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Abstract

Text conditioned generative models for images have yielded impressive results. Text condi-
tioned floorplan generation as a special type of raster image generation task also received
particular attention. However there are many use cases in floorplan generation where nu-
merical properties of the generated result are more important than the aesthetics. For
instance, one might want to specify sizes for certain rooms in a floorplan and compare the
generated floorplan with given specifications. Current approaches, datasets and commonly
used evaluations do not support these kinds of constraints. As such, an attractive strategy is
to generate an intermediate data structure that contains numerical properties of a floorplan
which can be used to generate the final floorplan image. To explore this setting we (1)
construct a new dataset for this data-structure to data-structure formulation of floorplan
generation using two popular image based floorplan datasets RPLAN and ProcTHOR-10k,
and provide the tools to convert further procedurally generated ProcTHOR floorplan data
into our format. (2) We explore the task of floorplan generation given a partial or complete
set of constraints and we design a series of metrics and benchmarks to enable evaluating how
well samples generated from models respect the constraints. (3) We create multiple baselines
by finetuning a large language model (LLM), Llama3, and demonstrate the feasibility of using
floorplan data structure conditioned LLMs for the problem of floorplan generation respecting
numerical constraints. We hope that our language-based approach to this image-based design
problem and our newly developed benchmarks will encourage further research on different
ways to improve the performance of LLMs and other generative modelling techniques for
generating designs where quantitative constraints are only partially specified, but must be
respected.

1 Introduction

Generative modelling has the potential to accelerate and improve design tasks but in order for them to achieve
widespread use by real-world practitioners they need to be flexible and exhibit a sufficiently high degree of
controllability. For instance, in floorplan generation, users will want to be able to specify a set of constraints
detailing how rooms should be connected and what their dimensions are. The resulting model should also be
flexible in the sense that it performs equally well on as few or as many constraints as needed. Just as there
are many possible constraints that the user can specify, there also needs to be a rigorously-defined set of
evaluation metrics to probe how well the model performs (or underperforms) on them, which we contribute
in this work.

Most existing approaches to floorplan-based generative models focus on 2D top-down renders. These methods
typically specify room connectivity via bubble diagrams as well as other information such as room geometries.
However, these methods fall short in various areas, for instance some produce raster-based renderings of the
floorplan (e.g. vision-based generative models) which make it difficult to directly access metadata. Others
may only support the specification of adjacencies instead of also supporting room geometry, limiting the
controllability of the model. In this work, we instead opt to represent generated floorplans as a JSON-based
data structure specifying all the required metadata of the floorplan as well as specifying each room as a list
of polygons (similar to Shabani et al. (2022)). These floorplans are a result of consolidating two existing
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large floorplan datasets, namely RPLAN and ProcTHOR. Furthermore, we validate the use of such a dataset
by training an LLM to produce such a structure conditioned on constraints specified in natural language.
Therefore, our contributions are as follows:

1. We contribute a unified floorplan dataset by merging existing popular datasets (RPLAN and ProcTHOR)
and postprocessing them into a format which is amenable to language-based generative models which take
as input and output structured text.

2. We design an array of metrics to benchmark the performance of the generated floorplans, in particular how
well they respect the constraints set by the user.

3. We train and evaluate an LLM on our task setting to demonstrate the feasibility of our proposed problem
formulation.

2 Related Work

Datasets. One of the most commonly used datasets for floorplan generation is RPLAN (Wu et al., 2019).
Since we make use of the dataset in this work, we defer its description to Section 3.2. LIFULL (of Informatics,
2015) is an extremely large-scale dataset consisting of floorplans sourced from a Japanese realtor company.
Floorplans are provided in raster format, however a subset of vectorized versions exist (Liu et al., 2017).
One common shortcoming is that there is a lack of well-annotated floorplan data (e.g. vectorised) which is
amenable to training. Architext (Galanos et al., 2023) address this issue by generating synthetic but diverse
floorplans via a CAD script for Rhinoceros 3D. In a similar vein, we leverage ProcTHOR (Deitke et al., 2022)
(also used and described in more detail in Section 3.2) which is a fully open source simulator of buildings
(and by extension floorplans). Unlike Rhinoceros 3D this simulator is completely open source.

Generative Models. House-GAN and House-GAN++ (Nauata et al., 2020a; 2021a) are a family of
GAN-based methods which learn to generate floorplans using convolutional graph-based networks. Notably
however this line of work only conditions on a bubble graph. FloorplanGAN (Luo and Huang, 2022) proposes
a self-attention-based GAN which takes as input (for each room) room centers, desired areas (as a relative
proportions), as well as room type for each room. Because the GAN is tasked with also refining the initial
input constraints, the output may not respect them. While the use of a differentiable rasteriser to compute
losses in pixel space opens up possibilities, the core method does not appear to support a partial specification
of constraints or polygons. HouseDiffusion (Shabani et al., 2023) is a diffusion-based method which directly
predicts a list of polygons for each room, utilising a transformer architecture which also conditions on a
bubble diagram.1Lastly, ArchiText (Galanos et al., 2023) also leverages LLMs to generate output floorplans
but it appears the prompts are only limited to natural language descriptions rather than geometry.

3D Scene Generation. Recently, full 3D scene generation methods have shown impressive results. AnyHome
(Wen et al., 2023) and Holodeck (Yang et al., 2024) are able to generate floor plans, windows & doors,
furniture and meaningful placement in 3D all from a query like "a 1b1b apartment". In our method, we focus
only on the floor plan aspect, but we allow for specification of room dimensions and areas as well as total
floor plan area, which neither method does. Since our proposed dataset is partially comprised of ProcTHOR
(a 3D-based floorplan simulator), in principle a future version of our proposed dataset could support the
placement of furniture and other props. An overview of how our method compares to the others can be found
in Tab.1.
3 Our Text-Based DStruct2Design Floorplan Dataset

In this work, we view the problem of floor plan generation from a text-based data structure perspective.
Specifically, we wish to utilize the data structure to enable, through language input, a unified method that
not only allows users to apply numerical constraint but also retains the ability to condition on graphs such
as bubble diagrams, which have been the input in the traditional floorplan generation task. As such, the

1While this method could in principle be conditioned on an initial polygonal room specification (via partial noising and
subsequent denoising), from the point of view of pure inference (that is, starting from pure noise) HouseDiffusion’s only form of
conditioning is via a bubble diagram.

2



Under review as submission to TMLR

Method Input Output Can specify
Geometry?

Absolute
Coordinates?

House-GAN,
House-GAN++,
HouseDiffusion

Bubble diagram
(room adjacency)

Room masks no no

ArchiText Natural Language Room polygon coords no yes
FloorplanGAN Fixed-Length Tensor Room masks yes no
AnyHome,
Holodeck

Natural Language Furnished 3D models no yes

Ours Structured Language Room polygon coords yes yes

Table 1: Comparison to related works. Our method focuses on generation of floor plans as opposed to
full 3D scenes, and it allows the user to specify individual room geometry (height, width, and/or area) and
global apartment geometry in meters and sq. meters.

choice of data representation for the floorplans is very important. In our work, we carefully design a JSON
based data structure to be used as a new representation for the floorplans. As prior work all use datasets of
floorplans in 2D image or 3D scenes, we create a new dataset by converting existing image and scene data
into our data structure for the use of our task.

3.1 Data Structure

In this structure, we define crucial numerical data such as the number of rooms present, the total area and
type of each room that appears in each floor plan. Each room within a floor plan is further defined with room
specific fields. Importantly, each room’s location is defined through a set of vertices that forms a polygon.
This ensures that the language model cannot cheat by outputting vague locations, and instead it has to
predict the exact coordinates of the vertices. The specific structure is presented in Table 2, and a full example
of floorplan in this structure is presented in the Appendix I.

This structure also has several additional advantages: 1. Using numerical value based gives us the ability
to set numerical constraints in the input, and it allows for clear and explicit evaluation on how well the
generation process adheres to these constraints. 2. This structure is designed to have sufficient information to
be transformed into higher level representations such as floor plan images, allowing seamless integration with
traditional visualization techniques. 3. The format is highly extensible, enabling the inclusion of additional
information in the generation process, such as the placement and attributes of objects within the floorplan.
This flexibility ensures that our approach can be further adapted to various task expansions in the future.

3.2 Datasets & Preparation for Our New Task Formulation

ProcTHOR-10k (Deitke et al., 2022) is a dataset of 12,000 procedural generated, fully interactive 3D houses
designed for research in Embodied AI. We clean and process the raw data from each house, focusing on
the geometric properties of the rooms. We employ the shoelace formula to calculate areas and determined
room dimensions based on their x and y coordinates. Additionally, we remove redundant points and apply
rounding to the coordinates for consistency. Next, we categorize and count the types of rooms, and compute
the total area for each house layout. The processed data is organized into the new JSON structure explained
in Table 2.

RPLAN (Wu et al., 2019) is a manually collected dataset of 80,788 real world floor plans of buildings in
Asia. Each floor plan in RPLAN is stored as a 256 × 256 × 4 vector image. Channels 1 and 2 store interior
and exterior boundary information; channel 3 contains room information where each pixel value denotes
which room it belongs to; channel 4 has extra information to distinguish rooms with the same room type
value in channel 3. To convert this 4 channel image into a JSON structure with well-defined room location,
we first extract all pixel coordinates for all of the rooms. For each room, we locate the pixels that make up
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"room_count" ▷ number of rooms
"total_area" ▷ total area in square units
"room_types" [ ] ▷ list of string of room types present
"rooms" [ ] ▷ list of individual room dictionary containing room specifics

"area" ▷ area of this room
"floor_polygon" [ ] ▷ list of vertices that defines this room’s layout

"x" ▷ x coordinate of the vertex
"y" ▷ y coordinate of the vertex

"is_regular" ▷ flag that indicates if the room’s shape is rectangular
"height" ▷ the y-axis length of the rectangle bounding box enclosing the room
"width" ▷ the x-axis length of the rectangle bounding box enclosing the room
"id" ▷ unique id of this room
"room_type" ▷ the type of this room

"edges" [ ] ▷ defines the connection between rooms for bubble gram generation

Table 2: Processed Floorplan Structure

its perimeter. Then, by tracing the perimeter in one direction we are able to capture all of the vertices in an
order that allows recreation of the room polygon. We take the room’s type and deduce all the other fields
listed in Table 2 to complete the data structure. We convert 80,315 floorplans from RPLAN.

3.3 Bubble Diagrams

Traditionally, much of the prior work has assumed that at the beginning of the floor plan design process
a bubble diagram is used to conceptualize the layout of the floor plan. As shown in Figure 2, a bubble
diagram is used to represent different room and their spacial relationship with one another as a guidance
and constraint for the floor plan design process to follow. Formally, a bubble diagram is a graph G = (N, E)
where each node nk in N = {nj}R

1 represents the kth room in the floor plan with R rooms, and each edge
ei = (np, nq) in E = {ej}M

1 denotes a connection between room p and q.

In this work, we enable the use bubble diagram as an additional conditioning in our floor plan generation
process. To obtain the bubble diagram we check pair-wise proximity of the rooms in each floor plan. If the
Manhattan distance between the rooms’ boundaries are within a threshold, they are counted as connected.
This threshold is set to 8 pixels for the RPLAN dataset in line with prior work, and to 2 pixels for ProcTHOR
to account for the length unit differences between the two datasets. This adjacency information is stored
in the "edges" field in our data representation. During training, we use G as conditioning for our floor plan
generation.

Figure 1: Model Pipeline Overview
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4 Our DStruct2Design (DS2D) LLM

We train an LLM by prompting it with structured numerical constraints and or graph constraints (Bubble
Diagram) and asking it to predict the converted floor plan, as depicted in Figure 1.

Numerical Constraints C = {cj}T
1 are a set of T conditions that users may impose on the final floor

plan. In the task of floor plan design and generation, these can include, but are not limited to, total
square footage of the entire floor, the number and the types of rooms present, the size of each room. These
conditions are mostly inherently numerical, and thus we can take advantage by directly using it in its data
structure form. For example, the constraint of having a total square footage of 990 can be transformed into
{"total_area": 990}. This allows a direct match between the input prompt and output JSON string, which
may help the model understand the structure and its relationship better.

Bubble Diagrams are represented differently as conditioning to our model. We chose to pass it in as tuples of
connecting rooms. For an edge ei = (np, nq) connecting nodes p and q, it is formatted as (room_p, room_q).
Due to the possible existence of multiple rooms of the same type, which can be clearly distinguished in a
graph but not easily in text, we decide to represent room_p and room_q by their room IDs in addition to
their room types.

We process the constraint set and the bubble diagram into "constraint string" and "adjacency string". They
are then combined with an instruction phrase that is used throughout the training process to create the final
prompt. An example of the full prompt is shown in Appendix C

5 Our Metrics and Benchmarks

To assess floorplan quality, we focus on the numerical consistency of the generation. Specifically, we design
two groups of metrics to evaluate what we call self-consistency and prompt-consistency:

• Self Consistency metrics measures how numbers agree with each other in the generated floor plan. For
instance, this includes a metric to check if the area defined by the polygon vertices is the same as the area
number presented in the "room_area" field.

• Prompt Consistency metrics evaluate how consistent the generation is to the constraints used in the
prompt. An example of this type of metrics is one that measures if the generated number of rooms adds
up to the number of room requested in the prompt.

In addition to the two main groups of metrics, we also incorporate Compatibility metrics which is used in
past work (Shabani et al., 2022; Nauata et al., 2020b; 2021b; Johnson et al., 2018; Ashual and Wolf, 2019) to
measure similarity between the input bubble diagram and the output floor plan. It is by definition the graph
edit distance (Abu-Aisheh et al., 2015) between the input bubble diagram and the output diagram extracted
from the output JSON. The extraction method is the same one used to generate the bubble diagrams in the
first place as described in Section 3.3. The full array of metrics and their explanations are presented in Table
3.

6 Experiments

All of our experiments are ran on the LLaMA3-8B-Instruct variant of the LLaMA model family (Touvron
et al., 2023). We train our models by running 8-bit quantization along with LoRA (Hu et al., 2021). Each of
our experiments are also run on single RTX8000 GPU, they take less than a day to complete. The exact
training parameters and data split details can be found in Appendix D
6.1 Model Variants

We train six variants of our model on the converted ProcTHOR dataset and four on converted RPLAN
dataset. Each of the four models on RPLAN – 5-R, 6-R, 7-R, 8-R – is trained without floorplan data of a
certain room count. 5-R is trained only on floorplans with 6, 7, and 8 rooms, etc. This follows prior work
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Metric Type Metric Explanation

Self
Consistency
(SC)

† Total Area percentage difference between stated total area vs. the sum of all
rooms’ state area

‡ Polygon Area
(P. Area)

percentage difference between a room’s stated area vs. area
calculated from polygon

♯ Overlap boolean check for existence of polygon overlap

♭ Room ID (ID) boolean check for duplicate room id

♮ Room Count
(R. Count)

boolean check to see if "room_count" field number is equal to the
number of rooms in the floor plan.

Both SC
and PC

◁ Room Height
(R. H)

percentage difference between height obtained from polygon vs.
stated height in generation (SC) or requested height (PC).

▷ Room Width
(R. W)

percentage difference between width obtained from polygon vs.
stated width in generation (SC) or requested width (PC).

Prompt
Consistency
(PC)

• Total Area percentage difference between the sum of room polygon areas vs.
requested total area

♣ Num. Room
(Num. R.)

percentage difference between number of rooms in the floorplan
vs. requested number of rooms in the prompt.

♠ Room ID
(ID)

precision and recall of room ids in the floorplan with respect to
the ids present in the prompt

♡ Room Area
(R. Area)

percentage difference between a room’s polygon area vs. requested
room area in the prompt

♢ Room Type
(Type)

precision and recall of room types in the floorplan with respect
to the room types present in the prompt

◦ ID-Type Match
(IDvsType)

percentage difference between the number of rooms with correctly
matching type and id in the floor plan vs. the total number of
rooms present in the prompt

Bubble Graph Compatibility graph edit distance (GED) between the input bubble diagram
and one extracted from the output floor plan.

Table 3: Metrics and Associated Acronyms Used to Evaluate Generation Quality

ProcTHOR Models RPLAN Models
F M PM F+BD M+BD PM+BD 5-

R
6-R 7-

R
8-R

Bubble Diagram - - - ✓ ✓ ✓ ✓ ✓ ✓ ✓
Masking - random preset - random preset random random random random

Table 4: Summary of model variants

(Nauata et al., 2020b; 2021b; Shabani et al., 2023). On the other hand, the six models trained on ProcTHOR
are divided two main variants: bubble diagram enabled model, and numerical constraint only model. In the
bubble diagram enabled model (BD), both the constraint string and the adjacency string described in
Section 4 are used as part of the input. In constrast, in the numerical constraint only model, only the
constraint string is used. We further train three sub-variants for each of the two main variants to investigate
how robust the models are to missing information:

• Full-Prompt (F) model takes advantage of every attribute available in the constraint set. During training,
every constraint attribute is part of the constraint string.
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• Mask (M) model uses a subset of constraint set by applying a 50% masking on every single possible
constraint. In the case of rooms which is an attribute containing a list, the masking is applied independently
to individual item in the list. (rooms is only dropped out if the entire list becomes empty.) As a safety
measure, we always keep at least 1 constraint in the set.

• Preset Mask (PM) randomly selects one of four preset constraint sets with varying degree of missing
information. The idea is to not just have IID random masking, but a hierarchy of attributes from general
to specific which are detailed in Table 10 in Appendix E.

The summary of our six variants and their abbreviations are shown in Table 4

6.2 Generation Prompts

To test the model, we run four different generation prompts with varying amount of constraints in the prompt.
This simulates the real world problem of floorplan design, where designer often receives only partial criteria.
For instance, the user might only ask the living room and bedroom to be a certain size, and leaves the
designer with the freedom to imagine layouts with varying sizes for the other rooms. The four generation
prompts are listed in order of decreasing amount of constraints:

• Specific (S) is one where we use all the possible constraints

• All Room Area (AR) is one where we pass in the area of all the rooms (total area can be inferred from
this information).

• Partial Room Area (PR) is similar to Total Area. In addition to the total area of the floor plan, the
area of some of the rooms are also passed as conditions in the constraint string.

• Total Area (TA) is one where we only use the total area of the floor plan as constraint.

For all of the Bubble Diagram model variants, Bubble Diagrams are used in each of these types of prompts.

7 Results

Figure 2: Pink background: ground truth floor plan and ground truth bubble diagram. Green background:
generated floor plan using Specific prompts, and extracted bubble diagram. Blue background: generated
floor plan using Total Area prompts, and extracted bubble diagrams.
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Self-consistency Benchmark
P. Area‡ Total Area† P. Overlap♯ R. Count♮ ID♭ R. H◁ R. W▷

FS 0.94±0.07 1.00±0.03 0.16±0.37 1.00 1.00 0.99±0.02 0.99±0.02
MAR 0.90±0.07 0.99±0.03 0.12±0.33 1.00 1.00 0.99±0.02 0.99±0.01
PMPR 0.92±0.06 0.97±0.07 0.15±0.35 0.96 1.00 1.00±0.01 1.00±0.01
PMTA 0.93±0.05 0.99±0.04 0.14±0.35 0.95 1.00 1.00±0.01 1.00±0.01

5-RAR 0.90±0.16 0.98±0.05 0.37±0.48 0.97 1.00 1.00±0.01 0.98±0.02
6-RS 0.93±0.05 0.98±0.06 0.36±0.48 0.99 1.00 0.99±0.01 0.97±0.02
7-RS 0.93±0.04 0.98±0.05 0.42±0.49 0.97 1.00 0.99±0.01 0.98±0.02
8-RTA 0.82±3.50 0.97±0.07 0.53±0.50 0.89 1.00 0.99±0.01 0.98±0.02

Prompt-consistency Benchmark
Num. R♣ Total Area• R. Area♡ ID♠ IDvsType◦ R. H◁ R. W▷

FS 1.00±0.00 0.95±0.07 0.94±0.07 1.00±0.03 1.00±0.00 0.99±0.02 0.99±0.02
MAR 1.00±0.00 - 0.90±0.07 1.00±0.00 1.00±0.00 - -
PMPR 1.00±0.00 0.93±0.07 0.91±0.11 1.00±0.03 1.00±0.00 - -
PMTA 1.00±0.00 0.95±0.06 - - - - -

5-RAR - - 0.92±0.04 1.00±0.01 1.00±0.00 - -
6-RS 1.00±0.00 0.94±0.07 0.94±0.06 1.00±0.05 1.00±0.00 0.92±0.23 0.94±0.14
7-RS 1.00±0.00 0.94±0.06 0.94±0.06 1.00±0.02 1.00±0.00 0.93±0.17 0.94±0.29
8-RTA - 0.93±0.07 - - - - -

Table 5: Our self- and prompt-consistency Benchmark results. Subscripts under model variants are generation
prompts.

We test floor plan generation quality on ProcTHOR-trained six model variants with the four different
generation prompts with self and prompt consistency metrics. Results from our best model variants are listed
in Table 5, and all results on all 48 sets of experiments are listed in Appendix F.

We perform the same evaluation on the four RPLAN-trained model variants. Because each model variant
trained on RPLAN uses a slightly different set of data (following prior work), we show results for each model
variant in Table 5. Results for the full 24 experiments are shown in Appendix H.

Analysis Our LLM models demonstrate a high level of competence in generating floorplans that are largely
mathematically consistent, and are also consistent to input numerical constraint. As seen in Figure 2, when
given full specifications, the generated rooms largely resembles ground truth in sizes, width and height. This
quality is accurately reflected by our Total Area, R.H and R.W metrics. On the other hand, our metric
suggests that generations can produce overlapping room layouts. An example of this is found in Figure 2, in
the second row’s green background’s right-most floorplan: the top-left bathroom is overlapping on top of the
bedroom. This problem is especially apparent in the RPLAN-trained models, and is accurately reflected by
the P. Overlap metrics in Table 5. This limitation can perhaps be tackled in future work.

To compare with prior work that focus on using bubble diagrams as input on the RPLAN dataset, we prompt
our RPLAN-trained models with bubble diagram. For evaluation we compute the standard compatibility
metric obtained from graph edit distance calculation between the input bubble diagrams and the ones
extracted from generations. Results are shown in Table 6. We also evaluate compatibility metrics on the
ProcTHOR-trained BD model variants. The results are shown in Table 7.

Analysis Overall, our RPLAN-trained model generates results that are competitive with the state-of-the-art
image based algorithms, even though our focus here has been on numerical accuracy. One caveat is that
the bad generations are very wrong, causing our method to have a much higher error rate compared to
image-based methods. Table 7 suggests our model has a harder time following the input bubble diagram
as the number of room increases, or when given room area information. This is reflected in Figure 2 where
the second row’s bubble diagrams show more variations. This limitation might be tackled by using a better
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Number of Rooms in Floorplan

Model 5 6 7 8

Ashual and Wolf (2019) 7.5 ± 0.0 9.2 ± 0.0 10.0 ± 0.0 11.8 ± 0.0
Johnson et al. (2018) 7.7 ± 0.0 6.5 ± 0.0 10.2 ± 0.0 11.3 ± 0.1

House-GAN (Nauata et al., 2020a) 2.5 ± 0.1 2.4 ± 0.1 3.2 ± 0.0 5.3 ± 0.0
House-GAN++ (Nauata et al., 2021a) 1.9 ± 0.3 2.2 ± 0.3 2.4 ± 0.3 3.9 ± 0.5
HouseDiffusion (Shabani et al., 2023) 1.5 ± 0.0 1.2 ± 0.0 1.7 ± 0.0 2.5 ± 0.0

Our BD Model w/ BD prompt 0.46 ± 0.73 0.79 ± 0.98 1.27 ± 1.28 2.50 ± 1.97

Table 6: Comparison of Compatibility↓ score (Graph Edit Distance) on the RPLAN dataset.

data structure to represent bubble diagrams, and perhaps also to be included as part of the floorplan data
representation. This way, the bubble diagram will simply be part of the constraint set, and this may help the
model understand the input better. This can be explored in future work in the same task setting. Additionally,
in the future, our data can be expanded to account for more floorplan attributes such as doors and walls and
our benchmark can include additional metrics to account for more obscure numerical checks.

Model Generation Number of Rooms

Variant Prompt 3 4 5 6 7

F+BD Specific 0.15 ±0.41 0.33 ±0.58 1.35 ±1.34 2.24 ±1.76 4.23 ±1.89
All Room Area 5.91 ±0.29 9.75 ±0.54 13.79 ±1.15 18.09 ±1.71 22.35 ±2.24

Partial Room Area 3.80 ±1.20 5.73 ±2.03 8.19 ±2.72 10.15 ±2.88 11.42 ±4.52
Total Area 0.19 ±0.40 0.62 ±0.78 3.48 ±1.83 3.41 ±1.50 6.23 ±2.20

M+BD Specific 0.16 ±0.45 0.47 ±0.67 2.06 ±1.33 2.85 ±1.79 5.23 ±2.14
All Room Area 5.91 ±0.29 9.62 ±0.56 12.90 ±1.27 17.48 ±1.82 22.13 ±1.94

Partial Room Area 3.85 ±1.11 6.35 ±1.95 8.44 ±2.48 11.56 ±3.42 14.13 ±3.90
Total Area 0.20 ±0.40 0.54 ±0.73 2.40 ±1.03 3.09 ±2.07 6.26 ±2.03

PM+BD Specific 0.15 ±0.39 0.58 ±0.96 2.42 ±1.33 2.97 ±1.62 5.97 ±1.25
All Room Area 5.88 ±0.33 9.77 ±0.49 13.17 ±1.23 18.56 ±1.58 21.97 ±2.36

Partial Room Area 3.87 ±1.13 6.42 ±1.97 8.99 ±2.67 12.06 ±3.05 13.68 ±3.71
Total Area 0.34 ±0.93 0.46 ±0.84 2.08 ±1.29 2.65 ±1.87 5.84 ±1.61

Table 7: Compatibility↓ score on ProcTHOR-trained models.

Self-consistency Benchmark
P. Area‡ Total Area† P. Overlap♯ R. Count♮ ID♭ R. H◁ R. W▷

Few-ShotS 0.99±0.00 1.00±0.00 0.04±0.20 1.00 1.00 0.93±0.02 0.93±0.01
Few-ShotAR 0.99±0.01 0.96±0.07 0.01±0.11 1.00 1.00 0.88±0.07 0.93±0.00
Few-ShotPR 1.00±0.00 0.94±0.12 0.00±0.04 0.70 1.00 0.86±0.07 0.93±0.00
Few-ShotTA 1.00±0.00 1.00±0.00 0.00±0.00 1.00 1.00 0.93±0.00 0.93±0.00

Prompt-consistency Benchmark
Num. R♣ Total Area• R. Area♡ ID♠ IDvsType◦ R. H◁ R. W▷

Few-ShotS 0.82±0.39 1.00±0.00 0.99±0.00 0.82±0.39 1.00±0.00 0.93±0.02 0.93±0.01
Few-ShotAR 0.95±0.22 - 0.99±0.01 0.95±0.22 1.00±0.00 - -
Few-ShotPR 0.98±0.14 1.00±0.00 1.00±0.00 0.98±0.14 1.00±0.00 - -
Few-ShotTA 1.00±0.03 1.00±0.00 - - - - -

Table 8: Our self- and prompt-consistency on few-shot results
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Analysis We further present few-shot results with GPT4o-mini. This is done by prompting the LLM with
multiple example specifications along with output floorplan Jsons. The results are shown in Table 8. The
generated floorplan has less overlapping polygons compared to the ones generated by the fine-tuned LLAMA3
models, however, they are less accurate in following the size, height and width specifications.

Self-consistency Benchmark
P. Area‡ Total Area† P. Overlap♯ R. Count♮ ID♭ R. H◁ R. W▷

Window+DoorS 0.99±0.01 1.00±0.02 0.23±0.42 1.00 1.00 0.93±0.00 0.93±0.01
Window+DoorAR 0.99±0.00 0.99±0.03 0.18±0.39 1.00 1.00 0.93±0.00 0.93±0.00
Window+DoorPR 0.99±0.00 0.98±0.05 0.16±0.37 0.99 1.00 0.93±0.00 0.93±0.00
Window+DoorTA 0.99±0.00 0.99±0.03 0.16±0.37 1.00 1.00 0.93±0.00 0.93±0.00

Prompt-consistency Benchmark
Num. R♣ Total Area• R. Area♡ ID♠ IDvsType◦ R. H◁ R. W▷

Window+DoorS 1.00±0.00 0.99±0.00 0.99±0.00 1.00±0.02 1.00±0.00 0.93±0.01 0.93±0.01
Window+DoorAR 1.00±0.00 - 0.99±0.00 1.00±0.02 1.00±0.00 - -
Window+DoorPR 1.00±0.00 0.99±0.00 0.99±0.00 1.00±0.02 1.00±0.00 - -
Window+DoorTA 1.00±0.00 0.99±0.00 - - - - -

Table 9: Our windows and doors augmented floorplan results
Analysis To encourage generation of realistic floorplans, we further add windows, doors, and open concept
rooms to our data structure. The evaluation results are shown in Table 9, and some generation reulsts are
shown in Figure 3. We can see from the figure that the numerical constraints of the original ground truth
floor plan is well respected. Every room as the same total area as the original.

Figure 3: Generated realistic floor plans with windows, doors and open concept rooms.

8 Conclusions

We have motivated the need for new datasets and benchmarks for real-world use case scenarios for floorplan
generation. We have developed and explored a Llama 3 based LLM for the problem and it yields SOTA
results on the previous compatibility based evaluation and along with our proposed metrics, it highlights
different use cases scenarios where improvements are possible. In particular we see from Table 7 that when
conditioning on bubble diagrams and room area information this model struggles to respect the bubble
diagram constraints. From Table 5 we see that the model does well, but is far from perfect at generating
rooms with correct areas as computed from the generated polygons. We also see that the biggest weakness of
this otherwise SOTA model is linked to issues with generating overlapping rooms.

We hope that our data, simulated data generation procedure and benchmarks will stimulate further develop-
ments for this new problem formulation for floorplan generation.
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