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Abstract
How do neural networks extract patterns from
pixels? Feature visualizations attempt to answer
this important question by visualizing highly acti-
vating patterns through optimization. Today, vi-
sualization methods form the foundation of our
knowledge about the internal workings of neural
networks, as a type of mechanistic interpretability.
Here we ask: How reliable are feature visualiza-
tions? We start our investigation by developing
network circuits that trick feature visualizations
into showing arbitrary patterns that are completely
disconnected from normal network behavior on
natural input. We then provide evidence for a
similar phenomenon occurring in standard, un-
manipulated networks: feature visualizations are
processed very differently from standard input,
casting doubt on their ability to “explain” how
neural networks process natural images. We un-
derpin this empirical finding by theory proving
that the set of functions that can be reliably under-
stood by feature visualization is extremely small
and does not include black-box neural networks.

1. Introduction
A recent open letter called for a “pause on giant AI ex-
periments” in order to gain time to make “state-of-the-art
systems more accurate, safe, interpretable, transparent, ro-
bust, aligned, trustworthy, and loyal” (OpenLetter, 2023).
While the call sparked controversial debate, there is general
consensus in the field that given the tremendous real-world
impact of AI, developing systems that fulfill those qualities
is no longer just a “nice to have” criterion. In particular,
we need “reliable” interpretability methods to better un-
derstand models that are often described as black-boxes.
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The development of interpretability methods has followed
a pattern similar to what is known as Hegelian dialectic: a
method is introduced (thesis), often followed by a paper
pointing out severe limitations or failure modes (antithesis),
until eventually this conflict is resolved through the develop-
ment of an improved method (synthesis), which frequently
forms the starting point of a new cycle. Good examples are
saliency maps: Developed to highlight which image region
influences a model’s decision (Springenberg et al., 2014;
Sundararajan et al., 2017), many existing saliency methods
were shown to fail simple sanity checks (Adebayo et al.,
2018; Nie et al., 2018), which then spurred the ongoing
development of methods that aim to be more reliable (Gupta
& Arora, 2019; Rao et al., 2022).

In a similar spirit, we investigate feature visualizations, a
type of mechanistic interpretability. Feature visualizations
(Erhan et al., 2009; Mordvintsev et al., 2015; Olah et al.,
2017) are widely used to visualize patterns that highly acti-
vate a unit or channel in a neural network through activation
maximization. Today, feature visualization methods under-
pin many of our intuitions about the inner workings of neu-
ral networks. They have been proposed as debugging tools
(Nguyen et al., 2019), found applications in neuroscience
(Walker et al., 2019; Bashivan et al., 2019; Ponce et al.,
2019), and according to Olah et al. (2017), “to make neural
networks interpretable, feature visualization stands out as
one of the most promising and developed research direc-
tions.” First introduced by Erhan et al. (2009), feature visual-
izations have continually been refined through better priors
and regularization terms that improve their intuitive appeal
(Yosinski et al., 2015; Mahendran & Vedaldi, 2016; Nguyen
et al., 2016; Olah et al., 2017). At the same time, when
it comes to interpretability methods (Doshi-Velez & Kim,
2017), it has been argued that “One’s skepticism should be
proportional to the feeling of intuitiveness” (Leavitt & Mor-
cos, 2020), “By itself, feature visualization will never give
a completely satisfactory understanding” (Olah et al., 2017)
and the usefulness of feature visualizations has been ques-
tioned (Borowski et al., 2021; Zimmermann et al., 2021).
We here ask: How reliable are feature visualizations?
Can we trust (rely or depend on) the result? We investigate
this question through the lens of an adversary (Section 2),
empirically (Section 3), and theoretically (Section 4).
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Figure 1: Arbitrary feature visualizations. Don’t trust your eyes: Feature visualizations can be arbitrarily manipulated by
embedding a fooling circuit in a network, which changes visualizations while maintaining the original network’s ImageNet
accuracy. Left: original feature visualizations. Right: In a manipulated network with a fooling circuit, feature visualizations
can be tricked into visualizing arbitrary patterns (e.g., Mona Lisa).

Here is a summary of our results:

1. We develop fooling circuits that trick feature visualiza-
tions into visualizing arbitrary patterns or unrelated units.
Thus, feature visualizations may not be reliable if you
did not train the network yourself (Section 2).

2. Even if the model is not manipulated, we provide evi-
dence that feature visualizations are processed largely
along different paths compared to natural images, cast-
ing doubt on their ability to explain how neural networks
process natural images (Section 3).

3. We prove that feature visualizations through activation
maximization cannot be used to understand (i.e., pre-
dict the behavior of) black-box systems—instead, strong
assumptions about the system are necessary (Section 4).

Our findings are not meant to suggest that feature visual-
izations are a “dead end” in any way or that feature visu-
alizations per se are not a useful tool for analyzing hidden
representations. Instead, we hope that highlighting and an-
alyzing some of their shortcomings can help inspire the
development of more reliable methods and visualizations: a
synthesis or new avenue.

2. Methods to fool feature visualizations
Motivation & related work. We seek to understand the
reliability of feature visualizations. While Sections 3 (em-
pirical) and 4 (theory) look at this question in non-deceptive
settings, we here start by actively deceiving visualizations.
To this end, we design two different fooling methods: a
fooling circuit (Subsection 2.1) and silent units (Subsec-
tion 2.2). We show that using those methods, we can obtain
arbitrary visualizations (Figure 1), permuted visualizations
(Figure 2), or near-identical visualizations throughout an en-
tire layer (Figure 5). We consider the standard visualization
method by Olah et al. (2017) implemented via Greentfrapp
(v0.1.8), which generally begins with a randomly selected
starting point, and hence the only leverage we have is chang-
ing the network or weights. Our experiments serve two

purposes. First, we provide a proof of concept that it is
possible to develop networks with arbitrary or misleading
visualizations. Second, feature visualizations have been pro-
posed as model auditing tools (Brundage et al., 2020) that
should be integrated “into the testbeds for AI applications”
(Nguyen et al., 2019). Our work demonstrates the first “in-
terpretability circumvention method” (Sharkey, 2022) for
feature visualization, which corresponds to a well-known
attack scenario where an entity wants to hide certain net-
work behavior (e.g., to fool a third-party model audit or
regulator). For instance, the literature considers scenarios
where a model bias is discovered (e.g., a model exploits
protected attributes like gender for classification), but since
removing this bias decreases model performance, there is
an incentive to hide the bias instead (Heo et al., 2019; An-
ders et al., 2020; Shahin Shamsabadi et al., 2022) without
compromising model performance. Adapting models to
maintain their behavior on standard input while showing
malicious behavior under “adversarial” circumstances is
known under various names: fairwashing if the goal is to
hide model bias (Anders et al., 2020; Aı̈vodji et al., 2019),
model backdooring or weight poisoning (Chen et al., 2017;
Gu et al., 2017; Adi et al., 2018) (applied to saliency maps
by (Fang & Choromanska, 2022; Noppel et al., 2022)), data
poisoning (Goldblum et al., 2022) if the change in model
weights is achieved through interfering with the training
data (explored by (Baniecki et al., 2023) in the context of
explanation methods), adversarial model manipulation to
fool saliency maps (Heo et al., 2019), and scaffolding for
fooling LIME and SHAP (Slack et al., 2020). Thus, while
we are the first to successfully deceive feature visualizations
in this manner, the scenario of adapting a model to deceive
an interpretability method has a rich history.

2.1. Manipulating feature visualizations through a
fooling circuit

Our first fooling method is a fooling circuit shown in Fig-
ure 3, which generates a “deceptive” unitAwith an arbitrary
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Figure 2: Using a fooling circuit to arbitrarily permute visualizations. Top row: visualizations of original Inception-V1
last-layer units. Bottom row: After integrating a fooling circuit, units show a permuted visualization (offset by 100 indices).

feature visualization. For natural images, A responds ex-
actly like unit F . However, during feature visualization, A
behaves like unit D instead (see Appendix B.1 for a math-
ematical proof). As an adversary, we have no constraints
when choosing the behavior of unit D (since it does not
affect test performance), and hence, we can obtain arbi-
trary visualizations for A. We employ this fooling circuit
in two experiments. In Figure 1, we select a single large
convolutional filter for D and hard-code the weights such
that the feature visualization shows an arbitrary pattern,
such as a painting. Alternatively, in Figure 2 we equip
Inception-V1 (Szegedy et al., 2015) with a fooling circuit
encompassing the entire last layer, resulting in permuted fea-
ture visualizations compared to the original network (details
in Appendix D). Inspired by real-world events (Wikipedia,
2015), the fooling circuit in both cases contains a “classifier
unit” E that distinguishes between natural images and the
input received during the feature visualization optimization
process. This exploits the distribution shift between natu-
ral and optimization input shown in Figure 6 (Appendix),
which can be distinguished using a simple binary classifier.
This classifier is integrated into the architecture such that
it operates directly on the network’s input. The classifier
achieves a near-perfect accuracy of 99.49 % on a held-out
test set; see Appendix C for details. Thus, integrating the
classifier and fooling circuit into Inception-V1 has a negligi-
ble effect on model accuracy (top-1 accuracy changes from
69.146 % to 68.744 %; top-5 from 88.858 % to 88.330 %).
This shows that it is possible to maintain essentially the
same network behavior on natural input while drasti-
cally altering feature visualizations.

2.2. Manipulating visualizations through silent units

Our second fooling method does not require a separate clas-
sifier but instead leverages orthogonal filters embedded in
silent units; i.e. units that do not activate for the entire
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Figure 3: Fooling circuit. This circuit consists of six units.
Unit A responds like unit F for natural images, but the
feature visualizations of A are identical to the ones of D.
This is achieved by a classifier unit (E) distinguishing be-
tween natural and visualization input, and two gate units
with ReLU nonlinearities (B and C) selectively suppressing
information depending on the classifier’s output. k is an
arbitrary large constant.

training set. We analyze how often silent units occur in
common models in Appendix F. This alternative fooling
method demonstrates that fooling can easily be achieved
in different ways. For the same reason, we here consider a
different architecture (ResNet-50 (He et al., 2016) instead of
Inception-V1) and a randomly selected intermediate layer
instead of the last layer (but note that the approach is not
specific to a certain architecture or layer). We replace a
standard computational block,

y = ReLU(BatchNorm(Conv(x,Θ),Ψ)), (1)

with the manipulated computation block
ȳ = y + ∆y, where ∆y = ReLU(Conv(x, Θ̄) + b). (2)

Our goal is to set Θ̄ and b such that ȳ = y on natural images
while the feature visualizations of ȳ are not related to those
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of y and instead dominated by ∆y (details in Appendix D).
We are able to steer the visualizations to (almost) arbitrarily
chosen images. We demonstrate this by applying it to a
ResNet-50 model trained on ImageNet. In Figure 5 (Ap-
pendix), all 512 units in a ResNet layer yield near-identical
feature visualization. This has no impact on the overall
behavior of the network: neither the top-1 nor the top-5
validation accuracy change at all. In summary, we devel-
oped two different methods that trick feature visualizations
into showing arbitrary, permuted, or identical visualizations
across a layer. This means that feature visualizations can
be manipulated if you did not train the model yourself.

3. Do feature visualizations reliably reflect
how standard, unmanipulated networks
respond to natural input?

In Section 2 we have shown that there are certain networks
for which feature visualizations are completely unrelated
to actual network behavior on natural input. This begs the
question: Do feature visualizations reliably reflect how
standard, unmodified networks respond to natural in-
put? To answer this question, we now switch gears—from
a deceptive/adversarial mindset in Section 2 to an analytical
mindset for standard, unmodified networks. The fooling
circuit from Subsection 2.1 leads to feature visualizations
being disconnected from network behavior on natural input.
This is achieved by using different paths for different inputs:
for visualizations, D → B → A is dominant whereas for
natural input, F → C → A is used. We here ask whether a
similar pattern may be occurring in a standard, unmodified
network to assess whether feature visualizations reliably re-
flect how natural input is processed. To this end, we compare
the processing of natural input and visualizations obtained
for Inception-V1’s last layer: are they processed along the
same path? The selectivity of those last-layer units is per-
fectly clear: by design, they are class-selective. This means
we can compare whether images of a class are processed
similarly to feature visualizations for the same class through-
out the network. If so, they should activate roughly the same
units in earlier layers—a property that we can measure using
Spearman’s rank-order correlation (similar paths→ similar
activations→ high correlation). If they are processed along
independent paths instead, we would obtain zero correlation.
In Figure 4, we plot the results of this analysis, normalized
relative to two baselines: the raw data is normalized such
that 1.0 corresponds to the Spearman similarity obtained by
comparing natural images of the same class (airplanes vs.
airplanes, crocodiles vs. crocodiles), and 0.0 corresponds
to the similarity that is obtained from comparing images of
one class against images of a different class (airplanes vs.
crocodiles etc.). The results are averaged across classes; raw
data and additional information can be found in Appendix E.

As can be seen in Figure 4, last-layer feature visualizations
are processed differently from natural images throughout
most of the network. If they would be processed along the
same path, similarity would need to be high across all lay-
ers. Later layers have a higher correlation, but that does not
mean that the activations are resulting from the same paths.
In many earlier and mid-level layers, the activations of, say,
crocodile images are as similar to activations of crocodile
visualizations as they are to activations of flower, dog or
pizza images. Similar to the manually crafted fooling cir-
cuits, processing along different paths casts doubt on the
ability of feature visualizations to explain how standard
neural networks process natural images.

4. Theory: impossibility results for feature
visualization

In the light of our experimental results, we ask: When are
feature visualizations guaranteed to be reliable? (i.e.,
guaranteed to produce results that can be trusted / relied
upon?) Feature visualization is expected to help us “answer
what the network detects” (Olah et al., 2018), “understand
what a model is really looking for” (Olah et al., 2017),
and “understand the nature of the functions learned by the
network” (Erhan et al., 2009). When formalizing these state-
ments, two aspects need to be considered. First, the structure
of functions to be visualized. The current literature does not
place assumptions on the function: it could be any unit in
a “black-box” (Heinrich et al., 2019; Nguyen et al., 2019)
neural network. Second, we need to characterize which as-
pects of the function feature visualization promises to help
understand. The existing literature (quotes above and in Ap-
pendix H) focuses on a strong, global notion of understand-
ing, rather than on understanding a narrow set of inputs or a
tiny part of the function. Here we prove that it is impossible
to guarantee that feature visualization realizes this combina-
tion (global notion of understanding without assumptions
about the black-box). Feature visualizations based on acti-
vation maximization generate highly activating images for a
function f (e.g., a neuron in a fully connected or a channel
in a convolutional layer). While not typically described
as such1, finding a highly activating image directly corre-
sponds to finding the arg max of f—an insight that might
seem trivial. Paradoxically, it is well-known that it is impos-
sible to conclude much, if anything, about an unconstrained
function from its arg max. Yet, feature visualizations are
purported to help us understand what black-box functions
(e.g., neural network units) detect. To resolve this paradox,
we can either lower our expectations by considering weaker
notions of understanding, or impose more assumptions on
the function. We now explore both directions, and show that
even strong assumptions on the function are insufficient

1A notable exception is Zimmermann et al. (2021).
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Figure 4: Natural vs. synthetic path similarity analysis. Throughout the first two thirds of Inception-V1 layers, activations
of natural images have roughly as little similarity to same-class visualizations as they have to completely arbitrary images of
different classes. In the last third of the network, similarity increases. Details in Section 3.

to guarantee that feature visualization are reliable for
understanding f , even on significantly weaker notions
of understanding. Our theoretical results are summarized
in Table 1, where different columns correspond to subse-
quently weaker notions of understanding. The first column
asks if feature visualization enables predicting a function
value f(x) for a new input x. The second column asks if
f(x) can be predicted up to some small error ε. The third
column—which is similar to the task studied by Borowski
et al. (2021)—is the weakest, asking only if feature visu-
alization enables predicting if f(x) is closer to the min or
max value of f . Meanwhile, different rows correspond to
asking “If the user knows that the function satisfies this
assumption, can they use feature visualization to predict
f(x)?”

Notation and definitions. We denote the indicator function
of a Boolean expression E as 1E , which is 1 if E(x) is
true and 0 otherwise. Let d denote the input dimensionality
(e.g., number of pixels and channels), I = [0, 1]d the input
space, and F = {I → [0, 1]} the set of all functions from
inputs to scalar, bounded activations2. Maximally activating
feature visualization is the map from F to I2 × [0, 1]2

that returns a function’s arg min, arg max, and values
at these two points, which we denote by Φ

min max
(f) =

(arg minx∈I f(x), arg maxx∈I f(x),minx∈I f(x),
maxx∈I f(x)). When f is clear from context, we write
Φ

min max
= (xmin, xmax, fmin, fmax) for brevity. We

assess the reliability of a feature visualization by how well
it can be used to predict f(x) at new inputs x. To make
such a prediction, the user must decode feature visualization
into useful information. We denote a feature visualization
decoder as a map D ∈ D = { I2 × [0, 1]2 → F }. Our
results do not rely on the structure of D in any way. Rather,
No in Table 1 means that for every D the assumptions are

2For example, class probabilities or normalized activations of a
bounded unit in a neural network.

insufficient to guarantee accurate prediction of f .

4.1. Main theoretical results

Precise definitions, all proofs, and more details are given
in Appendix B. First, we note that the boundedness of f
implies a trivial ability to predict f(x).

Proposition 1. There exists D ∈ D such that for all f ∈ F ,∥∥∥f −D(Φ
min max

(f))
∥∥∥
∞
≤ fmax − fmin

2
. (3)

Proposition 1 says that for any function f , a user can take
the feature visualization Φ

min max
(f) and apply a specific

decoder (the constant function taking value halfway between
fmin and fmax) to predict f(x) for any new x. If the user
imposed assumptions on f , one might conjecture that a
clever choice of decoder could lead to a better prediction
of f(x). Our first main result shows that this is impossible
even for strong assumptions.

Theorem 1. For all G ∈ {F ,FNN,FERM,FPAff,FMono },
D ∈ D, and f ∈ G, there exists f ′ ∈ G such that
Φ

min max
(f) = Φ

min max
(f ′) and∥∥∥f ′ −D(Φmin max(f ′))

∥∥∥
∞
≥
f ′max − f ′min

2
. (4)

Consider a user who knows that the unit to visualize is piece-
wise affine (f ∈ FPAff). Using this knowledge, they hope
to predict f by applying some decoder to the visualization
Φ

min max
(f). However, for every f , there is always another

f ′ that satisfies the user’s knowledge (f ′ ∈ FPAff) and has
Φ

min max
(f) = Φ

min max
(f ′). Since the user is only given

Φ
min max

, they cannot distinguish between the case when
the true function is f and when it is f ′, regardless of how
clever their decoder is. Theorem 1 says that f and f ′ are
sufficiently different, and thus, the user will do poorly at
predicting at least one of them; that is, the user does not
improve on the uninformative predictive ability prescribed
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Given feature visualization for f , can we reliably predict f(x) ...
exactly? ε-approxim.? closer to min or max?

black-box F No No No
neural network (NN) FNN No No No
NN trained with ERM FERM No No No

L−Lipschitz (known L) FLLip No No Only for small L
piecewise affine FPAff No No No

monotonic FMono No No No
convex FConvx No No No

affine (input dim. ¿ 1) Fd>1
Aff No No No

affine (input dim. = 1) Fd=1
Aff Yes Yes Yes

constant FConst Yes Yes Yes

Table 1: Theory overview. Feature visualization aims to help understand a function f (e.g., a unit in a network). While
understanding is an imprecise term, it can be formalized: Given f and its arg max and arg min (approximated by feature
visualization), how well can we predict f(x) for new values of x? Intuitively, this is impossible if f is a black-box. Instead,
to make meaningful predictions, we need strong additional knowledge about f .

by Proposition 1. This implies No for the first two columns
in Table 1. The same result can be shown for FConvx at the
expense of 1/2 becoming 1/4 (Theorem 3) and forFLLip with
dependence on L (Theorem 4).

Our second result is an analogous negative result for predict-
ing whether f(x) is closer to fmax or fmin, implying No for
the third column in Table 1. To state it, for any f ∈ F we
define mf = (fmax + fmin)/2; note that f(x) is closer to
fmax if and only if f(x) > mf .

Theorem 2. For all D ∈ D, f ∈ G, and G ∈
{F ,FNN,FERM,FPAff,FMono,FConvx }, there exists f ′ ∈ G
such that Φ

min max
(f) = Φ

min max
(f ′) and∥∥∥∥1f ′>mf′ − 1D(Φ

minmax
(f ′))>mf′

∥∥∥∥
∞
≥ 1fmax 6=fmin

. (5)

The LHS of Eq. (5) quantifies “Can the user tell if f ′(x)
is closer to f ′max or f ′min?” Since indicator functions are
bounded in [0, 1], the LHS is trivially bounded above by 1.
Again consider the user who knows f ∈ FPAff. Theorem 2
says that for any f—unless f also happens to be constant
(i.e., fmax = fmin)—there is always some f ′ ∈ FPAff that
is indistinguishable from f to the user and sufficiently dif-
ferent from f so that the user cannot reliably tell if f ′(x)
is closer to f ′max or f ′min (i.e., the RHS is also 1). The
same result can be shown for FLLip with dependence on L
(Theorem 5). We defer our negative results for affine func-
tions to Theorems 6 and 7 and our positive results to Theo-
rem 8. Our theory proves that without additional assump-
tions, it is impossible to guarantee that standard feature
visualizations can be used to understand (i.e., predict)
many types of functions, including black-boxes, neural
networks, and even convex functions.

5. Conclusion
Feature visualizations based on activation maximization are
widely used to understand neural networks. We here asked
whether feature visualizations are reliable, i.e. whether we
can trust/rely on them. We investigated this question from
three complementary angles. Section 2 shows that an ad-
versary can manipulate visualizations. Section 3 shows that
different processing paths cast doubt on the ability of fea-
ture visualizations to understand natural image processing.
These empirical findings are underpinned by theoretical re-
sults (Section 4) proving that it is impossible to guarantee
that standard feature visualizations can be used for under-
standing black-box functions—at least not if “understanding”
means being able to make meaningful predictions about the
functions. This indicates that while feature visualizations
can be very useful for exploratory hypothesis generation,
they should not be used for confirmatory use cases. In the
absence of more reliable methods, combining them with
additional methods (including dataset samples) as recom-
mended by Olah et al. (2018; 2020) may be our best shot
currently; although it may be worth noting that highly ac-
tivating dataset samples can be manipulated too (Nanfack
et al., 2023). On a higher level, these findings are part of a
broader challenge to the concept of post-hoc interpretability
methods: understanding completely black-box systems may
sometimes be more than we can hope for (Srinivas & Fleuret,
2019; Bilodeau et al., 2022; Fokkema et al., 2022; Han et al.,
2022). Instead, a potential way forward could be to use the
theoretical framework explored here as a starting point to
discover structures that enable reliable predictions. For in-
stance, more linear units are easier to predict, an aspect we
explore in Appendix G. Potentially, these structures could
then be incorporated into “reliable-by-design” networks.
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Code availability

Code to replicate experiments from this paper is available here:
https://github.com/google-research/
fooling-feature-visualizations/
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Appendix
A. Further visualizations

original network units (block 4-1, conv 2 layer)
index 0 50 100 150 200 250 300 350 400 450

manipulated network units (block 4-1, conv 2 layer)

≈

≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈

Figure 5: Leveraging silent units to produce identical visualizations throughout a layer. Here, all intermediate units
of a layer (block 4-1, conv 2) in a ResNet-50 network have near-identical visualizations. This is achieved by leveraging
orthogonal filters in silent units, which are constructed such that the feature visualizations of all 512 units resemble that of
the first unit, making the different units (almost) indistinguishable by their feature visualizations even though they perform
distinct computations on natural input.

feature visualization trajectory natural ImageNet validation images

6=

Figure 6: Natural vs. synthetic distribution shift. There is a clear distribution shift between feature visualizations (left)
and natural images (right). This can be exploited by a classifier when building a fooling circuit. Visualizations at different
steps in the optimization process for a randomly selected unit in the last layer of standard, unmanipulated Inception-V1;
randomly selected ImageNet validation samples (excluding images containing faces).

B. Proofs and theory details
B.1. Proof for fooling circuit (Section 2)

Lemma 1. Let k > 0, A : R+ × R+ → R and B,C : R+ × { 0, 1 } → R+ with

A(x, y) = x+ y

B(x, z) = max(0, x− kz)
C(x, z) = max(0, x+ kz − k)

be computations represented by a sub-graph of a neural network. Denote the combination of these computations as
N : R+ × R+ × { 0, 1 } with

N(x, y, z) = A(B(x, z), C(y, z)).

Then it holds that

∀x, y ∈ R+ : k ≥ max(x, y) =⇒

{
N(x, y, 0) = x

N(x, y, 1) = y
.
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Proof of Lemma 1. First, consider the case where the binary input of N is 0; that is, z = 0. Then, since k ≥ y,

B(x, 0) = max(0, x) = x

C(y, 0) = max(0, y − k) = 0,
(6)

so N(x, y, 0) = A(B(x, 0), C(y, 0)) = A(x, 0) = x.

Analogously consider z = 1. Then, since k ≥ x,

B(x, 1) = max(0, x− k) = 0

C(y, 1) = max(0, y) = y,
(7)

so N(x, y, 1) = A(B(x, 1), C(y, 1)) = A(0, y) = y, completing the proof.

Lemma 2. Let X denote the space of all possible inputs (e.g., all images), D some distribution on X (e.g., ImageNet). Let
D,F : X → R+ represent the full computation of a unit in the original and in the tinkered network, respectively, that can
be bounded on their domain. For an arbitrary algorithm Opt : {X → R} × X → X and distribution π0 on X define the
following sequence of random variables: ∀n > 0 : Xn+1 = Opt(D,Xn) and X0 ∼ π0. Denote the distribution over X
induced by this process π. If D and π have disjoint support, then there exists a neural network implementing a function
N : X → R such that

Px∼π[N(x) = D(x)] = 1 and Px∼D[N(x) = F (x)] = 1.

Proof of Lemma 2. As D and π have disjoint support this means that there exists a function E : R→ { 0, 1 } such that

Px∼π[E(x) = 0] = 1 and Px∼D[E(x) = 1] = 1. (8)

Let k = max (maxx∈DD(x),maxx∈πD(x)), which exists as both D and F are bounded. In line with Lemma 1, we
construct N as N(x) = A(B(D(x), E(x)), C(F (x),¬E(x))). Per the universal approximation theorem (Hornik et al.,
1989), there exists a neural network implementing the assumed function E. As all other computations (i.e., A,B,C,D, F )
are implemented by a neural network, we can conclude that the constructed function N can also be implemented by a neural
network.

Applying Lemma 1 and Eq. (8) directly yields

Px∼π[N(x) = D(x)] = 1 and Px∼D[N(x) = F (x)] = 1, (9)

concluding the proof.

Remark 1. In the case of feature visualizations, the assumption that π and D have disjoint support is plausible as
demonstrated empirically in Subsection 2.1; this can also be visually appreciated from looking at Figure 6 showing a
visualization trajectory which at no point resembles natural images. /

B.2. Details on interpretation of Table 1

First, we elaborate on what No and Yes mean in Table 1.

The weakest form of answering No would be to find a single function f where feature visualization cannot be used to
predict f . At the other extreme, one could hope to show that feature visualization cannot be used to predict f for all f .
Unfortunately, this is trivially impossible to show: for every distinct value the feature visualization can take, one could pick a
function f that agrees with this visualization (e.g., has the same arg max) and use this as the prediction. In light of this, we
prove the next strongest impossibility result. When the answer is No, we show that for all3 functions f (except for a handful
of corner cases, like constant functions), there exists another function f ′ that gets the exact same feature visualization as f
yet cannot be accurately predicted. Similarly, for the cells with extra assumptions in orange, this means that the answer is
No (as defined in the previous sentence) unless these extra assumptions are satisfied.

3Affine functions are the only exception, since there are more cases where an affine f can be exactly recovered from feature
visualization. See Theorem 6 for the precise characterization.
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We measure predictive accuracy using the sup norm for simplicity, but our results could be extended to any other strictly
convex loss. This is essentially the strongest result one could hope for: by the intermediate value theorem, any continuous
f must take every value in between fmin and fmax, and hence it is impossible to prove that f(x) can’t be recovered for
every x. On the contrary, for the cells where the answer is Yes, we can actually prove something much stronger than the
converse of No: we prove that f(x) can be predicted for all x and for all f . This hints at the necessity of such strong
assumptions. Either the function class is so simple that feature visualization reveals everything about every function, or
feature visualization reveals hardly anything about any function.

To find the precise results that correspond to each cell of Table 1, see Table 2.

Given feature visualization for f , can we reliably predict f(x) ...
exactly? ε-approxim.? closer to min or max?

black-box F Theorem 1 Theorem 1 Theorem 2
neural network (NN) FNN Theorem 1 Theorem 1 Theorem 2
NN trained with ERM FERM Theorem 1 Theorem 1 Theorem 2

L−Lipschitz (known L) FLLip Theorem 4 Theorem 4 Theorem 5
piecewise affine FPAff Theorem 1 Theorem 1 Theorem 2

monotonic FMono Theorem 1 Theorem 1 Theorem 2
convex FConvx Theorem 3 Theorem 3 Theorem 2

affine (input dim. ¿ 1) Fd>1
Aff Theorem 6 Theorem 6 Theorem 7

affine (input dim. = 1) Fd=1
Aff Theorem 8 Theorem 8 Theorem 8

constant FConst Theorem 8 Theorem 8 Theorem 8

Table 2: Theoretical results corresponding to each cell of Table 1.

Finally, we define precisely what each assumption means in Table 1. For any space A, letM(A) denote the set of all
probability measures on A.

Neural Network: FNN =
{
f ∈ F : can be written as mat. mul. with scalar activations

}
NN with ERM: FERM =

{
f ∈ FNN : ∃π ∈M(I × [0, 1]) s.t.

f = arg min
f ′∈F

E
(X,Y )∼π

`(f ′(X), Y ), where ` is a Bregman loss function (see Banerjee et al., 2005)
}

Lipschitz: FLLip =
{
f ∈ F : sup

x,x′∈I

f(x)− f(x′)

‖x− x′‖∞
≤ L

}
Piecewise Affine: FPAff =

{
f ∈ F : can be written as affine on each piece of a partition of I

}
Monotone: FMono =

{
f ∈ F : ∀x ≤ x′, f(x) ≤ f(x′)

}
∪
{
f : ∀x ≤ x′, f(x) ≥ f(x′)

}
4

Convex: FConvx =
{
f ∈ F : ∀x, x′ ∈ I ∀α ∈ [0, 1],

f(αx+ (1− α)x′) ≤ αf(x) + (1− α)f(x′)
}

Affine: FdAff =
{
f ∈ F : ∃A ∈ Rd ∃b ∈ R s.t. ∀x ∈ I, f(x) = ATx+ b

}
Constant: FConst =

{
f ∈ F : ∀x, x′ ∈ I, f(x) = f(x′)

}
.

4For d-dimensional inputs, x ≤ x′ if and only if xj ≤ x′j for all j ∈ [d].
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B.3. Additional impossibility results

While Theorems 1 and 2 already provide impossibility for strong assumptions like monotonicity and piecewise affine,
convexity is a particularly strong assumption since it restricts the output space of functions. In particular, no convex function
can cross the diagonal line from fmin to fmax, and hence it is possible that more information can be recovered from just
these values. However, the next result shows that this information can only be used to possibly improve a constant 1/2 to
1/4, and arbitrary approximation is still impossible (unless the function is constant).

Theorem 3. For all D ∈ D and f ∈ FConvx, there exists f ′ ∈ FConvx such that Φ
min max

(f) = Φ
min max

(f ′) and

∥∥∥f ′ −D(Φ
min max

(f ′))
∥∥∥
∞
≥
f ′max − f ′min

4
.

Similarly, a known Lipschitz constant implies local stability of f , which may be possible for a decoder to exploit. However,
we show that this is also not possible in general (our result is stated in 1-dimension for simplicity, but could be extended
trivially to arbitrary dimension using the sup norm definition of Lipschitz).

Theorem 4. For all D ∈ D, L > 0, and f ∈ FLLip, there exists f ′ ∈ FLLip such that Φ
min max

(f) = Φ
min max

(f ′) and if
2 |fmax − fmin| ≤ L |xmax − xmin| then∥∥∥f ′ −D(Φ

min max
(f ′))

∥∥∥
∞
≥
f ′max − f ′min

2
.

Moreover, even if 2 |fmax − fmin| > L |xmax − xmin|,∥∥∥f ′ −D(Φ
min max

(f ′))
∥∥∥
∞
≥ Lmax

{
min{xmin, xmax}, 1−max{xmin, xmax}

}
.

First, for all f ∈ FLLip it holds that |fmax − fmin| ≤ L |xmax − xmin|, so the first condition nearly captures all cases. As
already argued, under this condition our lower bound is tight by Proposition 1. Even when the condition fails, our lower
bound is zero if and only if |xmax − xmin| = 1 and |fmax − fmin| > L/2. This is nearly tight, since if |fmax − fmin| = L,
then necessarily |xmax − xmin| = 1 and f is linear and uniquely identifiable from Φ

min max
(f) (and hence the lower bound

must be zero in this case).

A similar condition can be used to provide a Lipschitz analogue of Theorem 2.

Theorem 5. For all D ∈ D, L > 0, and f ∈ FLLip such that 2 |fmax − fmin| ≤ L |xmax − xmin|, there exists f ′ ∈ FLLip such
that Φ

min max
(f) = Φ

min max
(f ′) and∥∥∥∥1f ′>mf′ − 1D(Φ

minmax
(f ′))>mf′

∥∥∥∥
∞
≥ 1

supx∈I f(x) 6=infx∈I f(x)
.

Finally, we have the following negative result for affine functions. Due to the extra structure imposed by an affine assumption,
in more cases it is possible to fully recover f from just the feature visualization. However, in the worst case, f may still be
completely unrecoverable. We show this for d = 2; a similar result can be shown in higher dimensions with more careful
accounting of edge cases.

Theorem 6. For all D ∈ D and f ∈ Fd=2
Aff , there exists f ′ ∈ Fd=2

Aff such that Φ
min max

(f) = Φ
min max

(f ′) and

∥∥∥f ′ −D(Φ
min max

(f ′))
∥∥∥
∞
≥ 1xmin,1 6=xmin,2

1xmax,1 6=xmax,2

f ′max − f ′min

2
.

The same can also be shown for the analogue of Theorem 2.

Theorem 7. For all D ∈ D and f ∈ Fd=2
Aff , there exists f ′ ∈ Fd=2

Aff such that Φ
min max

(f) = Φ
min max

(f ′) and∥∥∥∥1f ′>mf′ − 1D(Φ
minmax

(f ′))>mf′

∥∥∥∥
∞
≥ 1xmin,1 6=xmin,2

1xmax,1 6=xmax,2
.
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B.4. Positive results

Finally, we state our positive result for very simple functions.
Theorem 8. For all G ∈ {Fd=1

Aff ,FConst} there exists D ∈ D such that for all f ∈ G,∥∥∥f −D(Φ
min max

(f))
∥∥∥
∞

= 0.

B.5. Proofs for Section 4

Remark 2. Throughout, we prove impossibility results for 1-dimensional functions. The extension to multiple dimensions
follows from using our constructions componentwise and then applying Lemma 3 or Lemma 4 as appropriate, which hold
for any input dimension. /

B.5.1. HELPER LEMMAS

To prove results for the first two columns on Table 1, we use the following lemma to characterize the performance of an
arbitrary decoder D ∈ D.
Lemma 3. For any D ∈ D and f1, f2 ∈ F such that Φ

min max
(f1) = Φ

min max
(f2), for some f ∈ {f1, f2}∥∥∥f −D(Φ

min max
(f))

∥∥∥
∞
≥
‖f1 − f2‖∞

2
.

Proof of Lemma 3. Let g = D(Φ
min max

(f1)) = D(Φ
min max

(f2)) and let x be such that |f1(x)− f2(x)| = ‖f1 − f2‖∞.
Then, since mean is less than max,

1

2
|f1(x)− f2(x)| ≤ 1

2
|f1(x)− g(x)|+ 1

2
|g(x)− f2(x)| ≤ max

f∈{f1,f2}
|f(x)− g(x)| .

Then, for any G ⊆ F of interest and any f ∈ G, we simply have to find f1, f2 ∈ G such that Φ
min max

(f) = Φ
min max

(f1) =

Φ
min max

(f2) and ‖f1 − f2‖∞ is appropriately large (where “large” will depend on f ).

Similarly, we use the following lemma to prove results for the third column of Table 1.
Lemma 4. For any D ∈ D and f1, f2 ∈ F such that Φ

min max
(f1) = Φ

min max
(f2), for some f ∈ {f1, f2}∥∥∥∥1f>mf

− 1D(Φ
minmax

(f))>mf

∥∥∥∥
∞
≥ ‖1f1>m − 1f2>m‖∞ ,

where m = mf1 = mf2 .

Proof of Lemma 4. Let g = D(Φ
min max

(f1)) = D(Φ
min max

(f2)) and let x be such that
∣∣1f1(x)>m − 1f2(x)>m

∣∣ =

‖1f1>m − 1f2>m‖∞.

If ‖1f1>m − 1f2>m‖∞ = 0 the result holds trivially, so suppose that ‖1f1>m − 1f2>m‖∞ = 1. That is, 1f1(x)>m 6=
1f2(x)>m. If 1g(x)>m = 1f1(x)>m, then∥∥∥∥1f2>m − 1D(Φ

minmax
(f2))>m

∥∥∥∥
∞
≥
∣∣1f2(x)>m − 1g(x)>m

∣∣ = 1.

Otherwise, if 1g(x)>m = 1f2(x)>m, then∥∥∥∥1f1>m − 1D(Φ
minmax

(f1))>m

∥∥∥∥
∞
≥
∣∣1f1(x)>m − 1g(x)>m

∣∣ = 1.

That is,

max
f∈f1,f2

∥∥∥∥1f>m − 1D(Φ
minmax

(f))>m

∥∥∥∥
∞
≥ 1 = ‖1f1>m − 1f2>m‖∞ .
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B.5.2. PROOF OF PROPOSITION 1

Let D(xmin, xmax, fmin, fmax) ≡ (1/2)(fmax + fmin) and fix f ∈ F . For any x,

f(x)− fmax + fmin

2
≤ fmax −

fmax + fmin

2
=
fmax − fmin

2

and
fmax + fmin

2
− f(x) ≤ fmax + fmin

2
− fmin =

fmax − fmin

2
.

Thus, ∣∣∣∣f(x)− fmax + fmin

2

∣∣∣∣ ≤ fmax − fmin

2
.

Since x was arbitrary, the result holds.

B.5.3. PROOF OF THEOREM 1

First, suppose 0 ≤ xmin < xmax ≤ 1.

Define

f1(x) =


fmin x ∈ [0, (xmin + xmax)/2]
2(fmax−fmin)

xmax−xmin
x+

2fminxmax−fmaxxmin−fmaxxmax

xmax−xmin
x ∈ [(xmin + xmax)/2, xmax]

fmax x ∈ [xmax, 1]

and

f2(x) =


fmin x ∈ [0, xmin]
2(fmax−fmin)

xmax−xmin
x+

fminxmax+fminxmin−2fmaxxmin

xmax−xmin
x ∈ [xmin, (xmin + xmax)/2]

fmax x ∈ [(xmin + xmax)/2, 1].

Since Φ
min max

(f1) = Φ
min max

(f2) = Φ
min max

(f), and f1 and f2 are both monotone and piecewise affine, the result
follows for FMono and FPAff from applying Lemma 3 and observing that ‖f1 − f2‖∞ ≥ fmax − fmin (this occurs at
(xmin + xmax)/2).

If 0 ≤ xmax < xmin ≤ 1, the same argument applies with 1− f1 and 1− f2.

Finally, when xmin = xmax, then fmax − fmin = 0 so the result holds trivially.

To prove the result for FNN, note that we imposed no constraints on fmax or fmin. Thus, for any f ∈ FNN, we can construct
f1 and f2. We then use that any piecewise affine function can be exactly represented by a sufficiently large neural network
(Arora et al., 2018; Chen et al., 2022) to conclude f1, f2 ∈ FNN.

The same argument applies to prove the result for F , since clearly f1, f2 ∈ F .

Finally, for FERM, we must construct appropriate distributions with conditional means f1 and f2 respectively (we already
noted these are both elements of FNN). For simplicity, define the joint distribution by X ∼ Unif(I) and Y |X ∼ Ber(fj(X))
for j ∈ {1, 2}.

B.5.4. PROOF OF THEOREM 2

We use f1 and f2 from Theorem 1, and recall that m = (fmin + fmax)/2. Consider when 0 ≤ xmin < xmax ≤ 1. Then, at
x = (xmin + xmax)/2, f1(x) = fmin < m and f2(x) = fmax > m, so ‖1f1>m − 1f2>m‖∞ = 1. The result then follows
by Lemma 4. If 0 ≤ xmax < xmin ≤ 1, the same argument applies with 1− f1 and 1− f2.

For FConvx, we use f1 and f2 from the proof of Theorem 3 (Appendix B.5.5). Recall that m = (fmin + fmax)/2. Consider
when xmax = 1 and xmin < 1. Then, at x = xmin/4 + 3/4, f1(x) = fmin/4 + 3fmax/4 > m and f2(x) = m, so
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‖1f1>m − 1f2>m‖∞ = 1. The result then follows by Lemma 4. If xmin = 0 and xmax > 0, the same argument applies
using f ′1 and f ′2 as defined in Appendix B.5.5.

If xmin = xmax then fmin = fmax and hence f is constant, so the result holds trivially.

B.5.5. PROOF OF THEOREM 3

Note that for any f ∈ FConvx, one of xmin or xmax are in {0, 1}.

First, consider xmax = 1 and xmin < 1. Define

f1(x) =

fmin x ∈ [0, xmin]
fmax−fmin

1−xmin
x+

fmin−fmaxxmin

1−xmin
x ∈ [xmin, 1]

(10)

and

f2(x) =

fmin x ∈ [0, (xmin + 1)/2]
2(fmax−fmin)

1−xmin
x+

2fmin−fmaxxmin−fmax

1−xmin
x ∈ [(xmin + 1)/2, 1].

(11)

Clearly, f1, f2 ∈ FConvx (since they are flat then linear with positive slope) and ‖f1 − f2‖∞ ≥ (fmax − fmin)/2 (this occurs
at x = (xmin + 1)/2). Since xmin = 0 implies that xmax = 1 by convexity, this case also covers xmin = 0.

Second, consider xmax = 0 and xmin > 0. Using Eqs. (10) and (11), define g1(x) = f1(1 − x) and g2(x) = f2(1 − x).
These also satisfy g1, g2 ∈ FConvx (since they are linear with negative slope then flat) and ‖g1 − g2‖∞ ≥ (fmax − fmin)/2
(this occurs at x = xmin/2). Since xmin = 1 implies that xmax = 0 by convexity, this case also covers xmin = 1.

Finally, if xmin = xmax then fmin = fmax and the result holds trivially.

B.5.6. PROOF OF THEOREM 4

When 2 |fmax − fmin| ≤ L |xmax − xmin|, the proof of Theorem 1 applies since f1, f2 ∈ FLLip.

Otherwise, suppose that 0 ≤ xmin < xmax ≤ 1. Define

f1(x) =


fmin x ∈ [0, xmin]
fmax−fmin

xmax−xmin
x+

fminxmax−fmaxxmin

xmax−xmin
x ∈ [xmin, xmax]

fmax x ∈ [xmax, 1]

and

f2(x) =


−L(x− xmin) + fmin x ∈ [0, xmin]
fmax−fmin

xmax−xmin
x+

fminxmax−fmaxxmin

xmax−xmin
x ∈ [xmin, xmax]

−L(x− xmax) + fmax x ∈ [xmax, 1].

Recall that by definition of f ∈ FLLip, |fmax − fmin| ≤ L |xmax − xmin|, so f1, f2 ∈ FLLip.

If xmin > 1− xmax, then ‖f1 − f2‖∞ ≥ Lxmin (which is realized at x = 0), and otherwise ‖f1 − f2‖∞ ≥ L(1− xmax)
(which is realized at x = 1).

If 0 ≤ xmax < xmin ≤ 1, the same argument applies with 1− f1 and 1− f2.

B.5.7. PROOF OF THEOREM 5

Since 2 |fmax − fmin| ≤ L |xmax − xmin|, the proof of Theorem 2 applies because f1, f2 ∈ FLLip.
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B.5.8. PROOF OF THEOREM 6

When d = 2, any f ∈ Fd=2
Aff satisfies f(x) = ax1 + bx2 + c for some a, b, c ∈ R. Given Φ

min max
(f) =

(xmin, fmin, xmax, fmax), the compatible f ∈ Fd=2
Aff are those fc such that

a =
xmax,2fmin − xmin,2fmax + (xmin,2 − xmax,2)c

xmin,1xmax,2 − xmax,1xmin,2

b =
−xmax,1fmin + xmin,1fmax + (xmax,1 − xmin,1)c

xmin,1xmax,2 − xmax,1xmin,2
,

where c is a free parameter (with the only constraint that fc(x) ∈ [0, 1] for all x ∈ I).

Since f is affine, xmin and xmax must both occur at one of the four corners of [0, 1]2. Note that a and b above are undefined
for some of these combinations, which we now enumerate.

If xmin = xmax, then f is constant and can be recovered exactly. If xmin = (0, 0), then necessarily c = fmin, so f can be
recovered exactly. Similarly, if xmax = (0, 0) then necessarily c = fmax.

Moreover, there are other cases where f can be recovered. If xmin = (1, 1) and xmax ∈ {(1, 0), (0, 1)}, then one of a or b
do not depend on c and hence c can be directly recovered. The same is true when xmax = (1, 1).

There are two possibilities left.

1) xmin = (0, 1) and xmax = (1, 0):
a = fmax − c
b = fmin − c.

Take c1 = fmin and c2 = fmax to get
f1(x) = (fmax − fmin)x1 + fmin

and
f1(x) = (fmin − fmax)x2 + fmax.

These still have Φ
min max

(f) = Φ
min max

(f1) = Φ
min max

(f2), but ‖f1 − f2‖∞ ≥ fmax − fmin (this is realized at
x = (1, 1)).

2) xmin = (1, 0) and xmax = (0, 1):
a = fmin − c
b = fmax − c.

Take c1 = fmin and c2 = fmax to get
f1(x) = (fmax − fmin)x2 + fmin

and
f1(x) = (fmin − fmax)x1 + fmax.

These still have Φ
min max

(f) = Φ
min max

(f1) = Φ
min max

(f2), but ‖f1 − f2‖∞ ≥ fmax − fmin (this is again realized at
x = (1, 1)). The result holds by then applying Lemma 3.

B.5.9. PROOF OF THEOREM 7

This follows directly from applying Lemma 4 to the functions constructed in the proof of Theorem 6 (Appendix B.5.8).

B.5.10. PROOF OF THEOREM 8

First suppose that f ∈ Fd=1
Aff . That is, there exists a, b such that f(x) = ax+ b for all x. Given Φ

min max
(f), define

af =
fmax − fmin

xmax − xmin
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and

bf =
xmaxfmin − xminfmax

xmax − xmin
.

Set D(Φ
min max

(f)) = [x 7→ afx + bf ]. Since there is a unique affine function passing through both (xmin, fmin) and
(xmax, fmax), and D(Φ

min max
(f)) is an affine function passing through both of these, this implies that D(Φ

min max
(f)) ≡

f .

If f ∈ FConst, then there exists y ∈ [0, 1] such that fmin = fmax = y and f(x) = y for all x. DefineD(Φ
min max

(f)) ≡ fmin,
which implies that D(Φ

min max
(f)) ≡ f .

C. Method details for classifier training (Subsection 2.1)
For classifier training, we create a dataset by combining 1, 281, 167 images from the training set of the ImageNet 2012
dataset and 472, 500 synthetic images. These synthetic images are the (intermediate) results of the feature visualization
optimization process. Specifically, for 1, 000 classification units in the last layer of an ImageNet-trained InceptionV1
network, we run the optimization process with the parameters used by (Olah et al., 2017) 35 times each, resulting in
35, 000 unique optimization trajectories. We logarithmically sample 15 (intermediate) steps from the optimization trajectory,
resulting in 525, 000 synthetic images in total. Finally, we split the synthetic images into 472, 500 (= 90%) training and
52, 500 (= 10%) testing images. Note that we use different units for the two sets. We train a model implementing the
simple six layer CNN architecture displayed in Table 3 for 8 epochs on the aforementioned dataset with an SGD optimizer
using a learning rate of 0.01, momentum of 0.9 and weight decay of 0.00005. The classifier achieves a near-perfect accuracy
of 99.49% on the held-out test set (99.66% and 99.31% for natural input and feature visualizations, respectively).

Type Size/Channels Activation Stride

Conv 3× 3 16 ReLU 3
Conv 5× 5 16 ReLU 2
Conv 5× 5 16 ReLU 2
Conv 5× 5 16 ReLU 2
Conv 5× 5 16 ReLU 2
Conv 3× 3 16 ReLU 2

Flatten - - -
Linear 1 - -

Table 3: Architecture of the classifier used to detect feature visualizations.

D. Method details for feature visualization figures
Throughout the paper, feature visualizations were generated using the lucent library (Greentfrapp, v0.1.8), version v0.1.8.
Per default, we used thresholds=(512,) except for Figure 6 where the five images at different points in the optimiza-
tion trajectory are shown (specifically, thresholds=(1,8,32,128,512)). For Figure 1, we used the thresholds that
visually looked best (in line with existing literature: there is no principled way to determine the threshold); specifically
thresholds=(512,512,512,6,32,6) for the six visualizations from left to right (for the three rightmost images,
higher thresholds produced qualitatively similar yet oversaturated images). In terms of transformations during feature visu-
alization, transforms=lucent.optvis.transform.standard_transforms + [center_crop(224,
224)] was used. The image was parameterized via param_f=lambda: lucent.optvis.param.image(224,
batch=1).

For Figure 1, a natural image was embedded into the weights of a single convolutional layer, torch.nn.Conv2d,
with kernel_size=224, stride=1, padding=0, dilation=1, groups=1, bias=True,
padding_mode=‘zeros’). To this end, the image was loaded and the layer weights were set to the corre-
sponding image values, divided by 2242 to avoid a potential overflow. Architecturally, the layer received the standard image
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input and its ouptut was appended to the output of the desired layer (e.g. softmax2_pre_activation_matmul)
where it was used in the role of D from Figure 3.

For Figure 5, we exploit the fact that feature visualizations usually lead to substantially larger activations than natural
samples. We can exploit this property without requiring an explicit classifier like the fooling circuit did. We choose the
two free parameters Θ̄ and b such that ∆y = 0 for natural inputs but ∆y 6= 0 for feature visualizations. Specifically, we
construct Θ̄ by adding a sufficiently strong orthogonal perturbation ∆Θ⊥ to Θ; that is, Θ̄ = αΘ + β∆Θ⊥, where α, β
control the relative strength of the filter directions. By choosing a sufficiently negative bias b, we ensure that ∆y remains
silent (no activation, ensuring that natural input is processed as before) unless y is very strongly activated. Letting ȳmax. nat
denote the maximal observed activation on natural input for the constructed filter Θ̄, we set b = −α/βȳmax. nat. Since we
empirically observe a large gap between activations reached by feature visualizations and natural input, we are able to steer
the visualizations to (almost) arbitrarily chosen images, as demonstrated in Figure 5.

E. Method details and additional similarity plots for Section 3
Motivation: relationship between path similarity and Spearman correlation. In Section 3, we describe that different
processing paths lead to different activation similarity as measured through Spearman correlation. We here attempt to
explain this relationship in a bit more detail. For the context of our analysis, we define a path as a (sub-)graph of a directed
acyclic graph (DAG, a neural network or sub-network in our case), starting at the input nodes (first layer units) and ending at
a single unit (the unit for which the analysis is performed). How can we quantify the overlap between two different paths,
layer by layer? If a node is in the subgraph forming the path, the node is assigned a value of 1; if it is not, it is assigned
a value of 0. Then, layer-wise overlap can be quantified by the Spearman correlation, which is exactly zero if there is
only chance overlap, exactly 1.0 if there is perfect overlap, and exactly -1.0 if the units in a certain layer (corresponding
to two different paths) are perfectly anticorrelated. Similarly, in the non-binary case (such as a path formed by activation
patterns for natural images vs. feature visualization images, which is what we consider for the similarity analysis), the
values assigned to the node are simply the activations, and the same analysis can be applied. Since we only care about
the path similarity and not about whether this similarity is a linear relationship, Spearman’s rank-order correlation is the
correct measure to use here (while the Pearson correlation, plotted in Figure 10 for comparison, is a measure of a linear
relationship).

Methods. Performing a full comparison is computationally expensive: Inception-V1’s largest layer
(conv2d0 pre relu conv) contains 802,816 values; computing the Spearman correlation for this takes about
one third of a second. Inception-V1 has 138 layers and sub-layers (see Figure 7 x-axis labels for a list). Even if we just
consider the comparison between natural images vs. natural images of a different class, for the ImageNet-1K validation
set this amounts to 138 (= number of layers) ·50 · 50 (= number of comparisons between two specific classes of the
ImageNet validation split) · 1000·1001

2 − 1000 (= number of comparisons when comparing each class with each other class
except for itself) = 172, 327, 500, 000 comparisons. With 3 comparisons per second, this amounts to about eighteen
hundred years required to do the full comparison. In order to make this more feasible, we chose the following approach.
We randomly selected 10 classes via numpy.random.seed(42); randomly selected class indices =
sorted(numpy.random.choice(1000, 10)), resulting in randomly selected class indices=[20,
71, 102, 106, 121, 270, 435, 614, 700, 860] and obtained 10 feature visualizations per class. Images
that were not correctly classified by the model (wrong top-1 classification) were excluded from the comparison since those
images do not constitute natural images for which the corresponding unit is selective for.

From this point onward, when computing the Spearman and Pearson correlations, we only performed every 10th comparison
for natural images vs. natural images of the same class; every 100th comparison for natural images vs. natural images
of a different class, and every 5th comparison for natural images vs. feature visualizations of the same class. For Cosine
similarity (which is much faster), we performed every single comparison.

Raw and normalized plots. For each metric, absolute values are plotted in Figures 7, 9, and 11. For Figures 4, 8, and 10,
normalized values are plotted. For these plots, we normalized the data according to the raw absolute values, i.e. such that
natural images vs. natural images of the same class is set to 1.0 and natural images vs. natural images of a different class is
set to 0.0 since it makes sense to interpret similarity results relative to those two extreme baselines. A tiny number of layers
was excluded from the normalized comparison if the green and black points from the absolute plots differed by strictly less
than a threshold of 0.01. To reduce noise in the orange curve (natural images vs. feature visualizations of the same class),
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we smoothed the curve by convolving it with scipy.ndimage.convolve using a window size of 7 and the following
uniform weights: np.ones(windowsize)/windowsize. The shaded blue area corresponds to the standard deviation
of the orange data points, convolved over a window of of size std windowsize=5 which is then (for the lower bound of
the blue area) subtracted from the orange curve, and (for the upper bound of the blue area) added to the orange curve; thus
in total the blue area area vertically extends two standard deviations. The idea behind this is to give a rough visual estimate
of the standard deviation range that the orange values have at certain points throughout the network. By itself, it does not
provide an indication of statistical significance.
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Figure 9: Absolute similarity (Cosine).
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Figure 10: Normalized similarity (Pearson).
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F. Silent unit analysis
In Subsection 2.2, we constructed a circuit that contained silent units. These are units that remain inactive whenever
natural input is processed by the network (no activation across the entire ImageNet training set; the units in the circuit were
designed to become active once feature visualization is performed). We again ask whether similar units may exist in natural,
unmodified networks. As a first step, we analyzed how many silent units exist in standard networks trained on ImageNet.
Table 4 shows that common networks indeed have a small but significant number of silent units (between 2.28 % and
4.36 % of units for different ResNets). Naturally, these silent units are unlikely to be wired up in the same manipulative
(orthogonal) fashion as in Subsection 2.2, but they may contribute to processing differences from Figure 4. As we will see,
their existence challenges the point of view that what we see describes the computational function of the unit.

ResNet-18 ResNet-50 ResNet-152 Inception-v1

silent units 100,585 (4.36 %) 218,994 (2.28 %) 669,973 (3.18 %) 11 (3.59 · 10−6 %)
silent channels 8 (0.20 %) 156 (0.69 %) 433 (0.60 %) 0 (0.0 %)

Table 4: Number of silent units and channels. Here, a unit or channel is called silent if it has zero activation across the
entire ImageNet training dataset.

Figure 12: Silent channels. Feature visualization of 5 randomly selected silent channels and 5 randomly selected non-silent
channels of a randomly selected layer of ResNet-50 (layer3 1 conv3). There are no obvious differences between silent
and non-silent channel visualizations—can you guess which ones are which? (Answer below5)

What do we seen when visualizing silent channels? In Figure 12, visualizations for five randomly selected silent channels
and five randomly selected non-silent channels are shown. The visualizations all look innocuous: on the basis of a channel’s
feature visualization it can be impossible to tell whether it is silent or not. This means that the feature visualization of a unit
cannot be taken as evidence for the role that the unit plays in fulfilling the network’s objective (e.g., classification): even
though the visualization shows all sorts of patterns, this does not mean that the network actually uses these patterns when
classifying natural images.

This finding can be understood through a concept from neuroscience: the projective field of a neuron. In contrast to the
widely known receptive field determined by incoming connections, the outgoing connections determine the projective field.
In neuroscience, it was initially thought that the function of a neuron can be solely deduced from analyzing its receptive field.
However, Lehky & Sejnowski (1988) discovered that units whose receptive fields looked like edge detectors actually detected
whether a shaded surface was convex or concave, which only became apparent when analyzing the projective field: “In
retrospect, it is obvious that a neuron without any output cannot have a computational function and that the same neuron can
have more than one function depending on where it projects” (Sejnowski, 2006, p. 396). Therefore, feature visualization
cannot be used to determine the computational function of an intermediate neuron since the computational function
hinges on the projective field to which the method is oblivious to. The same argument applies to network dissection (Bau
et al., 2017), another interpretability method. This is exemplified by silent units that have standard visualizations yet no
computational function whatsoever.

G. Are more linear units easier to interpret?
The theory from Section 4 makes a prediction: the simpler a function is, the easier it should be to interpret given a feature
visualization. We here attempt to empirically test this prediction. As a measure of simplicity, we use path linearity: based
on a highly activating natural image (start point), we perform feature visualization to arrive at a highly activating optimized
image (end point). We then analyze how much the optimization path deviates from linearity by measuring the angle between

1From left to right: n, s, s, s, s, n, s, n, n, n (s = silent, n = not silent).
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gradients of the first n steps of the path. This metric (across many such paths) is then correlated with human experimental
data from Zimmermann et al. (2021) for the same units, who measured how well humans can interpret different units
in Inception-V1. Intriguingly, we find a significant correlation (Spearman’s r = −.36, p = .001) between this human
interpretability score and our path linearity measure (lower angle means higher interpretability) for the beginning of the
trajectory (e.g., n = 2). Linearity at later steps in the trajectory does not seem to contribute much to human interpretability,
thus increasing n to include all 512 steps decreases the overall correlation (r = −.13, p = .23; details below). Overall, we
interpret this as very preliminary evidence in favor of the hypothesis that more linear units, at least at the beginning of the
optimization trajectory, might be easier to interpret. An interesting direction for future work would be to enforce higher
degrees of linearity, for instance through regularization or the architecture.

G.1. Method details for linearity experiments

As our theory (see Table 1) predicts that the simpler the function class of a network’s unit is the easier it may be to interpret
through feature visualizations, we set out to measure one type functional simplicity. Specifically, we approximate how linear
a function’s optimization trajectory is by computing how aligned its gradients are. The hypothesis is that more linear units
(or visualization paths) might be more interpretable.

To measure the interpretability of a unit we use the experimental data provided by Zimmermann et al. (2021). They tested
how well humans can differentiate maximally and minimally activating images for individual units of a CNN when supported
with explanations in the form of feature visualizations (see Appendix I for details). We use the experimental data of 84 units
as well as the M = 20 maximally activating natural dataset samples they provided.

Quantifying degree of nonlinearity through gradient angles To measure the linearity of a unit we compute the follow-
ing quantity for each unit: We start from a maximally activating dataset sample xsi and perform feature visualization to
iteratively optimize this image to further increase the unit’s activation. We use standard hyperparameters and optimize for
N = 512 steps. During optimization we record the normalized gradients with respect to the current image (ĝj(x

s
i ))j=1,...,N

and compute the angle between successive steps:

∀j = 1, . . . , N − 1 : aj(x
s
i ) := ](ĝj(xi), ĝj+1(xss)). (12)

We take the average over all M maximally activating images and denote the average gradient path angle as:

∀j = 1, . . . , N − 1 : AGPAj :=
1

M

M∑
i=1

aj(x
s
i ). (13)

Finally, we denote the average of the average gradient path angle AGPA as the average gradient angle:

AGA =
1

N − 1

N−1∑
i=1

AGPAi . (14)

To answer our initial question—whether simpler/more linear units are more interpretable—we now measured the rank
correlation between the average gradient angle and the interpretability scores by Zimmermann et al. (2021). Intriguingly,
we find a significant correlation (Spearman’s r = −.36, p = .001) between this human interpretability score and our path
linearity measure (lower angle means higher interpretability) for the beginning of the trajectory (e.g., n = 2). Linearity at
later steps in the trajectory does not seem to contribute much to human interpretability, thus increasing n to include all 512
steps decreases the overall correlation. The results depending on path length are plotted in Figure 13a.

Quantifying degree of nonlinearity through deviations from linear interpolation There are many different ways that
could be used to measure path or unit linearity. As a more global measure, we also tested another one: Here, we begin by
computing a linear interpolation between the maximally activation data samples we initialize the optimization with xsi and
the final visualization xfi :

{ z | xsi + α(xfi − x
s
i ) ∀α ∈ [0, 1] }. (15)
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(a) Average gradient path angle AGPAk. Strikingly, only the first
few gradient angles are strongly and significantly correlated with
the units’ interpretability.
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(b) Average line distance path AGLDk. Interestingly, while we see
a anti-correlation at the beginning (cf. Figure 13a), this turns into a
weak correlation. However, these correlations are not significant.

Figure 13: Development of Spearman’s rank correlation between the units’ interpretability score and the (a) average gradient
path angle AGPAk and (b) average line distance path ALDPk as a function of the number of optimization steps k to
consider.

Next, for each step j of the optimization process we compute the distance of the current image xj(xsi ) to to the linear
interpolation

dj(x
s
i ) = d

(
xj((x

s
i )), { z | xsi + α(xfi − x

s
i ) ∀α ∈ [0, 1] }

)
, (16)

where d(·, ·) represents the `2 distance. Analogously to the computation above, we then take the mean over the different
start images and define this property as the average line distance path

∀j = 1, . . . , N − 1 : ALDPj :=
1

M

M∑
i=1

dj(x
s
i )

d(x2
i , x

f
i )
, (17)

where we normalize the distances from the line with the distance between start and end point of the optimization trajectory
to make these values scaleless. Finally, by averaging again over optimization steps final average line distance:

ALD =
1

N − 1

N−1∑
i=1

ALDPi . (18)

The lower the ALD value, the smaller is the deviation of the optimization path from a line. For this global measure, we see
a non-significant relation between the average line distance and the interpretability scores (Spearman’s r = 0.02, p = 0.86).
Analogously to the local measure explained above (gradient angle), we zoom into these results again in Figure 13b. While
there might be a weak anti-correlation at the beginning of the optimization path (which later turns into a weak correlation),
none of these are significant.

Interpretation. We believe there is more to be understood: while it is intriguing that linearity at the beginning of the
optimization trajectory is predictive of a human interpretability score, the global measure of linearity (through distance to
linear interpolation) does not seem to be predictive and more investigations are needed to fully understand this phenomenon—
as we say in the main paper, this can only be considered “very preliminary evidence”. A promising way forward could be to
enforce (or optimize for) different properties in neural networks and measure whether this improves human interpretability.

H. Literature expectations about feature visualization
This short section provides a few expectations/hopes that are presented in the literature when it comes to feature visualizations.

Original activation maximization paper by Erhan et al. (2009):
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• “a pattern to which the unit is responding maximally could be a good first-order representation of what a unit is doing”
• “It is perhaps unrealistic to expect that as we scale the datasets to larger and larger images, one could still find a simple

representation of a higher layer unit.”
• “we hope that such visualization techniques can help understand the nature of the functions learned by the network”

More recent literature:

• “Feature visualization allows us to see how GoogLeNet, trained on the ImageNet dataset, builds up its understanding
of images over many layers” (Olah et al., 2017)

• “Feature visualization answers questions about what a network—or parts of a network—are looking for by generating
examples.” (Olah et al., 2017)

• “If we want to find out what kind of input would cause a certain behavior—whether that’s an internal neuron firing or
the final output behavior—we can use derivatives to iteratively tweak the input towards that goal” (Olah et al., 2017)

• “optimization approach can be a powerful way to understand what a model is really looking for, because it separates
the things causing behavior from things that merely correlate with the causes”. “Optimization isolates the causes of
behavior from mere correlations.” (Olah et al., 2017)

• “In the quest to make neural networks interpretable, feature visualization stands out as one of the most promising and
developed research directions. By itself, feature visualization will never give a completely satisfactory understanding.
We see it as one of the fundamental building blocks that, combined with additional tools, will empower humans to
understand these systems.” (Olah et al., 2017)

• “To make a semantic dictionary, we pair every neuron activation with a visualization of that neuron and sort them by
the magnitude of the activation.”; “Semantic dictionaries give us a fine-grained look at an activation: what does each
single neuron detect?” (Olah et al., 2018)

• “Feature visualization helps us answer what the network detects” (Olah et al., 2018)
• “The behavior of a CNN can be visualized by sampling image patches that maximize activation of hidden units [...], or

by using variants of backpropagation to identify or generate salient image features” (Bau et al., 2017)
• “Activation maximization techniques enable us to shine light into the black-box neural networks.” (Nguyen et al., 2019)

Critical voices:

• “While these methods may be useful for building intuition, they can also encourage three potentially misleading
assumptions: that the visualization is representative of the neuron’s behavior; that the neuron is responsible for a
clearly delineated portion of the task or the network’s behavior; and that the neuron’s behavior is representative of the
network’s behavior.” (Leavitt & Morcos, 2020)

• “synthetic images from a popular feature visualization method are significantly less informative for assessing CNN
activations than natural images” (Borowski et al., 2021)

• “[We] find no evidence that a widely-used feature visualization method provides humans with better ‘causal under-
standing’ of unit activations than simple alternative visualizations” (Zimmermann et al., 2021)

• “Neural networks often contain ‘polysemantic neurons’ that respond to multiple unrelated inputs.” (Olah et al., 2020)
• “Units similar to those [hand-picked units] may be the exception rather than the rule, and it is unclear whether they are

essential to the functionality of the network. For example, meaningful selectivities could reside in linear combinations
of units rather than in single units, with weak distributed activities encoding essential information.” (Kriegeskorte,
2015)

I. Relationship to psychophysical experiments
Borowski et al. (2021) and Zimmermann et al. (2021) performed psychophysical experiments to investigate the tness of
feature visualizations for human observers. Both papers find that natural highly activating images are more interpretable (as
measured by human prediction performance) compared to feature visualizations. A candidate explanation for this behaviour
is our analysis in Section 3, showing that for last-layer Inception-V1 feature visualizations, those visualizations are processed
along very different paths for most of the network (compared to natural images as a baseline).

The task used by Borowski et al. (2021) is related to the third column of Table 1. They asked participants to predict which
one of two natural images is strongly activating for a certain unit based on maximally and minimally activating feature
visualizations for that unit. This can be seen as an easier version of the task in Table 1: Borowski et al. (2021) did not use
random test samples but instead two curated samples, out of which one has extremely high and one has extremely low
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activations. They find that that humans are able to do this task above chance.

At first glance, this result seems to contradict our theoretical finding from Theorem 2, which states that reliable prediction is
impossible unless additional assumptions about the function are known. However, there is no contradiction: our theory
allows for the possibility of a specific function (e.g., a specific neural network unit) and a specific decoder (e.g., a human
observer) to be aligned in the sense that predictions about the function can happen to be correct—however, for every function
f for which the decoder is correct there is a function f ′ from the same function family for which the decoder is wrong (in
spirit, a case of “no free lunch” for feature visualization). If an observer gets significantly above chance in one case, they
would pay the price by being significantly below chance in the other case. To the best of our knowledge, there is currently
no way for the observer to know in advance whether they’re visualizing a function f for which their decoding is aligned or a
function f ′ for which their decoding leads to the wrong conclusions. It is an interesting open question to develop a practical
and rigorous approach to distinguish these cases, perhaps relying on additional information such as the data distribution (e.g.,
does ImageNet lead to benign f more often?) and the training procedure (e.g., does SGD lead to benign f more often?).

J. Broader impacts
Our paper investigates the reliability of feature visualizations. Overall, we expect this to contribute to better scrutiny towards
existing interpretability methods, which hopefully inspires the development of more reliable interpretability methods in the
future, as well the development of models that incorporate certain reliably “interpretability-enabling” assumptions right
from the start, rather than being faced with the (sometimes impossible) task of post-hoc interpretability through feature
visualizations.

In terms of potential negative impact, the fooling methods developed here could be used to deceive an entity (e.g., a model
auditor or regulator) as described in Section 2. That being said, we believe that the risk is lower if this knowledge is
public—it would be much more problematic to believe that feature visualizations can be taken at face value, because then
whoever designs a fooling circuit would be met with an unsuspecting audience.

K. Limitations
We see the following potential limitations:

1. We design methods that fool feature visualizations. Once it is known that a certain fooling method might be used, it is
easy to develop a detection mechanism. That said, the space of potential fooling methods is vast. Therefore, developing
a specific detection mechanism would probably lead to a pattern similar to adversarial attacks and defenses: after
an attack is developed, a detection/circumvention method defends, which is then again circumvented by a revised
attack/fooling method.

2. The fooling methods that we developed in Section 2 assume bad intent. Most models are developed with good intent.
However, we believe that the reliability of interpretability methods should not rely on assuming good intentions. The
experiments in Section 3 and the theory from Section 4 are independent of good/bad intent assumptions.

3. The potential assumptions on the function space listed in Table 1 are not exhaustive. It is possible that other assumptions
enable stronger prediction.

4. The investigated networks, Inception-V1 and ResNet-50, are of course not exhaustive either. None of our methods is
specific to those networks. This means that other networks could be equipped with a fooling circuit, too. At the same
time, the empirical results might look different for other networks, which would be an interesting direction to explore
in future work.

5. One could argue that the fooling circuit in Figure 3 only deceives a user when looking at unit A, whereas the other
units still have their original visualization. That’s correct: the fooling circuit manipulates the visualization of A but
not of e.g. units D or F . From a single unit perspective, this is already problematic since it means we can’t trust a
unit’s visualization. It would be interesting avenue for future work to develop networks where every single unit’s
visualization is misleading.

6. There is no one definition of what it means to “understand” or “explain” a neural network, since those are very vague
terms. We seek to be precise about our definition and motivate it with expectations about feature visualization stated
in the literature (Appendix H), but we realize that this means not everyone’s notion of “understanding” / “explaning”
neural networks can be captured by our definition.
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L. Image sources
Figure 1. “Girl with a Pearl Earring” was downloaded from here and is public domain according to the website. “Puppies”
(West Highland White Terrier puppies) by Lucie Tylová, Westik.cz was downloaded from here and is licensed under CC
BY-SA 3.0 according to the website. “Mona Lisa” was downloaded from here and is public domain according to the website.
All three images were cropped to size 224× 224 pixels. The photographs were then embedded in the weights of a single
convolutional layer and to some degree recovered by the feature visualization method, subject to distortion by the method’s
transformations.

https://commons.wikimedia.org/wiki/File:1665_Girl_with_a_Pearl_Earring.jpg
https://en.wikipedia.org/wiki/Puppy#/media/File:Westie_pups.jpg 
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://commons.wikimedia.org/wiki/File:Mona_Lisa,_by_Leonardo_da_Vinci,_from_C2RMF_retouched.jpg

