERT to encode
exercise text (Gao et al., 2023, 2024), but face lim-
its such as oversimplifying exercise difficulty and
misreading unclear texts, leading to inaccuracies in
cross-domain settings.

LLMs in Cognitive Diagnosis. LLMs have rev-
olutionized natural language processing with ad-
vanced comprehension (Brown et al., 2020) and
reasoning capabilities (Kojima et al., 2022; Ma
et al., 2025b), but their integration with cognitive
diagnosis remains nascent. Current approaches
include LRCD (Liu et al., 2025), which embeds
students, exercises, and concepts into a unified lan-
guage space; and KCD (Dong et al., 2025), which
exploits LLMs’ reasoning ability to generate diag-
nostic information for students and exercises. How-
ever, these approaches’ simplistic use of LLMs
limits their effectiveness in cold-start scenarios.

6 Conclusion

In this paper, we proposed LMCD, a novel frame-
work that harnesses LLMs to address cold-start
challenges in cognitive diagnosis. Our approach
innovatively leverages knowledge diffusion to es-
tablish stronger cross-domain semantic connec-
tions and employs causal attention mechanisms
to model relative difficulty and student features.
Experiments on two real-world datasets confirm
that LMCD significantly outperforms state-of-the-
art methods in both exercise-cold and domain-cold
settings. To our knowledge, this is the first work
that takes advantage of the inherent mechanisms of
LLM to address cold-start cognitive diagnosis prob-
lems, marking a significant advance in the field.



Limitations

Despite significant improvements in exercise cold-
start and cross-domain scenarios through our stu-
dent token approach and causal attention interac-
tion mechanism, our method faces limitations in
diagnosing new students. Only students with train-
ing data have corresponding embedding represen-
tations, restricting new student cold-start applica-
tions. A potential workaround involves substituting
new students with trained students having similar
response patterns, a common approach in this field
(Long et al., 2022). Additionally, our LLM-based
approach contains substantially more parameters
than traditional CD models, making it less suitable
for time-sensitive applications. However, we con-
sider this computational cost justified for challeng-
ing cold-start scenarios, and expect that smaller,
more efficient models will become viable as LLM
technology advances.
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A Appendix
A.1 Details about the Datasets

In this research, we selected two real-world online
education datasets, XES3G5M and NIPS34, which
vary in size and sparsity, to comprehensively evalu-
ate the performance of our proposed method across
different practical application scenarios. The sta-
tistical information of the datasets is presented in
Table 4.

NIPS34: A sub-dataset of the NeurIPS Edu-
cation Challenge, containing Tasks 3 and 4, is
a powerful resource tailored to the advancement
of educational data analytics and machine learn-
ing applications within the education field. The
dataset comprises crowdsourced diagnostic math-
ematics exercises collected from the Eedi educa-
tional platform between September 2018 and May
2020, targeting students from elementary through
high school. Task 3 aims to accurately predict
which exercises are of high quality, while Task 4
seeks to determine a personalized sequence of exer-
cises for each student that optimally predicts their
responses. NIPS34 contains a variety of features
including interaction logs, the content of the ex-
ercises in picture format, the names of the KCs



and their structured annotations, which allow for a
comprehensive analysis of learning behaviors and
outcomes. NIPS34 contains more than 1,300,000
records, providing a wealth of high-quality data
suitable for multiple types of tasks, making it an
invaluable tool for conducting cognitive diagnosis
research.

XES3G5M: XES3G5M is a large-scale dataset
comprising over five million interactions collected
from more than 18,000 third-grade students re-
sponding to approximately 8,000 math exercises.
It includes extensive auxiliary information related
to the exercises and their associated KCs. Sourced
from a real-world online mathematics learning plat-
form, XES3G5M not only encompasses the largest
number of KCs within the mathematics domain but
also provides the most comprehensive contextual
information. This includes hierarchical KC rela-
tionships, exercise types, Chinese textual content
and analyses, as well as timestamps of student re-
sponses. In this experiment, we use five-fold cross

XES3G5M NIPS34
#Student 11,453 4,918
#Exercise 7,652 948
#KC 1,175 86
#Log 5,139,044 1,382,727
#Log per student 448.7 281.2
#Log per exercise 671.6 1,458.6
#Sparsity(%) 5.1 29.7

Table 4: Statistics of datasets.

validation to ensure the reliability of the experi-
mental results. We use the full amount of NIPS34
data, and the XES dataset, due to the fact that there
are too many record exercises, has done the fol-
lowing treatment, and only 2000 students’ corre-
sponding records of doing the exercises are kept in
each fold. Table.5 displays the average data distri-
bution for each fold after implementing five-fold
cross-validation on both datasets.

A.2 Details about Baselines

In this subsection, we provide a detailed expla-
nation of the specific modifications made to each
baseline experiment based on its original imple-
mentation to adapt it to the data split used in the
specific cold-start scenario of this research:
IRT/MIRT: We adopt a three-parameter logis-
tic (3PL) form for the interaction function. The
temperature coefficient is maintained at its origi-
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Category NIPS35 XES3G5M
Cold Exercises (test) 186.6 1055.0
Cold Exercises (oracle) 190.0 1268.2
Hot Exercises 758.0 5169.2
Train Logs 1105934.0 243309.2
Oracle Logs 221434.0  48616.8
Test Logs 55359.0 12154.8

Table 5: Mean Statistics Across Folds

nal setting of 1.703, and the feature dimension of
MIRT is set to 4. Meanwhile, considering the spe-
cific types of the exercises, we set the upper bound
of the guess coefficient to 0.5. In addition, Xavier
initialization is applied to all embedding layers in
the models.

NeuralCD: We employ the default settings with-
out any modifications to ensure the consistency of
the experiment results.

TechCD: The model architecture remains con-
sistent with the original setup, with the addition of
optional IRT and MIRT predict heads. Furthermore,
undirected edges characterizing the similarity be-
tween fine-grained (depth > 3) KCs under the
same parent node are also introduced in the con-
struction of the Knowledge Concept Graph (KCG)
for the NIPS34 and XES3G5M datasets, based on
the provided KC tree structure.

NLP-base: We employ language models with
frozen weights to embed the textual information
of students and exercises, including descriptions
generated by LLMs, thereby replacing the ID em-
bedding layers in IRT/MIRT and NCDM. Experi-
ments are conducted using BERT, RoBERTa, and
BGE as text embedders. Specifically, we use bert-
base-uncased/chinese, bge-large-en/zh-v1.5, and
xlm-roberta-base for adaptation to datasets in dif-
ferent languages.

KCD: We use Qwen-Plus for information ex-
traction and diagnosis and modify the prompts as
follows. First, input interactions are truncated up
to 20 to avoid excessively long prompts, while
contents related to interactions are removed from
the prompts that generate descriptions for cold-
start data. Then, the text embedder employed is
bge-large-en/zh-v1.5, and a Chinese version of the
prompt was added for the XES3G5M dataset.



A.3 Details about Knowledge Diffusion

In order to generate descriptions for each KC, we
utilize the exact format of prompt as follows:

Prompt for KC Description Generation

System Prompt: "If you are a seasoned math teacher,
you need to generate explanations for each knowl-
edge concept in a knowledge graph. I will provide
you with the name of the knowledge concept and cor-
responding example problems, as well as names and
example problems of distractor knowledge concepts
that are not equivalent to it. Please carefully com-
pare them and generate a core explanation for each
knowledge concept."

KC Name: k¢arget
Example exercises for kiqrget:

QtaTget

Distractor KCs
KC Name:k., &

Example exercises for k}wg:
1
Qneg
.1
KC Name:k,,.4
Example exercises for Icﬁ’eg:

N
Qneg

\

KC Descriptions: Case 1

Target KC: Fractions, Decimals and Percentage
Equivalence

With distractor KCs:

"Fractions involve understanding parts of a whole and
performing mathematical operations such as addition,
subtraction, multiplication, and division using frac-
tional numbers. This includes interpreting fractions
visually and solving problems that require manipula-
tion of fractions in equations or patterns."

Without distractor KCs:

"Fractions represent parts of a whole and are written
as a numerator over a denominator. The numera-
tor indicates how many parts are being considered,
while the denominator shows the total number of
equal parts the whole is divided into. Operations with
fractions follow specific rules:

1. **Multiplication**: Multiply the numerators and
denominators separately, then simplify if necessary.

- Example: § x (-9) = 52 = -3.

3
2. *¥*Division**; ..."

Enrichment and robustness. As shown in Case
1, when describing the KC "Fractions, Decimals
and Percentage Equivalence," the inclusion of dis-
tractors effectively prevents the LLM from mechan-
ically enumerating definitions based solely on the
target KC’s name. Furthermore, it avoids an ex-
cessive focus on the content of example exercises
leading to redundant information. In summary,
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the inclusion of distractors not only enriches the
prompt but also enhances the robustness of the
generated results by mitigating sensitivity to the
selection of specific example exercises.

KC Descriptions: Case 2

Target KC: Angles

With distractor KCs:

"Angles are geometric measures that represent the
amount of turn between two intersecting lines or line
segments. They can be measured in degrees, esti-
mated visually, compared in size, or determined using
tools like protractors. Understanding angles involves
recognizing different types (acute, obtuse, right, etc.)
and performing operations such as addition, subtrac-
tion, or fraction-based calculations involving turns."

Without distractor KCs:

"An Angle is a measure of rotation or the amount of
turn between two intersecting lines or rays. Angles
are typically measured in degrees (°), with a full turn
equaling 360°. A half-turn corresponds to 180°, and
a quarter-turn equals 90°, which is also called a right
angle. Angles can be classified based on their size:
Acute angles are less than 90°.

Right angles are ...

To estimate or measure angles, tools such as protrac-
tors are used. Estimation involves comparing the
given angle to known reference angles (e.g., 90°,
180°). In cases where direct measurement is not
possible, logical reasoning or comparison may help

determine relationships between angles."

Abstraction and discrimination. Besides, as
shown in Case 2, which describe the KC "Angles",
the incorporation of distractors results in more
concise descriptions. These descriptions predomi-
nantly emphasize the knowledge and skill elements
rather than specific examples. In other words, dis-
tractor KCs facilitate the abstraction of concrete
exercises, thereby accentuating the differences be-
tween similar KCs at knowledge and skill level.
This abstraction contributes to higher precision and
discrimination between the generated descriptions.
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