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Abstract

Offline reinforcement learning (RL) aims to learn optimal policies from static
datasets while enhancing generalization to out-of-distribution (OOD) data. To
mitigate overfitting to suboptimal behaviors in offline datasets, existing methods
often relax constraints on policy and data or extract informative patterns through
data-driven techniques. However, there has been limited exploration into struc-
turally guiding the optimization process toward flatter regions of the solution space
that offer better generalization. Motivated by this observation, we present FANS,
a generalization-oriented structured network framework that promotes flatter and
robust policy learning by guiding the optimization trajectory through modular archi-
tectural design. FANS comprises four key components: (1) Residual Blocks, which
facilitate compact and expressive representations; (2) Gaussian Activation, which
promotes smoother gradients; (3) Layer Normalization, which mitigates overfitting;
and (4) Ensemble Modeling, which reduces estimation variance. By integrating
FANS into a standard actor-critic framework, we highlight that this remarkably
simple architecture achieves superior performance across various tasks compared
to many existing advanced methods. Moreover, we validate the effectiveness of
FANS in mitigating overestimation and promoting generalization, demonstrating
the promising potential of architectural design in advancing offline RL.

1 Introduction

Offline reinforcement learning (RL) [l1]] focuses on learning policies from fixed, pre-collected datasets
without access to online interactions with the environment. A fundamental challenge in this paradigm
is the distributional shift between the offline dataset and the true environment dynamics encountered
during deployment. This discrepancy often leads to unreliable generalization, particularly in out-of-
distribution (OOD) regions, where value functions tend to exhibit overestimation [2f]. To mitigate
this, prior work has introduced approaches such as policy constraints [3} 4} 1516} [7]], value function
regularization [8}, (9,10} [11], and uncertainty estimation [[12}|13}14]. These methods aim to constrain
the learning process, ensuring that the learned policy avoids making unreliable decisions in regions of
state space with overestimated values, thereby enabling the model to derive more robust and effective
policies from offline datasets.

In recent years, generalization has emerged as a central focus in offline RL, driven by the need
to ensure reliable policy performance beyond the narrow support of the training data. To enhance
generalization, existing methods typically relax constraints on the dataset [15]], behavior policy [7],
or support [S [16] during the learning process. In addition, some data-driven approaches [17,
18] formulate generalization as a domain adaptation problem, treating the discrepancy between
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training and deployment distributions as a shift between source and target domains. Despite these
advances, relatively little effort has been devoted to exploring how neural network architectures
might influence generalization. While most efforts in offline RL have centered around data and
optimization constraints, the role of model architecture in promoting generalization remains relatively
underexplored. Yet, architectural design can significantly influence the learning dynamics and the
generalization behavior of the resulting policy.

Recent studies have demonstrated that specific architectural choices — such as residual connec-
tions [19]], layer normalization [20, 21]], and smooth activation functions — can implicitly bias
optimization toward flatter regions of the loss landscape, which are often associated with improved
generalization. While state-of-the-art architectures like SimBa [22] have achieved remarkable scal-
ability in deep RL, the most suitable architectural design for offline RL remains an open question.
Given the unique challenges of offline RL — particularly distributional shift and limited data coverage,
which often lead to sharp, overfitted solutions — incorporating architectural inductive biases that
promote flatter minima represents a promising and complementary direction for improving gener-
alization. Motivated by these insights, we propose FANS (Flatness-Aware Network Structure), a
structural framework specifically designed to enhance generalization in offline RL. FANS comprises
four key modules, each tailored to encourage flatter solutions and improve stability:

1. Residual Blocks: Facilitate learning simple, clean mappings, enabling smoother gradient
flow and mitigating the risk of overfitting to noisy or sparse data points.

2. Gaussian Activation Function: Replace traditional piecewise-linear activation (e.g.,
ReLU) with smoother functions, promoting continuous gradients and flatter local loss
landscapes.

3. Layer Normalization: Regularizes feature distributions across layers, helping to stabilize
optimization dynamics and preventing sharp activations that could lead to overfitting.

4. Model Ensemble: Aggregates multiple models to reduce variance and bias, ensuring the
learned policy is not overly sensitive to specific trajectories or regions in the training data.

Together, these components systematically bias the optimization process toward solutions located in
flatter regions of the loss landscape, thereby enhancing the model’s ability to generalize to unseen
OOD data while maintaining strong performance in well-covered regions. Importantly, by introducing
the FANS framework into a standard Actor-Critic (AC) architecture without modifying the objective
function, we observe substantial performance improvements. This underscores the effectiveness of
architectural design in addressing the unique generalization challenges inherent to offline RL.

In summary, our contribution is three-fold:

1. We propose a structured network design framework for offline RL that integrates residual
blocks, Gaussian activation function, layer normalization, and ensemble techniques to
enhance generalization.

2. We validate the effectiveness of the proposed framework across multiple offline RL tasks,
highlighting that our remarkably simple architecture leads to substantial performance
gains.

3. We conduct a detailed analysis to elucidate how the FANS framework facilitates smoother
optimization, reduces variance, and mitigates overfitting, thereby achieving significant
improvements in OOD generalization performance.

2 Preliminary and Related Work

2.1 Offline RL

Offline RL, also referred to as batch RL, aims to learn an optimal policy solely from a fixed dataset
D ={(s,a,r,s')}, collected by one or more behavior policies, without further interaction with the
environment. The learning problem is typically formulated within the Markov Decision Process
framework, defined by a tuple (S, A, P,r,v), where S is the state space, A is the action space,
P(s'|s, a) is the transition probability, (s, a) is the reward function, and v € (0, 1) is the discount



factor. The objective of offline RL is to learn a policy 7(a|s) that maximizes the expected cumulative
reward over the data distribution induced by the behavior policy, formulated as
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where Q™ (s, a) denotes the expected discounted return starting from state s, taking action a, and
following policy 7 thereafter. Unlike online RL [23]], where the agent iteratively interacts with the
environment to refine its policy, offline RL faces the fundamental challenge of distributional shift:
the learned policy m may generate actions and state-action pairs that are OOD concerning the dataset
D. This can lead to overly optimistic value function estimates, hindering policy performance.

Generalization in offline RL. As attention to distribution shift increases in offline RL, various meth-
ods have been proposed to address the challenge. Among them, traditional conservative approaches
typically constrain learned policies to remain within the dataset’s support, aiming to suppress the gen-
eration of OOD actions. Representative approaches include explicit policy constraints [4} 3 15,16} 24],
value function penalization 8, [10} 25| 26], uncertainty quantification techniques [[12} 13} |14], and the
integration of imitation learning [27,9]. In most cases, these approaches favor conservative strategies
to ensure the reliability and safety of the policies learned from limited offline data.

Building upon foundations laid by prior research, subsequent works have concentrated on refining
methods to alleviate excessive conservatism, thereby enhancing generalization capabilities. For
instance, MCQ [15] actively trains on OOD actions by constructing pseudo target values. SPOT [3]
explicitly models the behavior policy’s support using a VAE-based density estimator and intro-
duces a simple, pluggable density-based regularization to effectively constrain offline RL policies.
DOGE [28] leverages a learned distance function to guide policy learning beyond the data distribu-
tion. TSRL [29] exploits time-reversal symmetry in dynamics to improve representation learning
and reliability estimation, enabling data-efficient and generalizable offline RL from small datasets.
POR [30]] inherits the training stability of imitation-style methods while still allowing logical OOD
generalization. STR [16] performs trust region policy optimization within the support of the behavior
policy. Additionally, some data-driven approaches like PRDC [7]] have found that regularizing
policies toward the nearest state-action pairs is more effective, enabling the learned policy to select
actions outside the dataset for a given state. Other studies [[17, [18] innovatively model the OOD
generalization challenge in offline RL from a distribution adaptation perspective. Orthogonal to
existing methods, our approach leverages minimal architectural modifications to achieve impressive
performance, offering a structural perspective largely overlooked in prior work.

2.2 Network Architecture Design and the Flatness of Optimization Landscapes

Early deep RL largely overlooked network architecture design, often relying on simple MLPs [31]],
which, under RL’s non-stationarity and trial-and-error learning, exhibited optimization pathologies
such as capacity loss [32], primacy bias [33]], and plasticity loss [34]]. These issues worsen as model
scale increases [35]], highlighting the urgent need for architectural innovations to alleviate training
pathologies and enhance generalization.

Recent research has begun to address these challenges by leveraging network architecture design to
steer optimization toward flatter minima in the loss landscape. At the macro level, techniques such
as normalization and residual connections have demonstrated significant benefits. Methods like
spectral normalization [36], batch normalization [37], and the widely used layer normalization [20, [38]]
effectively control gradient magnitudes and stabilize parameter updates. This regulation helps
smooth the loss landscape by preventing excessively sharp or irregular surfaces, thereby facilitating
more stable training dynamics and faster convergence. SEEM [39] identifies a self-excitation
mechanism causing Q-value divergence in offline RL and shows that it can be effectively suppressed
by LayerNorm. Additionally, BRO [40]] and SimBa [22] demonstrate that incorporating residual
blocks significantly improves training robustness and performance, with SimBa further enhancing
stability by adding observation normalization layers, establishing it as a widely adopted state-of-the-
art architecture in deep RL.

At the micro level, the choice of activation function also critically influences the geometry of the loss
landscape. In particular, Gaussian-based activations such as GELU [41]], with their smooth curvature
and continuous higher-order derivatives, have been theoretically and empirically shown to encourage



optimization trajectories toward flatter regions, thereby enhancing generalization performance [42].
Compared to traditional piecewise linear functions like ReLU, these activations maintain nonlinear
expressivity while mitigating gradient discontinuities that can destabilize training. Together, these
micro-level designs complement macro-level architectural choices, jointly shaping more favorable
optimization paths and improving model generalization.

3 FANS framework: Flatness-Aware Network Structure

To address the distributional shift challenge in of-
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where {x;}}¥, denotes the set of input vectors and  is a small constant for numerical stability. The
standardized output is then obtained by x = *>#. This transformation ensures that each input
dimension has zero mean and unit variance, which improves optimization stability and prevents
scale-sensitive biases in the learning process.

Residual Block. Each residual block in FANS is designed to encourage smoother optimization and
more stable representation learning, addressing the sharp loss landscapes and overfitting risks inherent
in offline RL. The architecture follows a pre-activation residual design, incorporating normalization,
Gaussian nonlinearity, and linear projection within the skip-connected block. The residual path is
shown in Table where W1, W5, € R%*? and by, by € R? are learnable parameters.

Table 1: Residual Block Architecture in FANS. Each step operates on a hidden vector of dimension d.

Step | Operation | Equation | Description
(1) | Residual Save res = x Store input for residual connection
(2) | LayerNorm h; = LayerNorm(x) | Normalize input across features
(3) | Linear Layer 1 hy = Wih; + b; First linear transformation
“4) Gaussian Activation | hy = exp(—h%) Smooth, non-monotonic nonlinearity
(5) | Linear Layer 2 hy = W5h3 + by Second linear transformation
(6) | Residual Add y =res+ hy Residual connection output

This structure preserves the identity mapping through residual addition, stabilizing gradient propaga-
tion and promoting generalization through implicit regularization.

Gaussian Activation Function. The Gaussian activation function used in each residual block is:
o(u) = exp(—uQ), 2)

where u is the output of a linear transformation. Unlike ReL.U or other monotonic activations, the
Gaussian function is smooth and bell-shaped, with bounded output in (0, 1]. Its non-monotonicity
enables richer functional representations and encourages localized sensitivity.



Layer Normalization. To stabilize training and enhance generalization, we adopt post-layer normal-
ization after the final residual block. Formally, for an intermediate output y, we compute:

z = LayerNorm(y). 3)

Additionally, this operation reduces sensitivity to feature scaling and enhances the smoothness of the
optimization landscape, which is particularly beneficial when combined with activation functions such
as the Gaussian function. Finally, it ensures consistent feature magnitudes across modules, which is
important when the output is passed into a common prediction layer. Following normalization, the
output z is fed into a linear layer, which maps it to the critic’s value function predictions.

Ensemble of Networks. To further enhance stability and mitigate overestimation bias common in
offline RL, FANS employs an ensemble of M independently parameterized critic networks within
the Actor-Critic framework. Each critic head Q("), where m = 1,2, ..., M, produces a separate
estimate of the value function for a given state-action pair (s, a). The ensemble output is computed
as the average of these estimates:

1 M
Qensemble(sva) = M Z Q(m)(s, Cl). 4
m=1

By aggregating multiple value predictions, this ensemble approach captures epistemic uncertainty
and helps prevent the overestimation of OOD actions. During actual implementation, FANS operates
within a standard Actor-Critic (AC) framework. The actor 7(a|s) is trained to maximize returns using
value estimates from the critic ensemble.

(m),
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Critic Target. Bootstrapped targets are computed using target networks 7 and @

Critic Loss. Each critic minimizes MSE to the shared target. The ensemble critic loss is:

M
Ecritic = Z E(s,a)ND |:(Q(m)(s5 a) - Qlarget(57 a)) 2:| . (6)

m=1

Actor Loss. The actor is optimized to maximize the ensemble value:

Lacior = —Egup [Qensemble(sa 77(3))] . @)

4 Experiments

In this section, we conduct experiments to validate the effectiveness of FANS. First, we compare FANS
with various state-of-the-art offline RL algorithms across multiple standard D4RL benchmarks [43]]
to evaluate its overall performance improvements. Then, to verify the motivation behind FANS —
specifically, mitigating Q-value overestimation and enhancing generalization — we design targeted
experiments that assess these properties in controlled settings. Finally, we perform ablation studies
to analyze the contribution of each component in the framework and validate their necessity. The
appendix includes experiments combining FANS with other baselines, evaluations on additional tasks,
analyses of FANS’s structural extensions, and learning curves omitted from the main text. Code is
available at https://github. com/DKING-1v6/FANS.

4.1 Main Results

Experimental Setup. One of our main focuses is to demonstrate that FANS can yield substantial
performance gains through minimal modifications to the network architecture. To this end, we adopt
the simplest actor-critic framework, TD3, as our base algorithm. It is important to note that we do
not incorporate any offline-specific constraints such as behavior cloning (BC), in order to purely
isolate and showcase the effect of FANS. We evaluate the algorithm on MuJoCo locomotion tasks
from the D4RL benchmark. For simply, we abbreviate the names of the datasets in all the tables as
follows: {halfcheetah — ha, hopper — ho, walker2d — wa, medium — m, medium-replay —
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Table 2: Performance comparison on D4RL locomotion tasks over the final ten evaluations and five
seeds (normalized scores). We bold the highest mean.

TD3
+FANS

48.1 49.5 470 483 64.0 68.2 67.7 422 66.6

Tasks | TD3BC AWAC CQL IQL ReBRAC SAC-N EDAC DT

ha-m +02 406 +02 402 407 +13  +10 403 | 408
N 44.8 447 450 445 51.2 607 621 389 | 559
amr - 106 407 403 +02 403 +1.0 +1.1  +05 | +15
h 90.8 936 956 947 103.8 99.0 1048 91.6 | 102.8
ame ' 4160  4+04 404 405  £30 493 406 +£1.0 | 434
60.4 745  59.1 675 102.3 408 1017 65.1 | 104.6

ho-m

+3.5 +9.1 +3.8 £38 +0.2 +9.9 +03 +£1.6 +0.9

N 64.4 964 951 974 95.0 1003 997 818 | 103.2
O-ME 1 4915 453 453 464 465 408 408 +69 | +1.1

101.2 52.7 993 1074 109.5 101.3 1052 1104 | 113.3

ho-me |\ o7 1375 1109 +78 423 +11.6  +10.1 +£03 | +14
82.7 665 80.8 809 85.8 875 934 676 | 101.0
wa-m +48 4260 433 +£32 408 407 414 425 | +1.6
85.6 822 731 822 84.2 790 871 599 | 98.3
wamr | 440 411 4132 43.0 423 +05 428 427 | 420
1100 494 1096 111.7 1119 1149 1148 107.1 | 118.1
Wame |\ 404 4382 404 409 404 404 407 410 | +04
Avg. 76.5 677 783 816 89.7 835 929 738 | 96.0

mr, medium-expert — me}. For the baseline algorithms, we report results at 1M gradient steps,
either by re-running the official implementations or directly adopting the values reported in their
original papers. For our method, we conduct experiments using five random seeds and report the
mean normalized score averaged over the final ten evaluations.

Baselines. We compare our method with several representative or state-of-the-art offline RL algo-
rithms: (i) TD3+BC [3]] combines TD3 with behavior cloning by adding a supervised loss to constrain
policy updates toward the dataset actions; (i) AWAC [44] accelerates offline learning by weighting
advantages in actor-critic updates to prioritize high-value actions; (iii) CQL [8] introduces a conserva-
tive penalty on Q-values to prevent overestimation for unseen actions in offline settings; (iv) IQL [9]
avoids explicit behavior cloning or importance sampling by selectively updating Q-values, V-values,
and policy via expectile regression; (v) ReBRAC [45] enhances stability by regularizing the policy
using behavior cloning and applying conservative Q-function updates; (vi) SAC-N extends SAC with
an ensemble of Q-networks and a conservative penalty to improve performance and robustness; (vii)
EDAC [12] improves value estimation in offline RL by decorrelating gradients across Q-networks in
an ensemble; (viii) DT [46] reframes RL as a sequence modeling problem by training a transformer
to predict actions conditioned on returns and past trajectories.

Table 2] provides a comprehensive comparison of our proposed FANS method against several state-
of-the-art offline RL algorithms discussed above. Bolded values represent the highest normalized
scores achieved for each task, while the + denotes the standard deviation computed over five seeds.
The results indicate that integrating the FANS framework into the structurally simple Actor-Critic
algorithm TD3 yields the best average performance (Avg.) across all evaluated tasks. Notably,
TD3+FANS demonstrates superior performance in most scenarios, with particularly pronounced
improvements observed in the hopper and walker2d environments. Collectively, these results substan-
tiate that employing a succinct yet effective network architecture can markedly enhance algorithmic
performance, underscoring the significant potential and practical utility of minimalist architectural
modifications in offline RL.



4.2 Validation of FANS in Mitigating Overestimation

In offline RL, overestimation is a common issue, particularly severe when encountering sparse or
OOD state-action pairs caused by distributional shifts in the data. To address this challenge, our
FANS framework incorporates several architectural designs. Residual blocks promote the learning
of stable and low-frequency value functions through identity mapping pathways, helping to reduce
overfitting and overestimation. The smooth nature of Gaussian activation functions guides the
optimization towards flatter regions of the loss landscape, further reducing overestimation tendencies.
Layer normalization stabilizes the training process by normalizing activations within each layer,
mitigating risks of gradient explosion and vanishing, thereby improving value estimation accuracy.
Finally, the ensemble method leverages multiple independent networks to collaboratively evaluate
values, effectively suppressing overly optimistic estimates from individual models and enhancing the
robustness and stability of value predictions.

To evaluate whether FANS mitigates overestimation, 0
we measure value estimation accuracy by comparing T FANS
each algorithm’s Q-value predictions against the dis- % /\ o Ziﬁs"
counted Monte Carlo returns of its policy trajectories -
(ground truth). We quantify over- or underestimation
by subtracting the ground truth from the predicted Q-
value and dividing by the ground truth, where values
greater or less than 0 indicate overestimation or un-
derestimation. Averaged across six D4RL datasets
(ha-m, ha-mr, ho-m, ho-mr, wa-m, wa-mr), FANS -100le X o3 o3 o7 o5
consistently achieves the most accurate Q-value esti- Training Steps (x10°)

mation, with TD3BC also showing relatively precise Figure 2: Relative Q estimation.
predictions (Figure[Z). This demonstrates that FANS

and TD3BC provide superior value calibration — avoiding the severe overestimation of vanilla TD3
and the strong underestimation of CQL. Notably, TD3BC’s reasonable value accuracy does not
translate to superior performance, indicating that accurate value estimation alone is insufficient.

Relative Q estimation (%)
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Figure 3: Evaluation of overestimation mitigation: Q-value estimates on OOD data and corresponding
performance of TD3 and TD3 + FANS.

Additionally, we conduct experiments comparing the Q-value estimations for OOD data. We randomly
extract 100 groups (each containing 30 samples) from the walker2d-medium-replay dataset in the
D4RL benchmark and use the remaining samples to train offline RL models. These extracted samples
serve as OOD data relative to the current training set. We run Soft Actor-Critic (SAC) [47] on the
MuJoCo walker2d-v2 environment and save the Q-value function model at 3M steps, then estimate
these OOD data to obtain a standard Q-value (the curves of Online SAC in Figure Eka)). Furthermore,
we evaluate the TD3 algorithm and our proposed TD3+FANS on the dataset with OOD samples
removed as described above. We periodically assess the Q-value estimates on the OOD data, with the
average values reported in Figure[3(a). The results demonstrate that the baseline TD3 consistently
produces elevated Q-value estimates for OOD inputs, ultimately leading to training collapse due to
severe overestimation. In contrast, TD3+FANS maintains consistently lower Q-value estimates on
OOD data, effectively mitigating overestimation issues. This advantage is further corroborated by the
performance curves presented in Figure 3b).



4.3 Revealing FANS’s Fundamental Advantage: Generalization Control

4.3.1 Theoretical Analysis using Neural Tangent Kernel (NTK)

To investigate why FANS outperforms TD3BC despite similar value accuracy, we analyze generaliza-
tion patterns using Neural Tangent Kernel (NTK) [48]]. When updating Q-values for (s, a) using TD
learning, the change at any (5, @) is governed by the NTK k4(3, @, s, a). A simple derivation in [48]]
is given in Appendix Section|B| We track the normalized NTK improvement based on the NTK of
initialized network (training step=0) and explore three OOD query types of (5, a) during training:

+ (s,7(s)),s € D

o (s,m(s) +€),s € D,eisnoise

* (s',a’) € D which is next state and next action (method of DR3 [49])

Due to the high dimensionality of V4Q4(s, a), the direct computation of E D\k¢(s, m(s),s,a)|is

computationally prohibitive, a method is adopted by approximating A(¢) with the contribution solely
from the last layer parameters and obtain the E D|<I>(s, 7(s)) " ®(s,a)|, where ®(s, a) signifies the

representation of state-action pairs, which is the output of penultimate layer of Q-network.

We present the average results across six D4RL datasets (ha-m, ha-mr, ho-m, ho-mr, wa-m, wa-mr)
logged every 100K step during 500K training steps (makes sure convergence) in Figure ]

The significantly lower NTK values in FANS

demonstrate a fundamental suppression of patho- . 'm—""""
logical generalization patterns. This occurs be- = TD3BC
cause the kernel k4(3,a, s, a) acts as a general- & ,000| ™= caL
ization amplifier: High values force TD-errors
from ID data (s, a) to distort OOD values Q(S, a).
During offline RL, this propagates and amplifies
extrapolation errors (especially dangerous for ac-
tions 7(s) near distribution boundaries). Our de-
sign directly counteracts this through: (1) residual

connections that maintain stable feature baselines l—m M M W BN 1
via identity mappings, preventing chaotic error Steps (K)

propagation; (2) layer normalization that constrain Figure 4: The NTK value of (s, 7(s)),s € D.

feature co-gdaptgtion by enforcigg per-sal'n.pl.e fea- Other two modes are presented in the Appendix.
ture scale invariance and reducing sensitivity to

aberrant activation patterns. These mechanisms collectively enhance the model’s expressive capacity
and mitigates harmful generalization errors, thus shows superior performance than baselines.
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4.3.2 Comparison with generalization-centric methods

The FANS framework promotes smoother loss surfaces during training, encouraging models to
converge in flatter regions, which leads to better performance on unseen data. This structural
design enhances the model’s generalization ability, even when facing distribution shifts between
the training and test data. To validate this, we first compare our method with several representative
approaches designed to improve generalization: DOGE [28]], TSRL [29], SPOT [3]], POR [30],
PRDC [7]], STR [16], DIFFUION-QL [25], and CQL+ADS [[18]], as shown in Table[3] Among the
many advanced methods associated with improving generalization, our approach remains highly
competitive, achieving the best average performance.

4.3.3 Validation under limited-data setting

Inspired by [29]], we design small-sample experiments to test model performance with limited data to
evaluate the generalization ablility of FANS. We reduce the training dataset to 5% of the full data and
choose TD3 as the baseline algorithm. Note that FANS is implemented using a simple AC framework,
without incorporating any advanced offline RL techniques such as behavior cloning (BC) constraints.
The learning curves of different algorithms are shown in Figure[3]



Table 3: Performance comparison on D4RL locomotion tasks over the final ten evaluations and five
seeds (normalized scores). We bold the highest mean.

DIFFUSION CQL TD3
Tasks DOGE TSRL SPOT POR PRDC STR -QL +ADS | +FANS
ha-m 453 48.2 58.4 48.8 63.5 51.8 51.1 73.9 66.6
ho-m 98.6 86.7 86.0 78.6 100.3 101.3 90.5 101.0 104.6
wa-m 86.8 71.5 86.4 81.1 85.2 85.9 87.0 91.3 101.0
ha-mr 42.8 422 522 43.5 55.0 47.5 47.8 49.6 55.9
ho-mr 76.2 78.7 100.2 98.9 100.1 100.0 101.3 102.4 103.2
wa-mr 87.3 66.1 91.6 76.6 92.0 85.7 95.5 93.7 98.3
ha-me 78.7 92.0 86.9 94.7 94.5 94.9 96.8 93.5 102.8
ho-me 102.7 95.9 111.4 99.3 109.2 111.9 111.1 1133 113.3
wa-me 110.4 109.8 1120  109.1 111.2 110.2 110.1 112.1 118.1
Avg. 81.0 77.5 85.9 80.1 90.1 87.7 87.9 923 96.0
60 halfcheetah-medium-v2 hopper-medium-v2 15 walker2d-medium-v2
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Figure 5: The performance of different algorithms under limited data. A ratio of 100% denotes
training on the entire dataset, while 5% corresponds to using only one-twentieth of the full data.

Figure [5] clearly shows that when the training data is significantly reduced, FANS consistently
demonstrates superior generalization ability across all tasks compared to the baseline algorithms. It is
worth noting that, in the hopper and walker2d tasks, FANS trained on limited data even outperform the
baseline algorithms trained on the full dataset. These results strongly indicate that FANS’s structured
design enables more effective feature extraction in data-scarce environments, thereby enhancing
model robustness and generalization performance.

4.4 Ablation Study

Table ] summarizes an ablation study evaluating the impact of each component in the proposed
FANS architecture across multiple D4RL MuJoCo tasks. The results demonstrate that every module
contributes to the overall performance, though to varying degrees.

Notably, the residual block and the ensemble mechanism emerge as the most critical components of
the FANS framework. The removal of the residual block leads to the most substantial degradation in
performance, underscoring its essential role in stabilizing learning and enhancing value approximation,
likely by improving gradient flow and increasing network expressivity. Similarly, the ensemble
mechanism contributes significantly to overall robustness; its absence results in a marked decline
in performance, suggesting that aggregating multiple sub-policies effectively reduces variance. The
final column in Table @] includes the parameter M, representing the number of ensembles in FANS.
The M ranges from [2, 3, 5], and we report the best-performing M for each task. Different tasks
exhibit varying needs for ensemble size.

The ablation of the Gaussian activation function also leads to a noticeable performance drop, as
its core function of introducing stochasticity during policy learning helps enhance generalization
and reduce the risk of overfitting to static offline datasets. In addition, layer normalization, while
resulting in relatively smaller performance drops upon ablation, still provides meaningful benefits by
stabilizing training dynamics and promoting smoother, more consistent learning behavior.



Table 4: Ablation study of FANS. M is the number of ensemble in FANS.

TD3+FANS  TD3+FANS  TD3+FANS TD3+FANS TD3 + FANS
Tasks . .

w/o Residual ~ w/o Gaussian w/o LayNorm  w/o Ensemble Score M
ha-m 664+ 1.3 66.2 +0.8 64.3 +3.5 66.6 0.8 | 66.6 +0.8 2
ho-m 21.0+19.3 62.9 + 30.5 99.6 + 6.9 79.6 +£26.6 | 104.6 + 0.9
wa-m 65+43 7.7+738 919423 6704 | 101016 5
ha-mr 55.14+0.5 544 +1.2 55.6+1.3 5514+13 | 559+1.5 3
ho-mr 41.7+7.2 95.1 £4.5 99.2 +£5.6 46+63 | 103.2+11 3
wa-mr 356+ 11.3 80.2 +22.1 95.1 + 1.7 754 +235 | 983+ 2.0 3
ha-me 64.5 +21.1 102.6 +£ 3.1 51.1+£4.7 284+ 1.4 | 102.8 +3.4
ho-me 1.54+03 30.3 +£8.2 41.3 +13.8 1.6+08 | 113.3+1.4
wa-me -02+0.1 89.1 £21.0 1152+ 04 16.5+10.7 | 1181 +04 5
Avg. 32.3 65.4 79.3 41.6 96.0 -

In addition, our method considers residual only . .

in the critic network. We provide ablation experi- 12ble 5: Ablation study on residual placement:
ments to demonstrate that incorporating residual performance drops when residual blocks are added
in the actor is unsuitable for offline RL. As the t0the actor network.

results presented in Table[5] the Control Setup Structure Control Setup | TD3 + FANS

refers to considering residual connections on  Actor + Residual v X
both the actor and critic, which degrades the Critic + Residual v v
overall effectiveness. This degradation can be ha-m 63.8+0.1 66.6 - 0.8

attributed to the residual connections in the ac-
tor causing the action output to be constrained
within a limited range, effectively restricting the
learning capacity within a narrow decision space.
Consequently, this limitation hampers the actor’s ability to learn optimal behaviors. Based on these
observations, we adopt the design choice of applying residual connections exclusively in the critic
network, where they facilitate stable value estimation without constraining the action space, thereby
achieving better overall performance.

ho-m 21.8 £19.8 104.6 £ 0.9
wa-m 503 +35.2 101.0 £ 1.6

5 Conclusion

In this work, we introduce FANS, a novel network architecture framework designed to tackle the
unique generalization challenges of offline RL. By integrating residual blocks, Gaussian activation
functions, layer normalization, and model ensembling, FANS systematically steers optimization
toward flatter minima, thereby enhancing stability and reducing overfitting. Our comprehensive
analyses reveal the individual and combined effects of these components in promoting smoother
optimization landscapes and lowering variance. These results highlight the critical role of architectural
design as a complementary and effective approach to advancing offline RL performance, opening
promising avenues for future research. Future work will explore architectures better suited for
offline-to-online settings, aiming to achieve more stable and safe policies that can rapidly adapt to the
online environment.
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A Implementation details

All experiments run on a server equipped with an Intel® Xeon® Gold 6254 CPU @ 3.10GHz and
NVIDIA GeForce RTX 3090 GPU.

Table 6: Detailed hyperparameter settings for the proposed FANS framework.

Hyperparameter Value / Range Description
Network depth 2 Number of residual blocks in the critic.
Hidden dimension (d) 256 Width of hidden layers in both actor and critic.
" Activation (actor) ReLU Activation function used in the actor network.
B L . ) Smooth, bounded nonlinearity encouraging
§ Activation (critic) Gaussian flatter optimization landscapes.
% . . o Structure: LayerNorm — Linear — Gaussian
< Residual design Pre-activation — Linear (with skip connection).
L. Applied after the final residual block to stabi-
Output normalization  LayerNorm lize representation magnitudes.
Optimizer Adam Optimizer used for both actor and critic.
Learning rate 1x107* Learning rate for both actor and critic.
o Batch size 256 Samples used per optimization step.
E Discount factor () 0.99 Reward discount coefficient.
E Training steps M Total number of gradient update iterations.
Seeds {0, 10, 100, 1000, 10000} Five seeds used for all reported averages.

. Number of independently parameterized critic
Ensemble size (M) {2.3,5) networks; best M per task is reported.

B Details of Neural Tangent Kernel (NTK)

Parameter update for (s, a):
¢ =+ (TQy(s,a) = Qu(s,a)) VoQy(s, a) ®

where 7T is the target operator (learning rate omitted).

Q-value change at (5, a) by Taylor expansion at the pre-update parameter ¢:
Qu(5,a) = Qu(5,a) + VQu(5,a) ' (¢' — ¢) + O(|Ag|I) ©)
Generalization via NTK by plugging the second equation into the first one:

Qo (5,a) = Qu(5,a) + [ks(5,a,5,0)] (TQo(s,a) = Qu(s,)) + O(|Ad]*)  (10)

where
k¢(§,&,s,a) = V¢Q¢(_, Zz)TV¢Q¢(s,a) an

NTK interpretation:

* High k, = Prominent generalization: (5, @) changes significantly in sync with the TD
error updating on Q(s, a).

* Low k;, = Minimal generalization (tabular-like behavior when k4 = 0).

Key Insight: The NTK k4(3, @, s, a) quantifies how much updating Q(s, a) affects Q(3,a), acting
as a generalization metric for TD learning.
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Figure 6: The NTK values of (s, 7(s) + noise) and (s',a’).

C Additional Results

C.1 Additional Evaluations

In addition to the integration of FANS with TD3 presented in the main text, we also applied FANS to
AWAC. As shown in Table[7]] AWAC + FANS demonstrates a significant performance improvement
over the original AWAC algorithm across a range of offline RL tasks. Notably, in challenging tasks
such as hopper-medium-expert and walker2d-medium-expert, AWAC + FANS boosts the scores from
52.7 to 110.3 and from 49.4 to 109.6, respectively. These improvements are not only substantial but
also come with significantly reduced variance, indicating more stable and reliable policy behavior.

Moreover, the average performance across all tasks increases from 67.7 to 83.9, further highlighting
the general and consistent enhancement brought by the FANS module. These results validate
the effectiveness of our approach across diverse environments and demonstrate its potential as a
general-purpose enhancement to existing offline RL methods.

Table 7: Performance comparison on D4RL locomotion tasks over the final ten evaluations and five
seeds (normalized scores). We bold the highest mean.

Tasks | AwAC | AWAC+FANS
halfcheetah-medium | 495+06 | 489+05
halfcheetah-medium-replay ‘ 447+ 0.7 ‘ 44.9 + 0.2
halfcheetah-medium-expert ‘ 93.6 + 04 ‘ 944+ 04
hopper-medium | 74591 | 762+61
hopper-medium-replay ‘ 964 +523 ‘ 99.8 + 2.0
hopper-medium-expert ‘ 52.7+375 ‘ 110.3 + 0.7
walker2d-medium | 6654260 | 819+07
walker2d-medium-replay ‘ 822+ 1.1 ‘ 88.9 + 3.8
walker2d-medium-expert | 4944382 |  109.6+12
Average ‘ 67.7 ‘ 83.9
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C.2 Analyses of FASN’s Structural Extensions

We conduct a systematic scaling analysis of the critic network by varying its depth (1-4) and width
(64-512). For width scaling, the critic depth is fixed at 2 blocks; for depth scaling, the critic width is
set to 256, following our default setup.

The results show that the best performance is achieved when the critic has depth = 2 and width =
256, yielding high returns with low standard deviations across all three tasks (halfcheetah-medium,
hopper-medium, and walker2d-medium), indicating strong stability.

Overall, increasing the depth and width of the critic generally leads to performance improvements,
suggesting that higher model capacity enhances the representational power of the value estimator.

However, we also observe significant instability under certain configurations (e.g., depth = 4 or
width = 64/512), particularly on the hopper-medium and walker2d-medium tasks, where the standard
deviations are notably large. This highlights the trade-off between model capacity and training
stability, and the importance of balancing expressiveness with generalization.

In summary, properly scaling the critic network can significantly boost performance, but must be
done with care to avoid instability.

halfcheetah-medium-v2 hopper-medium-v2 walker2d-medium-v2
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Figure 7: Performance of TD3 with FANS by varying width for the critic network.
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Figure 8: Performance of TD3 with FANS by varying depth for the critic network.

C.3 Learning Curves

The learning curves of TD3 + FANS for all tasks corresponding to Table 2 in the main text are shown
in the figure below.

16



halfcheetah-medium-v2 halfcheetah-medium-replay-v2 halfcheetah-medium-expert-v2

70 120
P A iia s s does s R —— TD3+FANS
oof 50 ‘ 100 Anf™
|
o 50 ] [
K LEY B 60
N ‘ N N
£ £ £
= £2 £ A
S 20 S 0 <] O \ M
z z z | W
10 10 20f1
0 —— TD3+FANS 0 —— TD3+FANS of |
0 02 04 0.6 0.8 1 0 02 04 0.6 0.8 1 0 0.2 04 0.6 0.8 1
Training Steps (x10°) Training Steps (x10°) Training Steps (x10°)
hopper-medium-v2 hopper-medium-replay-v2 hopper-medium-expert-v2
140 —— TD3+FANS 120 —— TD3+FANS 140 —— TD3+FANS
I | 100 oA A AN A = IR WWerei-spst i sataniines
2100 | W o | VW om0l WW
g N\ S S |
3 80 ‘ Y @ 80 | *a |
° ° - 8
g o0 f g I [
s \ el | S 6
3 -l £ / E \
s Ikl S | S 40| |
Z 20 / i B = J
/i |
N/ / 20
0 20|/ ‘V/
20 y 0
0 02 04 0.6 0.8 1 0 0.2 0.4 06 0.8 1 0 02 04 0.6 0.8 1
Training Steps (x10°) Training Steps (x105) Training Steps (x10)
walker2d-medium-v2 walker2d-medium-replay-v2 140 walker2d-medium-expert-v2
100 TR S O —— TD3+FANS —— TD3+FANS
v a'n S and BESOZSR
[ V 'y 100 | AV WA/ e 120 L wilirire
f\W [ ! i e e R M
o & (v 2 8o ' @100 T LR
8 8 N
3 A & R
o 60| | 2 60 1 M
8 | 8 8 |
H ‘w H s O )
z | z ‘ = |
|
20 | 2| | 20| |
/ |
ol / —— TD3+FANS o / ol /
0 0.2 04 06 0.8 1 0 0.2 0.4 06 0.8 1 0 02 04 0.6 08 1
Training Steps (x10°) Training Steps (x10°) Training Steps (x105)

Figure 9: Performance of TD3 with FANS on different mujoco tasks.
NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes], ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:
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* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope, as we provide a clear overview of the research objectives,
methodology, and key findings, which are consistently supported and elaborated upon
throughout the paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss the limitations of our method throughout the main text, experiments,
and especially in the conclusion section.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: This paper does not include theoretical discussions.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: This paper provides sufficient methodological details, experimental settings,
and evaluation protocols to allow reproduction of the main results that support the paper’s
core claims and conclusions.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
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In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: This paper provides open access to both the data and code, along with clear
and detailed instructions in the supplemental material, enabling faithful reproduction of the
main experimental results.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: This paper clearly specifies all the relevant training and testing details.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: This paper appropriately reports error bars and provides other relevant sta-
tistical information to correctly convey the uncertainty and statistical significance of the
experimental results.

Guidelines:
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8.

10.

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: This paper provides sufficient information in the Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: This research conducted in the paper fully adheres to the NeurIPS Code of
Ethics

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
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Justification: This work will not have any potential negative impact on society.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Not applicable, as the paper does not involve the release of data or models
with a high risk of misuse, such as pretrained language models, image generators, or scraped
datasets.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators and original owners of all assets used in the paper, including code,
data, and models, are properly credited, and the licenses and terms of use are explicitly
mentioned and fully respected.

Guidelines:

* The answer NA means that the paper does not use existing assets.
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13.

14.

15.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The new assets introduced in the paper are well documented, and the docu-
mentation, along with the code, is provided in the supplementary material.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing experiments or research with
human subjects

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
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Justification: This paper does not involve study participants or human subject research that
would require such disclosures or approvals.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer:

Justification: This paper does not use large language models (LLMs) as a core component
of the research methodology.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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