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Abstract001

Cognitive Diagnosis (CD) has become a crit-002
ical task in AI-empowered education, sup-003
porting personalized learning by accurately004
assessing students’ cognitive states. How-005
ever, traditional CD models often struggle in006
cold-start scenarios due to the lack of student-007
exercise interaction data. Recent NLP-based008
approaches leveraging pre-trained language009
models (PLMs) have shown promise by uti-010
lizing textual features but fail to fully bridge011
the gap between semantic understanding and012
cognitive profiling. In this work, we pro-013
pose Language Models as Zeroshot Cognitive014
Diagnosis Learners (LMCD), a novel frame-015
work designed to handle cold-start challenges016
by harnessing large language models (LLMs).017
LMCD operates via two primary phases: (1)018
Knowledge Diffusion, where LLMs generate019
enriched contents of exercises and knowledge020
concepts (KCs), establishing stronger seman-021
tic links; and (2) Semantic-Cognitive Fusion,022
where LLMs employ causal attention mecha-023
nisms to integrate textual information and stu-024
dent cognitive states, creating comprehensive025
profiles for both students and exercises. These026
representations are efficiently trained with off-027
the-shelf CD models. Experiments on two real-028
world datasets demonstrate that LMCD signifi-029
cantly outperforms state-of-the-art methods in030
both exercise-cold and domain-cold settings.031
The code is publicly available at https://032
anonymous.4open.science/r/LMCD-464C/033

1 Introduction034

Cognitive Diagnosis Models (CDMs) have become035

pivotal in educational technology, offering data-036

driven insights into students’ cognitive states across037

different KCs,as shown in Figure 1(c). These mod-038

els are indispensable for developing personalized039

learning systems (Huang et al., 2019a; Yu et al.,040

2024),computerized adaptive testing (Bi et al.,041

2020; Wainer et al., 2000) and so on (Huang et al.,042

2019b). Traditional CDMs such as Item Response043

Figure 1: An illustration of the cold-start problem in
cognitive diagnosis. (a) is hierarchical KC tree. (b) is
sparse student-exercise interaction matrix. (c) is typical
cognitive diagnosis framework for addressing cold-start
problems.

Theory (IRT) (Lord, 1952), Multi-dimensional 044

IRT (MIRT) (Reckase, 2006), Deterministic Input 045

Noisy "And" gate model (DINA) (De La Torre, 046

2009), and Neural Cognitive Diagnosis Model 047

(NCDM) (Wang et al., 2020a) have demonstrated 048

significant success in conventional settings where 049

abundant student-exercise interaction data is avail- 050

able. 051

However, these established approaches face sub- 052

stantial challenges in cold-start scenarios where 053

there is little or no historical interaction data (Wang 054

et al., 2024a). Cold-start refers to scenarios in- 055

volving either new students or new exercises in- 056

troduced into the system. Furthermore, new exer- 057

cises can be classified into two types of cold-start 058

problems based on whether their corresponding do- 059

main appears in the training data,as illustrated in 060

Figure 1. Specifically, exercise cold-start occurs 061

when the new exercises belong to the same domain 062

as those seen in the training data, whereas cross- 063

domain cold-start arises when new exercises orig- 064

inate from entirely unseen domains, posing a more 065

significant challenge. 066

As shown in Figure 1(c), current approaches 067
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addressing these cold-start challenges generally068

fall into two categories: graph-based methods and069

NLP-based methods. Graph-based approaches, ex-070

emplified by works like ICDM (Liu et al., 2024a)071

and TechCD (Gao et al., 2023), construct relation-072

ships between exercises, KCs, and students to es-073

tablish connections between unseen and seen enti-074

ties through graph structures. Although innovative,075

these methods are limited by the accuracy of KC076

annotations and the scarcity of high-quality educa-077

tional knowledge graphs.078

NLP-based methods leverage pre-trained lan-079

guage models(PLMs) to encode exercise texts and080

KCs. These approaches have shown surprising ef-081

fectiveness, sometimes achieving competitive or082

superior results compared to SOTA models, as083

demonstrated in TechCD (Gao et al., 2023) and084

ZeroCD (Gao et al., 2024). Their ability to estab-085

lish connections through semantic similarity makes086

them particularly promising for cross-domain sce-087

narios. However, these methods face fundamental088

limitations in fully capturing cognitive complex-089

ity. For instance, exercises in NIPS34 (Wang et al.,090

2020b) with similar wording like "What is 4 writ-091

ten as a fraction?" and "What is a third of a sev-092

enth?" target entirely different KCs despite their093

textual similarity. Additionally, vague KC labels094

provide insufficient information for accurate repre-095

sentation through simple encoding. Most critically,096

these approaches struggle to effectively bridge se-097

mantic space with individual students’ cognitive098

states. Even the latest work leveraging large lan-099

guage models (Liu et al., 2024b; Dong et al., 2025;100

Liu et al., 2025) has not adequately addressed these101

limitations.102

Motivated by these challenges, we propose103

LMCD (Language Models as Zeroshot Cognitive104

Diagnosis Learners), a novel framework that lever-105

ages large language models to address exercise-106

cold and domain-cold scenarios—the most preva-107

lent challenges in online education environments.108

Specifically, the proposed LMCD operates in two109

primary phases: (1) Knowledge Diffusion, where110

LLMs generate enriched contents of exercises and111

KCs, creating stronger semantic links; and (2)112

Semantic-Cognitive Fusion, where we combine113

original exercise text with generated content and114

student-specific tokens as input to an LLM, us-115

ing causal attention to create comprehensive repre-116

sentations that fuse semantic space with cognitive117

states. Finally, we align these representations with118

conventional CDM parameters, modeling discrim-119

ination, and relative difficulty (how challenging 120

each exercise is for each specific student) rather 121

than absolute difficulty, enabling more precise pre- 122

diction of student performance. 123

The major contributions of our work are as fol- 124

lows: 125

(1) We pioneer the use of LLMs’ causal attention 126

mechanisms to capture dynamic student-exercise 127

interactions, introducing the first explicit modeling 128

of relative difficulty in cognitive diagnosis. 129

(2) We develop a flexible LLM-based framework 130

that seamlessly integrates with off-the-shelf CDMs, 131

enhancing their performance while maintaining 132

their theoretical foundations. 133

(3) Through extensive experiments on two real- 134

world datasets, we demonstrate LMCD’s signifi- 135

cant performance improvements in both exercise 136

cold-start and cross-domain cold-start scenarios 137

compared to state-of-the-art methods. 138

2 Preliminary 139

2.1 Knowledge Structure 140

In practical educational scenarios, KCs are typi- 141

cally organized into hierarchical tree structures, as 142

illustrated in Figure 1(a). In a top-down manner, 143

the root node K0 = ⟨K,R⟩ =
⋃M1

i=1Di represents 144

full dataset or its knowledge system (e.g., the node 145

"Math" in NIPS34), consisting of the complete 146

set of KCs K and the branch set R. Assuming 147

there are a total of M1 ≡ M1
0 nodes at depth 1, 148

each of them is considered a distinct domain Di = 149〈
K1

i ,R1
i

〉
, ∀i ∈ [1,M1], where K1

i = {klij | j ∈ 150

[1, 2, ...,M l
i ], l ∈ [1, 2, ...,max_depth]}, and 151

R1
i = {(kip, kiq) | kip, kiq ∈ K1

i }, (kip, kiq) is 152

a directed edge of the tree. Note that knowledge 153

across different domains is entirely isolated, that 154

is, K1
i ∩ K1

j = ∅, ∀i ̸= j. The hierarchical rela- 155

tionship(s) from the root to the leaf node(s) repre- 156

senting fine-grained terminal KCs associated with 157

exercise v, is called its "knowledge route" Kv. 158

2.2 Task Description 159

Based on the previous subsection, we define two 160

cold-start scenarios as follows: 161

Exercise cold-start. Following TechCD (Gao 162

et al., 2023), we define the cold-start scenario by 163

randomly dividing data into hot (H) and cold (C) 164

subsets at the exercise level. For the hot subset 165

H, we define students UH = {u1, u2, · · · , u|UH|}, 166

exercises VH = {v1, v2, · · · , v|VH|}, and 167

KCs KH = {k1, k2, · · · , k|KH|}. Student 168
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Figure 2: LMCD framework overview. (a) Knowledge Diffusion: LLMs generate enriched contents of exercises and
knowledge concepts. (b) Semantic-Cognitive Fusion: Causal attention mechanisms integrate textual information
with student-specific cognitive states to model relative difficulty.

exercise logs are represented as RH =169

{(u, v,Kv, yuv) | u ∈ UH, v ∈ VH}, where yuv ∈170

{0, 1} indicates whether student u answered ex-171

ercise v correctly(yuv = 1) or not, respectively.172

Similarly, for the cold subset C, we define UC , VC ,173

KC , and RC = {(u, v,Kv, yuv) | u ∈ UC , v ∈ VC}.174

Importantly, while exercises are separated between175

subsets, KCs overlap between them (KH∩KC ̸= ∅),176

meaning exercises in VH and VC share some or all177

of their knowledge domains.178

Cross-domain cold-start. Based on ZeroCD do-179

main level zero-shot cognitive diagnosis (DZCD)180

(Gao et al., 2024), we define a more constrained181

scenario than exercise cold-start. We partition K0182

at depth 1 into hot domain(s) H and cold domain(s)183

C. The set of KCs involved in H and C are defined184

as KH =
⋃MH

i=1 K1
i and KC =

⋃M
i=MH

K1
i , respec-185

tively.This scenario satisfies both KH ∩ KC = ∅186

and VH ∩ VC = ∅, meaning H and C are iso-187

lated at both exercise and domain levels. Ad-188

ditionally, all students from C must appear in189

the hot subset, formalized as UC ⊆ UH, where190

RH = {(u, v,Kv, yuv) | u ∈ UH, v ∈ VH}.191

Cognitive Diagnosis Model. CDMs infer stu-192

dents’ proficiency of specific KCs by analyzing193

their exercise responses. We define this generally194

as yuv = M(u, v), where yuv ∈ Rd represents195

student u’s performance on exercise v. The in-196

teraction equation M typically follows the form197

yuv = σ(β(p − d)), where p ∈ Rd represents198

student u’s proficiency, while d and β denote the 199

exercise v’s difficulty and discrimination respec- 200

tively. The dimension d varies by model: 1 for 201

IRT, the size of K for NCDM, or a fixed value for 202

MIRT. Parameters α and β are model-dependent, 203

expressed as elements in Rd or as scalars. 204

3 Methodology 205

3.1 Overview 206

Traditional CDMs face significant challenges in 207

cold-start scenarios due to weak connections be- 208

tween VH and VC . The proposed LMCD over- 209

comes these limitations with two core innovations. 210

First, Knowledge Diffusion, harnesses LLMs to en- 211

rich the content of exercises and KCs, strengthen- 212

ing semantic links (Section 3.2). Second, Semantic- 213

Cognitive Fusion, integrates the textual informa- 214

tion of the exercise with the student’s cognitive 215

state through Large Language Models (LLMs) to 216

generate a feedback representation of the student’s 217

response to the exercise.(Section 3.3). These en- 218

hanced representations are subsequently processed 219

by standard CDM heads to predict response proba- 220

bilities and knowledge proficiency, as illustrated in 221

Figure 2. 222

3.2 Knowledge Diffusion 223

NLP-based CDMs are limited by brief exercise 224

texts and vague KC labels, creating imprecise se- 225

mantic relationships. Similar-looking exercises of- 226
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ten test different KCs, while generic KC labels pro-227

vide insufficient information for accurate cold-start228

diagnosis.229

Our approach transforms concise educational230

texts into detailed, explicit representations through231

LLM-driven text-to-text generation. This process232

uncovers implicit knowledge within the original233

text, facilitating more precise differentiation and234

linkage across domains. We call this process235

"Knowledge Diffusion".236

This process can be applied to both exercise237

texts and KCs. As illustrated in Figure 2(a), we238

take "KC diffusion" as an example, with the spe-239

cific steps outlined as follows: (1) For each tar-240

get knowledge concept ktarget in K = KH ∪ KC ,241

we identify a set of semantically similar concepts242

Kneg = {k1neg, k2neg, ..., kNneg} as negative exam-243

ples, specifically selecting the top-N semantically244

similar KCs from sibling nodes of ktarget. (2) We245

collect exercises Vtarget that assess ktarget and cor-246

responding exercises V i
neg for each similar KC. (3)247

We prompt the LLM to generate enriched KC de-248

scriptions that explicitly distinguish between the249

target concept and its related concepts:250

k′target = LLM
(
ktarget, Qtarget,Kneg, Qneg

)
(1)251

This process yields the enriched knowledge con-252

cept set K′ = K′H ∪ K′C , establishing stronger se-253

mantic bridges between historical and cold-start do-254

mains. Notably, negative examples are crucial for255

generating discriminative content, unlike other ap-256

proaches (Liu et al., 2024b) that use only exercises257

of Ktarget. Comparative examples are provided in258

the Appendix A.3.259

3.3 Semantic-Cognitive Fusion260

As shown in Figure 2(b), we primarily focus on261

modifying the embedding layer of language mod-262

els to incorporate student cognitive state during263

forward propagation, while adapting the LLM out-264

put representation to various off-the-shelf CDMs.265

Specifically, given exercise v and student u, we266

leverage the LLM to generate a personalized feed-267

back representation unique to each student-exercise268

interaction. We then integrate these representations269

into the difficulty parameter d of CDM, and that270

can be considered as incorporating the student’s271

cognitive state, representing a form of relative diffi-272

culty.273

Input Embedding. We defined a special token274

for each student, for example, the token correspond-275

ing to student u is stuu. We also constructed a276

cognitive representation embedding layer, specifi- 277

cally used for encoding these student tokens, so the 278

cognitive representation of student u is as follows: 279

Eu = EMBLayercog(stuu) (2) 280

Student Feedback. To generate personalized 281

feedback representations, we align student embed- 282

ding Eu with the LLM’s semantic space. This 283

alignment enables the model to generate student- 284

specific feedback for each exercise v. Our approach 285

proceeds as follows: For a given exercise v, we first 286

encode all available textual information (including 287

LLM-generated knowledge concept descriptions) 288

using the LLM’s native embedding layer. Specifi- 289

cally: 290

Ev = EMBLayerllm(Concat[k′, v]) (3) 291

The dimension of Ev is S ×H , where S is the 292

length of the entire input text tokens, and H is the 293

hidden size of the LLM. We merge Eu into the last 294

dimension of Ev to get Efusion: 295

Efusion =

[
Ev

Eu

]
(4) 296

where Efusion ∈ R(S+1)×H . We feed Efusion into 297

the LLM backbone for forward propagation to ob- 298

tain the final representation Ofusion. 299

h0 = Efusion

hl = FFNl(Attnl(hl−1)), l = 1, 2, . . . , N

Ofusion = hl

(5) 300

where Attn and FFN represent the attention layer 301

and feed-forward network structure in the LLM 302

based on the Transformer architecture (Vaswani 303

et al., 2017), respectively, and N is the total num- 304

ber of layers in the LLM. Based on the obtained 305

Ofusion, we define the following student feedback 306

representation and exercise representation: 307

Ofeedback = Ofusion[:,−1] ∈ R1×H (6) 308
309

Ov = Ofusion[:,−2] ∈ R1×H (7) 310

Leveraging the causal attention mechanism of 311

LLMs, Ofeedback emerges as the product of interac- 312

tion between student cognitive state Eu and exer- 313

cise semantic space Ev. This interaction captures 314

how a specific student processes and responds to 315

a particular exercise’s content. Consequently, we 316

define Ofeedback as the personalized feedback repre- 317

sentation for student u on exercise v. In contrast, 318
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Ov is derived solely from the exercise’s textual319

information processing, representing the context-320

independent semantic encoding of exercise v.321

Output Projection. Here, we map the obtained322

representations to different CDM parameters and323

define a general form of CDMs as follows::324

yuv = fcdm(p,d, β) (8)325

where fcmd(·) represents the interaction function326

of different CDMs, p is the student’s proficiency, d327

is the difficulty of exercise, β is the discrimination328

parameter, and yuv is the predicted performance329

result of student u on exercise v. We projectively330

map the obtained Ofeedback, Eu and Ov to get d, p,331

β as follows:332

d = duv = Wd(Ofeedback) (9)333

p = Wp(Eu) (10)334

β = Wv(Ov) (11)335

We map Ofeedback to the difficulty and Ov to the336

discrimination, which are specific parameters of337

CDMs. To preserve the independence of pro-338

ficiency parameters (p), we ensure they remain339

free from exercise-specific information by deriv-340

ing them solely from student embeddings Eu. The341

entire framework is optimized end-to-end using342

cross-entropy loss:343

L = −
∑
u,v

yuv log yuv + (1− yuv) log(1− yuv)

(12)344

where (u, v, yuv) ∈ RH. We froze the LLM345

backbone parameters and fine-tuned it with LoRA346

(Hu et al., 2022). To better enable cognitive347

state and LLM semantic space fusion, we activate348

EMBLayerllm and EMBLayercog during training.349

4 Experimental350

In this section, we conduct comprehensive experi-351

ments to address the following research questions:352

• RQ1 How powerful is LMCD for the exercise353

cold-start task?354

• RQ2 Can LMCD effectively establish links355

across different domains?356

• RQ3 How effective are the key components357

of LMCD?358

• RQ4 Is relative difficulty more reasonable359

compared to absolute difficulty?360

4.1 Experimental Setup 361

Datasets. We selected two open-source real- 362

world datasets: NIPS34 (Wang et al., 2020b) and 363

XES3G5M (Liu et al., 2023), both with exercise 364

text, KC identifiers and their structural relation- 365

ships. For cold-start experiments, we applied 5- 366

fold cross-validation for exercise cold-start while 367

3-fold for cross-domain task: In each data division, 368

1 fold served as cold-start data, with 20% used as 369

test set and 80% for validation or Oracle model 370

training, while the remaining folds were used as 371

training set. See Appendix A.1 for specific details 372

on data handling. 373

Baselines. Here we compared the following 7 374

methods, applicable to IRT/MIRT/NCDM predic- 375

tion heads. 376

• Oracle: Both training and test sets are from 377

the cold subset C, representing the theoretical 378

upper bound on the performance of CDMs in 379

cold-start scenarios. 380

• Random: Correspondingly, the lower bound 381

of prediction skill is measured by randomly 382

sampling from Uniform(0, 1) as the student’s 383

correct response probability. 384

• TechCD (Gao et al., 2023): TechCD utilizes 385

graphical relationships between KCs to estab- 386

lish connections between students’ practiced 387

and unseen exercises, generating student rep- 388

resentations through historical interactions. 389

• NLP-based: Unlike TechCD, which only uses 390

BERT (Devlin et al., 2019) as a baseline, we 391

further incorporate stronger baselines, includ- 392

ing RoBERTa (Liu et al., 2019) and BGE 393

(Xiao et al., 2024), to provide a more compre- 394

hensive evaluation of semantic-based meth- 395

ods, while ensuring fairness in the experimen- 396

tal setup by using the same textual content. 397

• KCD (Dong et al., 2025): As the current 398

SOTA method, KCD utilizes LLMs for rea- 399

soning, transforming textual content and in- 400

teraction records into prompts to extract infor- 401

mation and generate summaries. These sum- 402

maries are mapped to the behavioral space of 403

CDMs and optimized via contrastive loss. 404

All the experimental details of the baseline ap- 405

proach can be found in Appendix A.2. 406

Metrics and Training Settings. We adopt com- 407

monly used metrics, namely the Area Under Curve 408

(AUC), the Prediction Accuracy (ACC), and the 409

Root Mean Square Error (RMSE), to validate the 410
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effectiveness of the CDMs. For all the metrics, ↑411

represents that a greater value is better, while ↓412

represents the opposite. Qwen-Plus was utilized to413

generate descriptions information for KCs, while414

Qwen2.5-1.5B-base (Yang et al., 2024) serving as415

the foundation model for our approach. Training416

was conducted using the DeepSpeed (Rasley et al.,417

2020) framework on 8×A800 GPUs, with a maxi-418

mum of 10 training epochs. The learning rate was419

set to 0.0001 with a linear scheduler.420

4.2 Performance on Exercise Cold-Start(RQ1)421

We conducted exercise cold-start experiments on422

the NIPS34 and XES3G5M datasets, with results423

summarized in Table 1. The key observations are as424

follows: (i) Our proposed LMCD consistently out-425

performed other methods across most experiments.426

Notably, the NLP-based approach utilizing BGE427

embeddings achieved the second-best performance428

in several cases, a result attributable to BGE’s429

strong semantic representation capabilities. This430

highlights the importance of LMCD’s strategy to431

integrate exercise text with student cognitive states,432

which surpasses methods relying solely on textual433

information. (ii) The graph-based TechCD meth-434

ods showed limited effectiveness in exercise cold-435

start scenarios. This stems from TechCD’s heavy436

reliance on topological relationships between KCs,437

which are sparse in real-world datasets, limiting its438

practical applicability.439

4.3 Performance on Cross-Domain440

Cold-Start(RQ2)441

We conducted more challenging cross-domain ex-442

periments on the NIPS34 dataset. Due to the spar-443

sity of knowledge embedding in NCDM, which444

cannot be transferred to cross-domain scenarios,445

we only performed experiments on IRT and MIRT.446

The specific results are reported in Table 2. We447

observe that: In cross-domain cold-start scenarios,448

LMCD achieved nearly optimal results in both Al-449

gebra and Geometry experiments, while KCD per-450

formed best in the Number domain. KCD works by451

using LLMs to generate textual summaries of both452

each student’s problem-solving behaviors and each453

exercise’s user-interaction statistics for transfer to454

CDMs during training. LMCD leverages textual455

description of KCs while incorporating students’456

cognitive information into problem representations.457

By contrast, TechCD failed completely in cross-458

domain scenarios mainly due to the fact that the459

cold-start data is isolated from the training set both460

at the KC and exercise level, and thus no transfer- 461

able knowledge among domains can be obtained 462

through the graph structure. In summary, exper- 463

imental results show LMCD demonstrates more 464

robust performance in cross-domain cold-start sce- 465

narios. 466

4.4 Ablation Studies (RQ3) 467

Impact of CDM parameter representation 468

strategies. We conducted ablation studies on 469

our proposed architecture to validate the effective- 470

ness of difficulty and discrimination representation. 471

Two LMCD variants were designed: substituting 472

Ofeedback with Ov in Eq.9, and conversely, replac- 473

ing Ov with Ofeedback in Eq.11. We employed IRT- 474

head on the NIPS34 for exercise cold-start. The 475

detailed results are reported in Table 3. The results 476

seem to reveal that optimal performance is achieved 477

when using Ofeedback to represent difficulty and Ov 478

to represent discrimination. This finding suggests 479

that difficulty appears to be personalized. 480

Figure 3: Impact of knowledge encoding strategies.

Impact of knowledge encoding strategies. Fig- 481

ure 3 demonstrates the effectiveness of our "knowl- 482

edge diffusion" approach across three experimental 483

conditions based on different inputs to Eq.3: Q (ex- 484

ercise text only), KQ (exercise text with knowledge 485

concept labels), and DKQ (adding LLM-generated 486

KC descriptions to KQ). 487

Results show that enriching encoding content 488

generally improves performance across models, 489

with LMCD and Roberta showing consistent gains 490

in AUC and reductions in RMSE. BERT, however, 491

performs worse with KQ than with Q alone, likely 492
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Dataset Method
IRT MIRT NCDM

ACC↑ AUC↑ RMSE↓ ACC↑ AUC↑ RMSE↓ ACC↑ AUC↑ RMSE↓

NIPS34

Oracle 0.7074 0.7738 0.4383 0.7076 0.7741 0.4381 0.7068 0.7711 0.4418
Random 0.4957 0.4907 0.5002 0.4614 0.4947 0.5265 0.5016 0.5016 0.5205
Bert 0.6575 0.7153 0.4651 0.6638 0.7217 0.4642 0.6653 0.7159 0.4707
Roberta 0.6576 0.7165 0.4631 0.6631 0.7204 0.4609 0.6630 0.7204 0.4610
Bge 0.6708 0.7285 0.4581 0.6752 0.7361 0.4581 0.6741 0.7339 0.4598
TechCD 0.5548 0.5560 0.4964 0.5520 0.5554 0.4969 0.5414 0.5575 0.5280
KCD 0.6504 0.7031 0.4871 0.6146 0.7044 0.4898 0.6607 0.7209 0.5819
LMCD 0.6813 0.7440 0.4525 0.6823 0.7431 0.4527 0.6776 0.7407 0.4545

XES3G5M

Oracle 0.7793 0.7597 0.3937 0.7782 0.7589 0.3946 0.7644 0.7166 0.4095
Random 0.4966 0.4998 0.5000 0.4980 0.4989 0.5001 0.4983 0.5068 0.5006
Bert 0.7528 0.6559 0.4218 0.7583 0.6615 0.4193 0.7220 0.6271 0.4470
Roberta 0.7578 0.6571 0.4194 0.7603 0.6578 0.4182 0.7100 0.6224 0.4622
Bge 0.7520 0.6593 0.4213 0.7601 0.6710 0.4182 0.7246 0.6261 0.4478
TechCD 0.7509 0.5232 0.4415 0.7509 0.5206 0.4448 0.7501 0.5545 0.4327
KCD 0.7584 0.6430 0.4725 0.7538 0.6542 0.4208 0.7602 0.6741 0.4162
LMCD 0.7560 0.6723 0.4181 0.7559 0.6742 0.4174 0.7436 0.6408 0.4284

Table 1: Performance of Exercise Cold Start on NIPS34 and XES3G5M datasets. The best performance is
highlighted in bold, and the the second-best performances is underlined.

CDM Method
Number as Target Algerbra as Target Geometry as Target

ACC↑ AUC↑ RMSE↓ ACC↑ AUC↑ RMSE↓ ACC↑ AUC↑ RMSE↓

IRT

Oracle 0.7215 0.7931 0.4278 0.7108 0.7691 0.4379 0.7172 0.7851 0.4329
Random 0.4932 0.5022 0.5002 0.5019 0.5015 0.5001 0.4864 0.4929 0.5004
Bert 0.6092 0.6573 0.4903 0.6251 0.6689 0.4800 0.6120 0.6462 0.4863
Roberta 0.6369 0.6824 0.4720 0.6483 0.6982 0.4692 0.6224 0.6718 0.4816
Bge 0.6204 0.6521 0.4957 0.5671 0.6496 0.5531 0.5979 0.6498 0.5145
TechCD 0.4827 0.5151 0.5059 0.4936 0.5071 0.5125 0.4959 0.5046 0.5084
KCD 0.6357 0.6945 0.4880 0.6505 0.7091 0.4857 0.6271 0.6726 0.4888
Our Method 0.6336 0.6837 0.4726 0.6518 0.7049 0.4658 0.6363 0.6843 0.4758

MIRT

Oracle 0.7223 0.7942 0.4272 0.7116 0.7694 0.4377 0.7180 0.7860 0.4324
Random 0.4354 0.4938 0.5328 0.5064 0.4951 0.5154 0.4770 0.5010 0.5224
Bert 0.6339 0.6712 0.4814 0.6318 0.6818 0.4761 0.6212 0.6683 0.4828
Roberta 0.6195 0.6432 0.5125 0.6524 0.7045 0.4659 0.6096 0.6339 0.5308
Bge 0.6341 0.6681 0.4842 0.6366 0.6904 0.4819 0.6115 0.6682 0.4879
TechCD 0.5646 0.5267 0.4956 0.4936 0.5153 0.5009 0.5231 0.5014 0.4995
KCD 0.6500 0.6974 0.4715 0.5922 0.7120 0.4992 0.6025 0.6754 0.4994
LMCD 0.6269 0.6888 0.4778 0.6551 0.7082 0.4656 0.6277 0.6821 0.4783

Table 2: Performance Comparison of Cross Domain with IRT and MIRT on NIPS34. The best performance is
highlighted in bold, and the the second-best performances is underlined.

Method ACC AUC RMSE
Eq.9Ofeedback←Ov 0.6755 0.7387 0.4546
Eq.11Ov←Ofeedback 0.6792 0.7404 0.4549
LMCD 0.6813 0.7440 0.4525

Table 3: Different strategies to representing p and β.

due to the ambiguity of concept labels without con- 493

text. This pattern validates the necessity of our 494

"knowledge diffusion" approach, which provides 495

detailed KC descriptions rather than relying solely 496

on potentially ambiguous concept labels. 497

7



4.5 "Difficulty" Analysis (RQ4)498

Figure 4 compares exercise difficulty and student499

performance using data from 5 randomly selected500

students from NIPS34, each having completed over501

50 exercises in the cold domain.The top panel502

displays LMCD-modeled relative difficulty, while503

the bottom shows BERT-based absolute difficulty.504

Both models demonstrate that incorrect responses505

(orange) typically exhibit higher difficulty levels506

compared to correct responses (blue), which aligns507

with intuitive expectations. However, LMCD’s rel-508

ative difficulty measure demonstrates significantly509

better discrimination, with less overlap between510

correct and incorrect response distributions. This511

clearer separation indicates that relative difficulty512

modeling provides a more effective representation513

for cognitive diagnosis and performance prediction.514

Figure 4: Relative difficulty vs Absolute difficulty.

5 Related Work515

Cognitive Diagnosis. Cognitive diagnosis in edu-516

cation has evolved from traditional psychometric517

approaches to deep learning models. Early meth-518

ods like IRT (Lord, 1952) and MIRT (Reckase,519

2006) model student-exercise interactions through520

logistic functions, while DINA (De La Torre, 2009)521

introduce slip and guess parameters. These founda-522

tional approaches offered interpretability but lim-523

ited expressiveness. NCDM (Wang et al., 2020a)524

mark a significant advancement by leveraging neu-525

ral networks to capture more complex knowledge526

representations. Recent research has expanded the527

modeling scope by incorporating additional factors 528

such as emotional states (Wang et al., 2024b), unla- 529

beled data (Chen et al., 2023), and response time 530

(Ma et al., 2025a). Despite advances, most methods 531

struggle in cold-start scenarios with limited data. 532

Cold-start in Cognitive Diagnosis. Solutions 533

primarily fall into two categories, graph-based and 534

NLP-based approaches. Graph-based methods (Liu 535

et al., 2024a; Gao et al., 2023, 2024) leverage 536

structural relationships between educational enti- 537

ties. TechCD (Gao et al., 2023) leverage tailored 538

knowledge concept graphs linking different do- 539

mains but requires overlapping students. ZeroCD 540

(Gao et al., 2024) utilizes early bird students in tar- 541

get domains to learn transferable cognitive signals, 542

though this requirement limits practical application. 543

NLP-based approaches show promising results by 544

utilizing language models like BERT to encode 545

exercise text (Gao et al., 2023, 2024), but face lim- 546

its such as oversimplifying exercise difficulty and 547

misreading unclear texts, leading to inaccuracies in 548

cross-domain settings. 549

LLMs in Cognitive Diagnosis. LLMs have rev- 550

olutionized natural language processing with ad- 551

vanced comprehension (Brown et al., 2020) and 552

reasoning capabilities (Kojima et al., 2022; Ma 553

et al., 2025b), but their integration with cognitive 554

diagnosis remains nascent. Current approaches 555

include LRCD (Liu et al., 2025), which embeds 556

students, exercises, and concepts into a unified lan- 557

guage space; and KCD (Dong et al., 2025), which 558

exploits LLMs’ reasoning ability to generate diag- 559

nostic information for students and exercises. How- 560

ever, these approaches’ simplistic use of LLMs 561

limits their effectiveness in cold-start scenarios. 562

6 Conclusion 563

In this paper, we proposed LMCD, a novel frame- 564

work that harnesses LLMs to address cold-start 565

challenges in cognitive diagnosis. Our approach 566

innovatively leverages knowledge diffusion to es- 567

tablish stronger cross-domain semantic connec- 568

tions and employs causal attention mechanisms 569

to model relative difficulty and student features. 570

Experiments on two real-world datasets confirm 571

that LMCD significantly outperforms state-of-the- 572

art methods in both exercise-cold and domain-cold 573

settings. To our knowledge, this is the first work 574

that takes advantage of the inherent mechanisms of 575

LLM to address cold-start cognitive diagnosis prob- 576

lems, marking a significant advance in the field. 577
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Limitations578

Despite significant improvements in exercise cold-579

start and cross-domain scenarios through our stu-580

dent token approach and causal attention interac-581

tion mechanism, our method faces limitations in582

diagnosing new students. Only students with train-583

ing data have corresponding embedding represen-584

tations, restricting new student cold-start applica-585

tions. A potential workaround involves substituting586

new students with trained students having similar587

response patterns, a common approach in this field588

(Long et al., 2022). Additionally, our LLM-based589

approach contains substantially more parameters590

than traditional CD models, making it less suitable591

for time-sensitive applications. However, we con-592

sider this computational cost justified for challeng-593

ing cold-start scenarios, and expect that smaller,594

more efficient models will become viable as LLM595

technology advances.596
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A Appendix 766

A.1 Details about the Datasets 767

In this research, we selected two real-world online 768

education datasets, XES3G5M and NIPS34, which 769

vary in size and sparsity, to comprehensively evalu- 770

ate the performance of our proposed method across 771

different practical application scenarios. The sta- 772

tistical information of the datasets is presented in 773

Table 4. 774

NIPS34: A sub-dataset of the NeurIPS Edu- 775

cation Challenge, containing Tasks 3 and 4, is 776

a powerful resource tailored to the advancement 777

of educational data analytics and machine learn- 778

ing applications within the education field. The 779

dataset comprises crowdsourced diagnostic math- 780

ematics exercises collected from the Eedi educa- 781

tional platform between September 2018 and May 782

2020, targeting students from elementary through 783

high school. Task 3 aims to accurately predict 784

which exercises are of high quality, while Task 4 785

seeks to determine a personalized sequence of exer- 786

cises for each student that optimally predicts their 787

responses. NIPS34 contains a variety of features 788

including interaction logs, the content of the ex- 789

ercises in picture format, the names of the KCs 790
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and their structured annotations, which allow for a791

comprehensive analysis of learning behaviors and792

outcomes. NIPS34 contains more than 1,300,000793

records, providing a wealth of high-quality data794

suitable for multiple types of tasks, making it an795

invaluable tool for conducting cognitive diagnosis796

research.797

XES3G5M: XES3G5M is a large-scale dataset798

comprising over five million interactions collected799

from more than 18,000 third-grade students re-800

sponding to approximately 8,000 math exercises.801

It includes extensive auxiliary information related802

to the exercises and their associated KCs. Sourced803

from a real-world online mathematics learning plat-804

form, XES3G5M not only encompasses the largest805

number of KCs within the mathematics domain but806

also provides the most comprehensive contextual807

information. This includes hierarchical KC rela-808

tionships, exercise types, Chinese textual content809

and analyses, as well as timestamps of student re-810

sponses. In this experiment, we use five-fold cross

XES3G5M NIPS34
#Student 11,453 4,918
#Exercise 7,652 948

#KC 1,175 86
#Log 5,139,044 1,382,727

#Log per student 448.7 281.2
#Log per exercise 671.6 1,458.6

#Sparsity(%) 5.1 29.7

Table 4: Statistics of datasets.

811
validation to ensure the reliability of the experi-812

mental results. We use the full amount of NIPS34813

data, and the XES dataset, due to the fact that there814

are too many record exercises, has done the fol-815

lowing treatment, and only 2000 students’ corre-816

sponding records of doing the exercises are kept in817

each fold. Table.5 displays the average data distri-818

bution for each fold after implementing five-fold819

cross-validation on both datasets.820

A.2 Details about Baselines821

In this subsection, we provide a detailed expla-822

nation of the specific modifications made to each823

baseline experiment based on its original imple-824

mentation to adapt it to the data split used in the825

specific cold-start scenario of this research:826

IRT/MIRT: We adopt a three-parameter logis-827

tic (3PL) form for the interaction function. The828

temperature coefficient is maintained at its origi-829

Category NIPS35 XES3G5M

Cold Exercises (test) 186.6 1055.0
Cold Exercises (oracle) 190.0 1268.2
Hot Exercises 758.0 5169.2

Train Logs 1105934.0 243309.2
Oracle Logs 221434.0 48616.8
Test Logs 55359.0 12154.8

Table 5: Mean Statistics Across Folds

nal setting of 1.703, and the feature dimension of 830

MIRT is set to 4. Meanwhile, considering the spe- 831

cific types of the exercises, we set the upper bound 832

of the guess coefficient to 0.5. In addition, Xavier 833

initialization is applied to all embedding layers in 834

the models. 835

NeuralCD: We employ the default settings with- 836

out any modifications to ensure the consistency of 837

the experiment results. 838

TechCD: The model architecture remains con- 839

sistent with the original setup, with the addition of 840

optional IRT and MIRT predict heads. Furthermore, 841

undirected edges characterizing the similarity be- 842

tween fine-grained (depth ≥ 3) KCs under the 843

same parent node are also introduced in the con- 844

struction of the Knowledge Concept Graph (KCG) 845

for the NIPS34 and XES3G5M datasets, based on 846

the provided KC tree structure. 847

NLP-base: We employ language models with 848

frozen weights to embed the textual information 849

of students and exercises, including descriptions 850

generated by LLMs, thereby replacing the ID em- 851

bedding layers in IRT/MIRT and NCDM. Experi- 852

ments are conducted using BERT, RoBERTa, and 853

BGE as text embedders. Specifically, we use bert- 854

base-uncased/chinese, bge-large-en/zh-v1.5, and 855

xlm-roberta-base for adaptation to datasets in dif- 856

ferent languages. 857

KCD: We use Qwen-Plus for information ex- 858

traction and diagnosis and modify the prompts as 859

follows. First, input interactions are truncated up 860

to 20 to avoid excessively long prompts, while 861

contents related to interactions are removed from 862

the prompts that generate descriptions for cold- 863

start data. Then, the text embedder employed is 864

bge-large-en/zh-v1.5, and a Chinese version of the 865

prompt was added for the XES3G5M dataset. 866
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A.3 Details about Knowledge Diffusion867

In order to generate descriptions for each KC, we868

utilize the exact format of prompt as follows:869

Prompt for KC Description Generation

System Prompt: "If you are a seasoned math teacher,
you need to generate explanations for each knowl-
edge concept in a knowledge graph. I will provide
you with the name of the knowledge concept and cor-
responding example problems, as well as names and
example problems of distractor knowledge concepts
that are not equivalent to it. Please carefully com-
pare them and generate a core explanation for each
knowledge concept."
————————————————
KC Name: ktarget
Example exercises for ktarget:
Qtarget

————————————————
Distractor KCs
KC Name:k1

neg

Example exercises for k1
neg:

Q1
neg

...
KC Name:kn

neg

Example exercises for kN
neg:

QN
neg

870

KC Descriptions: Case 1

Target KC: Fractions, Decimals and Percentage
Equivalence
————————————————
With distractor KCs:
"Fractions involve understanding parts of a whole and
performing mathematical operations such as addition,
subtraction, multiplication, and division using frac-
tional numbers. This includes interpreting fractions
visually and solving problems that require manipula-
tion of fractions in equations or patterns."
————————————————
Without distractor KCs:
"Fractions represent parts of a whole and are written
as a numerator over a denominator. The numera-
tor indicates how many parts are being considered,
while the denominator shows the total number of
equal parts the whole is divided into. Operations with
fractions follow specific rules:
1. **Multiplication**: Multiply the numerators and
denominators separately, then simplify if necessary.
- Example: 1

3
× (−9) = −9

3
= −3.

2. **Division**: ..."
871

Enrichment and robustness. As shown in Case872

1, when describing the KC "Fractions, Decimals873

and Percentage Equivalence," the inclusion of dis-874

tractors effectively prevents the LLM from mechan-875

ically enumerating definitions based solely on the876

target KC’s name. Furthermore, it avoids an ex-877

cessive focus on the content of example exercises878

leading to redundant information. In summary,879

the inclusion of distractors not only enriches the 880

prompt but also enhances the robustness of the 881

generated results by mitigating sensitivity to the 882

selection of specific example exercises. 883

KC Descriptions: Case 2

Target KC: Angles
————————————————
With distractor KCs:
"Angles are geometric measures that represent the
amount of turn between two intersecting lines or line
segments. They can be measured in degrees, esti-
mated visually, compared in size, or determined using
tools like protractors. Understanding angles involves
recognizing different types (acute, obtuse, right, etc.)
and performing operations such as addition, subtrac-
tion, or fraction-based calculations involving turns."
————————————————
Without distractor KCs:
"An Angle is a measure of rotation or the amount of
turn between two intersecting lines or rays. Angles
are typically measured in degrees (◦), with a full turn
equaling 360◦. A half-turn corresponds to 180◦, and
a quarter-turn equals 90◦, which is also called a right
angle. Angles can be classified based on their size:
Acute angles are less than 90◦.
Right angles are ...

To estimate or measure angles, tools such as protrac-

tors are used. Estimation involves comparing the

given angle to known reference angles (e.g., 90◦,

180◦). In cases where direct measurement is not

possible, logical reasoning or comparison may help

determine relationships between angles."
884

Abstraction and discrimination. Besides, as 885

shown in Case 2, which describe the KC "Angles", 886

the incorporation of distractors results in more 887

concise descriptions. These descriptions predomi- 888

nantly emphasize the knowledge and skill elements 889

rather than specific examples. In other words, dis- 890

tractor KCs facilitate the abstraction of concrete 891

exercises, thereby accentuating the differences be- 892

tween similar KCs at knowledge and skill level. 893

This abstraction contributes to higher precision and 894

discrimination between the generated descriptions. 895
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