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ABSTRACT

Multi-agent systems (MAS) built on Large Language Models (LLMs) are being
used to approach complex problems and can surpass single model inference. How-
ever, their success hinges on navigating a fundamental cognitive tension: the need
to balance broad, divergent exploration of the solution space with a principled,
convergent synthesis to the optimal solution. Existing paradigms often strug-
gle to manage this duality, leading to premature consensus, error propagation,
and a critical credit assignment problem that fails to distinguish between genuine
reasoning and superficially plausible arguments. To resolve this core challenge,
we propose the Multi-Agent Exploration–Synthesis framework Through Role
Orchestration (MAESTRO), a principled paradigm for collaboration that struc-
turally decouples these cognitive modes. MAESTRO uses a collective of parallel
Execution Agents for diverse exploration and a specialized Central Agent for con-
vergent, evaluative synthesis. To operationalize this critical synthesis phase, we
introduce Conditional Listwise Policy Optimization (CLPO), a reinforcement
learning objective that disentangles signals for strategic decisions and tactical ra-
tionales. By combining decision-focused policy gradients with a list-wise rank-
ing loss over justifications, CLPO achieves clean credit assignment and stronger
comparative supervision. Experiments on mathematical reasoning and general
problem-solving benchmarks demonstrate that MAESTRO, coupled with CLPO,
consistently outperforms existing state-of-the-art multi-agent approaches, deliver-
ing absolute accuracy gains of 6% on average and up to 10% at best.

1 INTRODUCTION

The rise of large language models (LLMs) have enabled a new type of multi-agent system (MAS)
(Park et al., 2023; Chen et al., 2023a; Zhu et al., 2025), where multiple model instances collaborate to
tackle problems that exceed the capacity of any single model (Zhang et al., 2024a; Qiao et al., 2024;
Han et al., 2025). By distributing roles and enabling structured interaction, MASs hold the promise
of achieving robustness, creativity, and reliability that emerge from collective intelligence (Cheng
et al., 2024; Pezeshkpour et al., 2024). At the heart of any effective collaborative system lies a
fundamental cognitive tension. Early work in the psychology of creativity (Runco & Chand, 1995;
Brophy, 2001; Zhang et al., 2020) emphasizes that intelligent problem-solving requires a dynamic
balance between two seemingly contradictory modes of thought: Divergent Creativity and Conver-
gent Critique. Guilford’s theory of divergent and convergent thinking (Guilford, 1967) formalizes
this duality: divergence is the generative process of exploring a wide array of alternative hypotheses,
while convergence is the evaluative process of comparing, refining, and synthesizing these options.
Without the former, a system risks premature closure; without the latter, it risks incoherence and
indecision (Sternberg & Lubart, 1991; Cropley, 2006). Achieving a principled and effective synergy
between these two capabilities is the essential challenge for effective LLM agent collaboration.

Despite their diversity, the limitations of existing paradigms point to a set of recurring requirements
for advancing multi-agent collaboration. First, an effective system should strike a balance between
divergent exploration and convergent synthesis, ensuring that creativity is not stifled by premature
agreement yet also not lost in unbounded search. Second, it should enable disentangled credit
assignment across structured outputs (Li et al., 2025; He et al., 2025), so that strategic decisions and
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Figure 1: Overview of the MAESTRO framework. First, N execution agents each generate K
candidate reasoning-answer pairs, forming a broad solution pool. A central agent then governs
exploitation by applying discriminative selection over the candidate set. The decision policy πθ

is trained under Conditional Listwise Policy Optimization (CLPO), which integrates a choice-
aware objective, a reasoning-rank objective, and regularization terms including KL divergence and
entropy. The endorsed candidate is subsequently broadcast for iterative refinement, enabling multi-
round improvement within a principled multi-agent collaboration paradigm.

supporting rationales receive distinct and targeted learning signals rather than being conflated into a
single monolithic reward. Third, a robust framework requires transparent and scalable interaction
protocols (Qian et al., 2024; Hu et al., 2024c), where information is propagated in analyzable ways
that remain efficient as the number of agents and rounds increases (Yang et al., 2025). Together,
these desiderata highlight the limitations of existing approaches and motivate the need for a new
paradigm that integrates principled exploration, evaluative precision, and collaborative scalability.

To address these desiderata, we propose the Multi-Agent Exploration–Synthesis framework
Through Role Orchestration (MAESTRO), a principled paradigm for multi-agent collaboration
(Figure 1). The effectiveness of MAESTRO arises not from any single component, but from the
synergistic orchestration of specialized roles. MAESTRO explicitly operationalizes the divergent–
convergent duality through a structured role orchestration: (i) Divergence as Collective Explo-
ration, where multiple Execution Agents generate a broad and diverse candidate pool; (ii) Conver-
gence as List-wise Bayesian Synthesis, where a Central Agent evaluates these candidates to iden-
tify and endorse the most promising solution; and (iii) Broadcast as Public Conditioning, where
the endorsed solution is propagated back to all agents, guiding the next round of exploration. This
cycle of divergence, convergence, and broadcast structures collaboration into analyzable and scal-
able phases. To further optimize the convergence phase, we introduce Conditional Listwise Policy
Optimization (CLPO), a reinforcement learning objective that disentangles decision-making from
rationale generation. Unlike standard GRPO-style sequence-level training, CLPO allocates learning
signal separately to decisions (which candidate to endorse) and reasons (why this choice is defensi-
ble). MAESTRO and CLPO constitute a new paradigm for multi-agent collaboration that integrates
cognitive inspiration with principled optimization. The main contributions of this paper are:

• We introduce the Multi-Agent Exploration–Synthesis framework Through Role Orchestration
(MAESTRO), a principled paradigm for multi-agent collaboration that explicitly operationalizes
the divergent–convergent duality through three coordinated phases.

• We propose Conditional Listwise Policy Optimization (CLPO), an RL objective that decouples
signals for decisions and reasons. CLPO combines group-relative decision optimization with
listwise rationale ranking for clean credit assignment and stable convergence.

• Extensive experiments on mathematical and general reasoning benchmarks show that MAE-
STRO with CLPO achieves significant improvements over state-of-the-art baselines.

2 RELATED WORK

We highlight representative related works in multi-agent LLM collaboration and RL for multi-agent
LLMs. For a more in-depth account of related work, see Appendix A.
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Multi-Agent LLM Collaboration. Large language model (LLM) based multi-agent systems have
been proposed to overcome the inherent limits of single models in context length, sequential reason-
ing, and skill breadth (Abdelnabi et al., 2023; Wu et al., 2024; Yan et al., 2025; Dai et al., 2025). By
coordinating multiple agents, these systems can decompose tasks, critique candidate solutions, and
integrate diverse perspectives (Hong et al., 2023; Chen et al., 2023b; Qiao et al., 2024; Pan et al.,
2024). One common design follows prestructured coordination, where communication topologies
and protocols are fixed in advance (Chen et al., 2024; Mukobi et al., 2023; Wang et al., 2023; Ab-
delnabi et al., 2024). Debate and peer-review frameworks (Du et al., 2023; Chan et al., 2023; Liu
et al., 2024) encourage agents to cross-examine one another, while chain or graph structures regu-
late message flow (Qian et al., 2024; Liu et al., 2023b). These methods reduce hallucinations and
improve consistency but often enforce early convergence, limiting exploration and leaving credit
assignment opaque (Hu et al., 2024a; Yue et al., 2025). A second line explores adaptive coor-
dination, where the collaboration graph is reorganized dynamically during inference. Examples
include routing and pruning strategies (Yue et al., 2025; Hu et al., 2024b), as well as workflow and
graph-search approaches that optimize interaction structures through reinforcement or evolutionary
methods (Zhuge et al., 2024; Zhang et al., 2024c;b).These frameworks improve scalability and effi-
ciency but typically treat feedback as a global property of the entire system, which limits their ability
to provide fine-grained credit assignment for individual contributions.

Reinforcement Learning for Multi-Agent LLMs. Reinforcement learning (RL) provides a nat-
ural mechanism for improving collaboration in multi-agent LLM systems beyond static prompt
design (Madaan et al., 2023; Zelikman et al., 2024; 2022; Zhuang et al., 2024; Zhu et al., 2025).
Rather than relying solely on prestructured debate or workflow rules, RL enables agents to adapt in-
teraction patterns from feedback, learning when and how to communicate to achieve stronger group
performance (Zhou et al., 2025; Wang et al., 2024; Xu et al., 2025; Wan et al., 2025; Park et al.,
2025; Yang & Thomason, 2025). These approaches show that reward-driven updates can uncover
strategies for dynamic role assignment, coordination, and decision aggregation. A central challenge
in this setting is credit assignment (Liu et al., 2023a; Zhang et al., 2024d;e; Li et al., 2024b). Most
existing methods propagate reward at the system level, treating outcomes as global properties of the
entire team (Jiang et al., 2025; Lin et al., 2025). This global reward fails to identify the specific con-
tributions of individual agents or to separate the quality of rationales from the correctness of final
decisions. Recent efforts attempt to design more targeted objectives (Wei et al., 2025; Alsadat &
Xu, 2024), but principled, fine-grained supervision remains limited. Our work focuses specifically
on the convergence step: we view it as a structured optimization problem and design an objective
that provides more precise credit assignment than existing system-level rewards.

3 METHODOLOGY

We introduce a novel learning paradigm to enhance the collective problem-solving capabilities of
multi-agent systems. We design a collaborative process through the lens of a new structural frame-
work, the Multi-Agent Exploration–Synthesis (MAESTRO) paradigm, which orchestrates the gen-
eration of diverse solutions and the subsequent critical evaluation. At the core of this framework lies
our primary algorithmic contribution, Conditional Listwise Policy Optimization (CLPO), a re-
inforcement learning algorithm specifically designed to train the central decision-making policy.
This methodology systematically addresses the challenges of credit assignment and signal poverty
inherent in complex, language-based collaborative tasks.

3.1 PRELIMINARIES

We study a round-based collaborative protocol for answering question q. In round t, each of
the N execution agents independently samples K candidates conditioned on the current context
s
(i)
t := (q, bt−1, z

(i)
t−1) for i ∈ [N ], where bt−1 denotes the previous public broadcast, and z

(i)
t−1 de-

notes the i-th agent’s private history (state). This yields a total slate Ct of N×K candidate responses.
The central policy then performs convergence by selecting one candidate in Ct to endorse and issues
a public broadcast bt that contains the index of the answer and optionally a brief justification. The
broadcast bt then conditions the next round t+ 1. This process stops after a fixed number of rounds
R, or when a stopping rule is met. Supervision is primarily the correctness of the endorsed answer
at termination, and an optional term rewards the comparative quality of the justification.

3
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3.2 THE MAESTRO FRAMEWORK: A PARADIGM FOR COLLECTIVE SYNTHESIS

We now formally introduce the Multi-Agent Exploration–Synthesis (MAESTRO) framework. MAE-
STRO operationalizes the divergent–convergent model of creative problem-solving in a principled
manner, by decomposing each round of the collaborative process into two distinct phases, which we
view through the lenses of Bayesian inference and information theory.

Phase 1: Divergence as Collective Exploration. The primary objective of the divergence phase
is to effectively explore the vast solution space, mirroring the divergent thinking process. This is
achieved through a collective of N parallel Execution Agents. Conditioned on the current state s(i)t ,
each agent is tasked with generating a diverse set of K candidate solutions. Note here that each
candidate solution is a complete trajectory, e.g., a full reasoning chain leading to a final answer.
Formally, each agent i ∈ [N ] at time t samples from its policy πϕ(i) as follows:

c
(i)
t,k ∼ πϕ(i)(· | q, z(i)t−1, bt−1), k ∈ [K]. (1)

This collective effort produces candidate pool Ct = {{c(i)t,k}Kk=1}Ni=1. A key metric for this phase is
the coverage probability (pt) that the pool contains at least one correct solution:

pt := Pr
( N⋃

i=1

K⋃
k=1

E(c
(i)
t,k)

∣∣∣ s(1)t , . . . , s
(N)
t

)
, (2)

where E(c) is the event that candidate c is correct. The primary goal of Phase 1 is to increase the
expected coverage pt in a fixed resource budget.

Epsilon-greedy exploration. To prevent over-conditioning during candidate generation, we allocate
a small broadcast-agnostic exploration mass using a simple epsilon-greedy strategy. Specifically, we
sample π̃ϕ(i)(· | q, z(i)t−1, bt) = (1 − ε)πϕ(i)(· | q, z(i)t−1, bt−1) + ε πbase

ϕ(i)(· | q) with default ε = 0.1,
where πϕ(i) is defined in (1). This yields a coverage floor: for any subset A of the candidate space,

π̃ϕ(i)(A | s(i)t ) ≥ ε πbase
ϕ(i)(A | q), so regions reachable by the base policy retain non-zero sampling

mass. In practice, we implement the mixture via per-sample random dropout, using the base prompt
with probability ε and otherwise conditioning on the broadcast and the agent’s private history.

Phase 2: Convergence as List-wise Bayesian Synthesis. Following divergent exploration in Phase
1, the convergence phase is orchestrated by a single Central Agent. Its role is to evaluate and
synthesize the collective information in the slate Ct. We view this step as approximating a Bayesian
decision over the posterior probabilities for round t:

η
(i)
t,k := Pr

(
E(c

(i)
t,k) | q, Ct

)
, i ∈ [N ], k ∈ [K]. (3)

Recall that under a 0–1 loss, the Bayes optimal action selects (i⋆, k⋆) ∈ argmaxi,k η
(i)
t,k. We there-

fore train our Central Agent’s policy, πθ(· | q, Ct), to approximate this optimal Bayes decision rule
via the CLPO loss (Section 3.3). The success of this phase is measured by the identification prob-
ability (qt), defined as the conditional probability that the policy selects a correct candidate given
that the slate Ct contains at least one correct option. Specifically, let St := {(i, k) ∈ [N ] × [K] |
E(c

(i)
t,k) holds} be the latent set of correct candidates and let (it, kt) ∼ πθ(· | q, Ct) denote the

centralized decision. Then the identification probability qt is defined as:

qt := Pr
(
(it, kt) ∈ St

∣∣ q, Ct, {|St| ≥ 1}
)
. (4)

This metric quantifies the agent’s critical evaluation and synthesis capability.

Broadcast as Public Conditioning. After selection in Phase 2, the Central Agent emits a public
broadcast bt, containing the endorsed index and a compact justification. This broadcast bt conditions
the next round t + 1. We can interpret the flow of information as reducing the Shannon entropy of
the ground-truth answer Y with respect to an observer’s posterior; by the chain rule for mutual
information, we have H(Y | q, b1:t) ≤ H(Y | q, b1:t−1) for all t, where b1:t = (b1, . . . , bt).

Overall Dynamics. We summarize the per-round behavior as a coverage–identification factorization
conditioned on the public context (q, bt−1). The system first attains coverage pt when the slate
contains at least one correct candidate, then achieves identification qt when the central policy selects

4
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a correct candidate. In Appendix B, we show the following cumulative reliability inequality: if
we have that both pt ≥ p and qt ≥ q almost surely for all t, then Pr(success within R rounds) ≥
1− (1− pq)R. An immediate consequence is the following tail inequality: if R ≥ 1

pq log
(
1
δ

)
, then

the probability of success within the first R rounds is at least 1− δ.

3.3 CONDITIONAL LISTWISE POLICY OPTIMIZATION (CLPO)

Having established the MAESTRO paradigm, the key question becomes how to optimize the conver-
gence process so that the Central Agent can reliably approximate the Bayesian decision rule.1 Con-
ceptually, the two phases of MAESTRO naturally align with the classical exploration–exploitation
trade-off: Phase 1 (divergence) expands the hypothesis space through exploration, while Phase 2
(convergence) serves as exploitation, transforming the diverse candidate set into a single endorsed
solution with a supporting rationale. This perspective makes the Phase 2 convergence step a natural
fit for reinforcement learning (RL) on the objective:

max
πθ

E(q,C)

[
r
(
q, C,Chosen,Reason

) ]
, (5)

where πθ denotes the policy of the Central Agent, C is the candidate pool of responses sub-sampled
over all R rounds, and r is our unified reward, which comprises answer correctness and rationale
quality assessed via reasoning attributes, as detailed in Appendix C.1. This formulation highlights
the two challenge at the heart of convergence: the Central Agent must both (i) provide a coherent
and discriminative rationale that distinguishes the endorsed solution from its competitors, and also
(ii) select the correct decision token.

Limitations of Naı̈ve Sequence-Level Optimization. A natural baseline for training (5) is Group
Relative Policy Optimization (GRPO) (Shao et al., 2024), which contrasts candidates within a group
and scales sequence log-probabilities by relative advantage. Although suitable for “pick-one-from-
K” settings, applying GRPO to full sequences exposes three core issues. First, it behaves like
pointwise supervision: updates treat each completion in isolation rather than judging rationales by
their strength relative to alternatives. Second, the reward signal is entangled across decision and
rationale tokens, which obscures credit assignment. Third, this entanglement induces spurious style
effects, where verbosity or lexical patterns receive undue credit and concise reasoning is penalized.

Conditional Listwise Policy Optimization (CLPO). We propose CLPO, a decoupled training loss
that first learns to produce reliable, discriminative rationales and then learns to make a reliable dis-
crete choice. Concretely, CLPO optimizes the rationale span with a conditional listwise ranking
objective (Xia et al., 2008) over the entire candidate set. CLPO allocates the reinforcement signal to
the decision tokens, using a focused policy-gradient update to sharpen identification without inter-
ference from explanation style. By matching each subproblem to the right objective, CLPO resolves
credit entanglement, reduces confounding factors from length/style, and stabilizes training.

Strategic Decision Loss (Lchoice). The convergence phase ultimately hinges on the central agent’s
ability to make a precise strategic decision: which candidate to endorse. To ensure a clean credit
signal, we allocate the reinforcement gradient exclusively to the decision tokens (the choice and
its corresponding answer), conditioned on the rationale context. This disentanglement prevents
reasoning length or style from interfering with the discrete choice. Formally, we define:

Lchoice = −E
[ |C|∑
k=1

Ak · log πθ(k | q, C)
]
, (6)

where the advantage Ak = r(ck)− r̄, and r̄ is the average reward within the candidate set. In prac-
tice, we mask the rationale tokens and aggregate log-probabilities only over the decision segment.

Tactical Argumentation Loss (Lreason rank). Agents articulate a justification along with a discrete
choice. In our framework, the rationale is generated before the final endorsement. We posit that a
justification should not only be plausible on its own, but its plausibility should surpass alternatives.
To capture this comparative quality, we employ a Listwise Ranking Loss (Xia et al., 2008). Formally,
let σ be the permutation that sorts the rewards in descending order, r(cσ1

) ≥ · · · ≥ r(cσ|C|). Write

1We do not consider optimizing the policies of the execution agents, which may further improve MAESTRO.
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Type Mech Model GSM8K MATH AIME AMC MMLU HumanEval

SA Ref Vanilla 0.7276 0.4285 0.0296 0.0803 0.5799 0.4756
SA Ref CoT 0.7422 0.4693 0.0370 0.1165 0.6157 0.5142
SA Ref SC 0.8079 0.5128 0.0407 0.1245 0.6830 0.5752

MA Prog PHP 0.8001 0.5371 0.0444 0.1566 0.6846 0.5650
MA Deb LLM-Debate 0.8352 0.5625 0.0556 0.1928 0.6759 0.5772
MA Deb Group-Debate 0.8398 0.5742 0.0519 0.2048 0.6989 0.5793
MA Dyn DyLAN 0.8203 0.5532 0.0370 0.1968 0.6685 0.6159
WF Dyn GPTSwarm 0.8489 0.5669 0.0578 0.1566 0.6967 0.5955
WF Dyn AgentPrune 0.8438 0.5437 0.0481 0.1647 0.6909 0.5711
WF Dyn AFlow 0.8375 0.5528 0.0444 0.1205 0.6931 0.6220

WF E-S MAESTRO 0.8703 0.5916 0.0556 0.2371 0.7052 0.6267
WF E-S w/ SFT 0.8769 0.5983 0.0538 0.2482 0.7085 0.6321
WF E-S w/ GRPO 0.8867 0.6129 0.0704 0.2630 0.7168 0.6538
WF E-S w/ CLPO 0.8933 0.6285 0.0851 0.2852 0.7238 0.6687

Table 1: Comparison of baseline and proposed methods using the LLaMA-8B backbone. The ta-
ble organizes models by Type (SA: single-agent, MA: multi-agent, WF: workflow-style framework)
and by Mechanism (Reflection, Progressive Prompting, Debate, Dynamic Coordination, and Explo-
ration–Synthesis). Underlined numbers indicate the best-performing baseline on each benchmark.

the justification for the k-th candidate in C as a token sequence yk,1:Lk
. We define this loss as:

Lreason rank = −
|C|∑
j=1

log
exp(sσj

)∑|C|
l=j exp(sσl

)
, sk =

1

Lk

Lk∑
τ=1

log πθ

(
yk,τ

∣∣ yk,1:τ−1, q, C
)
. (7)

The CLPO Objective. The CLPO training objective combines the two losses (6) and (7), with stan-
dard regularization terms to ensure stable exploration and prevent catastrophic forgetting. The policy
is regularized towards a reference policy πref (e.g., the initial SFT model) via a KL-divergence term
LKL = E [DKL(πθ(· | q, C) ∥πref(· | q, C))] and an entropy bonus LEntropy = E [H(πθ(· | q, C))] that
encourages exploration of justifications. The final objective is:

LCLPO = Lchoice + λrank · Lreason rank + λkl · LKL − λent · LEntropy. (8)

As we will see shortly, by decoupling the learning objectives for strategic choice and tactical argu-
mentation, CLPO delivers a richer and more stable gradient signal, ensuring clean credit assignment.

4 EXPERIMENTS

Experimental Setup. We evaluate our approach across diverse benchmarks, including mathemat-
ical reasoning (GSM8K, MATH, AIME, AMC), factual and analytical reasoning (MMLU), and
program synthesis (HumanEval), using Solve Rate, Accuracy, and Pass@1 as evaluation metrics.
Baselines span single-agent reasoning methods, peer-interaction frameworks, routing and topology
controllers, workflow and graph search approaches, and communication-efficient systems. Unless
otherwise noted, experiments use three agents and three communication rounds, with instruction-
tuned LLaMA-3B/8B and Qwen-3B/7B models under standard nucleus sampling. All reported re-
sults are averaged over three random seeds. See Appendix C.1 for a full account of settings.

4.1 MAIN EXPERIMENTS

Overall Performance. Table 1 shows that MAESTRO consistently surpasses both single-agent and
multi-agent baselines across six reasoning benchmarks. On the trainable backbone LLaMA-8B,
MAESTRO with CLPO achieves state-of-the-art accuracy, reaching 89.33% on GSM8K and 28.52%
on AMC, which corresponds to average gains of 4%–8% over strong baselines such as GPTSwarm,
AgentPrune, and Group-Debate. The improvements arise from two complementary effects: paral-
lel exploration increases coverage, while CLPO strengthens the central selector’s ability to identify
correct solutions. This dual mechanism is especially beneficial on competition-style math tasks

6
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Dataset Vanilla CoT SC Debate GPTS AP AF MAESTRO

GSM8K 93.17 93.68 93.32 94.66 94.66 94.89 92.30 95.60
MMLU 77.81 78.43 81.05 81.04 82.80 83.02 83.10 84.09
HumanEval 85.71 86.69 87.58 84.38 86.28 86.80 90.06 90.65

Table 2: Performance comparison on GSM8K, MMLU, and HumanEval using a GPT-4o-mini back-
bone. MAESTRO consistently achieves the highest accuracy across all benchmarks, outperforming
both single-agent methods (Vanilla, CoT, and SC) and existing multi-agent frameworks like Debate,
GPTSwarm (GPTS), AgentPrune (AP), and AFlow (AF). The improvements confirm that MAE-
STRO remains effective even when applied zero-shot to closed-source LLMs.

Model LLaMA-8B LLaMA-3B Qwen-7B Qwen-3B

Vanilla 0.7276 0.4685 0.9088 0.8337
CoT 0.7422 0.5014 0.9098 0.8456
SC 0.8079 0.5421 0.9295 0.8860

PHP 0.8001 0.6222 0.9330 0.8645
LLM-Debate 0.8352 0.7584 0.9363 0.8714
DyLAN 0.8203 0.7647 0.9315 0.8810
GPTSwarm 0.8489 0.6919 0.9227 0.8678
AgentPrune 0.8438 0.6502 0.9244 0.8643
AFlow 0.8375 0.6837 0.9286 0.8752

MAESTRO w/ CLPO 0.8933 0.8153 0.9512 0.9083

Table 3: Performance of collaborative reasoning baselines across four backbone LLMs (LLaMA-
8B, LLaMA-3B, Qwen-7B, Qwen-3B) on GSM8K. MAESTRO w/ CLPO consistently achieves the
highest accuracy, demonstrating robustness and generality across model architectures.

such as AMC and AIME, where incorrect but fluent candidates often mislead majority-voting or
self-consistency. Importantly, the gains are not limited to trainable backbones. As shown in Ta-
ble 2, even with the closed-source GPT-4o-mini under a prompt-only setting, MAESTRO achieves
the best or tied-best results on GSM8K, MMLU, and HumanEval. The consistency across open- and
closed-source models indicates that improvements stem from the collaborative orchestration itself
rather than parameter updates, establishing MAESTRO as a robust paradigm for multi-agent LLM
collaboration.

Cross-Backbone Consistency. To further examine the generality of our optimization strategy, we
applied MAESTRO with CLPO across different LLM backbones, including LLaMA-8B, LLaMA-
3B, Qwen-7B, and Qwen-3B (Table 3). We observe consistent improvements across all settings.
On GSM8K, the accuracy reaches 89.33% with LLaMA-8B, 81.53% with LLaMA-3B, 95.12%
with Qwen-7B, and 90.83% with Qwen-3B, establishing clear gains compared to their strongest re-
spective baselines. The effectiveness of CLPO is not confined to a specific model family or size.
Instead, as shown in Table 4, the optimization consistently enhances the identification probability
qt, enabling the central synthesis agent to more reliably distinguish correct solutions from plausible
distractors. Importantly, this pattern is also reflected on AMC, where the improvements are similarly
pronounced, underscoring that the collaborative mechanism combined with CLPO is broadly trans-
ferable across architectures. Overall, these findings confirm that MAESTRO with CLPO achieves ro-
bust gains across backbones, validating the universality of our collaborative optimization paradigm.

4.2 ANALYSIS EXPERIMENTS

Centralized Paradigm Variants: Selection vs. Generation. We now examine two natural central-
ized paradigms for convergence, namely generation and selection, to clarify why the latter forms the
core of MAESTRO (Figure 2). When the central agent directly generates a reasoning trajectory and
final answer (CENTRAL-GEN), the accuracy drops substantially. Incorporating self-consistency into
generation (CENTRAL-GEN+SC) yields only a marginal gain. In contrast, the selection paradigm
(CENTRAL-SELECT, ours) described in Section 3.2 attains the highest accuracy, reaching 0.870 on
GSM8K and 0.237 on AMC. Figure 2 (Right) further decomposes the results into coverage and iden-
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Figure 2: Comparison of collaboration paradigms. Left: task accuracy on AMC and GSM8K
across different central coordination strategies. Right: performance decomposed into coverage and
identification rates; central selection transforms diverse reasoning into reliable outcomes.

tification probabilities. The three paradigms exhibit similar coverage, but the identification probabil-
ity is markedly higher under CENTRAL-SELECT (0.8919 on GSM8K and 0.4551 on AMC), which
directly explains its superior end-to-end accuracy. We hypothesize that generation forces the central
agent to absorb long and noisy contexts from multiple candidates, often diluting critical distinctions
and amplifying misleading patterns. LLMs also tend to prioritize narrative coherence over factual
correctness, which makes direct generation vulnerable to self-consistent hallucinations (Farquhar
et al., 2024; Banerjee et al., 2025). Self-consistency mitigates randomness but cannot overcome
these structural issues. By contrast, the selection paradigm frames convergence as a discriminative
comparison among competing candidates, thereby preserving informative differences and reliably
elevating correct solutions. Figure 5 (appendix) contains a complementary visualization.

Evidence versus Verdict in Centralized Selection. We examine how different types of candidate
information influence the central selector’s decisions by comparing three settings: Reason-only (only
reasoning steps), Answer-only (only the final answer), and Both (ours, reasoning with the answer).
As shown in Figure 3, Answer-only yields the weakest performance (GSM8K 0.840, AMC 0.205),
while Reason-only performs better but remains slightly below the full setting. Since the candidate
pool is identical, coverage is unchanged and differences arise from identification capability. The
results show that reasoning and outcomes play complementary roles. Without reasoning, the selector
lacks evidential structure and often falls back on superficial heuristics. Without final outcomes, it
struggles to resolve cases where plausible reasoning paths diverge to different answers. Combining
both provides the strongest performance: reasoning paths supply discriminative evidence, while
answers anchor the verdict and disambiguate close cases.

Disentangled Optimization Signals in CLPO. To better understand the contribution of each opti-
mization signal in CLPO, we conduct an ablation study by removing either the decision-focused loss
Lchoice or the rationale ranking loss Lreason (Figure 3). Removing Lchoice causes a modest decline,
indicating that ranking-based supervision over rationales alone can sustain reasonable convergence.
In contrast, removing Lreason leads to a sharp degradation (AMC 0.261, GSM8K 0.881); without
comparative evaluation of explanations, the selector is more easily swayed by persuasive but incor-
rect candidates. The full CLPO objective achieves the best performance, confirming the necessity of
combining both terms. This pattern aligns with our design intuition: Lchoice strengthens decisiveness
by refining the probability of endorsing the correct candidate, while Lreason enforces discriminative
evidence quality by forcing correct rationales to outrank distractors. Their joint effect provides clean
credit assignment across decisions and justifications, ensuring that convergence is accurate.

4.3 HYPER-PARAMETER ANALYSIS

Scaling Agent Populations and Collaboration Rounds. We study how the size of the agent collec-
tive and the number of collaboration rounds influence performance. As shown in Figure 4, increas-
ing the population from two to four steadily improves accuracy (AMC 0.253 → 0.3052; GSM8K
0.8693 → 0.9037). Broader exploration raises the probability that at least one candidate is cor-
rect, and the central selector trained with CLPO can convert this coverage into higher identification
accuracy. Beyond four agents, however, gains saturate and slightly decline because redundancy in-
troduces distractors. A similar trend appears when varying the number of collaboration rounds (see
Figure 6 in the appendix). Adding one or two rounds improves identification by focusing exploration
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Figure 3: Ablation studies on central selection inputs and CLPO losses. Left: Reason-only, Answer-
only, and Both settings when passing candidate information to the central selector. Right: contribu-
tions of loss components studied by removing choice or reasoning supervision.

Figure 4: Effect of collaborative scale on reasoning performance. Left: accuracy with varying agent
numbers. Right: impact of sampling multiplicity. In each, the solid line corresponds to GSM8K
accuracy (right axis) and the dashed line corresponds to AMC accuracy (left axis).

through broadcasted evidence, while coverage changes little once the initial pool is large. Excessive
rounds reduce diversity, amplify early errors through herding, and increase stochastic variance. The
results highlight a consistent trade-off: additional agents and rounds enhance coverage and identifi-
cation up to a point, but beyond that redundancy and bias dominate. Moderate settings of 3–4 agents
and 2–3 rounds achieve the best balance. A more detailed analysis is provided in Appendix C.2.

Sampling Depth per Agent: Coverage–Variance Trade-off. We examine how the number of sam-
ples per agent (K) affects performance (Figure 4). As K increases from 2 to 3, accuracy improves
(AMC 0.2369 → 0.2852; GSM8K 0.8853 → 0.8933). After, gains saturate: GSM8K changes
little at K=4 and declines at K=5, while AMC peaks at K=3 before dropping, reflecting the ex-
ploration–synthesis decomposition. Larger K initially raises coverage, but multi-sampling from the
same policy quickly yields correlated and redundant outputs; deeper sampling inflates within-round
variance by drawing repeatedly from one agent rather than diversifying across agents. Once cover-
age nears saturation, additional samples contribute more noise than signal. These results suggest a
practical guideline: allocate budget to enlarging the number of agents to diversify hypotheses, while
keeping K modest so that the selector can reliably convert coverage into identification. A more
detailed analysis is provided in Appendix C.2.

5 CONCLUSION

We introduce MAESTRO, a principled framework for multi-agent collaboration that enables both
divergent exploration and convergent synthesis. We also present CLPO, an RL method that achieves
precise credit assignment through decision-focused optimization and comparative supervision. To-
gether these components yield consistent improvements across diverse reasoning benchmarks and
surpass state-of-the-art multi-agent methods. Looking ahead, we plan to investigate unified policy
objectives that jointly optimize exploration and synthesis, and continuous learning paradigms that
enable multi-agent collectives to refine collaboration dynamics through self-improvement over time.
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A A COMPREHENSIVE REVIEW OF RELATED WORK

A.1 MULTI-AGENT LLM COLLABORATION

Single LLM agents, despite their impressive individual capabilities, face fundamental limitations
in context length, sequential generation, and breadth of expertise. These constraints hinder perfor-
mance on tasks that demand parallel information processing, complementary skill sets, and the syn-
thesis of diverse perspectives (Gabriel et al., 2024; Liang et al., 2023; Xiong et al., 2023; Yin et al.,
2023; Zhang et al., 2023). To overcome these bottlenecks, researchers have increasingly turned to
multi-agent systems (MAS), where collectives of LLM-powered agents coordinate to realize forms
of collective intelligence in domains such as software engineering, complex planning, and scientific
discovery (Hong et al., 2023; Chen et al., 2023b; Jiang et al., 2023; Ning et al., 2023; Qiao et al.,
2024; Pan et al., 2024; Suzgun & Kalai, 2024; Chen et al., 2023a; Ishibashi & Nishimura, 2024).

Early approaches largely follow a prompt-based paradigm, where roles, protocols, and workflows
are specified by hand. Debate-style and critique frameworks (Du et al., 2023; Chan et al., 2023; Chen
et al., 2024; Mukobi et al., 2023; Wang et al., 2023; Abdelnabi et al., 2024) as well as corporate-
style pipelines such as MetaGPT (Hong et al., 2023; Qian et al., 2023) exemplify this direction.
These systems demonstrate the promise of structured collaboration but remain brittle because their
strategies are statically prescribed and cannot adapt or learn from experience (Jiang et al., 2023;
Liang et al., 2023; He et al., 2023).

Beyond static prompting, recent work introduces more principled coordination schemes. Prestruc-
tured paradigms adopt fixed interaction topologies, such as chains, trees, or graphs, to organize
communication and enforce critique (Du et al., 2023; Liu et al., 2024; Qian et al., 2024). In parallel,
self-organizing paradigms dynamically adapt collaboration graphs during inference using search,
pruning, or routing methods, as seen in DyLAN, MasRouter, GPTSwarm, and AFLOW (Liu et al.,
2023b; Hu et al., 2024b; Shang et al., 2024; Zhang et al., 2024b; Zhuge et al., 2024; Zhang et al.,
2024c; Hu et al., 2024a; Yue et al., 2025). These frameworks improve efficiency and flexibility, yet
they often reduce coordination to architectural wiring and lack mechanisms for fine-grained credit
assignment.

Complementary efforts focus on role specialization and organizational analogies, where agents are
differentiated as planners, solvers, or verifiers, or even structured as corporate roles such as CEO
and engineer (Hong et al., 2023; Li et al., 2023; Mandi et al., 2024; Talebirad & Nadiri, 2023; Du
et al., 2023; Chen et al., 2023b). Communication protocols vary between centralized, decentralized,
and hierarchical settings, as well as synchronous versus asynchronous exchanges (Jiang et al., 2023;
Ning et al., 2023; Pan et al., 2024; Liang et al., 2023; Zhang et al., 2023; Du et al., 2023; Chan et al.,
2023; Chen et al., 2024). These design choices trade off scalability, robustness, and overhead but
leave unresolved the fundamental question of how to separate decision-making from justification in
a principled manner.

Overall, existing MAS paradigms illuminate diverse strategies for orchestrating collaboration, but
they remain limited in their ability to balance broad exploration with reliable convergence and to
assign credit cleanly across agents and rationales.

A.2 REINFORCEMENT LEARNING FOR MULTI-AGENT LLMS.

A central trend in multi-agent LLM research is to move beyond static prompt engineering toward
learning from interaction. Early work explored supervised fine-tuning (SFT) on expert demon-
strations, which injects cooperative behaviors by imitation but is limited in adaptability to unseen
coordination settings (Madaan et al., 2023; Zelikman et al., 2024). In contrast, reinforcement learn-
ing (RL) supplies a reward-driven mechanism that allows agents to refine strategies from experience
and discover emergent collaboration patterns (Zhu et al., 2025; Zhuang et al., 2024). In practice,
SFT often initializes base policies, while multi-agent reinforcement learning (MARL) further tailors
them under task feedback (Zhu et al., 2025; Li, 2019; Zhang et al., 2021).

Recent efforts fall into three complementary directions. First, some approaches compile language
into structured controllers before learning, such as translating dialogue into plans, graphs, or code,
which grounds RL optimization in compact symbolic spaces (Zhuang et al., 2024; Jia et al., 2025).
Second, others focus on adaptive collaboration online, dynamically refining task decomposition,

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

agent assignment, or communication routing through RL signals (Zhou et al., 2025; Wang et al.,
2024; Xu et al., 2025; Li et al., 2024a). Third, direct policy optimization for reasoning behaviors has
gained traction, with GRPO- and PPO-style updates applied to cooperative justification and answer
selection, often combined with tool use or human feedback (Wan et al., 2025; Park et al., 2025; Han
et al., 2025). Across these directions, RL provides the flexibility to align multi-agent dynamics with
task objectives rather than relying solely on fixed prompts or wiring rules.

At the same time, this line of work highlights several core challenges. A prominent difficulty is credit
assignment: linguistic outputs entangle the correctness of discrete decisions with the plausibility
of accompanying rationales, making it unclear what aspect of behavior is being rewarded (Wei
et al., 2025; Jiang et al., 2025). Another challenge is efficient exploration in vast language action
spaces, where agents may generate superficially diverse but semantically redundant outputs (Liu
et al., 2023a; Zhang et al., 2024d). Finally, there is the issue of alignment of emergent behaviors,
since collaboration can amplify biases or drift without proper reward shaping (Alsadat & Xu, 2024;
Lin et al., 2025).

Our work follows this trajectory while placing a sharper emphasis on the convergence step of collab-
oration. Rather than treating group outcomes as a monolithic reward signal, we recast convergence
as a structured optimization problem that separates the supervision of rationales from decision sig-
nals. This perspective motivates the design of a new RL objective that provides comparative super-
vision across rationales while preserving clean decision gradients, complementing existing GRPO-
style multi-agent optimization.

B DERIVATION OF THE CUMULATIVE RELIABILITY INEQUALITY

In this section we provide a derivation of the cumulative reliability inequality from Section 3.2.

We start by defining the history (i.e., filtration) Ft := (q, θ1:t, ζ1:t), with F0 := q, where θ1:t denotes
the randomness of the execution agents for the first t rounds, and ζ1:t denotes the randomness of the
central agent for the first t rounds. Let Candt := {∃ (i, k) ∈ [N ] × [K] s.t. E(c

(i)
t,k) holds} denote

the event the round t slate Ct contains at least one correct candidate. Let (it, kt) ∼ πθ(· | q, Ct) be
the central decision made at time t. Then we have that, assuming pt ≥ p and qt ≥ q for non-random
p, q almost surely for all t:

ht := Pr(Successt | Ft−1)

= ECt|Ft−1
[Pr(Successt | Ft−1, Ct)]

(a)
= ECt|Ft−1

[1{Candt}Pr((it, kt) ∈ St | q, Ct, {|St| ≥ 1})]
(b)
= ECt|Ft−1

[1{Candt}qt]
(c)

≥ ECt|Ft−1
[1{Candt}]q

= Pr(Candt | Ft−1)q

(d)
= Pr(Candt | q, s(1:N)

t )q

(e)
= ptq

(f)

≥ pq,

where in (a) we used the fact that the decision (it, kt) is generated conditioned only on (q, Ct), (b)
is the definition of qt from (4), (c) uses our lower bound assumption on qt, (d) uses the fact that
the candidate decisions Ct are generated conditioned on (q, z

(1:N)
t−1 , bt−1), which is contained within

Ft−1, (e) is the definition of pt from (2), and (f) uses our lower bound assumption on pt.
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Now, let Xt := 1{Successt}. By definition we have that Xt is Ft-measurable. Hence by repeated
applications of the tower-property of conditional expectations,

Pr(Fail all R rounds) = E

[
R∏

t=1

(1−Xt)

]

= E

[
E

[
R∏

t=1

(1−Xt) | FR−1

]]

= E

[
R−1∏
t=1

(1−Xt)E [1−XR | FR−1]

]

= E

[
R−1∏
t=1

(1−Xt)(1− hR)

]
(a)

≤ E

[
R−1∏
t=1

(1−Xt)

]
(1− pq) ≤ · · · ≤ (1− pq)R,

where (a) follows from above where we established ht ≥ pq.

C EXPERIMENT

C.1 EXPERIMENTAL SETTINGS

Datasets & Benchmarks. We evaluate the framework on three task families designed to stress
complementary aspects of collective reasoning, namely precise numeric inference, broad factual and
analytical judgment, and executable synthesis. This spectrum assesses both the “diverge” capacity
(hypothesis coverage) and the “converge” capacity (principled selection).

Mathematical reasoning. We use GSM8K, MATH, AIME, and AMC. GSM8K comprises grade-
school word problems with single numeric targets; MATH covers competition-level problems across
algebra, number theory, geometry, and combinatorics; AIME consists of short-answer olympiad
items with integer solutions; AMC includes large-scale contest questions (we report on the standard
subset with unambiguous numeric targets). Performance is measured by Solve Rate, the proportion
of items whose predicted answer exactly matches the ground truth under benchmark normalization
rules.

General reasoning. We use MMLU, spanning 57 subjects from STEM to humanities under a four-
choice multiple-choice format. Performance is reported as Accuracy, i.e., the fraction of correctly
selected options, under the benchmark’s standard few-shot setting.

Code generation. We use HumanEval, where models synthesize functions from natural-language
specifications. Performance is reported as Pass@1, the percentage of prompts for which the single
generated solution passes all hidden unit tests.

Unless otherwise noted, we follow official splits and prompting guidelines, do not use external tools
or retrieval, and keep evaluation deterministic for single predictions. When stochastic sampling is
required (e.g., for self-consistency or multi-agent generation), we fix seeds and average over repeated
runs; confidence intervals are reported in the appendix. This protocol ensures comparability with
prior work while isolating the contribution of the collaboration paradigm and training objective.

Baselines. We compare against collaborative LLM methods organized by their underlying collab-
oration mechanism, rather than model brand. (i) Single-agent reasoning: Vanilla (direct decoding),
CoT (chain-of-thought prompting), and SC (self-consistency with majority vote). (ii) Peer inter-
action: LLM-Debate (multi-round argumentation with shared transcripts), GroupDebate (multi-
agent debate with voting-based aggregation) and PHP (pairwise critique without a global selector).
(iii) Routing/topology control: DyLAN (layered agent network with pruning and early-stop con-
sensus). (iv) Workflow/graph search: GPTSwarm (optimization of reasoning graphs over multiple
prompting strategies) and AFLOW (Monte-Carlo search over reusable operators). (v) Communica-
tion efficiency: AgentPrune (sparse message passing to reduce cost while maintaining accuracy).
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For all baselines we use the same base models, adopt each method’s official prompts and stop-
ping criteria, and match collaboration budgets (rounds, agents, and generations). When methods
output multiple candidates, we apply their canonical aggregation (e.g., majority vote or ranker).
This taxonomy clarifies whether improvements come from stronger generation (divergence), more
reliable selection (convergence), or better workflow, providing a diagnostic comparison to our ex-
ploration–synthesis paradigm.

Prompt Templates. To make our experimental setup transparent and reproducible, we explicitly
document the instruction prompts used by different agents in our framework. These templates cap-
ture the roles and responsibilities of both reasoning agents and the center arbiter, highlighting how
they collaborate through structured interaction. For clarity, we present concrete examples in the do-
main of mathematical reasoning problems, which serve as a representative case for illustrating the
prompt design.

Execution Agent Prompt (Initial Round)

You are Reasoning Agent #{agent id}. Your task is to carefully solve the given math prob-
lem step by step. Clearly show your reasoning process, making sure that each transformation
is logically valid. Avoid skipping important intermediate steps.
At the end of your reasoning, provide the final numeric answer in the exact format:
\boxed{...}.
Problem: {{math question}}

Execution Agent Prompt (Interactive Round)

You are Reasoning Agent #{agent id}. You previously proposed multiple solutions and now
also receive the Center Arbiter’s synthesis.
Re-evaluate the problem carefully, considering both your earlier solutions and the Arbiter’s
feedback. Generate refined solutions that correct any mistakes if needed, ensuring logical
consistency.
Each output must end with the final numeric answer in the exact format: \boxed{...}.
Problem: {{math question}}
Your Previous Solutions: {...}
Center Arbiter’s Feedback: {...}

Central Agent Prompt

You are the Center Arbiter, responsible for evaluating candidate solutions proposed by
agents. Carefully read the original problem and all candidate solutions. Compare their
reasoning, detect mistakes if present, and identify the most reliable candidate.
Then, following the strict format below, provide a short justification, the chosen candidate
index, and the final numeric answer in \boxed{...}.
Problem: {{math question}}
Candidates:
- Candidate 1: {...}
- Candidate 2: {...}
- Candidate 3: {...}

STRICT OUTPUT FORMAT:
Reason: {detailed justification}
Chosen: {candidate id}
Final: \boxed{...}

Implementation Details. Our experiments are conducted with a compact configuration where
three agents interact across three communication rounds for each query. The agents are instanti-
ated from widely used instruction-tuned models including Llama-3.1-8B-Instruct, Llama-3.2-3B-
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Model LLaMA-8B (GSM8K) Qwen-7B (GSM8K)
Coverage Identification ACC Coverage Identification ACC

MAESTRO 0.9757 0.8919 0.8702 0.9886 0.9519 0.9410
w/ CLPO 0.9773 0.9141 0.8933 0.9901 0.9607 0.9512

Table 4: Comparison of coverage, identification, and accuracy (ACC) on GSM8K under two back-
bones.

Instruct (Dubey et al., 2024), and Qwen2.5-7B-Instruct as well as Qwen2.5-3B-Instruct (Team,
2024). All models are accessed through the HuggingFace Transformers library with 8-bit quantiza-
tion to reduce GPU memory usage. We enable KV caching throughout the experiments to improve
generation efficiency. We adopt a unified generation setup across all experiments. Unless other-
wise noted, nucleus sampling with p = 0.95 is used and the maximum output length is set to 512
tokens. The default temperature is 0.7, which balances diversity and stability. For tasks requiring
deterministic evaluation, such as pairwise preference comparisons or revision prompts, we reduce
the temperature to 0.3. The central agent is always assigned a temperature of 0.0 to enforce deter-
ministic decisions and avoid stochastic drift. To ensure comparability across methods, all models
share the same decoding settings and random seeds are fixed. This setup follows common practice
in LLM evaluation and ensures that performance differences stem from the collaboration paradigm
rather than decoding hyperparameters. During both supervised fine-tuning (SFT) and policy opti-
mization, we adopt parameter-efficient fine-tuning using LoRA. Unless otherwise noted, the LoRA
rank is set to 16, with scaling factor α = 32 and dropout 0.05. Only LoRA parameters, LayerNorm
statistics, and bias terms are updated, while all other weights remain frozen. Training uses Adam
(β1 = 0.9, β2 = 0.999, ϵ = 10−8) with an initial learning rate of 5 × 10−5, decayed following a
cosine schedule. Gradient norms are clipped at 1.0 to stabilize optimization. We train with a global
batch size of 256 distributed across four A100 GPUs (80GB each), using mixed precision (bfloat16)
for efficiency. The rank-loss coefficient is tuned over {0.1, 0.5, 0.8, 1.0}. To encourage exploration
we add an entropy bonus of 0.01, while maintaining consistency with the SFT reference policy via a
KL regularization weight of 0.1. Each run proceeds for three epochs, and results are averaged over
three random seeds (25, 42, and 99) to ensure robustness and mitigate variance.

Unified Reward. We define unified reward that combines answer correctness and reason quality.
For each candidate ci, the correctness score is acci ∈ [0, 1], defined as acci = 1[answeri = â]
for objective/numeric tasks (with an optional tolerance) or as a test-pass rate for programming
tasks. Reason quality is computed from the candidate’s rationale (and its own final answer/in-
terface statement) via a unified set of binary attributes: structure/readability (stepwise clarity, ex-
plicit intermediate quantities), soundness to own answer (derivation strictly leads to its own final
answer without contradictions), constraint/format adherence (range, integrality, lowest terms, func-
tion signature, etc.), premise/evidence alignment (key facts in the rationale match the prompt or
given materials), error diagnosis/refutation (identifies common failure modes or flaws in compet-
ing candidates and explains their mechanism), and executability/safety (for implementation tasks,
the rationale is consistent with runnability/safety without unjustified risky operations). Each at-
tribute is recognized jointly by programmatic checks (rules, AST/signature validation, equation re-
evaluation, range/unit checks, keyword/pattern matching) and a GPT judge that performs semantic
recognition over the question and candidate and outputs {Yes, No}. Denoting the decision on at-
tribute k as dk(ci) ∈ {1, 0}, we average only determined attributes to obtain a single rationale score
si = 1

|Vi|
∑

k∈Vi
dk(ci),Vi = { k | dk(ci) ∈ {0, 1} }. The training reward is a simple weighted

fusion, Ri = wc acci + wr si, wc, wr ≥ 0, wc + wr = 1, with the practical choice wc≥wr

to discourage “fluent but wrong” rationales. Considering the trade-off between prioritizing correct-
ness and still learning discriminative rationales, we adopt the simple default weights wc = 0.6 and
wr = 0.4. And we employ gpt-4o as the semantic judge for attribute recognition.

C.2 EXPERIMENTAL RESULTS.

Number of Rounds: balancing evidence aggregation and bias amplification. Figure 6 shows
that increasing the number of collaboration rounds improves performance at first, then saturates
and may decline. GSM8K peaks around two rounds and AMC around three rounds. This pat-
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Figure 5: Sankey diagram illustrating performance on AMC and GSM8K under different central
coordination strategies. Each flow decomposes accuracy into coverage and identification outcomes,
showing how centralized selection more effectively converts diverse reasoning into correct solutions.

tern matches our coverage–identification decomposition. The first additional round injects public
evidence through broadcast, which focuses subsequent exploration and lifts the identification proba-
bility qt because the central policy compares candidates under a clearer hypothesis space. Coverage
pt changes little once the initial candidate pool is large, so early gains are mainly due to improved
identification. Beyond the peak, returns diminish and can turn negative. Repeated conditioning on
previous broadcasts reduces effective diversity and increases redundancy, which lowers the proba-
bility that new rounds add genuinely novel evidence. If an early broadcast is confidently wrong, later
rounds tend to herd toward the same error, creating bias amplification that hurts qt. More rounds
also introduce additional stochastic variance while consuming budget, which further limits net gains.
Overall, a small number of rounds is most effective: two rounds on GSM8K and two to three rounds
on AMC strike a good balance by converting collective coverage into reliable identification without
over-conditioning the agents.
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Figure 6: Effect of collaboration rounds on performance. Accuracy is reported for AMC and
GSM8K. Performance improves with additional rounds up to a moderate level, then saturates or
declines, highlighting the trade-off between evidence aggregation and bias amplification.

Sampling Depth per Agent: Coverage–Variance Trade-off. We analyze how the number of
samples drawn by each agent (K) affects collaborative performance. As shown in Figure 4 (b),
increasing K from 2 to 3 improves accuracy on both AMC (from 0.2369 to 0.2852) and GSM8K
(from 0.8853 to 0.8933). Beyond this point the gains saturate: GSM8K changes marginally at K=4
(0.8936) and declines at K=5 (0.8889), while AMC peaks at K=3 and then drops to 0.2811 and
0.2690. This pattern reflects our exploration–synthesis decomposition. Increasing K initially raises
the chance that at least one candidate is correct, which improves coverage pt. However, multi-
sampling from the same agent policy quickly becomes correlated and redundant, so the marginal
gain in coverage diminishes. At the same time the candidate set grows and introduces more plausi-
ble distractors, which elevates the burden on the central selector and can depress identification qt. In
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practice, deeper per-agent sampling also inflates within-round variance because it relies on stochas-
tic decoding from a single policy instance rather than diversifying across agents. Consequently,
once coverage is near saturation, additional K contributes more noise than signal and identification
becomes the limiting factor. Taken together with the agent-scaling results, these observations sug-
gest a practical guideline: for a fixed budget, allocate capacity to increasing the number of agents
to diversify hypotheses, and keep K modest (three to four at most) so that the central synthesis can
reliably convert collective coverage into higher identification.

D DECLARATION ON THE USE OF LARGE LANGUAGE MODELS

In the preparation of this work, the authors used GPT-5 and GPT-4o for two specific purposes. First,
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