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Abstract

Humans excel at constructing panoramic mental models of their surroundings,
maintaining object permanence and inferring scene structure beyond visible regions.
In contrast, current artificial vision systems struggle with persistent, panoramic
understanding, often processing scenes egocentrically on a frame-by-frame basis.
This limitation is pronounced in the Track Any Point (TAP) task, where existing
methods fail to track 2D points outside the field of view. To address this, we
introduce TAPVid-360, a novel task that requires predicting the 3D direction to
queried scene points across a video sequence, even when far outside the narrow
field of view of the observed video. This task fosters learning allocentric scene
representations without needing dynamic 4D ground truth scene models for training.
Instead, we exploit 360 videos as a source of supervision, resampling them into
narrow field-of-view perspectives while computing ground truth directions by
tracking points across the full panorama using a 2D pipeline. We introduce a
new dataset and benchmark, TAPVid360-10k comprising 10k perspective videos
with ground truth directional point tracking. Our baseline adapts CoTracker v3 to
predict per-point rotations for direction updates, outperforming existing TAP and
TAPVid 3D methods.

1 Introduction

Humans possess a remarkable ability to construct panoramic internal representations of space —
moment-by-moment models that mentally complete the full sphere of surrounding information, even
when only a fraction is currently visible. Coupled with object permanence, spatial mapping, and
predictive scene completion, these cognitive mechanisms allow us to infer the full structure of a
scene, updating our mental model dynamically as new information arrives. For example, we can sit
down on a chair without looking behind us, this capability is based on maintaining a mental model
that understands the chair remains despite being outside of direct view.

In contrast, current artificial vision systems struggle with this kind of persistent, panoramic scene
understanding, as they often operate in an egocentric, frame-by-frame manner with limited memory
for unseen regions. This is particularly significant in the context of the Track Any Point (TAP) task [1-
6]]. The goal of the TAP task is to track a set of 2D points through a video V' = (I;)7_; comprised of T'
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large, diverse 360° ground truth tracking
video dataset outside view frustum

Figure 1: Overview: the TAPVid-360 task (right) is to track the direction of a set of query points in
the camera coordinate system of each frame of a narrow field of view video. We generate training
data and a benchmark evaluation for this task by curating a large, diverse dataset of 360 videos. We
track groups of points using a 2D segmentation and TAP pipeline and convert to directions. We then
render a virtual narrow field of view perspective video by resampling the 360 video where the tracked
directions may be (significantly) outside the field of view of the video.

RGB frames [; € R3*#>W _ Concretely, given a set of N query points (P{)_,, the goal is to predict

the set of tracks for the points through all frames, PF = (i¥, jF) e Rt =1,...,T,k=1,...,N.
Some methods additionally predict a binary visibility flag to indicate whether the point is occluded.

The original 2D formulation of the TAP task lacks panoramic scene understanding. Specifically,
there is no notion of object permanence when an object leaves the field of view. Some methods are
explicitly trained to track points slightly outside the field of view of the image but still within the
image plane, meaning (if, j¥) may not lie in {1,..., W} x {1,..., H}. Any method that cannot
predict point tracks outside the field of view of the image can be trivially extended to do so by padding
each frame of the video with a border region. However, this representation cannot handle points that
move far outside the original field of view, particularly any point in the back hemisphere (i.e. > 90°
from the view direction). Hence, most methods do not meaningfully track points once they are no
longer visible and must resume tracking as a re-ID problem when they return.

A potential solution to this problem was the introduction of the TAPVid-3D [3] task. Here, the
query points are still provided as 2D pixel coordinates but, in one possible formulation, the task
is to predict a 3D trajectory P} = (uf,vF, wF) € R3. Where the 3D points are either in a world
coordinate frame that remains fixed or in the coordinate system of the camera at the corresponding
frame. In principle, this alleviates the representation problem for out-of-view points since any
3D location can be represented — similarly to SLAM [7]. The downside of such a representation
is the difficulty of acquiring training data. Complete 3D models for a possibly dynamic scene
are required at every time instant. For this reason, the TAPVid-3D benchmark and most methods
operate in a 2.5D representation where points are tracked in image space along with their depth,
i.e. PP = (if, ji,wF) € R3, such that their 3D location in camera coordinates can be derived via
projection using the camera intrinsics. This means that these methods still suffer the same problem as
2D TAP methods with regards to persistent tracking of points outside the field of view.

The recent availability of consumer-grade 360° cameras has led to an explosion of panoramic
video data, providing an unprecedented opportunity to train models to develop allocentric scene
representations — world-centric models of the environment that persist beyond momentary views. We
exploit large-scale datasets of 360° videos, captured in diverse real-world conditions, as a rich source
of supervisory signals for learning how spatial information unfolds beyond the boundaries of a given
viewport. 360 video offers many unique advantages over traditional 2D perspective video. Namely, it
offers a complete 360 view of the entire world around the camera. A lack of boundaries or borders
to the view frustum means objects never leave frame. It provides a richer understanding of spatial
layouts and scene dynamics.

In this context, we introduce the TAPVid-360 task. Here, given query points as pixel coordinates
in the first frame, the goal is to track the 3D direction (in the camera coordinate frame) to the scene



point corresponding to the query point. Intuitively, we are asking the model to persistently predict
in which direction a point is but (unlike TAPVid 3D) not its distance. This corresponds to a human
being able to approximately point to where they believe a chair is behind them without knowing
exactly how far away it is.

Concretely, given a narrow field of view, perspective video and query pixels for frame 1: Q¥ =
(¥, %),k = 1,..., N (as for the TAPVid task), the goal is to predict directions in the form of unit
vectors for each point across the sequence: DF = (zF. yF 2F) t =1,.... T,k = 1,..., N with
| D¥|| = 1, even when the point has left the field of view. We believe that this task provides a useful
learning objective for many downstream tasks. For points that leave the field of view, the model
is required to reason about egomotion and, for any camera motion other than pure rotation, the
3D location of the point. For dynamic points, it must additionally extrapolate the dynamic motion,
possibly including an understanding of physical laws, for the unobserved period. Since directions
must be predicted for every frame, it imposes object permanence as a hard constraint.

In this paper, our key contribution is to show how to construct a TAPVid-360 dataset without requiring
3D ground truth. Instead, we generate perspective, narrow field of view videos by resampling
360° videos while using a novel 2D point tracking pipeline on the complete 360° video to provide
ground truth directions. We propose a baseline method to tackle this task by modifying and fine-
tuning CoTracker v3 [5] to predict rotations for each query point/frame that update the predicted
direction for that point from one frame to the next. We show that this outperforms existing TAPVid
and TAPVid-3D methods when evaluated for the TAPVid-360 task.

2 Related Work

Track Any Point Establishing correspondences across video frames is a fundamental problem
in computer vision. Traditional optical flow methods focus on computing dense correspondences
between consecutive frames. Early techniques relied on variational approaches and hand-crafted
features [8} 9]], but the advent of deep learning brought significant advancements with architectures
like FlowNet [10] and RAFT [11]. However, these methods often struggle with long sequences,
occlusions, and significant appearance changes, limiting their effectiveness in complex real-world
scenarios.

To address these shortcomings, recent research has shifted toward Tracking Any Point (TAP),
first introduced in [12]], which emphasises long-term tracking capable of handling occlusions and
appearance variations. The majority of current TAP models track in 2D [} [2, 4H6], though some
recent works extend the tracking problem to 3D [13} [14} [3]. However, no existing 3D method
continues to estimate tracks for points that have left the camera’s view frustum. A major cause of
this limitation is the scarcity of suitable ground truth training data. The majority of data comes from
synthetic dataset [[15[16], driving scenarios [[17,[18]], or complex 3D capture domes [19], which do
not offer sufficient scale or diversity for training models to handle such out-of-view trajectories.

360° Video for Scalable Supervision Addressing the challenge of data scarcity for 3D tracking
necessitates novel data sources. The rise of consumer-grade 360° cameras has resulted in a vast
source of data that remains largely untapped. While some recent works have begun to leverage this
data, their focus has primarily been on generative tasks. For instance, [20] presented a dataset of
one million 360° YouTube videos for training novel view synthesis models, and [21]] utilised this
dataset to finetune a video diffusion model for 360° outpainting from perspective inputs. In this work,
we demonstrate that 360° video not only offers the unique capability to track objects continuously
as they move within the full spherical field of view, but also enables the resampling of arbitrary
perspective camera trajectories. This provides a diverse and readily scalable source of supervision for
TAP models.

3 Dataset Generation

To train models in this task we require 360° video data, filtered for quality and dynamic content. From
such a dataset we can extract paired perspective crops and ground-truth camera-relative direction
tracks to objects within the scene. To that end, we first curate a high-quality dataset of 360° videos
and then process these to provide pseudo-ground-truth tracks.



3.1 Data Curation

We start with the 360-1M dataset [20]], a dataset
of approximately 1 million YouTube links for
360° videos. However, many of the links pro-
vided point to non-360° videos or videos that
are incorrectly formatted for our use case. We
follow similar filtering methods to [21},22] to fil-
ter the data before processing for point tracking.
We store our 360° videos as 2D videos under
equirectangular projection.

Coarse Filtering We keep only videos with
greater than 15 likes, around 100k videos, as a
baseline for quality. We download in the highest
quality available using yt-dlp [23]]. We then re-
move any videos that don’t contain side-data-list
in their metadata (metadata indicating to media
players to play this content in 360° format). If
the side-data-list has the value fop and bottom,
we crop and scale to a 2:1 aspect ratio the top
half of the video. This filters for videos that

Categories (%)

= Travel & Events (27.8%)
m people & Blogs (19.4%)
== Gaming (11.1%)
=== Entertainment (11.1%)
- Music (9.7%)
m= Film & Animation (5.6%)

Sports (4.2%)
w== Education (4.2%)

Autos & Vehicles (4.2%)
== News & Politics (1.4%)
mm= Nonprofits & Activism (1.4%)

Figure 2: Distribution of categories in our filtered
dataset. The largest majority comes from Travel
and Events with 27.8%.

should not have been in the 360-1M dataset; however, many videos are incorrectly labelled or are
360° formatted videos containing perspective videos or images projected onto a sphere.

To remove these we therefore apply the following coarse-filtering process:

* Perspective / Poster Detection Videos are grayscaled and binarised using adaptive thresh-
olding. The bounding box of the largest external contour, representing the main content, is
determined. If this content area is significantly smaller than the frame and the surrounding
regions are black borders the video is flagged as a poster and removed.

* Scene Dynamics Frames are sampled at random intervals, and pixel variance is calculated.
Static videos with minimal inter-frame variation are removed.

* Formatting LPIPS between the left and right halves is computed to filter 180° formatted
videos and between the top and bottom halves to filter 360 videos with incorrect metadata.
180° videos are removed and the top and bottom are cropped and scaled to 2:1 aspect ratio
as before.

* Seams Since equirectangular video should be continuous at the edges, discontinuities at
the wrap-around seam (left and right edges) of the equirectangular video indicate a non-
360° video. Thin vertical strips are extracted from the leftmost and rightmost edges of
the frame, and normalised cross-correlation is computed between the crops. This yields a
similarity score between -1 and 1. If the similarity score falls below a specified threshold, it
indicates a mismatch between the edges, implying a visible seam.

These metrics are averaged over ten evenly spaced frames throughout the video.

Fine Filtering After coarse filtering, we split the videos into 10-second clips using FFmpeg [23].
These require further filtering as it is still possible for clips to contain minimal dynamic content, to
have scene changes partway through and for watermarks to be placed over the video.

We therefore use the following fine-filtering process:

* Optical Flow Calculate the average magnitude of sparse optical flow vectors between every
other frame and remove videos below a threshold.

* Scene Detection Clips are run through PySceneDetect [26] to identify scene changes either
with harsh cuts or through fades. Clips that contain scene changes are removed.

» Watermarks A LAION Watermark detection network [27]] is used to identify watermarking
and remove clips above a confidence threshold.
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Figure 3: Overview of our data generation pipeline (zoom for detail). We first use Lang-SAM [28]]
on the first frame of our pre-filtered 360° video to segment dynamic objects. SAM?2 is then used to
distribute these masks to the full video. We sample 2D perspective videos following each object mask
and use CoTracker3 [3] to track the object through the perspective video. We then transform these
tracks back onto the 360° video. Finally we sample novel camera trajectories and use these new 2D
perspective videos and ground truth 3D directions as training data for our model.

This results in around 130k 10-second clips that are correctly formatted and contain good dynamic
content or camera motions.

3.2 Ground Truth Directional Point Tracks from 360° Video

Given our set of filtered clips, we generate training and evaluation datasets comprising paired
perspective videos and camera-relative, pseudo-ground-truth, unit-vector tracks for dynamic objects.
An input 360° video in equirectangular format is denoted as V,, = (Z;)~_;, representing a sequence
of T' frames where each frame Z; € R3*Hea*Wea We first subsample V., to a new sequence length,
of T' = 32 frames, to increase the likelihood of capturing salient dynamics within the clip. Lang-SAM
[28]] is applied to the initial equirectangular frame Z,, Figure[3](a), using a predefined set of object
classes typically exhibiting dynamic behavior e.g. person, bicycle, dog, car. See supplementary for the
full list. This yields an initial set of instance segmentation masks for frame 77, M;,,;; = {Ml j } ;V:dit
for Ny detected instances. We retain masks whose confidence scores exceed a predefined threshold
Teon s and select the top-K scoring masks from this filtered subset. These K masks { M { L HE | serve
as initialisations for SAM2 [29]. SAM2 is subsequently run on the complete T' frame equirectangular
video V, to propagate these masks, FigureEl (b), thereby obtaining instance segmentation masks for
each of the K objects across all frames. If SAM?2 fails to maintain a consistent mask for an instance
throughout the video’s duration, that instance is excluded. This procedure results in a final set of
equirectangular segmentation masks SM., = {Sy, | t € {1,..., T}, k € {1,...,K'}} where
K' < K is the number of successfully tracked instances and each S ;, € {0, 1}H caXWeq

Perspective Projections and Point Tracks For each of the K’ successfully tracked instances, we
now generate corresponding perspective views and 2D point tracks, which will subsequently be
used to derive pseudo-ground-truth unit vectors. For each instance k € {1, ..., K'}, we generate a
sequence of time-varying camera projection parameters, Figure [3|(c). Specifically, for each frame



t € {1,...,T} of the intended perspective clip, we sample an extrinsic rotation matrix Ry ; € SO(3)
and an intrinsic camera matrix Ky ; € R3*3 (which defines the FOV for that frame). These
parameters define a time-dependent perspective camera transformation Iy, ¢ (-; Ry ¢, K 1)-

Using this sequence of transformations, we render a perspective video Viersp i = (I{ i) i— from
the equirectangular video V., where each frame It” s € R3¥HperspxWrersy ig rendered using its
corresponding Ry, ; and Ky, ;. Similarly, we project the instance’s equirectangular segmentation
masks {S; 1 }7_; to obtain a sequence of perspective masks SMpe,sp k = (Sg’k)thl, where S} ;. €
{0, 1} rersp*Woersp - The sequence of projections I ; is chosen such that the instance & is
centred within the perspective view, guided by its mask sequence.

For the initial frame 7 , of the k-th perspective video, we sample as set of N, query pixels coordinates

P k{(ig, jq)}fl\;‘ll from within the corresponding projected segmentation mask .57 ;, Figure 3 (d).
These 2D points, associated with the first frame (time index ¢ = 1) are then formulated as a set of
spatio-temporal queries Qj, = {(1,u;, vj)};-\f:ql. This set of Qy, is provided as input to CoTracker3 [3]],
Figure [3|(e), to obtain 2D point tracks p;,q = {(it,q, jt,q) }t=1,.... T;q=1,...,N, Within the perspective
video Viersp k-

The set of tracks is further refined by filtering based on cumulative 2D displacement. For each track
¢, represented by the sequence of image-plane coordinates p; ; = (44,4, ji,q) for framest =1,...,T,
we calculate its total path length. This cumulative length, L, is given by the sum of Euclidean
distances between temporally consecutive points:

T-1
Ly =Y IPt11.4 — Prall2
=1

Tracks are retained only if L, exceeds a specified cumulative length threshold, Ly, cs. This selection
keeps tracks that exhibit dynamic object motions, effectively removing tracks from static, distant or
minimally moving points.

We now transform the filtered 2D perspective tracks into direction vectors, Figure 3] (f). Given our 2D
perspective point tracks P = (i, jt.q) € R2t=1,...T,q=1,..., Ny, the corresponding unit
vector in camera coordinates can be computed as follows:

For each tracked 2D point P = (44,4, jt,q) from the g-th track at frame ¢ in the k-th perspective video,

we first represent it in homogenous coordinates as P = (i 4, ji.q, 1). This is transformed into a 3D
direction vector in the camera’s coordinate system as:

Vcam,t,q

—1 ~
dcam,t,q = Veam,t,q = Kk,tptvlr (M

HVcam,t,qH27

Sampling New Perspective Crops Now that we have d .4, ¢4, Our pseudo-ground-truth unit-vector
representing the direction from the camera centre to the point (¢4 4, jt,q) in the camera’s 3D coordinate
system for that specific frame ¢ and instance k, we can generate training examples by resampling
new perspective camera trajectories from the equirectangular video. As before for each instance
k € {1,...,K’'}, we generate a sequence of time-varying camera projection parameters, Figure
(g). Specifically, for each frame ¢ € {1,...,T} of V., we sample a time-dependent perspective

camera transformation lﬁlm(-; R+, K k,t). However the sampling of this perspective transform is
now chosen randomly from a set of predefined camera motions functions, static (original camera
motion), spin_(x,y,z), spiral, simulated human, random and btf. See supplementary for detailed
descriptions of these different sampling methods. The result is Sk training and 10k test samples.
All containing dynamic camera motions with ground truth tracks for objects that can leave the view
frustum.

3.3 Dataset Statistics

Table [I] presents a comparison of our TAPVid360-10k validation set with existing TAP datasets,
spanning both 2D and 3D modalities. Notably, despite representing only the validation portion of
our dataset, TAPVid360-10k exhibits strong coverage and diversity. Moreover, our data generation
pipeline, presented in Section [3| is capable of producing significantly larger-scale datasets with



similar characteristics. In addition to these aggregate metrics, Table [2 highlights the distribution of
annotated points that fall within versus outside the perspective camera’s field of view, illustrating the
dataset’s breadth across different visibility conditions.

4 CoTracker360: A TAPVid-360 Baseline

As a baseline model, we modify the recent CoTracker3 [4] method to predict directions instead of
point estimates. The original CoTracker3 predicts point displacements relative to the first frame. This
is an easier representation for the model to reason about compared to directly regressing absolute
point position at each frame. We follow the same approach except that we apply a rotation to the
direction at the first frame. Accordingly, we replace the last layer of the CoTracker3 decoder with a
linear layer with 9 outputs and linear activation. We reshape this to a 3 x 3 matrix and project to the
closest rotation matrix using special orthogonal Procrustes orthonormalization [30].

To produce output, we convert the initial query point positions from pixel coordinates to directions
using the intrinsic parameters of the camera. These unit vector directions are then rotated using the
rotation matrices predicted for this point for each frame. We supervise the direction predictions using
Huber loss (we experimented with angular error but found this to be less stable). We initialise with
the pretrained CoTracker3 offline weights and finetune with a training dataset created using the data
generation approach described in Section[3.2] We create 5k additional perspective video clips. These
clips are distinct from those in the TAPVid360-10k dataset to avoid any overlap. We do not supervise
the CoTracker3 confidence and visibility outputs during training. The model is trained for 120 epochs
using the Adam optimizer with a learning rate of 1le — 4. Training is performed on a single NVIDIA
A40 GPU with a batch size of 8. Due to memory constraints, we are limited in the number of query
points and frames used during training; we choose 32 query points across 32 frames. We refer to this
trained model as CoTracker360.

5 Evaluation

To establish a baseline for TAPVid-360, in addition to our proposed CoTracker360, we evaluate
several state-of-the-art tracking approaches, including both 2D and 3D methods. For 2D tracking,
we consider TAPIR [2], BootsTAPIR [31]], and CoTracker3 [4], while for 3D tracking, we utilise
SpatialTracker [13]. To align these methods with the dataset, which represents motion as unit vector
directions, we convert their pixel-space outputs accordingly using the known camera intrinsics. We
run evaluation using 256 query points and 32 frame clips.

Metrics To evaluate our benchmark, we adapt a widely used metric within TAP frameworks
[LL, 13, 4]], namely < (5§Vg, which measures the fraction of predicted points that lie within a given
threshold of the ground truth. However, since our setting involves directional vectors rather than
purely (x,y) coordinates, we replace the pixel-based distance with an angular threshold, expressed

in terms of angle per pixel. Based on the field of view of our dataset, a movement of a single

Dataset #Videos #Clips # Objects Avg Trajectories Per Clip Real/Sim FPS Data Type
TAPVid-RGB-Stacking 50 250 / 30 Sim 25 2D
RoboTAP 265 / / 44 Real / 2D
TAPVid-Kinetics 1,189 / / 26.3 Real 25 2D
TAPVid-KUBRIC 38,325 / / flexible Sim 25 2D
TAPVid-3D 2828 4569 / 50-1024 Real 10-30 3D
TAPVid360-10k 4772 4772 10000 256 Real 3.75-30 360

Table 1: Comparison of dataset metrics.

Dataset # Points Within Frame # Points Out of Frame

TAPVid360-10k 36.28M 45.64M

Table 2: Showing the number of points located within the visible frame versus those outside the
frame boundaries.




Method < Ogygan T < Ogegit T < Ogygoor T ADggand ADg i | ADg oot 4

TAPNext [6] 0.0082 +o00070  0.0191 400157 0.0004 +o0000  51.9752 +180770  36.5923 +i1sssss  62.4601 +19.8415
TAPIR [2] 0.0106 00081 0.0251 xo0191  0.0003 00006 49.8086 179032 33.8824 209064  60.5154 +17.5166
BootsTAPIR [31] 0.0126 +oo119  0.0293 +o00262  0.0005 00000  48.3582 +1790551  33.3154 1205326 58.3841 +17.9581
TAPIP3D [32] 0.2476 +o.564  0.4698 +02301  0.0850 +0.1227  36.4412 +258254  23.3191 218679  45.7951 +31.5080
SpatialTracker [[13] 0.2239 +o10s2 0.4893 +o1946  0.0303 +o0s30  38.8780 23462 22.1635 +214758  50.4350 +273025
CoTracker3 (offline) [4]  0.2435 +oosor  0.5588 +0.1574  0.0158 +0.0224  37.4287 4213083 17.6352 4213200 50.9759 +240512
Ours (CoTracker360) 0.2334 +o.1087  0.4008 +o01331  0.1108 o010 8.3380 +7.3714 3.9806 43698 11.0600 +9.6360

Table 3: Comparison of tracking performance metrics.

pixel corresponds to 0.2755° (degrees per pixel, denoted as px°). Hence, our thresholds are set
to [1px°, 2px°, 4 px°, 8 px®, 16 pz°]. The average value across all of these thresholded ranges
is then computed to produce a single summary score. In addition to this, we also report the mean
angular distance between each predicted point and its corresponding ground truth (ADy,,,). Given
the challenging nature of the dataset, it is common for the deviation between predictions and ground
truth to exceed the largest threshold defined by < §”. In such cases, the thresholded accuracy alone
may not fully capture the performance. Therefore, we include the average angular distance as a
complementary metric that reflects the overall deviation, regardless of threshold. We split each of
these metrics into in-frame (IF) and out-of-frame (OOF) subsets to separately evaluate a model’s
point tracking performance on each condition. In addition, we report results for all points. A key
contribution of our work is this explicit evaluation of a model’s ability to track points that move
out-of-frame. This is an aspect that is often overlooked by existing benchmarks, which primarily
focus on in-frame accuracy. At the same time, we ensure that in-frame performance is preserved and
does not degrade significantly when models are trained or evaluated under this extended setting.

Quantitative Results The results in Table 3| highlight a critical distinction between precision and
reliability. While CoTracker3 and SpatialTracker show high precision on in-frame points (< 65, 4if)
their performance is undermined by large error magnitudes on incorrect predictions, as reflected in
their poor angular distance (AD) scores. Our method, CoTracker360, resolves this issue, and its
superiority is most evident when tracking points out-of-frame. Our method achieves the best out-of-
frame accuracy (< 0y, 400f) being 1.3x higher than the next-best baseline, TAPIP3D. Critically, it also
reduces the corresponding angular distance error (AD;”vgoof), a greater than 4-fold reduction over
TAPIP3D. The notable performance of both CoTracker360 and TAPIP3D (which uses 3D context)
highlights that explicitly accounting for out-of-frame context is essential. This state-of-the-art error
reduction demonstrates that CoTracker360 avoids the catastrophic failures of other models and most
robustly handles the primary challenge of long-range, out-of-frame tracking.

Qualitative Results In Figure [] and [5] we show qualitative examples of the tracking results on
sample videos from the TAPVid360-10k dataset. Frames are rendered as egocentric images within
the equirectangular image frame. Query points are shown in frame 1 and the tracking results in
subsequent frames. When the tracked object leaves the image frame, many comparison methods
either lose the object entirely or remain stuck at the image border where the object left the image.
CoTracker360 is able to continue making plausible estimates as to the direction of the points based
on camera motion.

6 Conclusions

In this paper we have introduced the TAPVid-360 task and a scalable method to generate ground
truth data. We have shown that a simple adaptation to an existing TAP model and finetuning on a
small set of such data allows the model to track points well outside the field of view of the image
and to continue to predict dynamic motion. The representation switch from image plane points to
3D directions abstracts the task away from the specific field of view of the image to a panoramic
representation, akin to human allocentric representations, without requiring difficult-to-obtain ground
4D scenes models for supervision. We also argue that directional rather than absolute positional
tracking is an easier task yet could still be used as pretraining for 3D related tasks.

Limitations There are some limitations to both the dataset and proposed baseline method. The
dataset is created using a fixed field of view. This allows us to test whether the TAPVid-360 task is
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Figure 4: Direction tracks for each method for two videos (zoom for detail). Each frame is visualised
as an egocentric perspective image within the equirectangular representation (greyed out regions are
outside the field of view). The query points are shown in the first frame, the original video frames in
the top row and ground truth tracks in the second row of each block.
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Figure 5: Further qualitative example of estimated direction tracks (see Figure ] for details).

solvable in this restricted case but does not allow us to test sensitivity to field of view or dynamically
changing field of view (i.e. zoom). Related to this, a limitation of the baseline method is that we can
therefore use a fixed positional encoding per patch. To correctly allow the model to handle zoom, we
would need to use a per-patch directional encoding based on the direction through the patch centre to
encode field of field. The model would also benefit from representing uncertainty - i.e. a directional
distribution. This would allow the model to be increasingly uncertain as points leave the field of view.

Broader impacts Solving the TAPVid-360 task enables several significant downstream applications.

In robotics, maintaining a persistent, panoramic understanding of its surroundings would enable
more robust active vision, allowing a robot to accurately reacquire objects that leave its field-of-view
(FoV) by pointing its camera in the predicted direction. The predicted directional tracks can also
serve as powerful priors for re-identification (re-ID) systems. When an object reappears, candidates
that appear in locations requiring implausible motion can be rejected, improving tracking robustness
when objects return to view.

The TAPVid-360 task requires that a model learns key cognitive abilities like object permanence and
reasoning about unseen object dynamics. Given the difficulty of acquiring ground-truth temporal 3D
tracks for dynamic scenes, our scalable data generation pipeline could be used to pretrain a model
before being fine-tuned on smaller 3D datasets.

Finally, the directional tracks could be used as a conditioning signal for video generation models.
This would help enforce temporal consistency and plausible object motion, mitigating common
failure modes where objects are forgotten or hallucinated incorrectly after leaving and re-entering the
camera’s view.

We additionally acknowledge however that these same advancements could also have negative
consequences if misused, potentially leading to more sophisticated surveillance capabilities that erode
privacy, or contributing to the development of more effective autonomous weaponry with reduced
human oversight.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Dataset - see Section 3} Evaluation - see Section [d]
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Section 3
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: Paper does not include theoretical results

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Dataset generation is fully described in Section[3]and all model details provided
in Section

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: Evaluation Dataset will be available for download and code to generate training
data and run evaluation will be available online.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Fully specified in Section ]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: No error bars are reported for results.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Specified in Section[f]and Section 4}
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors confirm the paper conform, in every respect, with the NeurIPS
Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Discussed in the conclusion.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Datasets are scraped from YouTube which itself provides filtering for harmful
content.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

18


paperswithcode.com/datasets

13.

14.

15.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Links to YouTube content are provided by prior work. The evaluation dataset
transformed beyond recognition from the source and considered fair use for non-commercial
use.

Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Figure 6: The Graphical User Interface (GUI) for manual verification of object point tracks. Users
can accept tracks to be passed to the next stage of the pipeline or reject them.

A Dataset Verification

To ensure high dataset fidelity, we employ a two-stage manual verification process. First, we
validate the output of the point tracker on object-centred perspective crops, as detailed in Perspective
Projections and Point Tracks. To streamline this step, we developed a verification GUI (Fig. [6) that
enables an operator to efficiently accept or reject point tracks before they proceed to the camera
motion emulation stage. Second, following camera emulation, a visualisation tool (Fig. |Z|) is used to
confirm that the final data is plausible, accurate, and sufficiently diverse.

B Dynamic Object Classes

To query LangSAM, we select a curated list of object categories that are typically associated with
dynamic behavior in real-world scenes. This strategy is aimed at maximizing the likelihood of
capturing non-static points. The chosen categories are: person, bird, fish, insect, dog, cat, horse,
snake, animal, car, bike, motorcycle, train, airplane, boat, ship, helicopter, submarine, rocket, bus,
truck, robot, drone, conveyor belt, wind turbine, fan, clock hands, gears, ball, frisbee, pendulum,
swing, yo-yo, kite, and shopping cart.
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Figure 7: 3D Viser [33] based viewer used to check camera motion strategies and frustrum alignment.
The 360 video wraps around the sampled perspective camera frustum shown here in orange. Local
camera axis and world coordinate axis are also shown.

C Perspective Camera Sampling Methods

Given a specified number of frames N, we aim to generate a sequence of rotation matrices {R; ijigl

simulating a form of camera motion. To achieve this we sample from a range of motion strategies, as
well as employing an optional back-to-front (btf) strategy.

C.1 Motion Strategies for Framewise Rotation

We define a motion strategy that governs the per-frame rotational deltas applied to an initial rotation

matrix Rg € SO(3), producing a sequence {R;}* ;. The framewise deltas are determined by a
selected motion type: spiral, random, simulated human, static, or spin. At each time step 1,
we compute pitch («;), roll (5;), and yaw (;) angles, and update the rotation matrix accordingly:

Ri+1 - Rz N Rupdate(aia Bza%)

where Rypaae € SO(3) represents the combined rotation induced by pitch (), roll (/3), and yaw (7)
angles, applied in a fixed axis order (e.g., XYZ).

Let N be the total number of frames, and 6,i,, Omax € R be the angular bounds.

 Spiral Motion:
) amax gmin o
o =y = <Z( )) mod 360°, 3, =0

* Random Motion:
Q ~ UZ [amin; amax]a ﬁl ~ uZ [amina amax]a Yi ™~ Z/[Z [amina amax]

where Uz [a, b] denotes a uniform discrete distribution over integers in [a, b].

* Simulated Human Motion: Inspired by [34], this strategy mimics natural human motion
by combining a sinusoidal oscillatory term (A; sin(w)), a linear drift term (D), and a
per-frame noise term (¢ (7)). The resulting rotational deltas are defined as:

Bi = A sin(wi) + €,(¢) (2)
a; = Apsin(wi) + Dyi + €,(4) 3)
vi = Ay sin(wi) + Dyi + €,(4) 4)
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where parameters are sampled once per sequence (unless noted) from:
A; ~ U0, Aj max) for axes j € {r,p,y}
Dy, ~ U(—Di max, Dk max) Tforaxes k € {p,y}
w ~ U(Wmin, Wmax)
e;(1) ~ N(0, 073 2) (per frame)

 Static Motion (Original Camera Motion):
a;=B;=7v%=0
* Spin Sequence (with Optional Noise):

In this strategy, the camera undergoes consistent rotation about a single axis a € {x,y, z},
optionally perturbed by zero-mean noise. The nominal step size is:

360°
N
A noise vector € € RY, where ¢; ~ U(—nAf, nAd) for some noise ratio n € [0, 1], is used

to perturb the steps:
1Y
€ < € — ﬁ Zl €;
1=

The final rotation step per frame becomes:
The corresponding Euler angle update is applied only along axis a, with others zeroed.

Al =

C.2 Back-to-Front (btf) Sampling Strategy for Symmetric Motion Sequences

To simulate temporally coherent and reversible motion patterns, we introduce a rotation sampling
procedure called back-to-front (btf). This approach constructs a symmetric camera motion sequence
centered around a middle frame, ensuring the target object remains in view at both the start and end
of the sequence, while allowing flexible motion in the intervening frames.

Given an initial sequence of rotation matrices {R(O)}l —o » we define a subset of frames around
the temporal midpoint to undergo smooth motion governed by a selected motion strategy (listed in
Section|[C.T)) . We then mirror the motion to maintain temporal symmetry.

Midpoint-Based Symmetric Sampling Let N be the total number of frames, and define:

N S
m = {J (temporal midpoint)

2
We randomly select an even number of frames k& € {Npin, - - . , Nmax | such that:
N
Nmin:\‘QJa Nmax:N_2'S

where s = 2 is a buffer to ensure the motion does not affect sequence boundaries. Let:

ls =M — le =15+ k

57

Forward and Reverse Rotation Generation Let { Rt} % ;. be the initial rotations for the selected

X2
region. We generate forward motion using a motion function M (e.g., SpinSequence along axis z):

{RPYLS" = Mky, (R, )
where ky = m — i,. The reverse motion is then defined as:

R} = Flip ({R))75°)

Finally, we construct the symmetric update:
{Rnew}ze -1 _ {wad}kf 1 U {Rrev}kf 2
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Rotation Type < Ogygan T < Oggit T < O5ygoof T ADg gand ADg, 4it 4 ADg oot L

Spiral 0.3462 +0.1240  0.4961 01094 0.2566 +0.1430  4.0407 +a9800  2.2302 +24922  5.0982 +6.5514

Random 0.1566 00730  0.3145 01148 0.0634 +oosst  11.0680 +sssss  4.4965 +ss455  14.4932 L10.6052
Simulated Human  0.2531 +o00793  0.4293 +o01188  0.0806 +00708  8.3346 +63253  3.9910 +a452  12.2939 187871
btf (back-to-front) 0.2179 +00792  0.3965 01244 0.0544 100500 10.2299 172768 4.2174 41245 15.2938 104913

Spin X 0.2591 +o0ss2  0.4390 +oos20 0.1190 00703 6.2751 +aess0  4.0033 £24147  7.9345 +62233
Spin Y 0.1442 0032 0.3409 +00673  0.0036 +000s6  31.4775 136024  7.1785 +as654  49.1963 +229266
Spin Z 0.2716 +o0737  0.4081 +oosss  0.1327 00760 6.0986 +44115  4.5028 +3404  7.6715 +s7018
Static 0.1354 00552 0.3254 +o1044  0.0144 100234 18.1220 +96174  5.6064 +40628  25.8741 +128718

Table 4: CoTracker360 results on camera-motion-type subsets of the data.

Category < Ogugan T < Oggir T < Sggoot T ADZ pand ADg it b ADZ, oo +

People & Blogs 0.2187 +01034  0.3775 +oa2s3 0.1011 +o.0087  8.7376 +75306  4.2186 +4.1966  11.6186 +9.0s70
Entertainment 0.2326 +0.1055  0.3959 +01213  0.1127 +o1041  8.1384 +67665s  3.8117 433887 10.8634 +9.1534
Gaming 0.2087 +0.1043  0.3626 +o.130s  0.0965 +0.0036  9.8318 102300 4.8049 48847 12.9421 121378
Music 0.2525 +o1153 0.4069 +o0a300  0.1361 +o.1s0  7.3109 455737 4.0196 483218 9.4702 +9.6809

Autos & Vehicles 0.2222 +0108s  0.3650 +0130s  0.1188 +o.1022  7.9885 +6064s  4.1886 +34097  10.3286 +s.0348
Sports 0.2244 +o01026  0.3831 01236 0.1065 00961 8.4316 +73019  4.0932 137052 11.1472 198152
Travel & Events 0.2230 +0.1047  0.3876 +0.1230  0.1021 +0.1017  8.8244 47423  3.9860 +3s5132  11.8718 +10.159
Film & Animation 0.2207 +0.10s6  0.3806 +0.1250  0.1047 +009083  8.5694 +73663 4.0472 +3s5018  11.2320 +9.3025
Science & Technology  0.2282 +oi0s7  0.3935 +ou33s  0.1103 o012 8.2426 68832 4.0457 +a06s7  10.8628 +8.7709
News & Politics 0.2353 +01102 0.3914 +01283  0.1188 01076 7.9090 +s83056  4.0294 458545  10.3167 +9.9797
Comedy 0.2462 +0.1020  0.4010 o192 0.1286 +o00994  7.4292 +63220  3.9414 +38063  9.9137 +8.8446

Education 0.2414 +01030  0.4025 01192 0.1205 o102 7.7933 +63s04  3.8595 £37160  10.3621 485833
Nonprofits & Activism  0.2353 +o10s0  0.3989 +oa282 0.1161 +01030  8.0270 +e7501  3.8404 32821 10.6153 +9.2540
Howto & Style 0.2356 +00971 0.3965 o126 0.1187 +o0992  7.1260 +47993  3.5662 +29108  9.5412 +6.6137

Pets & Animals 0.2061 +01025s  0.3758 +o119s  0.0917 +o0s76  9.7361 179589 4.2521 431416  12.5534 194720

Table 5: CoTracker360 results on subsets of the dataset split by category.

Final Sequence The new rotation sequence is given by:

R ifi ¢ [igic — 1]

RZ = new ]
R} otherwise

D Metrics Across Rotations and Subcategories

Table [ presents the performance of our CoTracker360 on various camera emulation methods. The
model achieves the best results with the Spiral motion, likely because objects often remain partially
visible or near the frame’s edge, simplifying position estimation. In contrast, the Spin Y motion is the
most challenging due to its roll rotation, which requires the model to track objects as they become
inverted.

Table [5] presents the performance of CoTracker360 on the video subcategories of the TAPVid360-10k
dataset. The results are consistent across all categories, demonstrating that our method generalises
effectively to diverse objects and environments.
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Figure 8: Further examples of the TAPVid360-10k dataset.
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