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ABSTRACT

Predictive coding models trained with equilibrium propagation are neural net-
works that perform inference through an iterative energy minimization process.
Previous studies have demonstrated the effectiveness of this class of models in
shallow architectures, but their performance degrades significantly as the depth
increases to more than five/seven layers. In this study, we show that the reason be-
hind this degradation is due to (1) errors between layers during weight updating,
and (2) predictions from the previous layer not being effective in guiding updates
in deeper layers. We address this by introducing both a novel weight update mech-
anism that reduces error accumulation in deeper layers, and a method to optimize
the distribution of energy among layers during the ‘relaxation phase’. Empiri-
cally, we show that our methods largely improve both training and test accuracy
across networks with more than seven layers. These initial findings suggest that
a better understanding of the relaxation phase is important to train models using
equilibrium propagation at scale, and open new possibilities for their application
in complex tasks.

1 INTRODUCTION

Training and inference in large-scale models is extremely expensive in terms of energy consumption,
due to the large computational costs, making this technology not accessible to small businesses
and academics, and prevent its use in low-power edge devices. As this is caused by the use of
GPUs, general-purpose machines that are not specialized to perform machine learning tasks, a recent
direction of research is studying the use of alternative accelerators, such as analog hardware that
performs in-memory computations (Tsai et al., 2018; Haensch et al., 2018). One way of doing this
is by training the model using equilibrium propagation, an algorithm that allows the learning of the
parameters of a neural network by simulating a physical system brought to an equilibrium (Scellier
& Bengio, 2017). This physical system is defined via an energy function that describes the state of
a neural network in terms of its weights and neurons.

In the last years, researchers have put a large amount of effort into trying to make energy-based
models work at scale. Two recent works have also carefully benchmarked multiple variations of
the usual learning algorithms by using the Hopfield energy function (Scellier et al., 2024), and the
predictive coding energy (Pinchetti et al., 2024), reaching similar results: this class of models is
able to perform as well as standard deep learning models trained with backpropagation (BP) when
it comes to train shallow models, with a maximum of five or seven layers. However, for predictive
coding networks, the performance gap increases when considering deeper models: the test accuracy
of backprop-based models increases, and that of energy-based models decreases. Understanding and
addressing the causes of this mismatch would allow the training of large-scale energy-based models.
Our contributions are briefly as follows:

• We empirically study the propagation of the energy on different layers of the model, and show
that such energy is orders of magnitude larger in the layers that are closer to the label. We then
conjecture that this creates two problems: the first is that the current training techniques fail to
make full use of the depth of the model, as the update of the parameters is largely concentrated
in a small number of layers; the second, is that the large magnitude of the energy in the last
layers makes the latent states of the model diverge too much from the forward pass, leading to a
sub-optimal weight update.
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• To verify and address the aforementioned conjectures, we develop two variations of the learning
algorithm. The first one regularizes the propagation of the total energy through the network by
weighting the energy of different layers in different ways through the relaxation phase. The sec-
ond one changes the way synaptic weights are updates, by using the activities of the neurons at
initializations, and not at convergence. The results show that both of our method largely improve
the performance of predictive coding networks in models with more than ten layers.

2 RELATED WORKS

Equilibrium Propagation (EP). EP is a learning algorithm for supervised learning that is largely
inspired by contrastive learning on continuous Hopfield networks (Movellan, 1991). Here, neural
activities are updated in two phases: In the first, to minimize an energy function defined on the
parameters of the neural network; in the second, to minimize the same energy with the addition
of a loss function defined on the labels (Scellier & Bengio, 2017). Interestingly, these two phases
allow us to approximate the gradient of the loss function up to arbitrary levels of accuracy using
finite difference coefficients (Zucchet & Sacramento, 2022). The consequence is that EP can be
seen as a technique that allows minimizing loss functions using arbitrary physical systems that can
be brought to an equilibrium, and it has hence been studied in a large number of domains (Scellier,
2024; Kendall et al., 2020). In terms of simulations that aim to scale up machine learning experi-
ments, most of the works performed experiments using Hopfield energies (Hopfield, 1982), mostly
on image classification tasks using convolutional networks (Laborieux et al., 2021; Laborieux &
Zenke, 2022). The state-of-the-art is that EP models are able to match the performance of BPTT
(BP-Through-Time) on models with 5 hidden layers (Scellier et al., 2024), with the exception of
hybrid models, that manage to reach good performances on models with 15 layers by alternating
blocks of layers trained with BP and blocks trained with EP Nest & Ernoult (2024).

Predictive Coding (PC). The formulation of PC that we use here was initially developed to model
hierarchical information processing in the brain (Rao & Ballard, 1999; Friston, 2005). Intuitively,
this theory states that neurons and synapses at one level of the hierarchy are updated to better predict
the activities of the neurons of the layers below, and hence minimize the prediction error. Interest-
ingly, the same algorithm can be used as a training algorithm for deep neural networks (Whittington
& Bogacz, 2017), where several similarities with backpropagation were observed (Song et al., 2020;
Salvatori et al., 2021). To this end, it has been used in a large number of machine learning tasks,
from image generation and classification to natural language processing (Sennesh et al., 2024; Sal-
vatori et al., 2023; Pinchetti et al., 2022; Ororbia & Kifer, 2020). Again, the state of the art has
been reached by training convolutional models with 5 hidden layers, with performance starting to
get worse as soon as we use models that are 7 layers deep (Pinchetti et al., 2024).

3 BACKGROUND

Let us consider a neural network with L layers, and let us denote Wl and xl
t the weight parameters

and the neural activities of layer l, respectively. Note that, differently from standard models trained
with backpropagation, the neural activities are random variables of the model, optimized over mul-
tiple time steps t. This optimization is performed with the goal of allowing the activities of every
layer to predict those of the layer below. Together with the neural activities, the two other quanti-
ties related to single layers are the prediction µl

t = Wlf
(
xl−1
t

)
, given by the layer-wise operation

through an activation function, and the prediction error, defined as the deviation of the actual activity
from the prediction, that is, ϵlt = xl

t − µl
t. The predictive coding energy then is E = 1

2

∑L
l=1 ∥ϵl∥2,

that is the sum of the squared norms of the prediction errors of every layer.

Given a labelled data point (o,y), where o denotes sensory inputs and y ∈ Ro is the label. Training
is then performed via a form of bi-level optimization (Zucchet & Sacramento, 2022), divided into
three phases. In the first phase, the neural activities of every neuron are initialized via a forward
pass, that is, we set xl

0 = µl
0 for every layer, with x0

0 = o. In the second phase, that we call the
inference phase, we fix the neural activities of the output layer to the label, that is, we do xL = y,
and we update the neural activities via gradient descent, to minimize the total energy of the model.
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Figure 1: Layer-wise Energy Distribution and Accuracy Comparison between BP and PC in VGG5 on the
CIFAR10 dataset. The colored lines represent the total energy of the individual layers of the model (or, the
squared error of every layer for BP). The vertical lines represent the train and test accuracies of the model.

The update rule is then the following:

∆xl ∝ − ∂E

∂xl
= −ϵl +W(l+1)⊤ϵl+1 ⊙ f ′(xl). (1)

This phase will continue until it reaches the fixed number of iterations T or achieves convergence.
The third phase is the learning phase, where the neural activities xl

T are fixed, and the weight
parameters are updated to decrease the energy via the following equation:

∆Wl ∝ ∂E

∂Wl
= −ϵlf(xl−1). (2)

Nudging. Instead of providing the original label y to the model, it is common in the literature to
slightly translate the output neurons of the system xL

0 in the direction of y. More precisely, it fixes
xL
t = µL

0 +β(y−µL
0 ) for every time step t, where β controls the supervision strength. The sign of β

determines supervision polarity: positive for standard nudging and negative for inverse supervision.
In the case of inverse supervision, the weight update is then performed to increase the loss function,
allowing the model to be updated in the direction of the label. These two forms of weak supervision
are called positive and negative nudging, respectively. Alternating β values across training epochs
enables center nudging. Empirically, the best test accuracies have been reached by performing a
stochastic sampling from {β,−β} across training epochs and batches, implementing a technique
called center nudging (Scellier et al., 2024). Due to its success in practical tasks, we will consider
center nudging as a baseline.

4 METHODS

In this section we first discuss the energy imbalance across different levels of the network, and then
present two novel optimization methods: the first allows us to better distribute the energy across the
model; the second proposes the use of the neural activities at initialization to perform a better update
of the parameters.

To study the energy imbalance across different levels of the network, we have tracked the total
energy of each layer during training, along with the test and training loss, and compared it against
that of BP. As BP does not have a proper definition of energy, we have used the squared error of
every neuron computed during the backward pass. We have tested this on models of multiple depths
trained on the CIFAR10 dataset. Our analysis revealed a significant energy imbalance in the energy
distribution across layers: As shown in Figure 1, the BP-trained model exhibits a more uniform
energy distribution across layers, with even the layer of lowest energy above 10−1. In contrast,
the PC-trained model shows that the significant energy disparities among the different layers, final
layer’s energy drops dramatically to as low as 10−8. The bar chart displays the training and test
accuracy for each epoch, while the line plot shows the energy distribution across layers, showing
that despite this energy imbalance, shallow PC models are able to reach test accuracies as good as
those of BP. This, however, can be problematic when training deeper models.
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Energy Decay. To address the issue of imbalanced energy distribution, which prevents the model
from fully using its depth, we introduce an energy weighting strategy. Here, the energy of different
layers decays exponentially over time, as defined as follows:

Et =
1

2

L∑
l=1

Al
t

(
ϵlt
)2

, with Al
t =

{
e−k·(l−L+t)∑T−L−1+l
j=0 e−k·j , when t ≥ L− l,

0, when t < L− l.
(3)

Here, Al
t represents the relative weight of energy at layer l during iteration t, and k is a hyperparam-

eter that controls the decay rate (k = 1 in our experiments). When t < L − l, We set Al
t = 0 as

backward signals have not propagated to layer l (corresponding ϵlt = 0). The
∑T−L−1+l

j=0 e−k·j is a

normalization term, it ensures the
∑T−1

t=0 Al
t = 1. The numerator e−k·(l−L+t) implements an intrin-

sic bias that lower layers (smaller l) automatically receive larger weights when activated (t ≥ L− l),
thereby helping to achieve a more balanced energy distribution during the inference phase.

Forward Updates. Due to large prediction errors that we find in the last layers, the neural activities
observed at the end of the inference process tend to significantly deviate from their initial feed-
forward values. But the feedforward values are the ones that are then used for predictions. We
then conjecture that synaptic weight updates based on xl

T could potentially introduce errors that
accumulate with network depth, leading to performance degradation in deeper architectures. To
asses whether the proposed conjecture is correct, we introduce a new method for updating the weight
parameters, that uses both the starting and final states of neurons, according to the energy function
defined as

ET0
=

1

2

∑
i,ℓ

(
ϵℓi,T0

)2
, where ϵℓi,T0

= xℓ
i,T − µℓ

i,0. (4)

Our method makes sure weight adjustments stay connected to the initial feed-forward predictions
while incorporating the refined representations obtained through iterative inference. This approach
helps maintain stability during learning and prevents the accumulation of errors in deeper layers,
which is crucial for scaling PC networks. The pseudocode is provided in Algorithm 1.

Algorithm 1 Learning a dataset D = {xi, yi} with proposed Deep PCNs

Require: x0 is fixed to xi and xL is fixed to yi for every mini-batch
1: for t = 0 to T do
2: for every neuron i and level ℓ do
3: Update xℓ

i at t to minimize Et.
4: end for
5: if t = T then
6: Update W ℓ

i to minimize ET0 .
7: end if
8: end for

5 EXPERIMENTS

In this section, we test our proposed method combined on models with more than 7 layers, and show
that we are able to reach performance comparable to those of BP when trained on the same models.
To provide a comprehensive evaluation, we test them on three popular computer vision benchmarks,
that are CIFAR-10/100 (Krizhevsky et al., 2009), and Tiny ImageNet (Le & Yang, 2015). As models,
we use VGG-like models (Simonyan & Zisserman, 2014) — convolutional models with one linear
layer at the end — of increasing depths. All the experiments have been performed using mean
squared error for consistent comparisons. We consider the following three baselines: standard PC
(described in Section 3), PC with center nudging (PC-CN), the best performing algorithm according
to previous studies (Pinchetti et al., 2024; Scellier et al., 2024), and standard BP1. We call our
proposed method, developed to train deep models DPC, and also test a variation trained with with
center nudging, named DPC-CN. The details needed to reproduce the results can be found in the
supplementary material.

1Here we follow the standard PC literature, where performance are compared against BP, and differ from
standard works in the Eqprop literature, that use BPTT as a baseline.
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Figure 2: Test accuracies of different algorithms on the CIFAR10 dataset, tested on models of
different depths.

Table 1: Test accuracies of the different algorithms on different datasets.

Dataset Algorithm VGG5 VGG7 VGG9 VGG11 VGG13

CIFAR10
BP 89.43±0.12 89.91±0.1 88.94±0.08 87.6±0.12 89.70±0.11

DPC 89.32±0.14 89.25±0.09 88.40±0.18 86.97±0.10 88.58±0.07

DPC-CN 89.46±0.14 89.11±0.26 86.55±0.81 86.59±0.23 87.50±0.61

CIFAR100 (Top-1)
BP 66.28±0.23 65.36±0.15 65.07±0.23 62.29±0.16 63.08±0.18

DPC 66.10±0.09 64.86±0.10 63.23±0.16 59.23±0.37 60.19±0.28

DPC-CN 66.85±0.07 63.89±0.22 60.59±0.47 60.56±0.22 61.27±0.13

CIFAR100 (Top-5)
BP 85.85±0.27 84.41±0.26 82.69±0.23 83.22±0.18 84.13±0.18

DPC 85.85±0.10 84.55±0.20 81.24±0.33 81.08±0.24 81.47±0.30

DPC-CN 85.85±0.13 83.80±0.20 80.95±0.55 82.98±0.07 83.30±0.19

TinyImageNet (Top-1)
BP 44.9±0.19 46.08±0.15 52.05±0.18 50.38±0.12 48.3±0.42

DPC 45.98±0.18 44.07±0.39 42.01±0.11 48.80±0.14 41.79±0.50

DPC-CN 43.99±0.23 43.87±0.45 42.03±0.24 48.64±0.31 41.13±1.20

TinyImageNet (Top-5)
BP 65.26±0.37 66.65±0.2 73.02±0.14 70.21±0.12 71.46±0.25

DPC 66.81±0.31 65.52±0.29 64.12±0.41 71.93±0.15 63.89±0.49

DPC-CN 64.39±0.29 65.40±0.31 64.27±0.17 71.85±0.18 64.20±1.18

Results. Firstly, we train models of different depths on the CIFAR10 dataset, and report the best
accuracies in the barplots in Figure 2. The plots show that both the original formulation of PC and
the one that uses center nudging significantly drop in test accuracy when the depth of the model is
increased. On the other hand, the newly proposed DPC, its centered version, and BP, tend to perform
similarly. We have also performed a more comprehensive comparison against BP, reported in Ta-
ble 1. The results show that for shallow networks (VGG5), DPC and DPC-CN can match or exceed
BP performance. The performance gap becomes more noticeable as network depth and difficulty of
task increases, suggesting room for further refinement in our approach. While our method doesn’t
consistently outperform BP yet, it represents an important step toward biologically plausible learn-
ing algorithms that can scale to deeper architectures. Furthermore, the performance gain from center
nudging in DPC-CN is significantly smaller than its contribution in baseline PC-CN. This reduced
suggests that DPC’s modified weight update mechanism inherently mitigates latent node divergence
during error propagation, thereby decreasing the need of nudging the output.

6 CONCLUSION

In this work, we have tackled the problem of scaling up predictive coding and equilibrium propa-
gation for image classification tasks. Specifically, we investigated the following research question:
Why do deep models trained with the predictive coding energy fail to match the accuracy of their
counterparts trained with backpropagation? We have addressed this by proposing two novel reg-
ularization techniques and showed that the combination of our approaches allows the training of
deep predictive coding models that come close to the performance of backprop-based models on the
same task. We believe that these initial results will inspire future work directed towards making this
class of models work at scale, that will tackle more complex datasets and modalities that we have
considered, such as the training of equilibrium propagation-based ResNets on ImageNet (He et al.,
2016), or small transformer models.
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APPENDIX

Here we explain how experiments were performed and what results were found. Full details for
repeating the experiments and results for ablation study are included in later sections.

A EXPERIMENTS SETTING

Model. We conducted experiments on five models: VGG5, VGG7, VGG9, VGG11 and VGG13.
The detailed architectures of these models are presented in Table 2.

Table 2: Detailed architectures of base models

VGG5 VGG7 VGG9
Channel Sizes [128, 256, 512, 512] [128, 128, 256, 256, 512, 512] [64, 128, 256, 256, 512, 512]
Kernel Sizes [3, 3, 3, 3] [3, 3, 3, 3, 3, 3] [3, 3, 3, 3, 3, 3]

Strides [1, 1, 1, 1] [1, 1, 1, 1, 1, 1] [1, 1, 1, 1, 1, 1]
Paddings [1, 1, 1, 0] [1, 1, 1, 0, 1, 0] [1, 1, 1, 1, 1, 1]

Pool window 2 × 2 2 × 2 2 × 2
Pool stride 2 2 2

Linear Layers 1 1 3

VGG11 VGG13
Channel Sizes [64, 128, 256, 256, 512, 512, 512, 512] [128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512]
Kernel Sizes [3, 3, 3, 3, 3, 3, 3, 3] [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3]

Strides [1, 1, 1, 1, 1, 1, 1, 1] [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
Paddings [1, 1, 1, 1, 1, 1, 1, 1] [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

Pool window 2 × 2 2 × 2
Pool stride 2 2

Linear Layers 3 1

Experiments. The benchmark results of above models are obtained with CIFAR10, CIFAR100
and Tiny ImageNet, The datasets are normalized as in Table 3.

Table 3: Data normalization

Mean (µ) Std (σ)
CIFAR10 [0.4914, 0.4822, 0.4465] [0.2023, 0.1994, 0.2010]
CIFAR100 [0.5071, 0.4867, 0.4408] [0.2675, 0.2565, 0.2761]

Tiny ImageNet [0.485, 0.456, 0.406] [0.229, 0.224, 0.225]

For data augmentation on CIFAR10, CIFAR100, and Tiny ImageNet training sets, we use 50%
random horizontal flipping. We also apply random cropping with different setups. For CIFAR10
and CIFAR100, images are randomly cropped to 32×32 resolution with 4-pixel padding. For Tiny
ImageNet trained on VGG5 and VGG7, images are randomly cropped to 56×56 resolution without
padding. For testing on Tiny ImageNet with VGG5 and VGG7, we use center cropping to get 56×56
resolution images without padding. For Tiny ImageNet trained on VGG9, VGG11, and VGG13,
random cropping produces 64×64 resolution images with 8-pixel padding. For testing on these
models, no augmentation is used because Tiny ImageNet’s original resolution is 64×64.

For the optimizer and scheduler, we use mini-batch gradient descent (SGD) with momentum for x
in the relaxing phase. We use AdamW with weight decay for W in the learning phase. We also use
a warmup-cosine-annealing scheduler without restart for W ’s learning rates. This scheduler starts
with a low learning rate (warmup), then smoothly transitions to a cosine-shaped decay, avoiding
sudden drops in performance. The peak learning rate is 1.1 times the initial rate. The end learning
rate is 0.1 times the initial rate. The warmup steps are 10% of all iteration steps.

We conduct hyperparameter selection based on the search space specified in Table 4. The results
presented in Table 1 and Figure 2 are obtained using 5 different random seeds with the optimal
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Table 4: Hyperparameters search configuration

Parameter PC/DPC BP
Epoch 25

Batch Size 128
Activation [leaky relu, gelu, hard tanh, relu]

k 1 -
β [0.0, 1.0], 0.151 -
lrx (5e-3, 9e-1)2 -
lrW (1e-5, 3e-2)2 (1e-5, 3e-4)2

momentumx [0.0, 1.0], 0.11 -
weightdecayw (1e-5, 1e-2)2

T (VGG-5) [5,6,7,8] -
T (VGG-7) [7,9,11,13] -
T (VGG-9) [9,11,13,15] -

T (VGG-11) [11,13,15,17] -
T (VGG-13) [13,15,18,21] -

1: “[a, b], c” denotes a sequence of values from a to b with a step size of c.
2: “(a, b)” represents a log-uniform distribution between a and b.

hyperparameter configuration. The training process is capped at 100 epochs, with an early stop-
ping mechanism that terminates training if no accuracy improvement is observed for 10 consecutive
epochs. To maintain consistency with the hyperparameter search settings, we employ a two-phase
learning rate schedule: during the first 25 epochs, the weight learning rate follows a warmup-cosine-
annealing schedule as previously described, after which it remains fixed at the final learning rate of
the scheduler. For the results shown in Figure 1 and 3, we utilize a single random seed with the
optimal hyperparameters, setting the maximum training epochs to 50 without implementing early
stopping. The weight learning rate schedule remains identical to the aforementioned approach.

B ENERGY PROPAGATION IN DPC MODELS

In this section, we deliberately selected the shallowest (VGG5) and deepest (VGG13) architec-
tures from our experimental framework for comparative energy distribution visualization. Figure 3
presents layer-wise energy distribution and classification accuracy among Backpropagation (BP),
Predictive Coding (PC), and our proposed Deep PCNs (DPC), evaluated on VGG5 (a) and VGG13
(b) architectures using the CIFAR-10 dataset.

In shallow networks (VGG5), while all three methods demonstrate comparable accuracy, DPC
achieves superior energy equilibrium across network layers compare to PC, thereby demonstrating
that our proposed method effectively enhances the model’s layer-wise energy balance. Interestingly,
PC/DPC achieves good results despite having a less uniform energy distribution than BP. Figure 3(b)
demonstrates that the proposed DPC maintains superior energy balancing compared to standard PC
in deep networks, but not as uniform as that of BP.

C ABLATION STUDY

In this section, we conducted ablation studies to evaluate the effectiveness of each proposed com-
ponent. We separately removed the energy decay term (denoted as ”w/o EnergyDecay”) and the
forward update term (denoted as ”w/o ForwardUpdates”) from the DPC model. We performed ex-
periments on both CIFAR-10 and CIFAR-100 datasets, resulting in six experimental configurations
for each architecture and dataset combination. The results are presented in Table 5.

Firstly, we observe that removing Forward Updates (using the standard PC model with Energy De-
cay) causes significant accuracy degradation, which becomes more pronounced with increasing net-
work depth. Simultaneously, the effectiveness of Center Nudging reappears when Forward Updates
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are removed, with its impact also strengthening in deeper networks. This phenomenon confirms our
earlier hypothesis: synaptic weight updates based on xl

t may introduce errors that accumulate across
layers, leading to performance degradation in deep architectures.

Secondly, we observed that removing Energy Decay leads to performance degradation in most cases.
This effect is particularly evident in deeper models such as VGG13, where the energy distribution
across layers becomes significantly imbalanced without the Energy Decay term. As shown in Fig-
ure 3(b), in the standard DPC model with Energy Decay, the first layer’s energy proportion is ap-
proximately 10−10, whereas in DPC without Energy Decay, this proportion drops dramatically to
10−22. Visualization of layer-wised energy distributions between standard DPC and DPC without
Energy Decay (as shown in Figure 3) confirms that our proposed Energy Decay method successfully
balances energy distribution across layers, which contributes to improved model performance.

Table 5: Test accuracies of ablation study

Dataset Algorithm VGG5 VGG7 VGG9 VGG11 VGG13

CIFAR10

DPC 89.32±0.14 89.25±0.09 88.40±0.18 86.97±0.10 88.58±0.07

DPC w/o EnergyDecay 89.00±0.10 88.60±0.11 85.38±0.82 84.25±2.74 87.03±0.13

DPC w/o ForwardUpdates 87.91±0.22 81.04±0.19 81.25±0.36 73.01±0.86 72.59±1.95

DPC-CN 89.46±0.14 89.11±0.26 86.55±0.81 86.59±0.23 87.50±0.61

DPC-CN w/o EnergyDecay 87.82±0.55 87.42±0.76 85.27±0.12 85.42±0.13 86.90±0.16

DPC-CN w/o ForwardUpdates 88.24±0.06 86.48±1.22 79.10±3.62 76.64±1.37 80.61±0.29

CIFAR100 (Top-1)

DPC 66.10±0.09 64.86±0.10 63.23±0.16 59.23±0.37 60.19±0.28

DPC w/o EnergyDecay 63.92±0.62 63.87±0.42 62.89±0.25 60.31±3.35 59.76±0.15

DPC w/o ForwardUpdates 57.76±0.33 45.05±0.37 46.39±0.39 45.97±0.13 35.99±0.64

DPC-CN 66.85±0.07 63.89±0.22 60.59±0.47 60.56±0.22 61.27±0.13

DPC-CN w/o EnergyDecay 64.48±0.21 63.07±0.83 59.61±0.25 58.37±0.40 60.81±0.29

DPC-CN w/o ForwardUpdates 55.89±0.26 62.76±0.56 54.77±0.43 51.45±0.19 50.29±0.86

CIFAR100 (Top-5)

DPC 85.85±0.10 84.55±0.20 81.24±0.33 81.08±0.24 81.47±0.30

DPC w/o EnergyDecay 83.89±0.44 81.68±1.51 84.12±0.11 81.94±1.63 79.21±0.30

DPC w/o ForwardUpdates 81.59±0.13 74.00±0.30 73.72±0.06 72.30±0.26 62.46±0.47

DPC-CN 85.85±0.13 83.80±0.20 80.95±0.55 82.98±0.07 83.30±0.19

DPC-CN w/o EnergyDecay 81.86±0.28 81.02±0.83 82.89±0.09 80.49±0.15 80.19±0.17

DPC-CN w/o ForwardUpdates 80.06±0.2 83.46±0.38 80.54±0.22 77.84±0.3 76.22±0.58
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(a)

(b)

Figure 3: Layer-wise Energy Distribution and Accuracy Comparison between BP, PC, proposed
DPC and DPC without Energy Decay in VGG5(a) and VGG13(b) on the CIFAR10 dataset. The
colored lines represent the total energy of the individual layers of the model (or, the squared error of
every layer for BP). The vertical lines represent the train and test accuracies of the model.
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