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ABSTRACT

Learning a world model for model-free Reinforcement Learning (RL) agents can
significantly improve the sample efficiency by learning policies in imagination.
However, building a world model for Multi-Agent RL (MARL) can be particularly
challenging due to the scalability issue in a centralized architecture arising from
a large number of agents, and also the non-stationarity issue in a decentralized
architecture stemming from the inter-dependency among agents. To address both
challenges, we propose a novel world model for MARL that learns decentralized
local dynamics for scalability, combined with a centralized representation aggrega-
tion from all agents. We cast the dynamics learning as an auto-regressive sequence
modeling problem over discrete tokens by leveraging the expressive Transformer
architecture, in order to model complex local dynamics across different agents and
provide accurate and consistent long-term imaginations. As the first pioneering
Transformer-based world model for multi-agent systems, we introduce a Perceiver
Transformer as an effective solution to enable centralized representation aggrega-
tion within this context. Main results on Starcraft Multi-Agent Challenge (SMAC)
and additional results on MAMujoco show that it outperforms strong model-free
approaches and existing model-based methods in both sample efficiency and overall
performance.

1 INTRODUCTION

Multi-Agent Reinforcement Learning (MARL) has made remarkable progress, which was driven
largely by model-free algorithms (Nguyen et al., 2020). However, due to the complexity of multi-agent
systems arising from large state-action space and partial observability, such algorithms usually demand
extensive interactions to learn coordinative behaviors (Hernandez-Leal et al., 2020). A promising
solution is building a world model that approximates the environment, which has exhibited its superior
sample efficiency compared to model-free approaches in single-agent RL (Hafner et al., 2020; Łukasz
Kaiser et al., 2020; Hafner et al., 2021; 2023; Hansen et al., 2022; 2024). However, extending the
design of world model in single-agent domain to the multi-agent context encounters significant
challenges due to the unique biases and characteristics inherent to multi-agent environments.

The challenges primarily stem from two different means for multi-agent dynamics learning: central-
ized and decentralized. Learning a world model to approximate the centralized dynamics encapsulates
the inter-dependency between agents but struggles to be scalable to an increasing number of agents,
which leads to the exponential surge in spatial complexity (Hernandez-Leal et al., 2020; Nguyen et al.,
2020). Conversely, applying a decentralized world model to approximating the local dynamics of
each agent mitigates the scalability issue yet incurs non-stationarity, as unexpected interventions from
other agents may occur in each agent’s individual environment (Oliehoek et al., 2016). Furthermore,
beyond these unique challenges inherent in modeling multi-agent dynamics, existing model-based
MARL approaches (Willemsen et al., 2021; Egorov & Shpilman, 2022; Xu et al., 2022) excessively
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neglect the fact that the policy learned in imaginations of the world model heavily relies on the
quality of imagined trajectories (Micheli et al., 2023). It thereby necessitates accurate long-term
prediction, especially with respect to the non-stationary local dynamics. Inspired by the capabil-
ity of Transformer (Vaswani et al., 2017) in modeling complex discrete sequences and long-term
dependency (Brown et al., 2020; Devlin et al., 2019; Micheli et al., 2023), we seek to construct a
Transformer-based world model within the multi-agent context for decentralized local dynamics
together with centralized feature aggregation, combining the benefits of two distinctive designs.

In this paper, we introduce MARIE (Multi-Agent auto-Regressive Imagination for Efficient learning),
the first Transformer-based multi-agent world model for sample-efficient policy learning. Specifically,
the highlights of this paper are:

1. To tackle the inherent challenges within the multi-agent context, we build an effective world
model via scalable decentralized dynamics modeling and essential centralized represen-
tation aggregating, which mirrors the principle of Centralized Training and Decentralized
Execution.

2. To enable accurate and consistent long-term imaginations from the non-stationary local
dynamics, we cast the decentralized dynamics learning as sequence modeling over discrete
tokens by leveraging highly expressive Transformer architecture as the backbone. In par-
ticular, we successfully present the first Transformer-based world model for multi-agent
systems.

3. While it remains open for how to effectively enable centralized representation with the Trans-
former as the backbone, we achieve it by innovatively introducing a Perceiver Transformer
(Jaegle et al., 2021) for efficient global information aggregation across all agents.

4. Experiments on the Starcraft Multi-Agent Challenge (SMAC) benchmark in low data regime
and additional experiments on MAMujoco show MARIE outperforms both model-free and
existing model-based MARL methods w.r.t. both sample efficiency and overall performance
and demonstrate the effectiveness of MARIE.

2 RELATED WORKS AND PRELIMINARIES

Multi-Agent Reinforcement Learning. In a model-free setting, a typical approach for cooperative
MARL is centralized training and decentralized execution (CTDE), which tackles the scalability
and non-stationarity issues in MARL. During the training phase, it leverages global information
to facilitate agents’ policy learning; while during the execution phase, it blinds itself and has only
access to the partial observation around each agent for multi-agent decision-making. Model-free
MARL methods with this paradigm can be divided into 2 categories: value-based (Sunehag et al.,
2018; Rashid et al., 2018; Son et al., 2019; Wang et al., 2021) and policy-based (Lowe et al., 2017;
Foerster et al., 2018; Iqbal & Sha, 2019; Ryu et al., 2020; Liu et al., 2020; Kuba et al., 2021;
Peng et al., 2021; Yu et al., 2022; Zhang et al., 2024b;a). In contrast to model-free approaches,
model-based MARL algorithms remain fairly understudied. MAMBPO (Willemsen et al., 2021)
incorporates MBPO-style (Janner et al., 2019) techniques into multi-agent policy learning under
the CTDE framework. Tesseract (Mahajan et al., 2021) introduces the tensorised Bellman equation
and evaluates the Q-value function using Dynamic Programming (DP) together with an estimated
environment model. Similar to our setting where agents learn inside of an approximate world model,
MAMBA (Egorov & Shpilman, 2022) integrates the backbone proposed in DreamerV2 (Hafner et al.,
2021) with an attention mechanism across agents to sustain an effective world model in environments
with an arbitrary number of agents, which leads to notably superior sample efficiency to existing
model-free approaches. In terms of model-based algorithm coupled with planning, MAZero (Liu
et al., 2024) expands the MCTS planning-based Muzero (Schrittwieser et al., 2020) framework to
the model-based MARL settings. However, learning-based or planning-based policies in these two
approaches are both overly coupled with their world models, downgrading their inference efficiency
and further limiting expansion in combinations with other popular model-free approaches. To the best
of our knowledge, we are the first to expand the Transformer backbone-based world model within the
multi-agent context.

Learning behaviors within the imagination of world models. The Dyna architecture (Sutton, 1991)
first emphasizes the utility of an estimated dynamics model in facilitating the training of the value
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function and policy. Inspired by the cognitive system of human beings, the concept of world model
(Ha & Schmidhuber, 2018) is initially introduced by composing a variational Auto-Encoder (VAE)
(Kingma & Welling, 2014) and a recurrent network to mimic the complete environmental dynamics,
then an artificial agent is trained entirely inside the hallucinated imagination generated by the world
model. SimPLe (Łukasz Kaiser et al., 2020) shows that a PPO policy (Schulman et al., 2017) learned
in a predictive model deliverer a super-human performance in Atari domains. Dreamer (Hafner et al.,
2020) builts the world model upon a Recurrent State Space Model (RSSM) (Hafner et al., 2019) that
combines the deterministic latent state with the stochastic latent state to allow the model to not only
capture multiple futures but also remember information over multi-steps. DreamerV2 (Hafner et al.,
2021) further demonstrates the advantage of discrete latent states over Gaussian states. For MARL,
MAMBA (Egorov & Shpilman, 2022) extends DreamerV2 to multi-agent contexts by using RSSM,
underscoring the potential of multi-agent learning in the imagination of world models. Recently,
motivated by the success of the Transformer (Vaswani et al., 2017), TransDreamer (Chen et al., 2022)
and TWM (Robine et al., 2023) explored variants of DreamerV2, wherein the backbones of the world
model were substituted with Transformers. Instead of incorporating deterministic and stochastic
latent states, IRIS (Micheli et al., 2023) applies the Transformer to directly modeling sequences of
observation tokens and actions of single-agent RL and achieves impressive results on Atari-100k.
In contrast, the proposed MARIE concentrates on establishing effective Transformer-based world
models in multi-agent contexts with shared dynamics and global representations.

Preliminaries. We focus on fully cooperative multi-agent systems where all agents share a team re-
ward signal. We formulate the system as a decentralized partially observable Markov decision process
(Dec-POMDP) (Oliehoek et al., 2016), which can be described by a tuple (N ,S,A, P,R,Ω,O, γ).
N = {1, ..., n} denotes a set of agents, S is the finite global state space, A =

∏n
i=1Ai is the product

of finite actions spaces of all agents, i.e., the joint action space, P : S ×A×S → [0, 1] is the global
transition probability function, R : S ×A→ R is the shared reward function, Ω =

∏n
i=1 Ω

i is the
product of finite observation spaces of all agents, i.e., the joint observation space, O = {Oi, i ∈ N}
is the set of observing functions of all agents. Oi : S → Ωi maps global states to the observations for
agent i, and γ is the discount factor. Given a global state st at timestep t, agent i is restricted to obtain-
ing solely its local observation oit = Oi(st), takes an action ait drawn from its policy πi(·|oi≤t) based
on the history of its local observations oi≤t, which together with other agents’ actions gives a joint
action at = (a1t , ..., a

n
t ) ∈ A, equivalently drawn from a joint policy π(·|o≤t) =

∏n
i=1 π

i(·|oi≤t).
Then the agents receive a shared reward rt = R(st,at), and the environment moves to next state
st+1 with probability P (st+1|st,at). The aim of all agents is to learn a joint policy π that maximizes
the expected discounted return J(π) = Es0,a0,...∼π [

∑∞
t=0 γ

tR(st,at)].

3 METHODOLOGIES

Our approach comprises three typical parts: (i) collecting experience by executing the policy, (ii) learn-
ing the world model from the collected experience, and (iii) learning the policy via imagination
inside the world model. Throughout the process, the historical experiences stored in the replay
buffer are used for training the world model only, while policies are learned from unlimited imagined
trajectories from the world model. In the following, we first describe three core components of our
world model in §3.1 and §3.2, and give an overview of the proposed world model in Fig. 1. Then we
describe the policy-learning process inside the world model in §3.3. The comprehensive details of
the model architecture and hyperparameter are provided in §A.

3.1 DISCRETIZING OBSERVATION

We consider a trajectory τ i of agent i consists of T local observations and actions, as

τ i = (oi1, a
i
1, . . . , o

i
t, a

i
t, . . . , o

i
T , a

i
T ).

To utilize the expressive Transformer architecture, we need to express the trajectory into a discrete
token sequence for modeling. Accounting for continuous observations, a prevalent but naive approach
for discretization involves discretizing the scalar into one of m fixed-width bins in each dimension
independently (Janner et al., 2021). However, when faced with a higher dimension of the observation,
such discretization would encode the observation with more tokens, leading to higher computational
complexity of the later sequence modeling via the Transformer, which necessitates an approach that
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Figure 1: Overview of the proposed world model architecture in MARIE. VQ-VAE (left) maps
local observations oi of each agent i into discrete latent codes (xi1, ..., x

i
K), where (E,D,Z) is

shared across all agents. Together with discrete actions, this process forms local discrete sequences
(..., xit,1, ..., x

i
t,K , a

i
t, ...) of each agent. Then the Perceiver (right) performs aggregation of joint dis-

crete sequences of all agents (x1t,1, ..., x
1
t,K , a

1
t , ..., x

n
t,1, ..., x

n
t,K , a

n
t ) independently at each timestep

t, and inserts the aggregated global representations (e1t , e
2
t , ..., e

n
t ) into original local discrete se-

quences respectively. The resulting sequences (..., xit,1, ..., x
i
t,K , a

i
t, e

i
t...) contain rich information

between transitions in local dynamics and are fed into the shared Transformer (middle), which learns
observation token predictions in an autoregressive manner. Predictions of individual reward rit and
discount γit at timestep t are computed based on all historical sequence (xi≤t,1, ..., x

i
≤t,K , a

i
≤t, e

i
≤t).

uses a discrete codebook of learned compact representations. To this end, we employ the idea from
neural discrete representation learning (van den Oord et al., 2017), and learn a Vector Quantised-
Variational AutoEncoder (VQ-VAE) to play a role that resembles the tokenizer in Natural Language
Processing (Devlin et al., 2019; Brown et al., 2020). The VQ-VAE is composed of an encoder E,
a decoder D, and a codebook Z . We define the discrete codebook Z = {zj}Nj=1 ⊂ Rnz , where N
is the size of the codebook and nz is the dimension of codes. The encoder E takes an observation
oi ∈ Rnobs as input and outputs a K nz-dimensional latents ẑi ∈ RK×nz reshaped from the direct
outputs of encoder. Subsequently, the tokens {xik}Kk=1 ∈ {0, 1, ..., N − 1}K for representing oi is
obtained by a nearest neighbour look-up using the codebook Z where xik = argminj ∥ẑik − zj∥.
Then the decoder D : {0, 1, ..., N − 1}K → Rnobs converts K tokens back into an reconstructed
observation ôi. By learning this discrete codebook, we compress the redundant information via a
succinct sequence of tokens, which helps improve sequence modeling. See §4.2 for a discussion.

3.2 MODELING LOCAL DYNAMICS WITH GLOBAL REPRESENTATIONS

Here, we consider discrete actions like those in SMAC, and the continuous actions can also be
discretized by splitting the value in each dimension into fixed bins (Janner et al., 2021; Brohan et al.,
2023). Therefore, a trajectory τ i of agent i can be treated as a sequence of tokens,

τ i = (. . . , oit, a
i
t, . . .) = (. . . , xit,1, x

i
t,2, . . . , x

i
t,K , a

i
t, . . .) (1)

where xit,j is the j-th token of the observation of agent i at timestep t. Given arbitrary sequences of
observation and action tokens in Eq. (1), we try to learn over discrete multimodal tokens.

The world model consists of a tokenizer to discrete the local observation, a Transformer to learn the
local dynamics, an agent-wise representation aggregation module, and predictors for the reward and
discount. The Transformer ϕ predicts the future local observation {x̂it+1,j}Kj=1, the future individual
reward r̂it and discount γ̂it , based on the agent’s individual historical observation-action history
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(xi≤t,·, a
i
≤t) and aggregated global feature eit of the agent. The modules are shown in Eqs. (2)–(5).

Transition: x̂it+1,· ∼ pϕ(x̂it+1,·|xi≤t,·, ai≤t, ei≤t) with x̂it+1,k ∼ pϕ(x̂it+1,k|xi≤t,·, ai≤t, ei≤t, xit+1,<k)

(2)

Reward: r̂it ∼ pϕ(r̂it|xi≤t,·, ai≤t, ei≤t) (3)

Discount: γ̂it ∼ pϕ(γ̂it |xi≤t,·, ai≤t, ei≤t) (4)

Aggregation: (e1t , e
2
t , ..., e

n
t ) = fθ(x

1
t,1, x

1
t,2, ..., x

1
t,K , a

1
t , ..., x

n
t,1, x

n
t,2, ..., x

n
t,K , a

n
t ) (5)

Transition Prediction. In the transition prediction in Eq. (2), the k-th observation token is additionally
conditioned on the tokens that were already predicted xit+1,<k ≜ (xit+1,1, x

i
t+1,2, ..., x

i
t+1,k−1),

ensuring the autoregressive token prediction to facilitate modeling over the trajectory sequence.
Inter-step auto regression is as intuitive as predicting the future based on all information in the past
while intra-step auto regression can be interpreted as learning how to compose the language provided
by VQ-VAE to correctly express the observation within a certain timestep, since the tokens for
encoding observations can be viewed as a special inner language like the human’s.

Discount and Reward Prediction. The discount predictor outputs a Bernoulli likelihood and lets us
estimate the probability of an individual agent’s episode ending when learning behaviors from model
predictions. And we simply adopt a smooth L1 loss for training the prediction of reward.

Agent-wise Aggregation. Due to the partial environment, the non-stationarity issue stems from
the sophisticated agent-wise inter-dependency on local observations generation. To address it, we
introduce a Perceiver (Jaegle et al., 2021) to perform agent-wise representation aggregation which
plays a similar role to communication. To sustain the decentralized manner in transition prediction,
we hope every agent can possess its own inner perception of the whole situation. Nonetheless, with
discrete representation for local observation, the observation-action pair of agent i at timestep t is
projected into a sequence (xit,1, x

i
t,2, ..., x

i
t,K , a

i
t) of lengthK+1. It leads to a joint observation-action

sequence of length n(K + 1) at a timestep, which linearly scales with the number of agents.

A naive approach for extracting aggregated feature for each agent is using self-attention (Egorov &
Shpilman, 2022; Liu et al., 2024) which takes as input this sequence of length n(K + 1) and outputs
a sequence of the same length containing aggregated features of all agents, described as

(x1t,1, ..., x
1
t,K , a

1
t , ..., x

n
t,1, ..., x

n
t,K , a

n
t )

Self-Attention−−−−−−−→
Aggregating

(e1t,1, ..., e
1
t,K , e

1
t,K+1, ..., e

n
t,1, ..., e

n
t,K , e

n
t,K+1).

where eit,j is the j-th aggregated feature for agent i at timestep t. However, when composing the
informative sequence of local trajectories by insert these aggregated features into the sequence of
length H(K + 1) in Eq. (1), the length of local sequence involving aggregated features would be
twice longer, i.e., 2H(K +1). Due to the quadratic computational complexity of Transformer, it may
hinder the efficient sequence modeling over this sequence.

To this end, we choose the Perceiver as the agent-wise representation aggregation module, which
excels at dealing with the case that the size of inputs scales linearly and then generates a compact
output sequence. Equipped with a flexible querying mechanism and self-attention mechanism, the Per-
ceiver aggregates the joint representation sequence (x1t,1, x

1
t,2, ..., x

1
t,K , a

1
t , ..., x

n
t,1, x

n
t,2, ..., x

n
t,K , a

n
t )

of length n(K + 1) into a sequence of n features (e1t , e
2
t , ..., e

n
t ),

(x1t,1, ..., x
1
t,K , a

1
t , ..., x

n
t,1, ..., x

n
t,K , a

n
t )

Perceiver−−−−−−→
Aggregating

(e1t , e
2
t , ..., e

n
t )

where each feature eit serves as an intrinsic global abstraction of the environmental contexts perceived
from agent i’s viewpoint. By introducing Perceiver, we provide a feasible solution for reducing the
modeling complexity when using transformer-based local dynamics.

Overall Learning Objective. The world model ϕ is trained with trajectory segments of a fixed
horizon H sampled from the replay buffer D in a self-supervised manner. The transition predictor,
discount predictor, and reward predictor are optimized to maximize the log-likelihood of their

5



Published as a conference paper at ICLR 2025

�𝛾𝛾2𝑖𝑖
�̂�𝑟2𝑖𝑖

MLP Decoder 𝐷𝐷

MLP Encoder 𝐸𝐸𝑜𝑜11:𝑛𝑛

𝑎𝑎11:𝑛𝑛�𝑜𝑜11:𝑛𝑛

𝒆𝒆1𝑖𝑖𝒆𝒆1𝑖𝑖𝒂𝒂1𝑖𝑖𝒂𝒂1𝑖𝑖𝒙𝒙1,1
𝑖𝑖 𝒙𝒙1,2

𝑖𝑖 𝒙𝒙1,3
𝑖𝑖 𝒙𝒙1,𝐾𝐾

𝑖𝑖𝒙𝒙1,1
𝑖𝑖 𝒙𝒙1,2

𝑖𝑖 𝒙𝒙1,3
𝑖𝑖 𝒙𝒙1,𝐾𝐾

𝑖𝑖 𝒂𝒂1𝑖𝑖𝒙𝒙1,1
𝑖𝑖 𝒙𝒙1,2

𝑖𝑖 𝒙𝒙1,3
𝑖𝑖 𝒙𝒙1,𝐾𝐾

𝑖𝑖 𝒆𝒆1𝑖𝑖

Agent-wise Aggregation

𝒆𝒆1𝑖𝑖𝒆𝒆1𝑖𝑖𝒂𝒂1𝑖𝑖𝒂𝒂1𝑖𝑖𝒙𝒙1,1
𝑖𝑖 𝒙𝒙1,2

𝑖𝑖 𝒙𝒙1,3
𝑖𝑖 𝒙𝒙1,𝐾𝐾

𝑖𝑖𝒙𝒙1,1
𝑖𝑖 𝒙𝒙1,2

𝑖𝑖 𝒙𝒙1,3
𝑖𝑖 𝒙𝒙1,𝐾𝐾

𝑖𝑖 𝒂𝒂2𝑖𝑖𝒙𝒙2,1
𝑖𝑖 𝒙𝒙2,2

𝑖𝑖 𝒙𝒙2,3
𝑖𝑖 𝒙𝒙2,𝐾𝐾

𝑖𝑖 𝒆𝒆2𝑖𝑖

Agent-wise Aggregation

𝑎𝑎21:𝑛𝑛�𝑜𝑜21:𝑛𝑛

…

𝜋𝜋𝜓𝜓1:𝑛𝑛 𝜋𝜋𝜓𝜓1:𝑛𝑛

�𝛾𝛾1𝑖𝑖
�̂�𝑟1𝑖𝑖

Agents 1:𝑛𝑛

MLP Decoder 𝐷𝐷

Figure 2: Imagination procedure in MARIE. We unroll the imagination of all agents {1, ..., n} in
parallel. Initially, each agent’s observation is derived from a joint observation sampled from a replay
buffer. A policy, depicted in red arrows, generates actions based on reconstructed observations. Then,
the Perceiver integrates joint actions and observations into global representations from each agent,
appending them to each agent’s local sequence. The Transformer then predicts individual rewards
and discounts, depicted by green and purple arrows respectively, while generating next observation
tokens for each agent in an autoregressive manner, shown by blue arrows. This parallel imagination
iterates for H steps. The policies π1:n

ψ are exclusively trained using imagined trajectories.

corresponding targets:

LDyn(ϕ, θ) = Ei∼NEτ i∼D

[∑H

t=1
− log pϕ(r

i
t|xi≤t,·, ai≤t, eit)︸ ︷︷ ︸
reward loss

− log pϕ(γ
i
t |xi≤t,·, ai≤t, eit)︸ ︷︷ ︸

discount loss

−
(∑K

k=1
log pϕ(x

i
t+1,k|xi≤t,·, ai≤t, eit, xit+1,<k)

)
︸ ︷︷ ︸

transition loss

]
(6)

where (e1t , e
2
t , ..., e

n
t ) = fθ(x

1
t,1, x

1
t,2, ..., x

1
t,K , a

1
t , ..., x

n
t,1, x

n
t,2, ..., x

n
t,K , a

n
t ),∀t.

We jointly minimize this loss function in Eq. (6) with respect to the model parameters of local
dynamics (i.e., ϕ) and global representation (i.e., θ) using the Adam optimizer (Kingma & Ba, 2015).

3.3 LEARNING BEHAVIOURS IN IMAGINATION

We utilize the Actor-Critic framework to learn the behavior of each agent, where the actor and critic
are parameterized by ψ and ξ, respectively. In the following, we take agent i as an exemplar case
for clarity and omit the superscript for denoting the index of the agent to avoid potential confusion.
Benefited from the shared local dynamics, the local trajectories of all agents are imagined in parallel,
as illustrated in Fig. 2. At timestep t, the actor takes a reconstructed observation ôt as input, and
samples an action at ∼ πψ(at|ôt). The world model then predicts the individual reward r̂t, individual
discount γ̂t and next local observation ôt+1. Starting from initial observations sampled from the
replay buffer, this imagination procedure is rolled out forH steps. To stimulate long-horizon behavior
learning, the critic accounts for rewards beyond the fixed imagination horizon and estimates the
individual expected return Vξ(ôt) ≃ Eπψ [

∑
l≥t γ

l−tr̂l].

In our approach, we train the actor and critic in a MAPPO-like (Yu et al., 2022) manner. Unlike other
CTDE model-free approaches that require a global oracle state from the environment, we cannot
obtain the oracle state from the world model, and only the predicted observations of each agent are
available. To approximate the oracle information in critic training, we enhance each agent’s critic
with the capability to access the observations of other agents. Since the actor and critic only rely on
the reconstructed observations, decoupling from the inner hidden states of the Transformer-based
world model, we allow fast inference in the environment without the participation of the world model.
It is important for the deployment of policies learned with data-efficient imagination in real-world
applications. λ-target in Dreamer (Hafner et al., 2020) is used to updated the value function. The
details of behavior learning objectives and algorithmic description of MARIE are presented in §B
and §I, respectively.
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Figure 3: Curves of evaluation win rate for methods in 8 chosen SMAC maps. See Table 1 for win
rates. Y axis: win rate; X axis: number of steps taken in the real environment. MARIE demonstrates
superior performance and sample efficiency across almost all scenarios.

4 EXPERIMENTS

We consider the most common benchmark – StarCraftII Multi-Agent Challenge (SMAC) (Samvelyan
et al., 2019) for evaluating our method. To highlight the sample efficiency brought by model-based
imagination, we adopt a low data regime that resembles a similar setting in single-agent Atari domain
(Łukasz Kaiser et al., 2020). Additional experiment results on MAMujoco (Peng et al., 2021) (i.e.,
continuous action space case) is provided in §E.1.

4.1 EXPERIMENT SETUP AND EVALUATIONS

StarCraftII Multi-Agent Challenge. SMAC (Samvelyan et al., 2019), a suite of cooperative multi-
agent environments based on StarCraft II, consists of a set of StarCraft II scenarios. Each scenario
depicts a confrontation between two armies of units, one of which is controlled by the built-in game
AI and the other by our algorithm. The initial position, number, and type of units in each army
varies from scenario to scenario, as does the presence or absence of elevated or impassable terrain.
And the goal is to win the game within the pre-specified time limit. SMAC emphasizes mastering
micromanagement techniques across multiple agents to achieve effective coordination and overcome
adversaries. This necessitates both sufficient exploration and appropriate credit assignment for each
agent’s action. Another notable property of SMAC is that not all actions are accessible during
decision-making of each agent, which requires world models to possess an in-depth comprehension
of the underlying game mechanics so as to consistently provide valid available action mask estimation
within the imagination horizon. Thus, in this benchmark, we additionally add one more head for the
prediction of available action mask. During the imagination of MARIE, the available action mask
is estimated by this head, instead of being generated manually according to the meaning of each
element in the reconstructed observation. The latter introduces too much prior knowledge about
StarCraft and can be considered as benchmark hacking.

Experimental Setup. We choose 13 representative scenarios from SMAC that includes three levels
of difficulty – Easy, Hard, and SuperHard. Specific chosen scenarios can be found in Table 1. In
terms of different levels of difficulty, we adopt a similar setting akin to that in (Egorov & Shpilman,
2022) and restrict the number of samples from the real environment to 100k for Easy scenarios, 200k
for Hard scenarios and 400k for SuperHard scenarios, to establish a low data regime in SMAC.
We compare MARIE with three strong model-free baselines – MAPPO (Yu et al., 2022), QMIX
(Rashid et al., 2018) and QPLEX (Wang et al., 2021), and two strong model-based baselines with
the same policy learning paradigm as ours – MBVD (Xu et al., 2022) and MAMBA (Egorov &
Shpilman, 2022) on SMAC benchmark. Specially, as a multi-agent variant of DreamerV2 (Hafner
et al., 2021), MAMBA achieves powerful sample efficiency in various SMAC scenarios via learning
in imagination. For each random seed, we compute the win rate across 10 evaluation games at fixed
intervals of environmental steps. The hyperparameters of MARIE and other baselines are listed in
§D and §H. Particularly, the hyperparameters of model-free baselines in low data regime are directly
referred to Egorov & Shpilman (2022) and Liu et al. (2024).
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Table 1: Mean evaluation win rate and standard deviation on 13 SMAC maps for different methods
over 4 random seeds. We bold the values of the maximum and highlight them with blue color.

Maps Difficulty Steps
Methods

MARIE MAMBA MAPPO QMIX QPLEX MBVD
(Ours) (Egorov & Shpilman, 2022) (Yu et al., 2022) (Rashid et al., 2018) (Wang et al., 2021) (Xu et al., 2022)

1c3s5z

Easy 100K

85.0(9.4) 77.7(15.3) 18.4(11.0) 43.6(29.2) 68.3(7.4) 60.9(11.4)

2m vs 1z 95.5(7.9) 95.5(2.3) 86.7(3.2) 70.3(14.8) 84.8(10.8) 36.7(24.5)

2s vs 1sc 96.9(7.1) 95.0(7.1) 100.0(0.0) 0.0(0.0) 15.7(19.5) 8.7(14.8)

2s3z 80.5(9.3) 71.6(12.7) 31.2(12.9) 37.7(15.5) 50.2(8.4) 53.4(4.1)

3m 99.5(0.4) 87.7(7.1) 80.5(12.8) 54.4(22.7) 88.7(6.9) 73.9(6.9)

3s vs 3z 98.9(1.5) 89.3(10.1) 1.2(1.3) 0.0(0.0) 0.0(0.0) 0.0(0.0)

3s vs 4z 73.0(6.2) 29.3(12.3) 0.0(0.0) 0.0(0.0) 0.0(0.0) 0.0(0.0)

8m 88.0(3.9) 65.0(7.7) 70.3(19.5) 69.5(12.8) 83.4(6.4) 74.7(9.7)

MMM 87.6(3.0) 50.2(27.6) 5.5(4.5) 31.1(17.3) 69.3(35.1) 20.5(2.1)

so many baneling 94.8(5.9) 91.6(4.1) 43.8(15.0) 20.0(8.9) 32.2(6.1) 15.0(10.4)

3s vs 5z Hard 200K 78.4(11.2) 13.4(14.0) 0.0(0.0) 0.0(0.0) 0.0(0.0) 0.0(0.0)

2c vs 64zg 25.9(14.3) 9.8(8.7) 7.8(10.2) 0.5(0.5) 0.1(0.1) 0.2(0.4)

corridor SuperHard 400K 71.0(13.8) 26.5(15.2) 0.4(0.7) 0.0(0.0) 0.0(0.0) 0.0(0.0)

Main Results. Overall, we find MARIE achieves significantly better sample efficiency and a higher
win rate compared with other strong baselines. We report the averaged win rates over four seeds
in Table 1 and provide additional learning curves of several chosen scenarios, shown as Fig. 3. As
presented in Table 1 and Fig. 3, MARIE demonstrates superior performance and sample efficiency
across almost all scenarios. The improvements in sample efficiency and performance become
particularly pronounced with increasing difficulty of scenarios, especially compared to MAMBA that
adopts RSSM as the backbone for the world model. We attribute such results to the model capability
of the Transformer in local dynamics modeling and global feature aggregation. Benefiting from more
powerful strength in modeling sequences, the Transformer-based world model can generate more
accurate and consistent imaginations than those relying on the recurrent backbone, which facilitates
better policy learning within the imagination of the world model. While the scenarios become harder,
e.g. 3s vs 5z, our world model can address the challenge of learning more intricate underlying
dynamics and further large quantities of accurate imaginations, thereby significantly outperforming
other baselines on these scenarios. Moreover, a special scenario 2c vs 64zg deserves attention, which
features only 2 agents but with a considerably large action space of up to 70 discrete actions for each
agent. Although the performance of MARIE in 2c vs 64zg suffers a relative large variance due to the
overly large action space, MARIE achieves a remarkably non-trivial mean win rate just via learning
in the imagination. Note that it is easy for the world model to generate ridiculous estimated available
action masks without understanding the mechanics behind this scenario, further leading to invalid
or even erroneous policy learning in the imaginations of the world model. The performance gap on
2c vs 64zg proves that our Transformer-based world model has higher prediction accuracy and a
deeper understanding of the underlying mechanics.

4.2 ABLATION STUDIES

Incorporating CTDE principle with the design of the world model makes MARIE scalable
and robust to different number of agents. We compare our method with a centralized variant
of our method, wherein the world model learns the joint dynamics of all agents together over the
joint trajectory τ = (. . . , o1t , o

2
t , . . . , o

n
t , a

1
t , a

2
t , . . . , a

n
t , . . .). Given that τ already contains the joint

observations and actions, we disable the aggregation module in this centralized variant. As illustrated
in Figure 4, our comparisons span scenarios involving 2 to 7 agents. When the number of agents is
small enough, reducing the multi-agent system to a single-agent one over the joint observation and
action space would not cause a prominent scalability issue, as indicated by the result in 2s vs 1sc.
However, the scalability issue is exacerbated by a growing number of agents. In scenarios featuring
more than 3 agents, the sample efficiency of the centralized variant encounters a significant drop,
suffering from the exponential surge in spatial complexity of the joint observation-action space.
Furthermore, with equal prediction horizons, the parameter amounts in the centralized variant is
increased by a factor of 4 or larger. And to achieve the same number of environment steps, the
centralized variant demands over twice the original computational time. Instead, with decentralized
local dynamics and aggregated global features, MARIE delivers stable and superior sample efficiency.
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Figure 4: Ablation on what manner to integrate into the design of the world model. Decentralized
Manner denotes the standard implementation of MARIE, while Centralized Manner denotes that the
world model is designed for learning the joint dynamics of all agents over the joint trajectory. Sample
efficiency of the centralized variant encounters a significant drop due to the scalability issue while
MARIE is robust to scenarios with various number of agents.
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Figure 5: Comparisons between MARIE with and without the usage of the aggregation module.
Local dynamics struggles to infer accurate future local observations without agent-wise aggregation.

Agent-wise aggregation helps MARIE capture the sophisticated inter-dependency on the genera-
tion of each agent’s local observation. To study the influence of agent-wise aggregation, we conduct
ablation experiments on the aggregation module over scenarios where the number of agents gradually
increases. As shown in Fig. 5, in the 3-agents scenario (e.g., 3s vs 3z), the correlation among each
agent’s local observation tends to be negligible. Therefore, the nearly independent generation of each
agent’s local observation without any aggregated global feature still leads to performance comparable
to that of standard implementation. But as more agents get involved, the inter-dependency becomes
dominant. Lacking the global features derived from agent-wise aggregation, the shared Transformer
struggles to infer accurate future local observations, thus hindering policy learning in the imaginations
of the world model and resulting in notable degradation in the win rate evaluation.

VQ-VAE encapsulates local observations within a succinct sequence of tokens, promoting the
learning of the Transformer-based world model and effectively improving algorithm perfor-
mance. Compared to VQ-VAE that discretizes each observation to K tokens from Z , perhaps a more
naive tokenizer is projecting the value in each dimension into one of m fixed-width bins (Janner
et al., 2021), resulting in a nobs-long token sequence for each observation, which we term Bins
Discretization. We set the number of bins m equal to the size of codebook |Z| and compare these two
types of tokenizers in different environments with various nobs. As shown in Fig. 6, the performance
of the two tokenizers are comparable only in 2s vs 1sc where nobs is close to 16. Even worse, Bins
Discretization experiences a pronounced decline as nobs increases in more complex environments
(e.g., 3s vs 4z) under identical training durations. We hypothesize that for a single local observation,
a nobs-token-long verbose sequence yielded by Bins Discretization contains more redundant infor-
mation compared to VQ-VAE that learns a more compact tokenizer through reconstruction This not
only renders the token sequences of Bins Discretization obscure and challenging to comprehend, but
also results in an increase in model parameter amounts, being more computationally costly. Due to
these two factors, Bins Discretization exhibits a notably slow convergence. Meanwhile, the result
in 2m vs 1z indicates Bins Discretization may ignore the correlation of different dimensions, which
would be helpful in sequence modeling.

4.3 MODEL ANALYSIS

Error Accumulation. A quantitative evaluation of the model’s accumulated error versus prediction
horizon is provided in Fig. 7. Since learning the world model is tied to a progressively improving
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Figure 6: Ablation on the type of discretization for local observations. Tokenizer denotes the
standard implementation of MARIE; Bins Discretization denotes the variant of MARIE where the
nobs-dimensional observation discretization is performed by projecting the value into one of m
fixed-width bins in each dimension independently. X-axis: cumulative run time of algorithms in
the same platform. VQ-VAE encapsulates local observations within a succinct sequence of tokens,
computationally efficiently promoting the learning of the Transformer-based world model.
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Figure 7: Compounding model errors. We compare the imagination accuracy of MARIE to that of
MAMBA over the course of a planning horizon in 3s vs 5z scenario. MARIE has remarkably better
error compounding with respect to prediction horizon than MAMBA.

policy both in MARIE and MAMBA, we separately use their final policies to sample 10 episodes for
fairness. We then compute L1 errors per observation dimension between 1000 trajectory segments
randomly sampled from these 20 episodes and their imagined counterpart. The result in Fig. 7
suggests architecture differences play a large role in the world model’s long-horizon accuracy.
This also provides additional evidence that policy learning can benefit from accurate long-term
imaginations, explaining MARIE’s notable performance in the 3s vs 5z scenario. More precisely,
lower generalization error between the estimated dynamics and true dynamics brings a tighter bound
between optimal policies derived from these two dynamics according to theoretical results (Janner
et al., 2019).

Attention Patterns. During model prediction, we delve into the attention maps inside the shared
Transformer and the cross attention maps in the Perceiver. Interestingly, we observe two distinct
attention patterns involved in the local dynamics prediction. One exhibits a Markovian pattern
wherein the observation prediction lays its focus mostly on the previous transition, while the other is
regularly striated wherein the model attends to specific tokens in multiple prior transitions. During
the agent-wise aggregation, we also identify two distinct patterns – individuality and commonality
among agents. Such diverse patterns in the Transformer and Perceiver may be pivotal for achieving
accurate and consistent imaginations of the sophisticated local dynamics. We refer to §C for further
details and visualization results.

5 CONCLUSION AND LIMITATION

We have introduced a model-based multi-agent algorithm – MARIE, which utilizes a shared Trans-
former as local dynamic model and a Perceiver as a global agent-wise aggregation module to construct
a world model within the multi-agent context. By providing long-term imaginations with policy
learning, it significantly boosts the sample efficiency and improves final performance compared to
state-of-the-art model-free methods and existing model-based methods with same learning paradigm,
in the low data regime. But it should be also noticed that there are potential limitations on the
current evaluation on the main experiment with 4 limited seeds, e.g., the limitations of mean and
median scores (Agarwal et al., 2021). Thus, we also provide a standardized performance evaluation
following the protocol provided by Agarwal et al. (2021) in §G. To further deliver a rigorous statis-
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tical validation, evaluation with more seeds is definitely necessary. As the first Transformer-based
multi-agent world model for sample-efficient policy learning, we open a new avenue for combining
the powerful strength of the Transformer with sample-efficient MARL. Considering the notorious
sample inefficiency in multi-agent scenarios, it holds important promise for application in many
realistic multi-robot systems, wherein collecting tremendous samples for optimal policy learning is
costly and impractical due to the safety. While it has the great potential to bright the future towards
achieving smarter multi-agent systems, there still exist limitations in MARIE. For instance, it would
suffer from much slower inference speed when used with a very long prediction horizons, due to the
auto-regressive property.

REPRODUCIBILITY STATEMENT

For the implementation details, we provide the detailed instruction in §A. For the practical part, we
give experiment setup in §4. The hyper-parameters and implementation details are given in §H. The
code will be released publicly after the review process.
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A WORLD MODELS DETAILS AND HYPERPARAMETERS

A.1 OBSERVATION TOKENIZER

Our tokenizer for local observation discretization is based on the implementation1 of a vanilla
VQ-VAE (van den Oord et al., 2017). Faced with continuous non-vision observation, we build the
encoder and decoder as Multi-Layer Perceptrons (MLPs). The decoder is designed with the same
hyperparameters as the ones of the encoder. The hyperparameters are listed as Table 2. During the
phase of collecting experience from the external environment, each agent takes the reconstructed
observations processed by the VQ-VAE as input instead to avoid the distribution shift between policy
learning and policy execution.

For training this vanilla VQ-VAE, we use a straight-through estimator to enable gradient backpropa-
gation through the non-differentiable quantization operation in the quantization of VQ-VAE. The loss
function for learning the autoencoder is as follows:

LVQ−VAE(E,D,Z) = Ei∼NEoi
[
∥oi − ôi∥2 + ∥sg[E(oi)]− ziq∥2 + β∥sg[ziq]− E(oi)∥2

]
(7)

where N = {1, 2, ..., n} denotes the set of agents, sg[·] denotes the stop-gradient operation and β is
the coefficient of the commitment loss ∥sg[ziq]−E(oi)∥2. In practice, we found the codebook Z can
suffer from codebook collapse when learning from scratch. Thus, we adopt the Exponential Moving
Averages (EMA) (van den Oord et al., 2017) technique to alleviate this problem.

Table 2: VQVAE hyperparameters.
Hyperparameter Value
Encoder&Decoder
Layers 3
Hidden size 512
Activation GELU(Hendrycks & Gimpel, 2016)
Codebook
Codebook size (N ) 512
Tokens per observation (K) 16
Code dimension 128
Coef. of commitment loss (β) 10.0

A.2 TRANSFORMER

The shared Transformer serving as the local dynamics model is based on the implementation of
minGPT (Karpathy, 2020). Given a fixed imagination horizon H , it first takes a token sequence
of length H(K + 1) composed of observation tokens and action tokens, and embeds it into a
H(K + 1) × D tensor via separate embedding tables for observations and actions. Then, the
aggregated feature tensor, returned by the agent-wise aggregation module, is inserted after the action
embedding tensor at every timestep, forming a final embedding tensor of shape H(K +2)×D. This
tensor is forwarded through fixed Transformer blocks. Here, we adopt GPT2-like blocks (Radford
et al., 2019) as the basic blocks. The hyperparameters are listed as Table 3. To enable training across
all environments on a single NVIDIA RTX 3090 GPU, we adapt imagination horizon H based on the
number of agents.

A.3 PERCEIVER

The Perceiver (Jaegle et al., 2021) is based on the open-source implementation2. By aligning the
length of the latent querying array with the number of agents n, we obtain the intrinsic global
representation feature corresponding to each individual agent. We further dive into the process of
agent-wise representation aggregation: (i) the embedding tensor of shape (K + 1) × D at each
timestep, mentioned in Appendix A.2, is concatenated with others from all agents, thereby getting a

1Code can be found in https://github.com/lucidrains/vector-quantize-pytorch
2Code can be found in https://github.com/lucidrains/perceiver-pytorch
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Table 3: Transformer hyperparameters.
Hyperparameter Value
Imagination horizon (H) {15, 8, 5}
Embedding dimension 256
Layers 10
Attention heads 4
Weight decay 0.01
Embedding dropout 0.1
Attention dropout 0.1
Residual dropout 0.1

Table 4: Perceiver hyperparameters.
Hyperparameter Value
Length of latent querying n (number of agents)
Cross attention heads 8
Inner Transformer layers 2
Transformer attention heads 8
Dimension per attention head 64
Embedding dropout 0.1
Attention dropout 0.1
Residual dropout 0.1

n(K + 1)×D sequence for the joint observation-action pair at the current timestep; (ii) through the
cross-attention mechanism with the latent querying array, the original sequence is compressed from
length n(K+1) to n; (iii) the compressed sequence is then forwarded through a standard transformer
with bidirectional attention inside the Perceiver. The hyperparameters are listed as Table 4.

B BEHAVIOUR LEARNING DETAILS

In MARIE, we use MAPPO-like (Yu et al., 2022) actor and critic, where the actor and critic should
have been 3-layer MLPs. However, unlike other CTDE model-free approaches, whose critic takes
additional global oracle states from the environment in the training phase, our world model hardly
provides related predictions in the imagined trajectories. To alleviate this issue, we augment the critic
with an attention mechanism and provide it all reconstructed observations ôt of all agents. Therefore,
the actor ψ remains a 3-layer MLP with ReLU activation, while the critic ξ is enhanced with an
extra layer of self-attention, built on top of the original 3-layer MLP, i.e., we overwrite the critic
V iξ (ôt) ≃ Eπiψ (

∑
l≥t γ

l−tr̂il) for agent i. Similar to off-the-shelf CTDE model-free approaches, we
adopt parameter sharing across agents.

Critic loss function We utilize λ-return in Dreamer (Hafner et al., 2020), which employs an
exponentially-weighted average of different k-steps TD targets to balance bias and variance as the
regression target for the critic. Given an imagined trajectory {ôiτ , aiτ , r̂iτ , γ̂iτ}Ht=1 for agent i, λ-return
is calculated recursively as,

V iλ(ôt) =

{
r̂it + γ̂it

[
(1− λ)V iξ (ôt) + λV iλ(ôt+1)

]
if t < H

V iξ (ôt) if t = H
(8)

The objective of the critic ξ is to minimize the mean squared difference Liξ with λ-returns over
imagined trajectories for each agent i, as

Liξ = Eπiψ

[∑H−1

t=1

(
V iξ (ôt)− sg(V iλ(ôt))

)2]
(9)

where sg(·) denotes the stop-gradient operation. We optimize the critic loss with respect to the critic
parameters ξ using the Adam optimizer.
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Table 5: Behaviour learning hyperparameters.
Hyperparameter Value
Imagination Horizon (H) {15, 8, 5}
Predicted discount label γ 0.99
λ 0.95
η 0.001
Clipping parameter ϵ 0.2

Actor loss function The objective for the action model πψ(·|ôit) is to output actions that maximize
the prediction of long-term future rewards made by the critic. To incorporate intermediate rewards
more directly, we train the actor to maximize the same λ-return that was computed for training the
critic. In terms of the non-stationarity issue in multi-agent scenarios, we adopt PPO updates, which
introduce important sampling for actor learning. The actor loss function for agent i is:

Liψ = −Epϕ,πiψold

[H−1∑
t=0

min
(
rit(ψ)A

i
t, clip(r

i
t(ψ), 1− ϵ, 1 + ϵ)Ait

)
+ ηH(πiψ(·|ôit))

]
(10)

where rit(ψ) = πiψ/π
i
ψold

is the policy ratio and Ait = sg(V iλ(ôt) − V iξ (ôt)) is the advantage. We
optimize the actor loss with respect to the actor parameters ψ using the Adam optimizer. In the
discount prediction of MARIE, we set its learning target γ to be 0.99. Overall hyperparameters are
shown in Table 5.

C EXTENDED ANALYSIS ON ATTENTION PATTERNS

To provide qualitative analysis of our world model, we select typical scenarios – 3s vs 5z where
our method achieves the most significant improvement compared to other baselines for visualizing
attention maps inside the Transformer. For the sake of simple and clear visualization, we set the
imagination horizon H as 5. In terms of cross-attention maps in the aggregation module, we select a
scenario 2s3z including 5 agents for visualization. Visualization results are depicted as Fig. 8 and
Fig. 9.

The prediction of local dynamics entails two distinct attention patterns. The left one in Fig. 8 can
be interpreted as a Markovian pattern, in which the observation prediction lays its focus on the
previous transition. In contrast, the right one is regularly striated, with the model attending to specific
tokens in multiple prior observations. In terms of the agent-wise aggregation, we also identify two
distinct patterns: individuality and commonality. The top one in Fig. 9 illustrates that each agent
flexibly attends to different tokens according to their specific needs. In contrast, the bottom one
exhibits consistent attention allocation across all agents, with attention highlighted in nearly identical
positions. The diverse patterns in the Transformer and Perceiver may be the key to accurate and
consistent imagination.

D BASELINE IMPLEMENTATION DETAILS

MAMBA (Egorov & Shpilman, 2022) is evaluated based on the open-source implementation:
https://github.com/jbr-ai-labs/mamba with the hyperparameters in Table 6.

MAPPO (Yu et al., 2022) is evaluated based on the open-source implementation: https://
github.com/marlbenchmark/on-policy with the common hyperparameters in Table 7.

QMIX (Rashid et al., 2018) is evaluated based on the open-source implementation: https://
github.com/oxwhirl/pymarl with the hyperparameters in Table 8.

QPLEX (Wang et al., 2021) is evaluated based on the open-source implementation: https:
//github.com/wjh720/QPLEX with the hyperparameters in Table 9. Since its implemen-
tation is mostly based on the open-source implementation: PyMARL (Samvelyan et al., 2019), its
most hyperparameters setting remains the same as the one in QMIX in addition to its own special
hyperparameters.
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Table 6: Hyperparameters for MAMBA in SMAC environments.
Hyperparameter Value
Batch size 256
λ for λ-return computation 0.95
Entropy coefficient 0.001
Entropy annealing 0.99998
Number of policy updates 4
Epochs per policy update 5
Clipping parameter ϵ 0.2
Actor Learning rate 0.0005
Critic Learning rate 0.0005
Discount factor γ 0.99
Model Learning rate 0.0002
Number of model training epochs 60
Number of imagined rollouts 800
Sequence length 20
Imagination horizon H 15
Buffer size 2.5× 105

Number of categoricals 32
Number of classes 32
KL balancing entropy weight 0.2
KL balancing cross entropy weight 0.8
Gradient clipping 100
Collected trajectories between updates 1
Hidden size 256

Table 7: Common hyperparameters for MAPPO in SMAC environments.
Hyperparameter Value
Batch size num envs × buffer length × num agents
Mini batch size batch size / mini-batch
Recurrent data chunk length 10
GAE λ 0.95
Discount factor γ 0.99
Value loss huber loss
Huber delta 10.0
Optimizer Adam
Optimizer learning rate 0.0005
Optimizer epsilon 1× 10−5

Weight decay 0.0
Gradient clipping 10
Network initialization orthogonal
Use reward normalization True
Use feature normalization True
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Table 8: Hyperparameters for QMIX in SMAC environments.
Hyperparameter Value
Batch size 32
Buffer size 5000
Epsilon in epsilon-greedy 1.0→ 0.05
Epsilon anneal time 50000
Train interval 1 episode
Discount factor γ 0.99
Optimizer RMSProp
RMSProp α 0.99
RMSProp ϵ 10−5

Gradient clipping 10

Table 9: Hyperparameters for QPLEX in SMAC environments.
Hyperparameter Value
Batch size 32
Buffer size 5000
Epsilon in epsilon-greedy 1.0→ 0.05
Epsilon anneal time 50000
Train interval 1 episode
Discount factor γ 0.99
Optimizer RMSProp
RMSProp α 0.99
RMSProp ϵ 10−5

Gradient clipping 10
Number of layers in HyperNetwork 1
Number of heads in the attention module 4
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Figure 8: Attention patterns in the Transformer. We observe two distinct types of attention weights
during the prediction of local dynamics. In the first one (left), the next observation prediction is
primarily dependent on the last transition, which means the world model has learned the Markov
property corresponding to Dec-POMDPs. The second type (right) exhibits a regularly striated pattern,
where the next observation prediction hinges overwhelmingly on the same dimension of multiple
previous timesteps. The above attention weights are produced by a sixth-layer and ninth-layer
attention head during imaginations on the 3s vs 5z scenario.

agent 1
agent 2
agent 3
agent 4
agent 5

agent 1
agent 2
agent 3
agent 4
agent 5

agent 1′s 𝑜𝑜𝑡𝑡1,𝑎𝑎𝑡𝑡1  tokens agent 2′s 𝑜𝑜𝑡𝑡2,𝑎𝑎𝑡𝑡2  tokens agent 3′s 𝑜𝑜𝑡𝑡3,𝑎𝑎𝑡𝑡3  tokens agent 4′s 𝑜𝑜𝑡𝑡4,𝑎𝑎𝑡𝑡4  tokens agent 5′s 𝑜𝑜𝑡𝑡5,𝑎𝑎𝑡𝑡5  tokens

agent 1′s 𝑜𝑜𝑡𝑡1,𝑎𝑎𝑡𝑡1  tokens agent 2′s 𝑜𝑜𝑡𝑡2,𝑎𝑎𝑡𝑡2  tokens agent 3′s 𝑜𝑜𝑡𝑡3,𝑎𝑎𝑡𝑡3  tokens agent 4′s 𝑜𝑜𝑡𝑡4,𝑎𝑎𝑡𝑡4  tokens agent 5′s 𝑜𝑜𝑡𝑡5,𝑎𝑎𝑡𝑡5  tokens

Cross Attention Head 1

Cross Attention Head 6

Figure 9: Cross attention patterns in the Perceiver. We observe the individuality and commonality
in the agent-wise aggregation. The top part of the figure represents the individuality, where agents
adjust their attentions over the whole joint token sequence at timestep t flexibly according to their
own needs. In contrast, the bottom exhibits the commonality, where every agent’s attention over
the joint token sequence is emphasized in the similar positions of the sequence. The cross attention
weights mentioned above are produced by the first and sixth head of the cross attention within the
Perceiver, during the agent-wise aggregation on the 2s3z scenario.

MBVD (Xu et al., 2022) is evaluated based on the implementation in its supplementary material
from https://openreview.net/forum?id=flBYpZkW6ST with the hyperparameters in
Table 10. Akin to QPLEX, its implementation is based on the open-source implementation: PyMARL,
its most hyperparameters setting remains the same as the one in QMIX in addition to its own special
hyperparameters.

E ADDITIONAL EXPERIMENTS

E.1 EVALUATIONS ON MAMUJOCO

The Multi-Agent MuJoCo (MAMuJoCo) (Peng et al., 2021) environment is a multi-agent extension of
MuJoCo. While the MuJoCo tasks challenge a robot to learn an optimal way of motion, MAMuJoCo
models each part of a robot as an independent agent — for example, a leg for a spider or an
arm for a swimmer — and requires the agents to collectively perform efficient motion. With the
increasing variety of the body parts, MAMujoco can be also considered as a testbed for evaluating the
coordination among heterogeneous agents, which poses a big challenge for learning the multi-agent
dynamics inside it, especially in a decentralized manner.
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Table 10: Hyperparameters for MBVD in SMAC environments.
Hyperparameter Value
Batch size 32
Buffer size 5000
Epsilon in epsilon-greedy 1.0→ 0.05
Epsilon anneal time 50000
Train interval 1 episode
Discount factor γ 0.99
Optimizer RMSProp
RMSProp α 0.99
RMSProp ϵ 10−5

Gradient clipping 10
Number of layers in HyperNetwork 1
Number of heads in the attention module 4
Horizon of the imagined rollout 3
KL balancing α 0.3
Dimension of the latent state ŝ num agents x 16
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Figure 10: Curves of the performance for MARIE, MAMBA, HAPPO and MAPPO in 3 chosen
MAMujoco scenarios. Y axis: return; X axis: number of steps taken in the real environment.

While MAMBA (Egorov & Shpilman, 2022) originally does not take the continuous action space
case into consideration, which is a obvious limitation in it, we would like to evaluate MARIE in
such case, e.g., MAMujoco, to better demonstrate that our method can be also effective in other
multi-agent domains. In MAMujoco, we discretize the scalar in each dimension of continuous actions
into one of 256 fixed-width bins independently to obtain discrete action tokens for local dynamics
learning. As the behaviour learning in MARIE adopts a MAPPO-like and on-policy manner, we
choose two strong on-policy PPO-based baselines – MAPPO (Yu et al., 2022) and HAPPO (Kuba
et al., 2021). Additionally, we also include MAMBA as a model-based baseline for comparison. Since
MAMBA(Egorov & Shpilman, 2022) was originally originally designed for domains with discrete
action space, significant effort was required to adapt and evaluate it on MAMujoco, which features
continuous action space. The experiments are conducted in HalfCheetah-v2-2x3, HalfCheetah-v2-3x2
and Walker2d-v2-2x3. The learning curves of the return averaged over 4 seeds are presented as
Figure 10. Notably, MAMBA fails to enhance policy learning in the Walker2d-v2-2x3 scenario
and remains exceptionally time-consuming. Consequently, we report its results only for 1 million
environment steps in this scenario.

As illustrated in Figure 10, our MARIE consistently shows superior sample efficiency and achieves
the best performance in 2 of 3 scenarios with limited 2M environment steps. For the performance
difference between MAMBA and MARIE in HalfCheetah-v2-3x2, we hypothesize that MAMBA’s
policy learning benefits significantly from using the internal recurrent features of the world model as
inputs in this scenario, while the policy in our method only takes the reconstructed observation as
input in order to support fast deployment in the environment without the participation of the world
model. We attribute the performance gap between MARIE and other two model-free baselines in
HalfCheetah-v2-3x2 to the access to global oracle state in the chosen baselines. The policy in our
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Figure 11: Curves of the performance for MARIE, MAMBA, QMIX, HAPPO and MAPPO in 3
chosen SMACv2 scenarios. Y axis: Win Rate; X axis: number of steps taken in the real environment.
While MARIE shows competitive performance to MAMBA on zerg 5 vs 5, MARIE is superior to all
other baselines in terms of sample efficiency and final performance in the rest 2 scenarios.

algorithm is purely learned from the inner imaginations of the world model where there is only
reconstructed local observation. Considering MAMujoco is a multi-heterogeneous-agent benchmark
which necessitates a more precise credit assignment during training, it would be much more helpful
for policy learning to have access to the true global oracle state than in other benchmarks. But overall,
our MARIE presents a faster convergence rate, implying that our Transformer-based world model
can generate accurate imaginations and bring remarkable sample efficiency.

E.2 EVALUATIONS ON SMACV2

Given known serious flaws in SMACv1 (e.g., the tricky open-loop policy issue), we extend our
evaluation of MARIE to SMACv2 (Ellis et al., 2023), which introduces more stochasticity and partial
observability. In this comparison, we benchmark MARIE against four baselines: MAPPO, HAPPO,
QMIX and MAMBA. For each random seed, we adopt the same evaluation protocol as the main
experiment on SMACv1. Importantly, the hyperparameters of MARIE remain unchanged, as detailed
in §H. Here, we directly use the results of MAPPO and QMIX provided in the official SMACv2
repository3. Illustrated in Figure 11, while MARIE shows competitive performance to MAMBA
on zerg 5 vs 5, MARIE is superior to all other baselines in terms of sample efficiency and final
performance in the rest 2 scenarios.

E.3 COMPARISON WITH QMIX AND QPLEX WITH DIFFERENT EPSILON ANNEALING TIME

Considering the potentially inappropriate influence of a large ϵ annealing time used in the epsilon-
greedy algorithm when evaluated in the low data regime evaluation, we run QMIX and QPLEX
with a smaller ϵ annealing time, and compare the performance of them with ours. The result is
reported in Table 11. The reported result shows that the original hyperparameters used in the main
experiment, which are also directly referred to Egorov & Shpilman (2022) and Liu et al. (2024),
are reasonable since the performance of QMIX and QPLEX under the original hyperparameters is
superior to the ones with a smaller ϵ annealing time at most scenarios. Besides, our MARIE still
consistently outperforms QMIX and QPLEX with a smaller ϵ annealing time.

E.4 COMPARISON WITH EXISTING TRANSFORMER-BASED WORLD MODELS

Existing Transformer-based world models are primarily designed for single-agent scenarios, but they
can be naturally adapted to multi-agent settings, modeling either independently local dynamics or
joint dynamics. Fortunately, we have included IRIS as a Transformer-based world model baseline in
our ablation experiments. Specifically, the Centralized Manner and MARIE w/o aggregation variants
from our ablation experiments correspond to IRIS baseline variants under different deployment
strategies. But different from their original implementation, these IRIS baseline variants also uses the
same actor-critic method as MARIE during learning in imaginations phase (i.e., using PPO instead

3Results of QMIX and MAPPO are available at https://github.com/oxwhirl/smacv2/tree/
main/smacv2/examples/results.
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Table 11: Mean evaluation win rate and standard deviation for QMIX and QPLEX with different
epsilon anneal time tϵ over 4 random seeds. We bold the values of the maximum.

Maps Steps MARIE QMIX (tϵ = 50000) QMIX (tϵ = 10000) QPLEX (tϵ = 50000) QPLEX (tϵ = 10000)

1c3s5z

100K

85.0(9.4) 43.6(29.2) 33.3(15.0) 68.3(7.4) 44.8(11.0)

2m vs 1z 95.5(7.9) 70.3(14.8) 36.1(28.2) 84.8(10.8) 93.2(4.7)

2s vs 1sc 96.9(7.1) 0.0(0.0) 3.9(6.7) 15.7(19.5) 43.2(32.4)

2s3z 80.5(9.3) 37.7(15.5) 29.1(20.3) 50.2(8.4) 28.3(11.5)

3m 99.5(0.4) 54.4(22.7) 63.8(14.6) 88.7(6.9) 85.0(11.3)

3s vs 3z 98.9(1.5) 0.0(0.0) 0.0(0.0) 0.0(0.0) 0.0(0.0)

3s vs 4z 73.0(6.2) 0.0(0.0) 0.0(0.0) 0.0(0.0) 0.0(0.0)

8m 88.0(3.9) 69.5(12.8) 68.6(13.6) 83.4(6.4) 79.7(9.8)

MMM 87.6(3.0) 31.1(17.3) 18.9(4.3) 69.3(35.1) 20.2(7.7)

so many baneling 94.8(5.9) 20.0(8.9) 30.7(18.5) 32.2(6.1) 37.7(9.2)

2c vs 64zg 200K 25.9(14.3) 0.5(0.5) 0.0(0.0) 0.1(0.1) 0.0(0.0)

3s vs 5z 78.4(11.2) 0.0(0.0) 0.0(0.0) 0.0(0.0) 0.0(0.0)

corridor 400K 71.0(13.8) 0.0(0.0) 0.0(0.0) 0.0(0.0) 0.0(0.0)
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Figure 12: Comparison with two direct extension of IRIS in the so many baneling scenario.

of REINFORCE for behaviour learning). With a shared behaviour learning phase, we can analyze
the reason why existing single-agent Transformer-based world model cannot be directly adapted to
MARL. As shown in Figure 12, without incorporating CTDE principle, the learning of single-agent
world model would be disrupted by the scalability and non-stationarity issues.

E.5 COMPARISON AGAINST MAMBA WITH DIFFERENT IMAGINATION HORIZON

We report the performance of MARIE and MAMBA on 3s vs 5z with different imagination horizon
in Table 12. And the result shows that the performance gap between the two is not related to the
choice of imagination horizon. Interestingly, a larger imagination horizon may help policy learning
in imagination. We hypothesize that longer imagined trajectories help alleviating shortsighted
behaviours in policy learning.

Table 12: The performance of MARIE and MAMBA on 3s vs 5z with different imagination horizon.

Maps Method Horizon H = 8 Horizon H = 15 Horizon H = 25

3s vs 5z MARIE 0.40± 0.34 0.75± 0.09 0.78± 0.11
MAMBA 0.00± 0.00 0.13± 0.14 0.16± 0.13

23



Published as a conference paper at ICLR 2025

E.6 COMPARISON BETWEEN DIFFERENT AGENT-WISE AGGREGATION MODULES

To convincingly demonstrate the effectiveness of our designed Perceiver aggregation module, we
report the FLOPs for both Perceiver and Self-Attention aggregation with varying number of agents, as
shown in Table 13. Note that the Perceiver aggregation in our algorithm consists of one transformer
layer with cross-attention and two transformer layers with self-attention. The details can be found in
Table 4. To make fair comparisons, the Self-Attention aggregation also consists of three transformer
layers with self-attention.

Table 13: The FLOPs of Perceiver aggregation and Self-Attention aggregation with varying number
of agents.

Aggregation Module 2 agents 3 agents 5 agents 9 agents

Perceiver 0.016G FLOPs 0.024G FLOPs 0.041G FLOPs 0.073G FLOPs
Self-Attention 0.133G FLOPs 0.201G FLOPs 0.335G FLOPs 0.603G FLOPs

Additionally, we compare the performance of these aggregation methods in the 2m vs 1z scenario
after 50000 steps. These results show that Perceiver aggregation offers a more computationally
efficient solution compared to self-attention aggregation.

Table 14: The performance of different aggregation methods in the 2m vs 1z scenario after 50000
steps.

Map Perceiver Aggregation (3 layers) Self-Attention Aggregation (3 layers)

2m vs 1z 0.96± 0.07 0.54± 0.46

F ADDITIONAL DISCUSSION BETWEEN CODREAMER AND MARIE

Additionally, a recent method CoDreamer (Toledo & Prorok, 2024) extends DreamerV3 (Hafner
et al., 2023) to the multi-agent setting, using GAT V2 (Brody et al., 2021) for communication
among agents’ world models and policies. Though the aggregation modules in CoDreamer and
ours are both built upon the Transformer architecture, our focus lies in computational efficiency of
aggregation while it focuses on the underlying topological graph structure among agents. However, a
fundamental difference is the backbone used for modeling the local dynamics. While we cast the
local dynamics learning as the sequence modeling over discrete tokens, which can be achieved by
using auto-regressive Transformers with causal attention mechanism, CoDreamer directly adopts the
RSSM framework in DreamerV3.

G STANDARDIZED PERFORMANCE EVALUATION PROTOCOL

Agarwal et al. (2021) discuss the limitations of mean and median scores, and show that substantial
discrepancies arise between standard point estimates and interval estimates in RL benchmarks. To de-
liver a rigorous statistical evaluation, we summarize in Figure 13 the win rate with stratified bootstrap
confidence intervals for mean, median, and inter-quartile mean (IQM). For finer comparisons, we
also provide probabilities of improvement in Figure 14.
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Figure 13: Mean, median, and inter-quartile mean win rate, computed with stratified bootstrap
confidence intervals. 4 runs for all algorithms.
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Figure 14: Probabilities of improvement (Agarwal et al., 2021).

H PARAMETERS SETTING AND COMPUTATIONAL CONSUMPTION OF MARIE

All our experiments are run on a machine with a single NVIDIA RTX 3090 GPU, a 36-core CPU,
and 128GB RAM. We provide the hyperparameters of MARIE for experiments in SMAC, shown
as Table 15. To enable the running of experiments in all SMAC scenarios with a single NVIDIA
RTX 3090 GPU, we set the imagination horizon H as 8 for other scenarios involving the number of
agents n > 5, 15 for n ≤ 5. In so many baneling and 2s3z, we set the imagination horizon H as 5.
Correspondingly, the number of policy updates in imaginations varies with imagination horizon H .
As for the scenario 2c vs 64zg, considering the significantly large action space in it, we enable the
observation of agent id and last action for each agent and disable stacking the last 5 observations as
input to the policy.

Based on the above reported setting, we present a rough computational consumption in Table 16.
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Table 15: Hyperparameters for MARIE in SMAC environments.
Hyperparameter Value
Batch size for tokenizer training 256
Batch size for world model training 30
Optimizer for tokenizer AdamW
Optimizer for world model AdamW
Optimizer for actor & critic Adam
Tokenizer learning rate 0.0003
World model learning rate 0.0001
Actor learning rate 0.0005
Critic learning rate 0.0005
Gradient clipping for actor & critic 100
Gradient clipping for tokenizer 10
Gradient clipping for world model 10
Weight decay for world model 0.01
λ for λ-return computation 0.95
Discount factor γ 0.99
Entropy coefficient 0.001
Buffer size (transitions) 2.5× 105

Number of tokenizer training epochs 200
Number of world model training epochs 200
Collected transitions between updates {100, 200}
Epochs per policy update (PPO epochs) 5
PPO Clipping parameter ϵ 0.2
Number of imagined rollouts 600 or 400
Imagination horizon H {15, 8, 5}
Number of policy updates {4, 10, 30}
Number of stacking observations 5
Observe agent id False
Observe last action of itself False

Table 16: Computational time consumption of MARIE in SMAC.
Environment Steps 100000 200000 400000

Training Time 1 day 2-3 days 4 days
Usage of GPU Mem 22GB 22GB 22GB
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I OVERVIEW OF MARIE ALGORITHM

Pseudo-code is summarized as Algorithm 1.

Algorithm 1 MARIE
// main loop of training
for epochs do

collect experience(num transitions)
for learning world model steps per epoch do

train world model()
end for
for learning behaviour steps per epoch do

train agents()
end for

end for

function collect experience(n):
o0 ← env.reset()
for t = 0, . . . , n− 1 do

// processed by VQ-VAE
ôt ← D(E(ot))
Sample ait ∼ πiψ(ait|ôit) ,∀i
ot+1, rt, done← env.step(at)
if done = True then

ot+1 ← env.reset()
γt ← 0.

else
γt ← 0.99

end if
end for
D ← D ∪ {ot,at, rt, γt}n−1

t=0

function train world model():
Sample {ot,at, rt, γt}t=τ+H−1

t=τ

Update (E,D,Z) via LVQ−VAE over observations {ot}t=τ+H−1
t=τ

for agent i = 1, . . . , n do
Update ϕ, θ via LDyn(ϕ, θ) over local trajectories {oit, ait, rt, γt}t=τ+H−1

t=τ
end for

function train agents():
Sample an initial observation o0 ∼ D
{xi0,j}Kj=1 ← E(oi0), ô

i
0 ← D(E(oi0)) ,∀i

for t = 0, . . . ,H − 1 do
Sample ait ∼ πiψ(ait|ôit) ,∀i
Aggregate (x1t,1, . . . , x

1
t,K , a

1
t , . . . , x

n
t,1, . . . , x

n
t,K , a

n
t ) into (e1t , . . . , e

n
t ) via the Perceiver θ

Sample x̂it+1,·, r̂
i
t, γ̂

i
t ∼ pϕ(x̂it+1,·, r̂

i
t, γ̂

i
t |xi0,·, ai0, ei0, . . . , x̂it,·, ait, êit) ,∀i

ôit+1 ← D(x̂it+1,·) ,∀i
end for
for agent i = 1, . . . , n do

Update actor πiψ and critic V iξ via LDyn(ϕ, θ) over imagined trajectories {ôit, ait, r̂it, γ̂it}t=H−1
t=0

end for
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