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Abstract

Large Language Models (LLMs) have achieved001
significant advancements, but the increasing002
complexity of tasks and higher performance003
demands highlight the need for continuous im-004
provement. Some approaches utilize synthetic005
data generated by advanced LLMs based on006
evaluation results to train models. However,007
conventional evaluation methods fail to provide008
detailed, fine-grained profiles of LLMs, limit-009
ing their guidance for data synthesis. In this010
paper, we introduce the Cognitive Diagnostic011
Synthesis (CDS) method, which incorporates a012
diagnostic process inspired by Cognitive Diag-013
nosis Theory (CDT) to refine evaluation results014
and characterize model profiles at the knowl-015
edge component level. Based on these diag-016
nostics, we propose two diagnosis-synthesis017
strategies for weakness-targeted data synthesis.018
Additionally, we present an enhanced data aug-019
mentation and selection pipeline to improve the020
quality and diversity of synthesized data. Our021
experiments with several open-source models022
show significant improvements across multiple023
benchmarks, achieving up to 6.00% improve-024
ment in code generation, 13.10% in mathemati-025
cal reasoning, and 5.43% in academic exams.026
Code and data are available on GitHub 1.027

1 Introduction028

Large Language Models (LLMs) have demon-029

strated remarkable capabilities across diverse tasks.030

However, the increasing complexity of emerging031

tasks and the limitations revealed in real-world ap-032

plications highlight the critical need for continuous033

improvement of LLM performance.034

To achieve continuous improvement, researchers035

typically analyze the model’s evaluation metrics,036

then refine or supplement the corpora accordingly037

for subsequent iterations (Lee et al., 2024; Zhao038

et al., 2024). For example, if LLMs are found to039

perform poorly in mathematical tasks, more math040

1https://anonymous.4open.science/r/cds-04D1

Q: A rectangular field measures 30m × 20m. The 
farmer increases the length by 10% and decreases 
the width by 10%. Calculate the reduction in area.
A: 1. Original area: 30×20 = 600m2 
     2. Adjusted dimensions: 
         Length: 30×(1 + 10%) = 30.1m
         Width: 20× (1 - 10%) = 19.9m
     3. New area: 30.1×19.9 = 598.99m2

     4.  Reduction in area: 600 - 598.99 = 1.01m2

Fined-grained Metric
Acc of Percentage: 15.00%
Acc of Geometry: 95.00% ...

Conventional Metric
Overall Acc: 42.00%

The answer does not match 
the reference answer of 6m², 
so it’s incorrect.

The answer is incorrect, but 
it’s worth a detailed analysis...
    Good mastery of 
Geometry, Mixed Operations
    Poor mastery of 
Percentage Calculation

 ️  Too coarse!

  Highlight the weaknesses and strengths!

Figure 1: The math problem assesses Geometry, Mixed
Operations, and Percentage Calculations. The model
performs well overall but makes an error in percentage
calculation. Conventional metrics lack the granularity to
capture these deficiencies, whereas fine-grained metrics
can identify specific strengths and weaknesses at the
knowledge level.

data will be deliberately integrated into the dataset 041

for the next training cycle. In this process, ad- 042

vanced LLMs (e.g., GPT-4) are increasingly uti- 043

lized as data synthesizers to automate training data 044

generation and augmentation (Dai et al., 2023; Liu 045

et al., 2023; Sun et al., 2023), thereby reducing 046

reliance on costly manual annotation. 047

However, there are two limitations in this pro- 048

cess: 1) Coarse-Grained Evaluation. Conven- 049

tional metrics, such as overall accuracy, focus 050

solely on binary (correct/incorrect) outcomes for 051

each test sample, providing a summary of model 052

performance at the dataset level. Figure 1 high- 053

lights the limitation of these metrics: when a model 054

performs well on most of the knowledge assessed 055

but makes a mistake in percentage calculation, lead- 056

ing to an incorrect final result, conventional met- 057

rics would simply classify such cases as “incor- 058

rect,” failing to identify the weakness in percent- 059

age calculation. As a result, the lack of granular 060

evaluation limits the attribution of errors to spe- 061

cific sub-skills or competencies, which are referred 062

to as Knowledge Components (KCs) in educa- 063

tional theory (Moore et al., 2024), thus hindering 064

the precise identification of weaknesses. 2) The 065

coarse-grained evaluation limits the guidance 066

for subsequent data synthesis, leading to gener- 067
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ated data being general and insufficiently targeted068

at the specific weaknesses of the model. Recent069

studies attempt to use erroneous questions as seed070

data for synthesis to align the generated data with071

the model’s weaknesses (Lee et al., 2024; Ying072

et al., 2024), but they still treat each error in isola-073

tion, failing to map and summarize observed mis-074

takes to underlying capability deficiencies. Thus,075

these methods may correct superficial errors but fail076

to address fundamental weaknesses at KC level.077

To address these limitations, we draw inspiration078

from Cognitive Diagnosis Theory (CDT)—an ed-079

ucational framework that uses “diagnosis” to sys-080

tematically map assessments to mastery of KCs,081

identifying specific strengths and weaknesses in082

students’ abilities. In this paper, the LLMs to be083

enhanced are treated as “student.” We apply this di-084

agnostic approach to summarize their performance085

in evaluations, profiling their capabilities at the KC086

level. This profiling then guides advanced LLMs to087

synthesize data aimed at improving the weak KCs088

in the next training cycle.089

Specifically, we introduce the Cognitive090

Diagnostic Synthesis (CDS) method. First, we091

propose two diagnosis-synthesis strategies from092

different diagnostic perspectives, using advanced093

LLMs as data synthesizers: 1) Global Strategy:094

Diagnosis at the dataset level with fine-grained met-095

rics such as KC accuracy. These metrics quantify096

mastery of each KC, helping identify weak mas-097

tery KCs and generating tailored training data. 2)098

Fine-grained Strategy: Diagnosis at the question099

level, leveraging the analytical capabilities of ad-100

vanced LLMs (Bai et al., 2023b; Dai et al., 2023).101

We use advanced LLMs to perform cognitive diag-102

nosis on specific erroneous cases, identifying KCs103

requiring remediation. These analyses generated104

during the diagnostic process are then integrated105

into the synthesis prompt to expand the length of106

the chain-of-thought (CoT), as long CoTs enhance107

generation quality (Jin et al., 2024; Wang et al.,108

2024).109

These synthetic data will undergo augmentation110

through data rewriting and fusion to enhance their111

diversity and comprehensiveness. Following this,112

we propose a two-stage data selection process113

to ensure data quality. In Stage 1, an advanced114

LLM is used to filter out erroneous data. In Stage115

2, a novelty score, CDSscore, is designed, which116

references global diagnosis outcomes to select high-117

quality, weakness-relevant data.118

Our contributions are as follows:119

• We introduce the diagnosis process of CDT 120

to refine conventional evaluation, using fine- 121

grained knowledge components to character- 122

ize model capabilities. 123

• We propose two diagnosis-synthesis strate- 124

gies from different diagnostic perspectives to 125

achieve targeted data synthesis. 126

• We propose an improved data augmentation 127

and selection pipeline to enhance the quality 128

and diversity of synthesized data. Specifically, 129

we introduce a novelty score, CDS_score, en- 130

abling efficient selection of high-quality and 131

relevant data. 132

• We conduct extensive experiments spanning 133

multiple benchmarks and diverse domains, 134

demonstrating the dominant effectiveness and 135

applicability of CDS. 136

2 Related Work 137

2.1 Cognitive Diagnosis Theory 138

Cognitive Diagnosis Theory (CDT) provides fine- 139

grained assessments by diagnosing an individual’s 140

mastery of specific knowledge points, offering ac- 141

tionable insights for targeted interventions (Junker 142

and Sijtsma, 2001; Rupp et al., 2010). CDT focuses 143

on identifying strengths and weaknesses through 144

models such as DINA (De La Torre, 2009) and 145

G-DINA (de la Torre, 2011). These models lever- 146

age Q-Matrix Theory (Tatsuoka, 1983) to link test 147

items with underlying knowledge points and pro- 148

vide probabilistic mastery estimates. While CDT 149

integrated with AI has been widely applied in ed- 150

ucational assessments (Minn, 2022; Wang et al., 151

2019; Liu, 2021), its application in data synthesis 152

and model improvement is highly underexplored. 153

2.2 Synthetic Data for Improving Model 154

Leveraging advanced LLMs to generate training 155

data has become a widely adopted strategy for im- 156

proving open-source models (Dai et al., 2023; Xu 157

et al., 2023; Mitra et al., 2024; Wang et al., 2023; 158

Ivison et al., 2023; Chen et al., 2023b; Mitra et al., 159

2023; Fu et al., 2023; Kumar et al., 2020; Li et al., 160

2024a, 2023). Concurrently, researchers have in- 161

vestigated generating corrective data through error 162

analysis of target models (An et al., 2023; Lee 163

et al., 2024) and enhancing learning via compar- 164

ative analysis of positive and negative examples 165

(Ying et al., 2024). Zhang et al. (2024) optimized 166

prompts by extracting reasoning principles from 167

errors, while Liao et al. (2024) analyzed errors in 168
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smaller LMs, storing derived knowledge and sum-169

maries in specialized knowledge bases to enhance170

reasoning performance.171

Some studies begin with knowledge-based syn-172

thesis, generating knowledge concepts from online173

course platforms (Huang et al., 2024b), GPT-4 (Li174

et al., 2024b), and seed instruction analysis and175

clustering (Huang et al., 2024a), thereby guiding176

advanced LLMs in data synthesis. However, these177

approaches have several limitations: simple nom-178

inal concepts are inadequate for producing high-179

quality and diverse synthetic data and may signifi-180

cantly deviate from real-world distributions. More-181

over, these methods focus solely on synthesis and182

overlook the potential of knowledge points to eval-183

uate model weaknesses, thereby limiting the target-184

ing and effectiveness of data synthesis.185

3 CDS Method186

In the framework shown in Figure 2, we annotate187

the test samples in the benchmark with their KCs188

to evaluate the model and diagnose the evaluation189

results to identify weak KCs, which serve as tar-190

gets to guide subsequent data synthesis. These syn-191

thetic data will undergo augmentation and selection192

processes to ensure quality, and then be used for193

supplementary training of the student model. The194

details are provided as follows.195

3.1 Model Evaluation196

KC Annotation. For a benchmark D = {d | d =197

(q, aref)}, where each sample d consists of a ques-198

tion q and a reference answer aref, we allocate the199

training data to the target dataset, Dtarget, and re-200

serve the test data for the evaluation dataset, Deval.201

An advanced model Ma is then used to annotate202

each sample in Dtarget with relevant KCs. The an-203

notation process is carried out in two stages.204

Stage 1: We use Ma to perform coarse anno-205

tations, with the prompt shown in Figure 3. To206

ensure an appropriate level of granularity, we sam-207

ple chapter titles from digital learning platforms,208

such as MOOCs, to provide examples of KCs like209

Probability. Indeed, subsequent experiments will210

demonstrate the flexibility of KC annotations. We211

aggregate the KC tags from each sample to build212

an initial set. This set is then refined by Ma, with213

optional expert involvement, to eliminate redundan-214

cies and ensure that the KCs are mutually exclusive,215

collectively exhaustive, and appropriately granular.216

The refined set of KCs is denoted as K.217

Stage 2: We use Ma to perform constrained 218

annotations to ensure that the tagged KCs orig- 219

inate from K, yielding the tagged benchmark 220

D∗
target = {d∗|d∗ = (q, aref,Kq),Kq ⊊ K}. 221

Thereby, we build the Question-Knowledge Com- 222

ponent (Q-KC ) matrix, represented as: 223224

Q-KC ∈ {0, 1}|Dtarget|×|K| (1) 225

Q-KC [i, j] =

{
1 if kcj ∈ Kqi , kcj ∈ K,
0 otherwise.

(2) 226

where |Dtarget| is the number of benchmark questions, |K| is 227

the cardinality of the KC set, and Kqi denotes the KC set 228

tagged to question qi, which is a subset of K. 229

Model Evaluation and Result Collection. We 230

evaluate the student model Ms using the tagged 231

benchmark D∗
target. To better reveal the model’s KC 232

deficiencies, we collect erroneous cases, denoted 233

as Derr = {(q, rerr,Kq)}, for subsequent diagnosis, 234

where rerr is the response from Ms to question q 235

that does not match the reference answer aref. 236

3.2 Diagnosis and Data Synthesis 237

Diagnosis is defined as the process of analyzing KC 238

mastery profiles derived from evaluation results. To 239

holistically assess the model’s proficiency in KCs, 240

we propose two diagnosis-synthesis strategies from 241

different diagnostic perspectives. 242

Global Strategy. We diagnose the model’s 243

performance from a global perspective using 244

aggregated KC metrics at the dataset level. 245

Specifically, we follow the Deterministic Input, 246

Noise And (DINA) cognitive diagnosis framework 247

(De La Torre, 2009) that posits a binary mastery 248

assumption: 249

• A correct response to question qi implies mas- 250

tery of all associated KCs 251

• An incorrect response implies no mastery of 252

any associated KCs 253

Under these assumptions, we compute KC- 254
specific accuracy and frequency metrics: 255

Acc(kcj) =
∑|Dtarget|

i=1 I(qi) ·Q-KC[i, j]∑|Dtarget|
i=1 Q-KC[i, j]

(3) 256

Freq(kcj) =
∑|Dtarget|

i=1 Q-KC[i, j]

|Dtarget|
(4) 257

where I(qi) ∈ {0, 1} indicates the correctness of Ms’s re- 258

sponse to qi. 259

Based on these metrics, we construct a global 260

KC diagnostic profile for Ms, which consists of 261

the accuracy and frequency of each KC, identifying 262
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Data Selection
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+
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Da
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Rewriting 
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Da2
Promptscore

Da

θ

Da1
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Da2

Stage 1

Stage 2

( Q, A ) ( Q, A, K )

Annotate

Model Evaluation

( Q, Rcorr, K )

( Q, Rerr, K )

...

...

R

Diagnosis and Synthesis

R

( Q, Rerr, K )

Diagnose Kweak

Ds

Synthesis

( Pdiag, Kweak )

Diagnose +
Evaluate

 Global Strategy

Fine-grained Strategy

Figure 2: The pipeline of CDS method.

weakly mastered KCs as those with low accuracy263

or low frequency, denoted as Kw. To address these264

weaknesses, we use Ma to generate data targeted265

at these weaknesses, based on Kw. The process is266

detailed in Algorithm 1.267

Algorithm 1 Global Strategy
Require: A set of KCs K, an advanced modelMa, accuracy

threshold δa, frequency threshold δf
Ensure: A synthesized dataset Dglobal

1: Kw ← ∅
2: for each kc ∈ K do
3: if Acc(kc) ≤ δa or Freq(kc) ≤ δf then
4: Kw ← Kw ∪ {kc}
5: end if
6: end for
7: Dglobal ← ∅
8: for each kc ∈ Kw do
9: (q, a, Kq = {kc})← Generate(Ma, kc)

10: Dglobal ← Dglobal ∪ {(q, a, Kq)}
11: end for
12: return Dglobal

This strategy operates exclusively at the KC268

level, avoiding the introduction of original ques-269

tions into synthetic prompts. By summarizing spe-270

cific questions into KCs, we address a key limita-271

tion of traditional example-question-based synthe-272

sis methods: when prompted with original ques-273

tions, the model tends to unconsciously rewrite or274

rephrase them. This ensures that the generated data275

is both novel and independent, free from overfitting276

to the original dataset. Detailed prompts and case277

studies are provided in the Appendix.278

Fine-grained Strategy. We diagnose the279

model’s erroneous cases at the question level from280

a fine-grained perspective. We use Ma as a di-281

agnoser to analyze the model’s problem-solving 282

process in the current case, thereby identifying the 283

underlying weak KCs exposed by this case, which 284

are also denoted as Kw. These analytical processes 285

generated during the diagnosis are denoted as pdiag, 286

and are integrated with the original questions and 287

erroneous responses, forming long CoTs within the 288

prompt for the advanced LLM to stimulate deeper 289

reasoning, leading to higher-quality generation re- 290

sults. The process is detailed in Algorithm 2. 291

Algorithm 2 Fine-grained Strategy
Require: A set of erroneous responses Derr = { derr | derr =

(q, rerr,Kq)}, an advanced modelMa
Ensure: A synthesized dataset Dfine-grained

1: Odiag ← ∅ {Odiag stores erroneous cases and their corre-
sponding diagnostic outputs.}

2: for each derr ∈ Derr do
3: (pdiag,Kw)← Generate

(
Ma, derr

)
4: Odiag ← Odiag ∪

{
(derr, pdiag, Kw)

}
5: end for
6: Dfine-grained ← ∅
7: for each (derr, pdiag, Kw) ∈ Odiag do
8: (q′, a′, Kw)← Generate

(
Ma, derr, pdiag, Kw

)
9: Dfine-grained ← Dfine-grained ∪ {(q′, a′,Kw)}

10: end for
11: return Dfine-grained

This diagnosis-synthesis paradigm leverages 292

LLMs’ analytical capabilities beyond data gener- 293

ation (Bai et al., 2023b; Dai et al., 2023). Recent 294

studies show that long CoTs guide advanced LLMs 295

to deeper reasoning, generating higher-quality out- 296

puts (Jin et al., 2024; Wang et al., 2024). By in- 297

tegrating diagnostic processes into data synthesis, 298

our strategy produces more targeted and higher- 299

quality data than direct synthesis methods. Detailed 300
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prompts and case studies are in the Appendix.301

Data Augmentation. We concatenate the data302

generated by two synthesis methods and employ303

the following augmentation strategies to further304

increase data diversity and volume:305

• KC-Constrained Rewriting: Adapting tradi-306

tional data rewriting methods (Dai et al., 2023;307

Sun et al., 2023), we add a constraint: the308

rewritten data should contain the same KCs as309

the originals, avoiding deviation from targeted310

weaknesses while enhancing diversity.311

• Multi-KC Fusion: We pair data from the312

synthetic dataset and prompt the advanced313

LLM to generate new data containing KCs314

from both, thereby increasing data complexity315

and comprehensiveness.316

We sample a small proportion of the data for aug-317

mentation and reintegrate the augmented samples318

into the dataset. Additionally, we limit the max319

number of KCs per data to prevent the generation320

of overly complex or ambiguous samples.321

3.3 Data Selection322

We implement a two-stage data selection process to323

refine augmented synthetic dataset Da, eliminating324

subpar samples and retaining those that meet high-325

quality and high-relevance standards.326

Stage 1: Ma assigns scores to the data based327

on multiple criteria such as correctness and KC328

relevance, filtering out samples below a threshold.329

Stage 2: Simply scoring data individually with330

the model does not leverage global KC diagnostic331

profiles to select weakness-targeted data. Thus, we332

introduce a novel metric, CDSscore. We hypothe-333

size that data with more KCs have higher complex-334

ity and comprehensiveness, while data containing335

low-frequency and low-accuracy KCs are more ef-336

fective for targeting weaknesses. Based on these as-337

sumptions, specifically, for da = (q, a,Kq) ∈ Da,338

the CDSscore is calculated as follows:339340

V(kcj) = w1 log(Acc(kcj) + ϵ) + w2 log(Freqa(kcj) + ϵ)

(5)

341

CDS score(da) =
∑

kcj∈Kq

V(kcj) (6)342

where V(·) represents the significance of KC, Acc(kcj) de-343

notes the student LLM’s initial accuracy on kcj , Freqs(kcj) is344

the frequency of kcj in Da, w1 and w2 are balancing weights,345

and ϵ is a small constant to avoid division by zero.346

We apply a 1-σ principle, retaining samples with 347

CDSscore(di) > µ− σ, to construct the final train- 348

ing set for fine-tuning the student LLM. 349

4 Experimental Setup 350

4.1 Datasets and Models 351

Datasets. We evaluate three primary tasks: math- 352

ematical reasoning, coding, and academic exami- 353

nation. To validate the effectiveness of CDS, we 354

select GSM8k (Cobbe et al., 2021), MBPP (Austin 355

et al., 2021), and GAOKAO-Bench (Zhang et al., 356

2023) for each respective task. As described in 357

Section 3.1, these benchmarks are split into Dtarget 358

and Deval. Due to the similar distribution of In- 359

Domain(ID) training and test sets, we also incor- 360

porate an Out-of-Domain(OOD) dataset in Deval to 361

better assess the generalization of CDS. The OOD 362

datasets include GSM8k-PLUS (Li et al., 2024c), 363

HumanEval (Chen et al., 2021), and GAOKAO- 364

Bench-Updates2. 365

For the academic examination benchmark’s 366

KC annotation, we use chapter titles from the 367

GAOKAO syllabus3 as KCs, offering an alternative 368

method distinct from Section 3.1. 369

Models. We use Llama3-8B-Instruct(AI@Meta, 370

2024) and Qwen1.5-7B-Chat(Bai et al., 2023a) as 371

the student LLMs, with Qwen2-72B-Instruct(Yang 372

et al., 2024) serving as the advanced LLM. 373

4.2 Setups 374

Training Setup. We train the models on 1 NVIDIA 375

A800 GPU using ZeRO Stage 1 (Rajbhandari et al., 376

2020) and AdamW (Kingma and Ba, 2015) as the 377

optimizer, with LoRA (Hu et al., 2021) (rank r = 378

8). The batch size is 32, the maximum sequence 379

length is 2,048, and training runs for 1 epoch. 380

Inference Setup. For code generation, mathe- 381

matical reasoning, and academic exams, we use 382

greedy decoding with a maximum output of 512 to- 383

kens. For data generation, we use a temperature of 384

0.5, top-p of 0.8, and a maximum output of 4096 to- 385

kens. All inference is conducted in a 0-shot setting. 386

See Appendix D for more details. 387

4.3 Baselines 388

Main Experiments. We consider several base- 389

lines for comparison with our method as follows: 390

2https://github.com/OpenLMLab/GAOKAO-Bench-
Updates

3https://gaokao.neea.edu.cn/html1/category/1509/6212-
1.htm
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Method
Coding Math Examination Avg

MBPP H-Eval GSM8k GSMPlus GAOKAO GAOKAOU –
P@1 P@1 Acc Acc Acc Acc

Qwen1.5-7B-Chat
Prompt(vanilla) 32.00 40.24 54.00 33.92 60.60 48.87 44.94

IFT 30.80 39.02 52.42 33.72 61.40 47.96 44.22

LEC 32.40 39.63 52.20 33.76 64.80 53.39 46.03

AugGPT 34.80 40.85 46.38 28.86 63.40 52.49 44.46

LLM2LLM 34.40 43.90 53.82 33.76 64.40 53.39 47.28

MUSTARD 35.40 39.02 57.42 35.96 62.40 52.04 47.04

CDS(our) 38.00 44.51 64.54 43.86 64.60 53.85 51.56

Llama3-8B-Instruct
Prompt(vanilla) 40.80 54.88 62.02 42.50 41.20 33.03 45.74

IFT 41.60 55.49 61.64 42.78 41.00 31.67 45.70

LEC 42.80 54.88 55.62 42.48 41.60 32.58 44.99

AugGPT 40.00 51.83 47.32 36.00 42.20 35.28 42.10

LLM2LLM 42.80 56.10 55.76 41.46 41.60 31.67 44.90

MUSTARD 41.40 54.88 62.16 42.44 41.20 33.03 45.85

CDS(our) 42.80 55.49 73.14 55.60 41.40 38.46 51.15

Table 1: The main experimental results of our methods and baseline approaches across various tasks are presented.
Experiments are conducted using two different LLMs: Qwen1.5-7B-Chat and Llama3-8B-Instruct. The top two
performances are highlighted in red bold and black bold, respectively.

(1) Prompt: Direct prompting for answers. (2)391

IFT: Fine-tuning with in-domain training data. (3)392

LEC (Ying et al., 2024): Embedding erroneous393

cases with SentenceBERT (Reimers and Gurevych,394

2019), selecting similar positive examples via L2395

distance, and synthesizing with both positive and396

negative cases. (4) AugGPT (Dai et al., 2023):397

Sampling unused instructions from the in-domain398

training set for synthetic data generation with the399

advanced LLM. (5) LLM2LLM (Lee et al., 2024):400

Generating additional data from incorrect examples401

using the advanced LLM. (6) MUSTARD (Huang402

et al., 2024b): Generating questions from seed con-403

cepts, followed by advanced LLM-generated an-404

swers and correctness filtering. Consistent data405

quantity is maintained across baselines: 2k for406

mathematics, 0.5k for code generation, and 0.5k407

for academic examination.408

Data Selection Experiments. We evaluate our409

data selection algorithm against several baselines as410

follows: (1) CBS (Chen et al., 2023a): Instructions411

are embedded using SentenceBERT, clustered with412

HDBSCAN (Campello et al., 2013), and selected413

using the K-Center-Greedy algorithm. (2) Core-414

set (Sener and Savarese, 2017): Similar to CBS,415

with instructions embedded using SentenceBERT416

and selected using K-Center-Greedy. (3) Diversity 417

(Wang et al., 2022): For each data, the ROUGE 418

score is computed against a subset of n samples, 419

and the k with the lowest ROUGE scores are se- 420

lected. (4) Length: Samples are selected based 421

on data length, focusing on the longest instances 422

(Lengthlong). (5) Perplexity (Marion et al., 2023): 423

Samples are selected based on low per-token per- 424

plexity, indicating model certainty and fluency. (6) 425

AlpaGasus (Chen et al., 2024): Instances are scored 426

by an advanced LLM like ChatGPT on dimensions 427

such as helpfulness and accuracy, and low-scoring 428

instances are filtered out. (7) Random: Instances 429

are randomly selected from the dataset. 430

5 Experiments 431

5.1 Main Results 432

The main experimental results of our methods and 433

baseline approaches across various tasks are pre- 434

sented in Table 1. Our observations are summa- 435

rized as follows: 436

Dominant effectiveness and applicability of 437

CDS. CDS demonstrates significant improvements 438

across different models and tasks. For example, 439

on the GSM8k task, Qwen1.5-7B improves by 440
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Method
Coding Math

MBPP H-Eval Avg GSM8k GSMPlus Avg

0.1k 0.2k 0.3k 0.1k 0.2k 0.3k – 0.4k 0.8k 1.6k 0.4k 0.8k 1.6k –

CBS 25.60 33.80 33.40 43.29 38.41 37.20 35.28 41.80 62.00 60.94 27.08 40.40 40.24 45.41

CoreSet 25.60 33.40 35.60 40.85 34.15 39.63 34.87 50.76 59.70 60.06 34.10 38.14 38.66 46.90

Diversity 26.60 34.40 35.40 42.68 32.32 42.07 35.58 43.28 56.14 61.64 28.54 35.08 39.80 44.08

Lengthlong 23.80 33.20 33.20 42.07 34.15 40.85 34.55 36.96 59.52 61.02 24.10 38.40 39.46 43.24

Perplexity 31.80 35.00 35.00 42.68 37.20 41.46 37.19 53.04 60.80 62.52 35.32 40.18 41.56 48.90

AlpaGasus 30.60 34.20 35.40 40.24 35.37 40.85 36.11 49.44 62.34 56.82 30.70 40.20 37.32 46.14

Random 24.60 34.00 35.20 40.24 34.15 39.63 34.64 45.68 58.38 59.32 33.76 38.70 38.86 45.78

CDSscore(our) 31.60 34.60 36.20 40.85 37.20 43.29 37.29 53.80 60.80 62.56 36.02 39.96 41.24 49.06

Table 2: The experimental results of our data selection strategy and baseline approaches across various tasks are
presented. Experiments are conducted using Qwen1.5-7B-Chat. The top two performances are highlighted in red
bold and black bold, respectively.

10.54%, and Llama3-8B by 11.12%. Additionally,441

CDS consistently produces optimal results in cod-442

ing and examination tasks(including subjects such443

as biology, chemistry, geography, history, mathe-444

matics, and physics), highlighting its effectiveness445

and broad applicability to tasks that can be decom-446

posed into well-defined KCs.447

Strong generalization. Although CDS utilizes448

synthetic data generated based on ID tasks, it gen-449

eralizes effectively to OOD tasks. For example,450

Qwen1.5-7B shows a 4.27% improvement on the451

Humaneval Bench, while Llama3-8B improves by452

5.43% on GAOKAO-Bench-Updates. In contrast,453

methods like AugGPT and LEC fail to consistently454

improve performance on OOD tasks and may even455

lead to degradation.456

Flexibility in KC Annotation. Section 4.1 ex-457

plains that GAOKAO-Bench constructs the KC set458

for annotation by summarizing chapter titles, while459

the MBPP and GSM8k benchmarks use the anno-460

tation approach described in Section 3.1. Despite461

these different annotation methods, all benchmarks462

show consistent performance improvements with463

CDS.464

CDS’s data selection improves robustness. Un-465

filtered use of synthetic data may lead to model466

degradation. For instance, both LEC and AugGPT467

experienced performance declines on two math-468

ematical benchmarks, with AugGPT showing a469

7.62% decrease on GSM8k and 5.06% on GSM-470

Plus. This aligns with prior research, which sug-471

gests that unchecked, low-quality instructional data472

can impair model performance (Zhou et al., 2023;473

Chen et al., 2023b). Table 5 shows an erroneous474

sample generated by AugGPT, which can be fil- 475

tered out during CDS’s selection Stage 1. 476

5.2 Evaluation of Selection Strategies 477

Experimental results comparing different data se- 478

lection strategies are presented in Table 2, where 479

we fine-tuned Qwen1.5-7B-Chat using samples se- 480

lected from an augmented synthetic dataset (pre- 481

screened by Qwen2-72B-Instruct for basic correct- 482

ness). To evaluate the effectiveness of the CDS 483

score, we retained only Stage 2 data selection and 484

excluded Stage 1, which is similar to AlpaGasus. 485

Our key findings are: 486

High-quality data selection and broad task 487

applicability. CDSscore achieves the best average 488

metrics on both math and coding tasks. Specifi- 489

cally, in 12 tests corresponding to three different 490

sample sizes across four datasets, 8 tests ranked in 491

the top 2. CDSscore consistently outperforms the 492

Random method in all scenarios, with average im- 493

provements of 2.65% and 3.28% for the two tasks, 494

respectively. This demonstrates that CDSscore en- 495

hances training data quality through selection and 496

exhibits broad task applicability. 497

Strong stability. CDSscore shows consistent per- 498

formance across datasets and sample sizes, while 499

some baselines exhibit fluctuating performance. 500

For example, CBS’s performance varied signifi- 501

cantly with sample size, and Coreset performed 502

well on math tasks but struggled with coding tasks. 503

Scalability. CDSscore expands its advantage as 504

sample sizes increase, demonstrating optimal accu- 505

racy with 0.3k samples for MBPP and H-Eval, and 506

1.6k samples for GSM8K. Notably, at 0.3k samples 507

on Humaneval, it outperformed the second-best 508
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Strategy Coding Math Examination Avg

MBPP H-Eval GSM8k GSMPlus GAOKAO GAOKAOU –
P@1 P@1 Acc Acc Acc Acc

Prompt(vanilla) 32.00 40.24 54.00 33.92 60.60 48.87 44.94

Synthesis Strategy
+ Global 32.00 40.85 57.96 36.22 62.00 52.04 46.85

+ Fine-grained 34.00 39.63 60.96 37.62 60.80 49.77 47.13

+ Global & Fine-grained 35.40 40.24 61.84 38.60 61.40 52.49 48.33

Augmentation Strategy
+ Rewrite 35.40 41.46 61.52 41.38 62.60 51.13 48.91

+ Fusion 35.20 41.46 61.00 40.42 63.40 52.49 48.99

+ Rewrite & Fusion 35.40 43.29 63.78 42.04 64.60 53.85 50.49

Table 3: Ablation results of data synthesis and augmentation strategies. Experiments were conducted using
Qwen1.5-7B-Chat. Data augmentation was applied to the synthetic data generated by the ‘+ Global & Fine-grained’
approach. The top two performances are highlighted in red bold and black bold, respectively. The sample sizes for
the synthesis strategy are 300, 300, and 600 for coding; 300, 1000, and 1300 for math; and 300, 300, and 600 for
exams. The augmentation proportions are 0.5, 0.5, 0.25 & 0.25.

methods, Diversity and Perplexity, by 1.22% and509

1.83%, respectively.510

Computational Efficiency. As shown in Table511

6, compared to the suboptimal Perplexity method512

when selecting 2,000 samples from a 3,000-sample513

dataset, Perplexity requires 307.78 seconds, while514

CDSscore takes negligible time. This efficiency re-515

sults from the elimination of computationally in-516

tensive tasks such as embedding generation and517

clustering, and without the need for GPU.518

5.3 Ablation Study519

To evaluate the effectiveness of each component of520

the CDS method, we conducted an ablation study521

using various combinations of data synthesis and522

augmentation strategies. A basic correctness check523

was performed using Qwen-72B-Instruct to filter524

out obviously incorrect data. The results are shown525

in Table 3. Our key findings are:526

Dual Strategies Outperform Single Strategies.527

Dual strategies generally outperform single strate-528

gies in both the data synthesis and augmentation529

stages. This effect is particularly noticeable in aug-530

mentation, where combining Rewriting and Fusion531

strategies resulted in optimal performance across532

all six datasets.533

Data Augmentation Effect. Combining syn-534

thesis and augmentation typically improves perfor-535

mance. After applying augmentation, the average536

performance exceeded previous results. However,537

exceptions exist, such as with Rewriting, where538

performance on GAOKAO-UPDATES deteriorated539

by 1.36%. This may be due to overfitting to similar 540

synthesis data. Such degradation was not observed 541

with dual strategy augmentation, suggesting that 542

combining multiple strategies to increase data com- 543

plexity and diversity improves robustness. 544

6 Conclusion 545

In this paper, we introduce the Cognitive 546

Diagnostic Synthesis (CDS) method, inspired by 547

Cognitive Diagnosis Theory, which refines eval- 548

uation results and characterizes model profiles at 549

the knowledge component level. Building on the 550

Knowledge Component diagnostic construct, we 551

optimize conventional evaluation metrics, design 552

dual diagnosis-synthesis strategies, and propose a 553

novel data selection method. Leveraging advanced 554

LLMs, we automate the generation of weakness- 555

targeted, high-quality instructional data. We ap- 556

plied the synthesized data to small LLMs, such as 557

Qwen1.5-7B-Chat and Llama3-8B-Instruct, achiev- 558

ing significant improvements in code generation, 559

mathematical reasoning, and academic testing. No- 560

tably, CDS achieves these improvements without 561

relying on expensive closed-source LLMs like GPT- 562

4, instead using only the open-source Qwen2-72B- 563

Chat for automated diagnosis and synthesis. 564

7 Limitations 565

In this paper, (1) due to cost limitations, our ad- 566

vanced LLM selection is restricted to the open- 567

source Qwen-72B-Instruct, which is not the most 568

cutting-edge model available. Given the current 569

8



limitations in both the model’s analytical and gen-570

erative capabilities, the full potential of CDS re-571

mains to be explored. In future work, we plan572

to experiment with more advanced models, such573

as GPT-4(Achiam et al., 2023) and DeepSeek-574

V3(DeepSeek-AI et al., 2024).575

(2) The identification and annotation of KCs still576

involve significant randomness and subjectivity. In577

future work, we aim to refine our KC annotation578

strategy, including exploring the use of pseudo-579

labels as a substitute for explicit labels.580
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A Knowledge Component Details 1000

The following knowledge components (KCs) 1001

shown in table 4 are used for various tasks: 1002

B Case Study 1003

C Computational Cost of Data Selection 1004

Strategies 1005

As shown in Table 6, we compared the time effi- 1006

ciency of different data selection methods when 1007

selecting 2,000 samples from a pool of 3,000. The 1008

key parameters and computational requirements 1009

are as follows: 1010

• Model: For embedding generation, we used 1011

the Qwen1.5-7B-Chat. 1012

• GPU Requirements: 1013

– AlpaGasus requires 4 A800 GPUs and 1014

uses Qwen2-72B-Chat for inference. 1015

– Other methods, including CBS, CoreSet, 1016

Diversity, and Perplexity, only require 1 1017

A800 GPU for processing. 1018

• Clustering Parameters: 1019
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Task Knowledge Components

Coding Basic Data Types, Bitwise Operations, Boolean Logic, Class Definitions, Comparison Operators,
Conditional Statements, Copying and Deep Copying, Dictionary Operations, Dynamic Program-
ming, Exception Handling, Finding Min and Max, Heap Operations, Importing Libraries and
Modules, Indexing and Slicing, Lambda Functions, List and Array Operations, Looping, Map
Function, Recursion, Regular Expressions, Search Algorithms, Sorting Algorithms, Stacks and
Queues, String Operations, Summation, Tree Structures, Tuple Operations, Type Checking and
Conversion

Math Basic Arithmetic Operations, Decimal and Fraction Operations, Mixed Operations, Prime and
Composite Numbers, Factors and Multiples, GCD and LCM, Algebraic Expressions, Equations,
Inequalities, Basic Geometry, Area, Perimeter, Volume, Angles, Coordinates, Mean, Median,
Mode, Probability, Permutations, Combinations, Financial Calculations, Unit Conversion, Time
and Date Calculations, Speed, Distance, and Time, Measurement, Money, Ratio and Proportion,
Bar Graphs, Line Graphs, Number Sequences, Word Problems, Linear Equations, Simple
Algebra, Pattern Recognition, Mathematical Logic, Shapes and Spatial Understanding, Symmetry,
Congruence, Units of Measurement, Temperature, Length, Mass, Capacity

Exams Biology: Protein and Nucleic Acid Structure, Sugar and Lipid Types and Functions, Water
and Inorganic Salts, Cell Theory, Prokaryotic and Eukaryotic Cells, Cell Membrane Structure,
Organelles Structure and Function, Nucleus Structure and Function, Substance Transport Across
Cell Membrane, Enzyme Role in Metabolism, ATP Metabolism, Photosynthesis Process, En-
vironmental Impact on Photosynthesis, Cellular Respiration, Cell Growth and Division, Cell
Differentiation, Cell Aging and Apoptosis, Cancer Cells and Prevention, Meiotic Division, DNA
Structure and Replication, Gene Transcription and Translation, Mendel’s Laws, Sex-linked In-
heritance, Gene Mutation, Transgenic Food Safety, Human Genetic Diseases, Evolution Theory,
Plant Hormones, Nervous and Hormonal Regulation, Nerve Impulse Transmission, Homeostasis,
Immune System Role, Population and Community, Ecosystem Structure and Function, Ecosys-
tem Stability, Biodiversity Conservation, Plant Growth Regulators, Yeast Respiration.
Chemistry: Physical vs Chemical Changes, Acids, Bases, Salts and Oxides, Element Symbols,
Valency and Formulas, Atomic and Molecular Masses, Law of Mass Conservation, Chemical
Reactions, Molar Mass and Volume Calculations, Solubility and Concentration, Colloids and
Solutions, Periodic Table Structure, Element Trends, Chemical Bonds, Oxidation-Reduction
Reactions, Heat of Reactions, Electrochemistry, Reaction Rate and Activation Energy, Chemical
Equilibrium, Electrolytes and Conductivity, pH Calculation, Ionization and Hydrolysis, Organic
Compounds, Polymer Chemistry, Laboratory Safety, Gas Production and Separation, Chemical
Analysis, Concentration Calculations.
Geography: Earth’s Position in Space, Solar Influence, Earth’s Movements and Seasons, Earth’s
Layers, Earth Material Cycles, Surface Changes, Atmospheric Heating, Wind and Pressure Sys-
tems, Climate and Weather Systems, Water Cycle, Ocean Currents, Geography and Environment,
Climate Change, Natural Resources, Natural Disasters, Population Growth, Migration, Urban-
ization, Agricultural and Industrial Location, Environmental Impact, Geography of Resources,
Transportation Systems, Human-Earth Relationships, Sustainability, Green Development, Re-
mote Sensing, Geographic Information Systems, GPS and Navigation, Digital Earth.
History: Ancient Chinese Political Systems, Shang and Zhou Dynasties, Qin Centralization,
Han to Yuan Political Evolution, Ming and Qing Monarchy, Ancient Chinese Economy, Agricul-
tural Systems, Handicraft and Commerce, Capitalism Emergence, Cultural Evolution, Hundred
Schools of Thought, Confucianism, Neo-Confucianism, Chinese Scientific and Technological
Achievements, Ancient Greek and Roman Political Systems, Athenian Democracy, Roman Law,
Renaissance, Enlightenment, Industrial Revolution, World War Effects, Cold War and Bipolarity,
Globalization, WTO and China’s Role, Modern Chinese Politics, Reform and Opening-up,
Scientific and Technological Development in China, Modern Chinese Education and Culture.
Math: Basic Arithmetic Operations, Decimal and Fraction Operations, Prime and Composite
Numbers, Factors and Multiples, GCD and LCM, Algebraic Expressions, Equations, Inequalities,
Geometry, Area, Perimeter, Volume, Angles, Coordinates, Mean, Median, Mode, Probability,
Permutations, Combinations, Financial Calculations, Unit Conversion, Time and Date Calcula-
tions, Speed, Distance, Time, Measurement, Fractions, Decimals, Ratio, Proportion, Bar Graphs,
Line Graphs, Probability Theory, Number Sequences, Word Problems, Time Tables, Integer
Operations, Linear Equations, Simple Algebra, Pattern Recognition, Mathematical Logic, Shapes
and Spatial Understanding, Symmetry, Congruence, Binomial Theorem, Conic Sections.
Physics: Motion of Particles, Newton’s Laws, Mechanical Energy, Projectile and Circular Mo-
tion, Law of Gravitation, Electric Field, Circuits, Magnetic Field, Electromagnetic Induction, AC,
Kinetic Theory of Gases, States of Matter, Thermodynamics, Vibration and Waves, Electromag-
netic Waves, Light, Relativity, Reference Frames, Linear Motion, Friction, Hooke’s Law, Scalars
and Vectors, Force Composition, Equilibrium, Energy Conservation, Momentum, Collision
Theory, Universal Gravitation, Satellite Motion, Electric Potential, Capacitors, Ohm’s Law,
Electric Resistance, Magnetic Forces, Lorentz Force, Spectroscopy, Nuclear Physics, Radiation,
Energy Loss, Fission and Fusion Reactions, Photoelectric Effect, Einstein’s Equation.

Table 4: Knowledge Components for for various tasks.
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An Erroneous Sample Generated by AugGPT

### Question:
A local bakery sells cupcakes at $2 each. Last week, they decided to run a promotion where if you buy 5 cupcakes, you get 1
free. Without the promotion, they could sell 65 cupcakes in a week. After the promotion ended, the bakery noticed that their
revenue increased by 40% compared to the previous week when there was no promotion. How many free cupcakes did they
give away during the promotion week?
### Answer:
1. Calculate the number of cupcakes sold during the promotion week:
Without the promotion, the bakery sold 65 cupcakes per week, so during the promotion week they sold: 65 * 1.4 = 91
cupcakes.
2. Calculate the number of free cupcakes: Since the promotion is ’buy 5, get 1 free,’ if X free cupcakes were given away
during the promotion week,

::::
then:

:::
5X

:
+
::
X

:
=
:::

91,
::
so

::
X

:
=
:::::

15.33.
Therefore, they gave away 15 free cupcakes.

### Stage 1 Scoring Results:
Score: 1 || Explanation:
1. Correctness of the Answer (Top Priority 1): The answer is incorrect. The model mistakenly assumes that the 91 cupcakes
are all paid, but in reality, 91 represents the total number of paid cupcakes. Since the promotion is “buy 5, get 1 free,” for
every 6 cupcakes sold, 1 is free. Therefore, the correct number of free cupcakes given away is 18, not 15.33, as 91 paid
cupcakes correspond to 18 free cupcakes.
2. Clarity: The reasoning is presented in a step-by-step format but lacks accuracy in the core calculations. It is easy to
follow but ultimately misleading because of the errors.
3. Conciseness: The explanation is brief but fails to address the problem correctly.
4. Format and Structure: The response is properly formatted in a clear, step-by-step structure, but the calculations are flawed.
Correctness was the most significant factor here, and the error in the calculations leads to a low score. The rest of the
explanation could be clearer with correct reasoning.

Table 5: An erroneous sample generated by AugGPT. We used CDS’s Stage 1 selection method, which employs
Advanced LLM prompt scoring. The scoring results are shown above.

– For CBS and CoreSet, the HDBSCAN1020

clustering algorithm was used with the1021

following parameters:1022

* min_cluster_size = 21023

* min_samples = 11024

D Experimental Details1025

D.1 Training Setup.1026

We provide the key parameter settings for LoRA1027

fine-tuning configurations. The following table 71028

summarizes the most important settings.1029

D.2 Inference Setup1030

We provide the key parameter settings for inference1031

configurations. The following table 8 summarizes1032

the most important settings.1033

D.3 Dataset and Data Generation Details1034

The dataset usage for the CDS method is summa-1035

rized in Table 9. It outlines the sample sizes used1036

for each task, as well as the number of generated1037

samples across various stages.1038

E Instruction Details1039

Table 3 18 show the prompts using in CDS.1040
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Method CBS CoreSet Diversity Lengthlong Perplexity AlpaGasus Random CDSscore(our)

Time (s) 321.79 306.45 7134.14 0.00 307.78 1303.42 0.00 0.00

Table 6: Time comparison of different data selection methods when selecting 2,000 samples from a pool of 3,000.
A value of 0.00 indicates millisecond-level response time.

Parameter Value

Precision (bf16) Enabled
Optimizer AdamW

Learning Rate (lr) 3e-5
Betas [0.98, 0.999]

Scheduler Type WarmupLR
Warmup Min LR 1e-4
Warmup Max LR 3e-4

Gradient Accumulation Steps 16
Batch Size (per GPU) 2

LoRA Rank (r) 8
LoRA Alpha 16

Table 7: Key parameter settings for the LoRA fine-
tuning configuration.
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Stage Sampling Parameters

Dataset Annotation temperature=0.5, top_p=0.8, repetition_penalty=1.05, max_tokens=1024
Model Evaluation temperature=0, top_p=1.0, top_k=1, max_tokens=512

Fine-grained Diagnosis temperature=0.5, top_p=0.8, repetition_penalty=1.05, max_tokens=1024
Data Synthesis temperature=0.5, top_p=0.8, repetition_penalty=1.05, max_tokens=4096, N_sample=5

Data Augmentation temperature=0.5, top_p=0.8, repetition_penalty=1.05, max_tokens=4096, p_rw=0.25, p_fusion=0.25
Data Selection (Stage 1) temperature=0, top_p=1.0, top_k=1, max_tokens=512, repetition_penalty=1.05, θ=8
Data Selection (Stage 2) w1=0.85, w2=0.15, ϵ=1e-6

Table 8: Key parameter settings for the inference configuration.

Task Dtarget Deval Ds Da Dfinal

ID for Math:GSM8K* 3500 5000 2581 3116 2010
OOD for Math:GSMPLUS - 5000 - - -

ID for Coding:MBPP 474 500 689 997 798
OOD for Coding:H-Eval - 164 - -

ID for Exams:GAOKAO 591 500 1078 1776 1332
OOD for Exams:GAOKAOU - 209 - - -

Table 9: Dataset usage across different tasks and stages for Qwen1.5-7B-Chat. The "*" in the "ID for Math" task
indicates that we additionally used 292 samples for pre-fine-tuning to help the model answer math problems in the
required format, facilitating answer extraction.
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Figure 3: Prompt for KC Annotation of Math Task (Stage 1).
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Figure 4: Prompt for KC Annotation of Coding Task (Stage 1).

Figure 5: Prompt for KC Annotation of Math Task (Stage 2).
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Figure 6: Prompt for KC Annotation of Coding Task (Stage 2).

Figure 7: Prompt for Fine-grained Diagnosis of Math Task.
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Figure 8: Prompt for Fine-grained Diagnosis of Coding Task.

Figure 9: Prompt for Fine-grained Synthesis of Math Task.
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Figure 10: Prompt for Fine-grained Synthesis of Coding Task.

Figure 11: Prompt for Global Synthesis of Math Task.
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Figure 12: Prompt for Global Synthesis of Coding Task.

Figure 13: Prompt for Fusion Augmentation of Math Task.
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Figure 14: Prompt for Fusion Augmentation of Coding Task.

Figure 15: Prompt for Rewriting Augmentation of Math Task.
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Figure 16: Prompt for Rewriting Augmentation of Coding Task.

Figure 17: Prompt for Scoring of Math Task.
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Figure 18: Prompt for Scoring of Coding Task.

25


	Introduction
	Related Work
	Cognitive Diagnosis Theory
	Synthetic Data for Improving Model

	CDS Method
	Model Evaluation
	Diagnosis and Data Synthesis
	Data Selection

	Experimental Setup
	Datasets and Models
	Setups
	Baselines

	Experiments
	Main Results
	Evaluation of Selection Strategies
	Ablation Study

	Conclusion
	Limitations
	Knowledge Component Details
	Case Study
	Computational Cost of Data Selection Strategies
	Experimental Details
	Training Setup. 
	Inference Setup
	Dataset and Data Generation Details

	Instruction Details

