
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Node2binary: Compact Graph Node Embeddings Using Binary
Vectors

Anonymous Author(s)

Abstract

With the adoption of deep learning models to low-power, small-
memory edge devices, energy consumption and storage usage of
such models has become a key concern. The problem acerbates
even further with ever-growing data and equally-matched bulkier
models. This concern is particularly pronounced for graph data due
to its quadratic storage, irregular (non-grid) geometry, and very
large size. Typical graph data, such as road networks, infrastructure
networks, social networks easily exceeds millions of nodes, and sev-
eral gigabytes of storage is needed just to store the node embedding
vectors, let alone themodel parameters. In recent years, the memory
issue has been addressed by moving away from memory-intensive
double precision floating-point arithmetic towards single-precision
or even half-precision, often by trading-off marginally small perfor-
mance. Along this effort, we propose Node2binary, which embeds
graph nodes in as low as 128 binary bits, which drastically reduces
the memory footprint of vertex embedding vectors by several order
of magnitude. Node2binary leverages a fast community detection
algorithm to covert the given graph into a hierarchical partition
tree and then find embedding of graph vertices in binary space
by solving a combinatorial optimization (CO) task over the tree
edges. CO is NP-hard, but Node2binary uses an innovative com-
bination of discrete gradient descent and randomization to solve
this effectively and efficiently. Our extensive experiments over four
real-world graphs show that Node2binary achieves competitive
performances compared to the state-of-the art graph embedding
methods in both node classification and link prediction tasks.

CCS Concepts

• Mathematics of computing→ Combinatorial optimization;
• Computing methodologies→ Discrete space search; Ran-
domized search; Ontology engineering.

Keywords

Binary Space Embedding, Graph Embedding, Discrete Gradient
Descent, Randomized Algorithm

ACM Reference Format:

Anonymous Author(s). 2018. Node2binary: Compact Graph Node Embed-
dings Using Binary Vectors. In Proceedings of Make sure to enter the correct
conference title from your rights confirmation emai (Conference acronym ’XX).
ACM, New York, NY, USA, 10 pages. https://doi.org/XXXXXXX.XXXXXXX

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

1 Introduction

In today’s connected world, networks have become a formidable
data structure for representing many complex systems; examples
include social networks, biological networks, transportation net-
works, information networks, etc. The information captured in
such networks holds immense value, both commercial and strate-
gic, so developing knowledge discovery models for analyzing these
networks have received increasing attention by both researchers
and practitioners. Since most of the knowledge discovery models
are suited for a vector space, a fundamental task for supporting
such analysis is to embed a network in a latent space in which
each vertex is represented as a low-dimensional vector. This task
is known as graph representation learning (GRL). A key objective
of GRL is to find vertex representation (i.e., vertex embedding) in
a way that the proximity (based on graph topology, or property)
among the vertices are preserved in the embedding space. Such a
low-dimensional embedding is very useful in a variety of applica-
tions, such as visualization [1, 17], vertex classification [10, 13], and
link prediction [4].

Over the years, as real-life graphs grew larger, often exceed-
ing millions of vertices, graph representation learning (GRL) task
has become computationally challenging. Lately, the GRL task is
mostly solved by graph neural networks or its variants, which are
computationally expensive—this also contribute to the challenge.
Besides computation, for large graphs the memory footprint of the
embedding vectors is also large. Say, for a graph with 10 millions
vertices, if each embedding vector are of 100 dimension (a typical
number), the memory footprint of these vectors is more than 60
GB considering double precision real numbers. If single precision
real numbers are used, the number reduces to 30 GB, still a formi-
dable amount of storage. As machine learning tasks are now being
solved in the edge devices, which are battery powered with limited
memory storage; processing such large dataset is difficult due to
memory bottleneck. If memory is not an issue, transferring such
large amount of data to and from a server would drain the battery
of such devices. Hence, there is a surge of interest in machine learn-
ing research to develop embedding methods that embed entities in
fewer bits, resulting in efficient memory and storage requirements.
However, there exist no prominent works for solving GRL that
generate compact embedding vectors.

Over the last decade, plethora of methods have been proposed
for solving the GRL task; prominent methods follow methodologies
derived from matrix factorization [1, 9], structural-preserving opti-
mization [12], node-context sampling using random walk [4, 10],
and graph neural networks [17]. Some of these methods consider
network topology, whereas a few others consider both topology and
node/edge attributes. The matrix factorization based methods factor
a matrix capturing node similarity; Laplacian matrix, its different
variants, or specifically designed matrix capturing higher order
node proximity are often used for this task [1]. Such method are

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

costly and generally not scalable for very large networks. To over-
come the lack of scalability issue, random walk based methods [4]
are proposed. These methods perform random walk sampling from
each node to build a node-sequence capturing the context of the
given node. Node embedding vectors are then learnt by maximiz-
ing the probability of node co-occurrences in the generated node-
sequence. Performance of such model is highly dependent on the
quality of sampling strategy which generates the node-context; be-
sides, a large number of samples are needed for capturing the node
context effectively. Furthermore, it has been shown that random
walk-based embedding approaches implicitly perform factorization
of a properly chosen dense transition probability matrix, leading
to better performance on downstream tasks [11]. Methods based
on structure preservation learns node embedding by optimizing a
loss function which directly captures first- or higher-order node
similarity. But performance of such methods are generally not very
good [13, 17].

With the popularity of deep learning, various graph neural net-
work architectures have also been proposed for learning node em-
bedding. The earliest among these is GCN (graph convolution net-
work) [7], which uses graph convolution or neighborhood aggre-
gation, a method for enriching node representation by merging
its features with those of its neighbors. But GCN is a transductive
model thus cannot be generalized to unseen graph nodes. Graph-
SAGE [6] overcomes this limitation by efficiently using network
topology and node attributes to generate embeddings for new nodes.
While graph neural networks use latest technologies from the deep
learning community for the task of GRL, there are two crucial limi-
tations. First, mostly all of the architectures assumes the presence of
node attributes, which is not the case for general node embedding
task. Also, many of the models are trained in a supervised setup, but
for a general GRL task, node/edge labels are not typically available.

In this work, we propose Node2binary, a novel node embed-
ding method which embeds vertices of a given graph using binary
bitvectors. Node2binary adopts an out-of-the-box idea for binary
embedding which stems from a community centric viewpoint of
the graph. Node2binary first builds a community partition tree,
a hierarchical clustering of the vertices of the input graph. Using
this community-view of the graph, Node2binary imposes con-
straints over the community partition tree edges to learn mean-
ingful embedding of the graph vertices. Given that the embedding
space for Node2binary is binary, the learning task becomes a con-
strained combinatorial optimization, which Node2binary solves
by using a synthesis of discrete gradient descent and randomized
local search. Extensive experimental results show the superiority of
Node2binary over a number of baseline graph embedding models.

Our contributions can be summarized as follows:

• We propose a novel combinatorial optimization framework
for learning vertex representation vectors of an input graph
in the binary space. The proposed optimization framework
uses discrete gradient descent and randomization algo-
rithm.

• Experiments on four real-world networks demonstrate that
Node2binary maintains competitive performance com-
pared to the state-of-the-art methods, with superior perfor-
mance at increasingly smaller number of bits.

2 Related Work

The main motivation of embedding in binary space is to have a com-
pact node representation which is efficient both computationally
and storage-wise. In some existing works, binary vectors are used
to embed nodes of a general network, where the primary objective
is to perform node similarity search by hashing binary vectors de-
veloped through fast sketching methods. The latest among these
works is called NODESIG [23] which uses stable random projection
for learning binary embedding of vertices. Most of the binary em-
bedding works take inspiration from the random projection based
fast nearest neighbor search using locality sensitive hashing [18, 19].
Our work is different from the existing works which uses hashing
for embedding nodes in binary space. A recent work [5] embeds
entities having is-a relation by using binary bitvectors. Thus it is
suitable for embedding any directed network (say, tree or DAG)
which satisfy transitivity property along the edge direction.

Several recent methods [2, 8] use graph coarsening on the origi-
nal graph, then they apply the methodologies of a traditional graph-
embedding method (such as node2vec [4], NetMF [11] etc.) on the
coarsest graph to produce binary embeddings. Whereas in this
work, we learn vertex embedding vectors by solving combinatorial
optimization directly in the binary space. Some simple approaches
utilize random projection [3, 22] and spectral graph sparsification
techniques [21] to learn scalable network embeddings, but they
sacrifice performance in doing so.

3 Methodology

Notations: 𝐺 is the input graph for which we are soliciting vertex
representation vectors; 𝑉 is the vertex-set and 𝐸 is the edge set of
𝐺 . Node2binary builds a hierarchical partition tree of the vertices
of 𝐺 , denoted with the symbol T𝐺 . Italic letters 𝑎, 𝑏 are used to
denote the vertices of the graph 𝐺 and also nodes of the tree T𝐺 .
Node2binary learns embedding vectors for each vertex of𝐺 and
also for each nodes of T𝐺 . To represent these embedding vectors we
use boldface letters, a for node 𝑎. The letter 𝑑 is a positive integer
number denoting the embedding dimension. Greek letters, such
as 𝛼 , 𝛽 , 𝛾 are scalars. They are generally reserved for user-defined
hyperparameters. The symbol Δx is used for gradient with respect
to a vector variable, x.

3.1 Problem Formulation and Framework

Graph embedding in binary space is defined as: Given an undirected
graph 𝐺 (𝑉 , 𝐸), learn an embedding function 𝑓 : 𝑉 → {0, 1}𝑑 that
embeds similar vertices in 𝑉 close to each other in the embedding
space. The embedding space is discrete, as each graph node is
mapped to the vertices of unit-length 𝑑-dimensional hypercube. We
also assume that the node set𝑉 and edge set 𝐸 do not have attributes,
so two vertices in𝐺 are considered similar if they appear within the
same local context in the graph space. Embedding function 𝑓 must
preserve this similarity in the embedding space, wherein similarity
between two bitvectors can be defined by Hamming distance.

To solve this embedding task, Node2binary uses an innovative
combinatorial optimization framework. To set up this combinato-
rial optimization, Node2binary first partitions the vertex-set of 𝐺
into hierarchical disjoint communities, which can be organized into
a community partition tree. Then the binary embedding vectors

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Node2binary: Compact Graph Node Embeddings Using Binary Vectors Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 1: Hierarchy Tree formation from the Original Graph. (Spaces in binary embeddings are for ease of reading.)

of the vertices of 𝐺 are then learnt by respecting the following
two requirements: (1) In a hierarchical (tree-like) partitioning of a
network into communities, where the root node of the partitioning
is the entire graph, and each of the leaf nodes is a single vertex, em-
bedding vectors of the vertices is more similar to that of the parent
community than that of any of the ancestral community; (2) If two
vertices are part of the same community, their embedding vectors
are similar. Given that the embedding space is binary, satisfying
these requirements leads to a combinatorial optimization problem,
which Node2binary solves by using an innovative combination of
discrete gradient descent and randomization. We discuss the overall
methods of Node2binary in the following subsections.

3.2 Constructing Community Partition Tree

We want the embedding vectors of two vertices to have small ham-
ming distance, if the vertices are well-connected. To realize the
notion of well-connectedness between two vertices, we adopt a
community-centric view of the graph, where the graph is hierar-
chically partitioned into successively smaller communities. This
partitioning can also be shown by a tree often known as dendogram
in hierarchical clustering literature. We refer this tree as commu-
nity partition tree. For a graph 𝐺 (𝑉 , 𝐸), the community partition
tree is denoted as T𝐺 . Nodes in T𝐺 represents a community and
an edge from a parent to a child in T𝐺 represents community to
sub-community relation. Note that in this community-hierarchy, a
parent community is partitioned into disjoint children community
recursively until a community contain only a single vertex of 𝐺 .
Thus the root node of T𝐺 represents a community containing all
the vertices in 𝑉 , and each of the leaf nodes of T𝐺 is one of the
vertices in𝑉 . For a toy example, see Figure 1. On the left side of this
figure, we show a graph in its hierarchically-partitioned form. The
graph is initially partitioned into two communities, each of which
are partitioned further into smaller communities. The community
partition tree of this graph is shown on the right side of the figure.

In such a partitioning if two vertices belong to the same commu-
nity, they are considered well-connected and should have similar
bitvector representation. We also extend the idea of similarity be-
tween vertices to similarity between communities and to achieve
that we assign bitvector representation for the communities (the
nodes in the community partition tree), as well. This is illustrated
in Figure 1, where each of the tree node (in the right side of the
figure) is assigned a bitvector. Then the embedding task becomes

assigning a binary vectors to each of the nodes of the community
partition tree satisfying certain requirements (which is discussed
in the next subsection). We use Leiden algorithm [16] to construct
the community partition tree (T𝐺) from the given graph (𝐺). The
algorithm is applied recursively to generate community partition
hierarchy. The leaf nodes correspond to vertices in the graph𝐺 , and
internal nodes correspond to communities ordered by inclusion. We
summarize the steps of the formation of our community partition
tree in Algorithm 1.

Algorithm 1 CreateTree
Require: Graph 𝐺 = (𝑉 , 𝐸), number of layers ℓ
Ensure: Hierarchy tree T𝐺 , whose elements are set of vertices
1: T𝐺 ← single-node tree with node 𝑉
2: if ℓ = 1 or |𝑉 | = 1 then
3: Append child {𝑣} to T𝐺 , for each 𝑣 ∈ 𝑉
4: else
5: C ← Leiden(𝐺)
6: T𝐺 ← {}
7: for community 𝐶 ∈ C do

8: 𝐺𝐶 ← induced subgraph of 𝐶
9: Append child CreateTree(𝐺𝐶 , ℓ − 1) to T𝐺
10: end for

11: end if

3.3 Mathematical Framework of Node2binary

To map all the vertices which belong to a community to similar
bitvectors, we ensure that all vertices in a community adhere to cer-
tain behaviors. To realize this notion, we utilize bitvectors assigned
to each community. As stated earlier, each node in the hierarchical
partition tree (T𝐺) is assigned a bitvector. If we hypothesize that
bitvector indices are indicator functions of possessing a given be-
havior, for a representation vector of a community𝐶 , the ‘1’ indices
denote that the members of 𝐶 adhere to those behaviors. If 𝐶’s
members are partitioned into sub-communities, sub-communities
members also possess those behaviors inherited from their parent
(𝐶). This requirement extends to the entire partition hierarchy; i.e.,
if a community possess a behavior (‘1’ bit), all its sub-communities
will also possess the same behavior, reflected in their bitvector rep-
resentatioin. In this way, representation vector of every node in T𝐺
inherits the ‘1’ bits from its parents, and may add ‘1’ bit(s) of its own.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

The terminal nodes in T𝐺 are vertices of the graph 𝐺 , hence the
bitvectors of these nodes also follow this requirement. For illustra-
tion, see the community partition tree in Figure 1. In this tree, the
leaf node 𝐻 (which is also a vertex of the input graph) is assigned
an embedding vector 10110000; there are 3 ‘1’ bits, of which two
(the first and the third indices) are inherited from its parent, and
the last (the fourth index) one is of its own. Given a hierarchical
partition tree, the embedding model of Node2binary solves a con-
strained combinatorial optimization problem for assigning the bit
vectors of each node in this tree. If node 𝑎 is a child of node 𝑏 in T𝐺 ,
then 𝑓 (𝑏) [𝑖] ⇒ 𝑓 (𝑎) [𝑖], ∀𝑖 ∈ [1 : 𝑑], where 𝑑 is the embedding
dimension and the symbol ‘⇒’ is logical implication. This can be
succinctly shown as b⇒ a, where b = 𝑓 (𝑏) and a = 𝑓 (𝑎).

The above requirement leads to a combinatorial feasibility prob-
lem over the nodes of the community partition tree T𝐺 of a given
graph 𝐺 . The number of constraints equals the number of edges in
T𝐺 times the dimension, as we need to satisfy the implication condi-
tion for each tree edge and for each index of the embedding vectors.
A solution to this problem is a 𝑑-dimensional bitvector for each
node of the partition tree so that the parent to child implication dis-
cussed above is satisfied. Solving this problem exactly is NP-Hard,
so we convert it to an unconstrained optimization problem with
a loss function equal to the number of unsatisfied constraints. For
a given partition tree and 𝑑 , there exist many feasible solutions
for the above problem. To narrow the solution space, we include
preferences over the solutions via sibling similarity.

If 𝑐 and 𝑑 are children of a node 𝑏 in T𝐺 , then embedding vectors
of 𝑐 and 𝑑 inherits the ‘1’ bits of 𝑏; this makes 𝑐 and 𝑑 similar, but
if 𝑏 does not have many 1 bits, the constraint makes a very weak
similarity. So, we enforce sibling similarity in the objective function
to prefer that 𝑐 and 𝑑 are also similar in bit indices where 𝑏 has a
‘0’ bit. However, this requirement is not a constraint as we do not
want 𝑐 and 𝑑 to have identical embedding vectors. So, for each node
𝑏 ∈ T𝐺 , we take 𝑘 random sample of its children and build a loss
function to minimize Hamming distance between pairs of children.

3.4 Training Algorithm

Our training goal is twofold. The first is to ensure that tree relation:
parent-child on nodes (including internal nodes) of T𝐺 maps to
bit-wise implication in the embedding space, and the second is to
ensure that sibling nodes in T𝐺 have similar embedding vectors as
defined by Hamming distance.

Our loss function is defined as follows. Let 𝐻 be the set of hier-
archy pairs of nodes (𝑎, 𝑏) from T𝐺 satisfying 𝑏 =⇒ 𝑎 (𝑎 is child
and 𝑏 is parent node), and 𝑆 the set of sibling pairs (𝑐, 𝑑) in T𝐺 . We
have two goals: ensure that (1) nodes in the hierarchy pass their
“1” bits down to their children, and (2) two sibling nodes have em-
beddings with small Hamming distance between them. Condition
(1) is equivalent to ensuring that, since node 𝑎 is a child of 𝑏, a
inherits all 1 bits from b, i.e. there is no 𝑗 such that a𝑗 = 0 and
b𝑗 = 1. Let 𝐻 be the set of all pairs (𝑎, 𝑏) such that 𝑏 is an ancestor
of 𝑎. We split this condition into positive loss, for (𝑎, 𝑏) ∈ 𝐻 , and
use negative sampling as in to compute an additional loss function
for the negative pairs.

Loss = 𝛼Losshier,+ + 𝛽Losshier,− + 𝛾Losssib (1)

Losshier,+ =
∑︁
(𝑎,𝑏) ∈𝐻

𝑑∑︁
𝑗=1

(
1 if (a𝑗 , b𝑗) = (0, 1) else 0

)
(2)

Losshier,− = |𝑊 | ,where𝑊 =
{
(𝑎, 𝑏) ∉ 𝐻 : a𝑗 ≥ b𝑗 ,∀𝑗

}
(3)

Losssib =
∑︁
(𝑎,𝑏) ∈𝑆

HammingDistance(a, b) (4)

3.5 Discrete Gradient using Boolean Logic

Once the Hierarchy Tree is formed and the sibling pairs are collected,
we train our model to learn binary vector embeddings by using
discrete gradients, which is inspired by the continuous Stochastic
Gradient Descent (SGD) method. If 𝑓 (x) is a function whose inputs
are binary, that is, x ∈ {0, 1}𝑘 , then the discrete gradient of 𝑓 with
respect to x can be defined as

(Δx 𝑓 (x)) 𝑗 = 𝑓 (x with bit 𝑗 flipped) − 𝑓 (x) (5)

This differs from the standard definition of the derivative for a
continuous function, in that our discrete gradient Δ𝑥 𝑓 is positive
when changing the binary 𝑥 increases 𝑓 . We define the discrete
gradients for the hierarchical tree structure, where node 𝑎 is a child
of 𝑏, as

ΔaLosshier,+ =
∑︁

𝑏:(𝑎,𝑏) ∈𝐻
−b ∗ (1 − 2a) (6)

ΔbLoss
hier,+ =

∑︁
𝑎:(𝑎,𝑏) ∈𝐻

−(1 − a) ∗ (2b − 1) (7)

These equations have the property that ΔaLosshier,+ (a, b) is −1
in position 𝑗 iff (a𝑗 , b𝑗) = (0, 1). This encourages the model to
invert a𝑗 , thus restoring the partial order relation. Contrariwise, if
(a𝑗 , b𝑗) = (1, 1), the gradient of a𝑗 is set to +1, which discourages
a𝑗 from being flipped. A similar logic applies to the b gradient; we
expand on this logic in Appendix A.2.

Similarly, we define the Hamming-loss gradient, which is the
same for both inputs,

Δa or bLoss
sib = 1 − 2(a ⊕ b) (8)

The reader can verify that this vector is +1 in positions where a, b
agree, and −1 where they disagree. This encourages nodes in the
same hierarchy to have similar embeddings.

With discrete space, we cannot adjust the embeddings by a “small
amount” as in traditional gradient descent. Instead, we compute a
probability for inverting bit a𝑗 based on its overall gradient Δ(a𝑗),
FlipProb(Δ(a𝑗)), defined as

FlipProb(𝑥) = 1
2 tanh (−2(𝑟ℓ𝑥 + 𝑏ℓ)) (9)

where the learning rate 𝑟ℓ controls the flipping rate and the bias
𝑏ℓ allows flipping bits with zero gradient, to avoid local maxima.
This function ensures that at most half of all bits are flipped each
iteration, which prevents the model from oscillating.

Node2binary’s algorithm is summarized in Algorithm 2. We
start by building the tree as in Algorithm 1 and generating the
sibling pairs 𝑆 and hierarchy pairs 𝐻 . We initialize embeddings to
the zero matrix. On each training iteration, we compute the discrete

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Node2binary: Compact Graph Node Embeddings Using Binary Vectors Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Table 1: Statistics of the datasets used in the experiments.

Dataset PPI DBLP Blog YouTube

(Small / Large)

#V 3,890 13,326 10,312 31,703 / 1,138,499
#E 38,705 34,281 333,983 276,126 / 2,990,443
#L 50 2 39 47

gradient matrix Δ ∈ Z𝑛×𝑑 , pass Δ into FlipProb to get a probability
matrix 𝑃 , and flip each bit a𝑗 with probability 𝑃 (𝑎, 𝑗). The symbol
Emb denotes the learned embedding function Emb : T𝐺 → {0, 1}𝑑 .

Algorithm 2 Training Algorithm

Require: Graph𝐺 = (𝑉 , 𝐸), dimension 𝑑 , iterations 𝑡 , parameters
(𝛼, 𝛽,𝛾, 𝑟ℓ , 𝑏ℓ)

1: T𝐺 ← CreateTree(𝐺)
2: 𝑆 ← CreateSiblings(T𝐺)
3: 𝐻 ← {(𝑎, 𝑏) : 𝑎, 𝑏 ∈ T𝐺 , 𝑎 ⊂ 𝑏} ⊲ 𝑎, 𝑏 are sets of vertices
4: Emb(𝑎) ← (0, . . . , 0) for all 𝑎 ∈ T𝐺
5: for 𝜏 = 1 to 𝑡 do
6: 𝐻− ← negative samples of 𝐻
7: Δ← 𝛼Δhier,+(𝐻, Emb)−𝛽Δhier,−(𝐻−, Emb)+𝛾Δsib (𝑆, Emb)
8: 𝑃 ← FlipProb(Δ)
9: for 𝑎 ∈ T𝐺 do

10: Emb(𝑎) ← Emb(𝑎) ⊕ (random(0, 1) < 𝑃 (𝑎, ·))
11: end for

12: end for

3.6 Time Complexity and Space Efficiency

Our algorithm is very efficient in both the time and space dimen-
sions. Algorithm 1 can be seen to take 𝑂 (ℓ |𝐸 |) time. It outputs a
tree with at most ℓ |𝑉 | nodes. Sibling sampling selects 𝑘 random
siblings of each tree node, which is 𝑂 (𝑘ℓ |𝑉 |). Finally, the training
algorithm is 𝑂 (𝑡 (|𝐻 | + |𝑆 |)); |𝐻 | is bounded by ℓ2 |𝑉 |, as each of
the ℓ |𝑉 | nodes have at most ℓ ancestors, and |𝑆 | ∈ 𝑂 (𝑘ℓ |𝑉 |) from
before. Thus, node2binary runs in linear time.

For space complexity, the storage needed for𝑛 nodes each having
𝑑-bit vectors is 𝑑𝑛

8 bytes, while double- and single-precision floating
point based numbers take 8𝑑𝑛 and 4𝑑𝑛 bytes, respectively. Thus,
node2binary embeddings are 32 or 64 times more space efficient at
the same dimension than most competing models.

4 Experiments and Results

We evaluate Node2binary’s embedding quality based on two stan-
dard graph representation learning tasks: multi-label classifica-
tion on vertices and link prediction on edges. We organize this
section in the following way: In §4.1, we provide details of the
datasets we have used. In §4.2, we discuss the baseline methods
we compare our method with, and the evaluation metrics we used.
In §4.3 we provide details of our experimental setup. In §4.4 and
§4.5, we further discuss the experimental setup and results from
our multi-label node classification and the link prediction experi-
ments, respectively. For the remaining of the section, we discuss

the robustness of our method. In §4.6, we compare our method’s
scalability with state-of-the-art methods. In §4.7, we show how
tree loss and sibling loss converge over time. In §4.8, we discuss
parameter sensitivity, and in Appendix §A.4, we provide an ab-
lation study to show how different components of our objective
function affect our performance. Our code is publicly available at
https://anonymous.4open.science/r/node2binary-C952/.

4.1 Datasets

For our experiments we have chosen four moderate to large size
real world labeled graphs drawn from biological, collaboration and
social network domains which are largely used by our competitors.
PPI [4] is a subgraph of the protein-protein interaction network for
Homo sapiens. The labels of the nodes represent its gene sets and
also biological states. DBLP [20] is a collaboration network which
captures the co-authorship of authors. The labels of a node in the
co-author graph represents publication venues of the respective
author. BlogCatalog [14] is a social network of bloggers where
labels indicate the topics of interest by the corresponding blogger.
Finally, YouTube [15] is a social network of users and labels refer to
list of subscriptions (such as technology) by the user. We consider
a subset of YouTube dataset for the node classification and link
predictionwhereas use the full dataset withmillions of nodes for the
scalability experiment. The statistics of the datasets are summarized
in Table 1. All our datasets are unweighted and undirected.

4.2 Baseline Methods and Evaluation Metrics

We compare our method against seven carefully chosen baseline
models. We can categorize our baseline models as the following: (1)
random-walk based models: DeepWalk [10] and node2vec [4], (2)
Neural Network based model: LINE [13], (3) matrix-factorization
based model: HOPE [9], (4) Hash based model NodeSketch [19],
(5) Inductive model GraphSAGE [6] with Mean aggregation (we
use node degrees as features), and (6) Random projection binary
model NODESIG [23], our main competitor. We omitted traditional
methods like GraRep [1] and SDNE [17] and chose HOPE and LINE
from those categories because of their superior performance.

For our experiments, we used the setup from [4] and considered
the commonly used evaluation metrics by our competitors. For
multi-label node classification task, we consider Macro-F1 score
to show results across different embedding dimensions. We use
AUC-ROC score for link prediction experiment.

4.3 Experimental Setup

We design experiments to evaluate our and the competitors per-
formance per bits. Most of our floating-point based competitors
are based on double-precision except LINE model which is based
on single precision. NodeSketch uses integers so it uses 32 bits
per dimension and NODESIG is a binary embedding method so it
allocates a single bit per dimension. To be fair with all the models
we considered dim 𝑑 as in the bit-range [128, 256, 512, 1024, 2048,
4096, 8192]. For Node2binary, we run 1000-epoch experiments,
evaluating performance every 100 epochs. Since our algorithm is
randomized, we repeated each experiment 5 times for each task and
dataset. We reported the best results along with mean and standard
deviation in Tables 2 and 3. Other than dimension 𝑑 , we have hyper

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 2: Multi-label Node Classification task, according to number of bits in embeddings

Models

DeepWalk node2vec LINE HOPE NodeSketch GraphSAGE NODESIG node2binary

bits (dim) Node Classification (Metric: F1 %)
YouTube

128 6.01 5.94 6.0 5.92 6.69 6.54 8.97 8.79 (8.69 ± 0.07)
256 6.17 6.17 6.23 6.02 6.85 6.52 9.09 9.27 (9.22 ± 0.06)
512 6.44 6.39 6.52 6.26 7.12 6.54 8.75 9.51 (9.44 ± 0.06)
1024 7.0 7.38 6.63 6.55 7.45 6.58 8.38 9.51 (9.47 ± 0.03)
2048 7.92 8.18 7.38 6.77 8.27 6.55 8.87 9.5 (9.48 ± 0.02)
4096 8.89 8.86 8.1 7.89 8.48 6.55 9.5 9.67 (9.52 ± 0.09)
8192 9.4 9.35 9.3 8.42 8.85 6.55 9.93 9.56 (9.45 ± 0.09)

DBLP

128 82.3 73.43 45.77 39.03 41.89 39.26 73.38 76.44 (73.68 ± 2)
256 88.52 86.39 48.98 40.66 44.13 39.26 79.14 82.87 (81.91 ± 0.8)
512 89.16 87.31 56.95 51.21 47.5 48.73 84.05 94.38 (94.25 ± 0.1)
1024 89.19 88.45 55.20 51.63 48.61 48.69 87.32 95.71 (95.46 ± 0.2)
2048 89.87 89.47 60.42 62.36 53.01 48.73 93.47 95.82 (95.5 ± 0.2)
4096 90.26 89.38 72.08 70.17 55.95 48.7 96.62 94.79 (94.77 ± 0.01)
8192 93.73 89.93 79.08 75.11 59.45 48.7 97.6 94.81 (94.79 ± 0.02)

Blogcatalog

128 3.12 3.27 3.28 2.83 2.83 2.96 11.85 12.1 (11.83 ± 0.2)
256 6.27 6.98 3.46 2.90 3.81 2.57 15.29 14.64 (14.38 ± 0.1)
512 10.89 12.23 3.90 3.33 4.45 2.84 16.1 16.08 (15.61 ± 0.4)
1024 17.19 18.49 5.74 3.71 4.98 2.56 18.73 15.49 (15.49 ± 0.3)
2048 22.34 23.43 10.51 7.05 6.73 2.56 22.06 15.81 (15.5 ± 0.3)
4096 24.69 26.07 22.42 11.42 8.23 2.56 22.03 13.95 (13.86 ± 0.06)
8192 25.49 26.18 25.41 13.95 9.63 2.56 24.27 13.95 (13.93 ± 0.02)

PPI

128 4.19 6.07 3.73 3.92 3.48 1.57 13.44 16.89 (16.55 ± 0.3)
256 8.73 9.73 3.59 5.85 4.51 1.57 13.21 17.93 (17.48 ± 0.4)
512 13.03 13.25 3.87 7.03 5.17 1.55 13.74 17.86 (17.21 ± 0.4)
1024 16.34 17.21 5.28 9.14 5.90 2.76 16.06 17.73 (17.13 ± 0.4)
2048 18.04 18.16 7.61 11.26 6.99 1.55 17.96 17.07 (16.95 ± 0.1)
4096 18.7 19.12 16.24 12.35 7.07 1.55 18.93 16.4 (16.27 ± 0.09)
8192 18.95 18.29 18.72 13.96 7.32 1.55 20.96 16.42 (16.23 ± 0.12)

parameters: depth of the hierarchy tree 𝑙 and sibling similarity coef-
ficient 𝛾 . Hyper parameters for the discrete gradient computations
are positive and negative sample weights 𝛼 and 𝛽 , negative sample
multiplier 𝑛− , learning rate 𝑟𝑙 and bias 𝑏𝑙 to get binary embed-
ding. We randomly sample 𝑘 = 10 siblings per entity for all of our
experiments. We reuse community partition tree across different
dimension once it is formed, to ensure consistency of results. Apart
from the dimension 𝑑 , we used best reported hyper parameters
in our competitors works. Following [4], we learned best in-out 𝑝
and return 𝑞 hyper parameters by 10 fold cross-validation on 10%
labeled data using a grid search over 0.25, 0.5, 1,2,4. We ran all the
models on a Tesla A100 GPU with 128 GB memory.

4.4 Multi-label Node Classification

Experimental setting: Node classification task utilizes a labeled
dataset, where each node of the graph has one or more labels from a
labelset 𝐿. The task is to correctly classify all the labels for each node.
The task becomes more challenging as the size of 𝐿 increases. Once
we have the embeddings for each node in the dataset, we perform

10-fold cross-validation and randomly sample 50% of nodes to train
a OnevsRestClassifier model with Logistic Regression using ‘Liblin-
ear’ solver for 1000 iterations, while keeping the other 50% nodes to
evaluate classification performance. We also randomly subsample
50% nodes from the YouTube dataset before the classification task
because of its larger size than other datasets.
Experimental results:We report our node classification experi-
mental results in Table 2 with a decreasing order of datasets based
on their node counts. Based on the results we are either best (bold)
or second best (underline) most of the time, particularly as the num-
ber of bits decrease. For the largest YouTube dataset we reach 9.27%
F1-score at just 256 bits whereas most of our competitors (except
NODESIG) need 8192 bits to achieve similar performance. For the
second largest DBLP dataset, we quickly achieve 94% F1-score at
512 bits and maintain superior performance across all dimensions.
DBLP is a 2-labeled dataset, so most competitors perform better on
it. For BlogCatalog dataset again we perform competitively at lower-
bit resolution. The closest competitor to Node2binary is another
binary model, NODESIG, which performs well at low bit resolution.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Node2binary: Compact Graph Node Embeddings Using Binary Vectors Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 3: Link Prediction task, according to number of bits in embeddings

Models

DeepWalk node2vec LINE HOPE NodeSketch GraphSAGE NODESIG node2binary

bits (dim) Link Prediction (Metric: AUC %)
YouTube

128 55.31 55.56 60.03 52.44 56.22 50 69.54 75.62 (73.39 ± 1.31)
256 44.07 46.81 64.4 65.19 60.66 65.77 74.36 78.31 (76.6 ± 1.03)
512 56.43 58.96 71.31 63.1 68.27 50 75.44 80.49 (79.87 ± 0.43)
1024 62.35 65.01 71.58 63.02 66.62 65.77 79.62 83.16 (82.39 ± 0.57)
2048 63.16 64.37 75.06 62.51 71.59 65.77 82.6 85.08 (84.48 ± 0.33)
4096 64.24 69.45 73.65 62.89 70.65 65.77 83.19 85.52 (85.23 ± 0.22)
8192 63.56 68.89 76.31 61.91 73.46 65.77 86.79 84.53 (84.3 ± 0.14)

Blogcatalog

128 49.05 46.31 57.48 53.06 51.96 50.5 58.93 76.8 (74.92 ± 1.22)
256 60.86 59.06 56.81 55.09 52.91 50 63.01 80.27 (77.93 ± 1.58)
512 61.61 59.68 62.8 52.39 56.09 50.5 65.89 80.42 (79.38 ± 0.58)
1024 62.83 59.5 66.68 53.35 50.86 50.5 61.64 80.55 (79.98 ± 0.63)
2048 59.84 60.57 69.06 53.31 59.55 50.5 67.35 80.08 (79.49 ± 0.44)
4096 62.0 60.79 71.29 53.5 61.71 50.5 78.47 79.24 (78.82 ± 0.26)
8192 58.51 60.38 69.96 53.59 62.76 50.5 83.48 77.48 (77.02 ± 0.28)

PPI

128 51.77 51.66 49.17 48.48 63.1 50 51.74 57.35 (56.86 ± 0.49)
256 53.74 53.75 50.28 49.3 62.53 50 52.9 59.44 (58.3 ± 0.95)
512 54.24 52.82 51.05 49.47 62.64 50.42 58.75 63.8 (62.28 ± 1.05)
1024 54.72 53.28 52.71 50.68 60.64 50.42 59.54 63.27 (62.78 ± 0.4)
2048 51.31 53.99 58.58 50.13 62.49 50.42 67.38 63.99 (63.41 ± 0.41)
4096 52.66 52.44 53.7 50.05 64.11 50.42 70.53 62.91 (62.51 ± 0.35)
8192 51.67 51.8 53.9 50.33 62.7 50.42 70.44 61.35 (60.94 ± 0.41)

DBLP

128 47.9 47.3 63.51 53.24 66.34 50 54.61 54.49 (53.56 ± 0.76)
256 46.68 47.9 63.53 52.93 67.32 50 55.47 55.69 (54.72 ± 0.67)
512 49.98 49.9 62.92 53.32 68.79 51.76 57.44 56.69 (56.11 ± 0.44)
1024 48.69 49.04 62.0 53.43 64.33 51.76 58.3 58.4 (58.02 ± 0.29)
2048 48.99 51.23 59.4 53.4 64.36 51.76 59.21 60.59 (60.32 ± 0.31)
4096 49.96 51.27 56.85 51.99 62.62 51.76 61.51 60.78 (60.61 ± 0.2)
8192 50.91 52.17 54.78 51.12 61.27 51.76 60.97 59.19 (58.66 ± 0.35)

Among other competitors DeepWalk and node2vec perform best or
second best for this dataset at higher bit-resolutions. For PPI dataset
we achieve 18% F1-score at 256 bits unlike our major competitors
who require 2048 bits to achieve similiar F1-score. The biggest take-
away from this experiment is that most of our competitors need
many bits to perform well, but Node2binary is competitive with
significantly fewer bits. Even binary-based NODESIG performs
worse than our model at low dimensions. For a finer-grained anal-
ysis of node classification, we vary train-test ratio from 0.1 to 0.9
keeping 𝑑 = 512 and rest of the experimental setup as before. We
report these results in Appendix A.3.

4.5 Link Prediction

Experimental setting: Link prediction is the task of determining,
given two nodes in a graph, whether or not there is an edge (link)
between them. We perform ’Hadamard’ operation to get an edge
embedding vector from the constituting node embedding vectors.
We randomly sample 50% edges in the graph and use it as train set,
ensuring that the train subgraph is connected. We also generate a

collection of negative samples from both train and test set respec-
tively by taking node pairs without an edge. We train a Logistic
Regression classifier using edge embeddings from the train dataset
as features with ‘liblinear’ solver with max iterations at 1000. For
the Blogcatalog and Youtube datasets, we subsample 50% of nodes
ensuring graph connectivity from the original graphs before the
train-test split due to their larger edge counts than other datasets.
After subsampling, BlogCatalog has 12.7% and YouTube has 15.67%
of their original edge counts.
Experimental results: We report link prediction experimental
results in Table 3 with a decreasing order of datasets based on edge
counts. We perform better for the largest YouTube and BlogCatalog
datasets across all bit-resolutions, except at 8192 bits where we lose
to our binary-based competitor NODESIG. For BlogCatalog dataset,
we achieve 80% AUC score at just 256-bits, whereas NODESIG
requires 8192-bits. Most of our competitors could not cross 70%
AUC-score for this dataset. For PPI, we come out best or second
best at lower-bit resolutions losing to NodeSketch and NODESIG
at high bit resolutions. These results again show that our binary

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 4: Algorithm Running Time on YouTube dataset (Task:

Link Prediction)

Model NodeSketch NODESIG Node2binary

Time (s) 2488 6727 Hier Tree = 184
Alg Run = 5839

Speed Up 0.41x 1.12x 1x

Figure 2: Convergence results (first 100 iterations) for both

tasks on PPI dataset setting embedding dimension at 512.

competitor NODESIG requires large bit-resolution to perform well,
unlike us. For the smallest dataset DBLP, NodeSketch does best
across all dimensions. Our model overall came out third best after
LINE across all dimensions. GraphSAGE performs poorly across all
datasets due to lack of built-in node attributes.

4.6 Scalability

Experimental setting:We compare our algorithm training time
with the competitors for the large YouTube dateset (Node count
1.1M, Edge count: 3M). After forming community partition tree,
for hierarchical pairs we randomly sample indirect edges to keep
total edge counts ≤ 2M and total sibling pairs ≤ 1M. We keep
node2binary at dimension 512 and run for 100 iterations. We repeat
this experiment 5 times and take average time. We give our com-
petitors the best hyper parameters from their papers. We omit com-
parison with random-based, matrix-factorization, neural-network
and inductive models since they take much longer to run.
Experimental Results: Among the competitors NodeSketch takes
about 0.41x time, and NODESIG 1.12x, compared to our model. Our
implementation is in Python, whereas our scalable competitors
implemented their models either in C or MATLAB which are sig-
nificantly faster programming languages. We will implement our
model using a faster language in a future work.

4.7 Node2binaryModel Convergence Results

To justify our model convergence, we plot both Hierarchy Tree loss
and Sibling Similarity loss for 100 iterations along with how evalua-
tion metric changes for both node classification and link prediction
tasks. For this experiment we use PPI dataset with dimension 512.
We show our results in Fig 2. Since each loss starts at zero, there
is a sudden jump initially and then exponential decay as expected.
For both tasks, as tree loss and sibling similarity loss converges to
a minima, each evaluation metric saturates to a maximum value.

Figure 3: Parameter sensitivity experiment by varying tree

level and sibling similarity coefficient on PPI dataset for

embedding dimension set at 512.

4.8 Parameter Sensitivity

We mentioned the hyperparameters used for our model in the
Experimental Setup section. Two hyperparameters are critical for
Node2binary’s performance, so we elaborate their effect on node
classification and link prediction performance using PPI dataset.

Effect of Hierarchy Tree level, 𝑙 : CreateTree is an important
step for our method. We use Leiden algorithm to partition the graph
and repeat the process for 𝑙 layers, where 𝑙 is a hyperparameter.
Our experimental section shows that for node classification per-
formance, it is better to have a small 𝑙 . It makes sense as for the
performance of node classification task adjacent nodes should have
similar embeddings. On contrary, for the link prediction task a high
𝑙 is better as a taller tree can capture inherent graph structure better
which leads to a better link prediction performance. We illustrate
the effect of 𝑙 in Figure 3.

Effect of sibling similarity coefficient, 𝛾 : For sibling simi-
larity in our work, we introduce a hyperparameter 𝛾 as positive
similarity weight. We set this parameter based on the ratio between
hierarchical pairs and sibling pairs to offset any respective bias. We
illustrate the effect of sibling similarity coefficient, 𝛾 in Figure 3.

We report the best hyperparameters for each dataset and task
combination in Table 9 in the appendix.

5 Conclusion and Future Work

Node2binary is the first work to propose a combinatorial opti-
mization approach in binary space for general graph embedding. In
summary, it uses a fast community detection algorithm to convert
a general graph into a hierarchy partition tree and then solves an
NP-hard CO problem with an innovative combination of discrete
gradient descent and randomization. As our model has fewer pa-
rameters than other models (such as random-walk based node2vec)
the optimization process is less costly. As a future work we plan to
compute Hierarchy Tree and Sibling gradients in parallel which can
speed up algorithm run time. Our experimental results demonstrate
that node2binary achieves competitive results at low dimensions
on standard evaluation tasks with popular real-world graphs. Thus
node2binary is also well suited for applications requiring efficient
energy or memory usage, such as edge devices. Experimental re-
sults also show that node2binary can be scaled to millions of nodes
and be competitive with the methods designed for scalability. How-
ever, node2binary is a transductive model that cannot generate
embeddings for unseen nodes in a graph. Another possible future
direction is to extend our algorithm for inductive learning tasks.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Node2binary: Compact Graph Node Embeddings Using Binary Vectors Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

References

[1] Shaosheng Cao, Wei Lu, and Qiongkai Xu. 2015. GraRep: Learning Graph Repre-
sentations with Global Structural Information. In Proceedings of the 24th ACM
International on Conference on Information and Knowledge Management (New
York, NY, USA, 2015-10-17) (CIKM ’15). Association for Computing Machinery,
891–900. https://doi.org/10.1145/2806416.2806512

[2] Haochen Chen, Bryan Perozzi, Yifan Hu, and Steven Skiena. 2017. HARP: Hier-
archical Representation Learning for Networks. https://doi.org/10.48550/arXiv.
1706.07845 arXiv:1706.07845 [cs]

[3] Haochen Chen, Syed Fahad Sultan, Yingtao Tian, Muhao Chen, and Steven
Skiena. 2019. Fast and Accurate Network Embeddings via Very Sparse Random
Projection. https://doi.org/10.48550/arXiv.1908.11512 arXiv:1908.11512 [cs]

[4] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable Feature Learning for
Networks. https://doi.org/10.48550/arXiv.1607.00653 arXiv:1607.00653 [cs, stat]

[5] Croix Gyurek, Niloy Talukder, and Mohammad Al Hasan. 2024. Binder: Hier-
archical Concept Representation through Order Embedding of Binary Vectors.
https://doi.org/10.48550/arXiv.2404.10924 arXiv:2404.10924 [cs]

[6] William L. Hamilton, Rex Ying, and Jure Leskovec. 2018. Inductive Represen-
tation Learning on Large Graphs. https://doi.org/10.48550/arXiv.1706.02216
arXiv:1706.02216 [cs, stat]

[7] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. https://doi.org/10.48550/arXiv.1609.02907
arXiv:1609.02907 [cs, stat]

[8] Jiongqian Liang, Saket Gurukar, and Srinivasan Parthasarathy. 2020. MILE: A
Multi-Level Framework for Scalable Graph Embedding. https://doi.org/10.48550/
arXiv.1802.09612 arXiv:1802.09612 [cs]

[9] Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. 2016. Asym-
metric Transitivity Preserving Graph Embedding. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (New
York, NY, USA, 2016-08-13) (KDD ’16). Association for Computing Machinery,
1105–1114. https://doi.org/10.1145/2939672.2939751

[10] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: Online Learning
of Social Representations. https://doi.org/10.1145/2623330.2623732

[11] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. 2018.
Network Embedding as Matrix Factorization: Unifying DeepWalk, LINE, PTE,
and node2vec. In Proceedings of the Eleventh ACM International Conference on
Web Search and Data Mining (2018-02-02). 459–467. https://doi.org/10.1145/
3159652.3159706 arXiv:1710.02971 [cs, stat]

[12] Leonardo F. R. Ribeiro, Pedro H. P. Savarese, and Daniel R. Figueiredo. 2017.
struc2vec: Learning Node Representations from Structural Identity. In Proceedings
of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (2017-08-04). 385–394. https://doi.org/10.1145/3097983.3098061
arXiv:1704.03165 [cs, stat]

[13] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
2015. LINE: Large-scale Information Network Embedding. In Proceedings of
the 24th International Conference on World Wide Web (2015-05-18). 1067–1077.
https://doi.org/10.1145/2736277.2741093 arXiv:1503.03578 [cs]

[14] Lei Tang and Huan Liu. 2009. Relational learning via latent social dimensions. In
Proceedings of the 15th ACM SIGKDD international conference on Knowledge dis-
covery and data mining (New York, NY, USA, 2009-06-28) (KDD ’09). Association
for Computing Machinery, 817–826. https://doi.org/10.1145/1557019.1557109

[15] Lei Tang and Huan Liu. 2009. Scalable learning of collective behavior based on
sparse social dimensions. In Proceedings of the 18th ACM conference on Infor-
mation and knowledge management (New York, NY, USA, 2009-11-02) (CIKM
’09). Association for Computing Machinery, 1107–1116. https://doi.org/10.1145/
1645953.1646094

[16] V. A. Traag, L. Waltman, and N. J. van Eck. 2019. From Louvain to Leiden:
guaranteeing well-connected communities. 9, 1 (2019), 5233. https://doi.org/10.
1038/s41598-019-41695-z

[17] Daixin Wang, Peng Cui, and Wenwu Zhu. 2016. Structural Deep Network
Embedding. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (New York, NY, USA, 2016-08-13) (KDD
’16). Association for Computing Machinery, 1225–1234. https://doi.org/10.1145/
2939672.2939753

[18] Wei Wu, Bin Li, Ling Chen, and Chengqi Zhang. 2018. Efficient attributed
network embedding via recursive randomized hashing. In Proceedings of the
27th International Joint Conference on Artificial Intelligence (Stockholm, Sweden,
2018-07-13) (IJCAI’18). AAAI Press, 2861–2867.

[19] Dingqi Yang, Paolo Rosso, Bin Li, and Philippe Cudre-Mauroux. 2019. NodeS-
ketch: Highly-Efficient Graph Embeddings via Recursive Sketching. In Proceed-
ings of the 25th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining (New York, NY, USA, 2019-07-25) (KDD ’19). Association for
Computing Machinery, 1162–1172. https://doi.org/10.1145/3292500.3330951

[20] Jaewon Yang and Jure Leskovec. 2012. Defining and evaluating network commu-
nities based on ground-truth. In Proceedings of the ACM SIGKDD Workshop on
Mining Data Semantics (New York, NY, USA, 2012-08-12) (MDS ’12). Association
for Computing Machinery, 1–8. https://doi.org/10.1145/2350190.2350193

[21] Jie Zhang, Yuxiao Dong, Yan Wang, Jie Tang, and Ming Ding. 2019. ProNE:
fast and scalable network representation learning. In Proceedings of the 28th
International Joint Conference on Artificial Intelligence (Macao, China, 2019-08-10)
(IJCAI’19). AAAI Press, 4278–4284.

[22] Ziwei Zhang, Peng Cui, Haoyang Li, Xiao Wang, and Wenwu Zhu. 2018. Billion-
scale Network Embedding with Iterative Random Projection. https://doi.org/10.
48550/arXiv.1805.02396 arXiv:1805.02396 [cs, stat]

[23] Abdulkadir Çelikkanat, Fragkiskos D. Malliaros, and Apostolos N. Papadopou-
los. 2023. NodeSig: Binary Node Embeddings via Random Walk Diffusion. In
Proceedings of the 2022 IEEE/ACM International Conference on Advances in Social
Networks Analysis and Mining (Istanbul, Turkey, 2023-06-28) (ASONAM ’22). IEEE
Press, 68–75. https://doi.org/10.1109/ASONAM55673.2022.10068621

A Appendix

A.1 Reproducibility

Our code and datasets are publicly available at the following link:
https://anonymous.4open.science/r/node2binary-C952/. It is imple-
mented in Python with the PyTorch library. Although node2binary
is a randomized algorithm, we maintain the same random tree T𝐺
for each run to increase consistency. We also provide a command-
line option --seed in our implementation to seed the random num-
ber generator and make the result deterministic.

A.2 Computation of Gradients

The discrete gradient functions we use for updating our embeddings
are designed to guide the model towards fulfilling the tree and
sibling constraints. We can think about the gradient as encouraging
or discouraging flipping certain bits. For positive tree pairs (𝑐, 𝑝),
for each bit 𝑗 , we want to avoid having 𝑐 𝑗 = 0 and 𝑝 𝑗 = 1. Therefore,
for each pair of vectors c, p with 𝑐 a child of 𝑝 , we assign gradient
values to encourage corresponding bit pairs (𝑐 𝑗 , 𝑝 𝑗) to flip away
from (0, 1). If (𝑐 𝑗 , 𝑝 𝑗) = (0, 1), then we set the gradient of both bits
to 1, so that at least one of them flips. If (𝑐 𝑗 , 𝑝 𝑗) = (0, 0), then we
are fine, but we want to avoid flipping 𝑝 𝑗 , which would create a
(0, 1) pair. The other cases are similar and shown in Table 5.

A similar logic holds for negative samples, i.e. pairs (𝑐′, 𝑝′) where
𝑐′ is not a child of 𝑝′. In fact, the gradient for this case is exactly
the negative of the gradient for positive pairs (𝑐, 𝑝), as shown in
Table 6. In a similar way, we show the gradients for sibling loss,
which aims to make the two bits equal, in Table 7. Note that, when
𝑎 𝑗 ≠ 𝑏 𝑗 , we set both gradients to 1, because we don’t care which
bit flips, only that one of them does. This means there is a chance
both flip, causing 𝑎 𝑗 ≠ 𝑏 𝑗 again. Our solution is the randomized flip
function in Eq. 9, which, on average, flips at most half of the bits in
the model.

Table 5: Logic truth table for positive tree loss gradient

c𝑗 p𝑗 Δc𝑗 𝐿𝑜𝑠𝑠
+ Δp𝑗 𝐿𝑜𝑠𝑠

+ Comments

0 0 0 −1 Don’t flip p𝑗
0 1 1 1 Flip either (or both) bit
1 0 0 0 Irrelevant
1 1 −1 0 Don’t flip c𝑗

A.3 Fine-grained Node Classification Task

We report F1 score in Figure 4. For largest dataset (YouTube), all our
competitors perform poorly. For second largest (DBLP), we perform
superior except at the lowest training ratio, 0.1. For BlogCatalog

9

https://doi.org/10.1145/2806416.2806512
https://doi.org/10.48550/arXiv.1706.07845
https://doi.org/10.48550/arXiv.1706.07845
https://arxiv.org/abs/1706.07845 [cs]
https://doi.org/10.48550/arXiv.1908.11512
https://arxiv.org/abs/1908.11512 [cs]
https://doi.org/10.48550/arXiv.1607.00653
https://arxiv.org/abs/1607.00653 [cs, stat]
https://doi.org/10.48550/arXiv.2404.10924
https://arxiv.org/abs/2404.10924 [cs]
https://doi.org/10.48550/arXiv.1706.02216
https://arxiv.org/abs/1706.02216 [cs, stat]
https://doi.org/10.48550/arXiv.1609.02907
https://arxiv.org/abs/1609.02907 [cs, stat]
https://doi.org/10.48550/arXiv.1802.09612
https://doi.org/10.48550/arXiv.1802.09612
https://arxiv.org/abs/1802.09612 [cs]
https://doi.org/10.1145/2939672.2939751
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1145/3159652.3159706
https://doi.org/10.1145/3159652.3159706
https://arxiv.org/abs/1710.02971 [cs, stat]
https://doi.org/10.1145/3097983.3098061
https://arxiv.org/abs/1704.03165 [cs, stat]
https://doi.org/10.1145/2736277.2741093
https://arxiv.org/abs/1503.03578 [cs]
https://doi.org/10.1145/1557019.1557109
https://doi.org/10.1145/1645953.1646094
https://doi.org/10.1145/1645953.1646094
https://doi.org/10.1038/s41598-019-41695-z
https://doi.org/10.1038/s41598-019-41695-z
https://doi.org/10.1145/2939672.2939753
https://doi.org/10.1145/2939672.2939753
https://doi.org/10.1145/3292500.3330951
https://doi.org/10.1145/2350190.2350193
https://doi.org/10.48550/arXiv.1805.02396
https://doi.org/10.48550/arXiv.1805.02396
https://arxiv.org/abs/1805.02396 [cs, stat]
https://doi.org/10.1109/ASONAM55673.2022.10068621

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Table 6: Logic truth table for negative tree loss gradient

c′
𝑗

p′
𝑗

Δc′
𝑗
𝐿𝑜𝑠𝑠− Δp′

𝑗
𝐿𝑜𝑠𝑠− Comments

0 0 0 1 Flip p′
𝑗

0 1 −1 −1 Don’t flip
1 0 0 0 Irrelevant
1 1 1 0 Flip c′

𝑗

Table 7: Logic truth table for sibling loss gradient

a𝑗 b𝑗 Δa𝑗 𝐿𝑜𝑠𝑠 Δb𝑗 𝐿𝑜𝑠𝑠 Comments

0 0 −1 −1 Don’t flip
0 1 1 1 Flip
1 0 1 1 Flip
1 1 −1 −1 Don’t flip

dataset we come second to NODESIG. For PPI, our model achieves
best F1 score across all training ratio. Overall our model achieves
better F1 score in all datasets.

A.4 Ablation Study

Table 8: Ablation study for all datasets (d=512), NC = Node

Classification, LP = Link Prediction.

dataset

Component YouTube BlogCat DBLP PPI

Hier Tree (NC) 7.77 6.85 58.3 5.27
Sib Similarity (NC) 6.77 3.44 39.46 1.34

Hier Tree (LP) 70.28 68.62 54.04 60.06
Sib Similarity (LP) 50.05 50 50 50.05

Our model has two major components. First is formation of
hierarchy tree and second is to minimize hamming distance among
the sibling pairs in the tree. We perform an ablation study where we
set 𝛼 and 𝛽 to their default values and set 𝛾 = 0 to ignore the effect
of homophily for the sibling pairs. Then we set 𝛼 and 𝛽 to 0 and 𝛾
= 1 to ignore the effect of hierachy and only consider homophily.
We set rest of the parameters to the default values. We perform this

Table 9: Best hyper parameters (Tree depth, Sibling Coeffi-

cient) for each dataset and task combination.

dataset

Task YouTube BlogCat DBLP PPI

Node Classification (4,1) (5,1) (3,1) (3,1)
Link Prediction (5,1) (5,1) (4,2) (5,3)

experiment for both the tasks on PPI dataset (dim 512) and report
the result in Table 8.

Figure 4: Node Classification experiment by varying train ratio from 0.1 to 0.9 with embedding dimension set at 512.)

10

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Problem Formulation and Framework
	3.2 Constructing Community Partition Tree
	3.3 Mathematical Framework of Node2binary
	3.4 Training Algorithm
	3.5 Discrete Gradient using Boolean Logic
	3.6 Time Complexity and Space Efficiency

	4 Experiments and Results
	4.1 Datasets
	4.2 Baseline Methods and Evaluation Metrics
	4.3 Experimental Setup
	4.4 Multi-label Node Classification
	4.5 Link Prediction
	4.6 Scalability
	4.7 Node2binary Model Convergence Results
	4.8 Parameter Sensitivity

	5 Conclusion and Future Work
	References
	A Appendix
	A.1 Reproducibility
	A.2 Computation of Gradients
	A.3 Fine-grained Node Classification Task
	A.4 Ablation Study

