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Abstract

When simulating partial differential equations, hybrid solvers combine coarse
numerical solvers with learned correctors. They promise accelerated simulations
while adhering to physical constraints. However, as shown in our theoretical frame-
work, directly applying learned corrections to solver outputs leads to significant
autoregressive errors, which originate from amplified perturbations that accumulate
during long-term rollouts, especially in chaotic regimes. To overcome this, we
propose the Indirect Neural Corrector (INC), which integrates learned corrections
into the governing equations rather than applying direct state updates. Our key
insight is that INC reduces the error amplification on the order of ∆t−1+L, where
∆t is the timestep and L the Lipschitz constant. At the same time, our framework
poses no architectural requirements and integrates seamlessly with arbitrary neural
networks and solvers. We test INC in extensive benchmarks, covering numerous
differentiable solvers, neural backbones, and test cases ranging from a 1D chaotic
system to 3D turbulence. INC improves the long-term trajectory performance (R2)
by up to 158.7%, stabilizes blowups under aggressive coarsening, and for complex
3D turbulence cases yields speed-ups of several orders of magnitude. INC thus
enables stable, efficient PDE emulation with formal error reduction, paving the way
for faster scientific and engineering simulations with reliable physics guarantees.
Our source code is available at https://github.com/tum-pbs/INC

1 Introduction

Numerical simulation of nonlinear partial differential equations (PDEs) over long time horizons
is crucial for many scientific and engineering scenarios, with applications ranging from sub-grid
turbulence closure in climate models to real-time aerodynamic design and plasma physics. Traditional
numerical solvers deliver rigorous solutions [1–3], but their computational cost becomes prohibitive
when resolving fine-scale features. Designed to replicate the behavior of traditional numerical
solvers, neural emulators seek to accelerate solving by learning a surrogate directly from data [4–14].
However, their long-term performance is problematic, especially for chaotic dynamics, as a tiny
inaccuracy from a single step of an emulator can lead to solutions drifting out of distribution [15–18].

On the other hand, hybrid neural solvers combine benefits from numerical and neural methods by
integrating a coarse-grid physics solver as a backbone with a neural network. This network recon-
structs missing, unresolved, or erroneously represented physics, akin to closure models [19]. Such
approaches can be broadly categorized into two types: learned correction and learned interpolation.
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In learned interpolation [20, 21], a discretization scheme is directly learned on a coarse grid. This ap-
proach modifies the solver at the level of numerical discretization to mimic the effect of closures [22].
In contrast, learned correction targets unresolved physics through direct correction terms, offering a
simpler implementation and flexibility [23–30]. The directness of the existing learned correction
methods arises from applying a learned correction term directly to the output of a coarse-grid solver
after each time step. Generally expressed as un+1 = un∗

+LC(un∗
), where un∗

is the solution from
the embedded solver, learned correction methods show improved accuracy in rollout trajectories.
Still, hybrid solvers are prone to instabilities caused by perturbations. Such instability has long
been recognized in multi-physics solvers [31], and stability can further deteriorate when coupling
numerical solvers with neural networks [22, 23]. Worse still, existing stabilization strategies for pure
neural emulators fail here. Strategies with changing timescales can violate the strict stability criteria
of solvers, and noise injection only leads to subtle improvements [23]. While multi-step rollout
strategies have been applied and were shown to be helpful [18, 23, 27], the marginal stabilization
doesn’t change the intrinsic sensitivity to perturbations of direct correction. This inherently limits the
application of existing hybrid frameworks, highlighting important shortcomings of existing methods.

To address these shortcomings, we first develop a theoretical error growth framework for hybrid neural
solvers under autoregressive rollout. We find that for direct learned correction, local perturbations are
amplified with G(un) = I +∆tJ(un), where J(un) is the Jacobian of the system evaluated at un.
Contrarily, if the learned correction is applied in an indirect way, e.g., via a right-hand-side (RHS)
term, local perturbations scale only with ∆t. In autoregressive rollouts, the difference of these two
corrections grows with a ratio Rk ∼ ∆t−1 + L≫ 1, where L is the Lipschitz constant. Motivated
by this result, we introduce the Indirect Neural Corrector (INC), a hybrid solver paradigm that (1)
embeds learned corrections within the per-time-step PDE solve, (2) provably reduces errors with
scaling 1

Rk
, where 1

Rk
≪ 1, and (3) is compatible with arbitrary neural architectures and numerical

schemes.

To demonstrate the practical impact of INC, we conduct extensive benchmarks on six canonical PDE
systems and varying differentiable solvers as well as neural network architectures. INC consistently
outperforms direct hybrid and pure-neural baselines, strongly reducing long-term trajectory errors,
and yielding speed-ups of up to 330× for complex 3D turbulence cases. Our main contributions are
summarized as follows.

• A theoretical framework. We derive a unified error-propagation framework for hybrid neural
solvers under autoregressive rollout, and show that indirect correction reduces the worst-case drift
by O(Rk) compared to direct methods.

• INC algorithm and architecture. We design a general indirect correction module that integrates
seamlessly with off-the-shelf numerical solvers and neural networks, imposing stability constraints
without sacrificing expressivity.

• Extensive benchmarks. We evaluate with 6 canonical PDE systems (from 1D chaotic system to
3D turbulence), 4 architectures (FNO, DeepOnet, ResNet, U-Net), and 3 differentiable solver types
(finite-volume, finite-difference, pseudo-spectral).

2 Related Work

Neural Emulators Neural emulators seek to accelerate solving PDEs by learning a surrogate
directly from data [7–10], with minimal additional constraints like a physical loss [11, 12] and
symmetries [8, 13], or design the architecture to mimic the numerical solver [4, 13, 14]. While these
models can substantially reduce per-step cost, they generally lack stability guarantees, leading to
trajectory divergence [32] and unphysical statistics during inference [33]. Especially for chaotic
dynamics with exponentially growing perturbations, a tiny inaccuracy from the single network
application can lead to solutions drifting out of distribution [15–18]. Existing remedies, like multi-step
rollouts during training [34, 35], multi-model training with multi-timescales [36], noise injection [5,
32], learning timescales [6], incorporating knowledge like invariant measure [17, 37] and multi-
resolution targets [12] reduce errors at the cost of increased complexity and hyperparameter tuning.
More importantly, these methods still provide no formal stability guarantee.

Hybrid Neural Solvers Hybrid neural solvers couple a solver with a neural networks, where the
network learns an interpolation [20, 21] or a correction [23–30] This approach has been applied in
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various domains including vortex shedding [23], flow control [28], and turbulence modelling [21,
25, 26]. Recent advancements include extensions with online learning [38] and physical losses [27].
Previous works share some similarities with our approach [26, 27, 39]. However, CoSTA [39] is
limited to the training of a DNN for single-step corrections on a 1D diffusion problem. List et. al [27]
only focused on correction in advection steps, where a learned correction might be regularized by
following pressure-solves. Lastly, in the case of DPM [26], the use of a simple MLP and the absence
of a modern ML framework for the solver limit the augmentation between the solver and NN, making
it difficult to integrate with state-of-the-art models. While all the above-mentioned studies focus on
building a closure model, they do so without the theoretical analysis of the growth of perturbations in
hybrid solvers that we provide in this paper.

3 Method: Indirect Neural Correction

Solver-in-the-loop style approaches, which we term direct corrections in this work, take an operator-
splitting approach and correct a coarse numerical solution with a neural network

u∗ = T
[
u∗, un,N (∂xu

n, ∂xxu
n, . . . )

]
, un+1 = Gθ(u∗), (1)

where T represents the (explicit or implicit) temporal integration,N (·) denotes the physical dynamics
governed by spatial derivatives, and Gθ(u) is a neural network parameterized by θ. Thus, direct
approaches compute a correction to the dynamics directly as a state update.

In contrast, an Indirect Neural Correction (INC) performs corrections as a RHS term in the underlying
PDE

un+1 = T
[
un+1, un,N (∂xu

n, ∂xxu
n, . . . ) + Gθ(un)

]
. (2)

When neural corrections introduce small perturbations, this subtle difference of moving Gθ into the
time integration can have stark effects on the stability of inference rollouts, as our theoretical analysis
in section 4 and the results in section 6 show. Note that the differentiability of T is required to
optimize θ for the INC case, even when only unrolling one step.

We train the models in a supervised fashion based on high-resolution data. To ensure that the
model learns to produce stable and accurate long-term predictions, we employ a multi-step unrolled
optimization strategy. The training objective is typically defined via an L2 loss:

θ∗ = argmin
θ

[
N−m∑
t=n

m∑
s=1

L2

(
ũn+s, (T |N |Gθ)s (ũn)

)
+ λ∥θ∥

]
, (3)

where ũn denotes the filtered high-fidelity solution, λ enforces Lipschitz continuity, and (T |N |Gθ)s
denotes the autoregressive application of s hybrid time steps, either following eq. (1) for direct
corrections or eq. (2) for indirect ones. At inference time, the same (T |N |Gθ) step is applied.

The temporal and spatial discretizations are implemented as a differentiable solver S . The predicted
trajectory is then generated by setting ũn as the initial condition and recursively applying S with
correction term Gθ for m steps:

Sm (ũn,Gsθ(ũn)) = S ◦ · · · ◦ S︸ ︷︷ ︸
m times

(ũn,Gθ(ũn)) . (4)

The neural correction Gθ thus indirectly influences the solution through the solver, aligning the
predictions with the ground-truth evolution governed by the PDE.

4 Theoretical analysis: Propagation of perturbations through the solver

In this section, we show how indirect corrections reduce the error by O(Rk) compared to direct cor-
rections. We start by deriving a unified error-propagation framework for hybrid neural solvers under
autoregressive rollouts. Subsequently, an error-dominance ratio (Rk) has been defined and connected
to the timescale and Lipschitz bound, thereby quantifying the benefits of indirect approaches.
Problem 4.1 (Perturbation Analysis). We consider a general PDE format:

∂tu = N (∂xu, ∂xxu, ...), (t,x) ∈ [0, T ]× X (5)

u(0,x) = u0(x), Ω[u](t,x) = B(u), x ∈ X, (t,x) ∈ [0, T ]× ∂X (6)
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where u(t,x) is the solution in d spatial dimensions x = [x1, x2, ..., xd]
T ∈ X ⊂ Rn×d over time

t ∈ [0, T ]. N represents the spatial differential operator. u(0,x) is initial condition and boundary
condition described by function B.

Now let us define the perturbations caused by neural network correctors in order to study their growth
during autoregressive inference. The correctors either perturb the state (direct correctors) or the
RHS of the equation (indirect correctors). Under the well-posedness, numerical stability, and small
perturbation assumptions (detailed in appendix A), we define:
Definition 4.1 (Perturbations and Errors). Let ϵu (direct perturbation) and ϵs (indirect perturbation)
perturb the system as

un+1 + δun+1 = T
[
un+1,N (un + ϵnu) + ϵns

]
, (7)

where T is any time-discretization, un+1 is the exact solution at step n + 1, and δun+1 is the
resulting error due to the perturbations at step n. Both perturbations satisfy ∥ϵu∥ = ∥ϵs∥ ≤ ϵ, and
are sufficiently small such that O(ϵ2) terms are negligible in Taylor expansions.
Proposition 4.1 (Local Perturbations Propagation). The error δun+1 at step n + 1, arising from
perturbations ϵnu and ϵns at step n, is given by:

δun+1 = (I +∆tJ(un))ϵu +∆tϵs = G(un)ϵu +∆tϵs, (8)

where J(un) = ∂N
∂u

∣∣
un is the Jacobian ofN evaluated at un and the G(un) := I +∆tJ(un), is the

error amplification matrix. Proof see appendix B.1.

Based on the propagation of local perturbations, we can derive the expression for the cumulative error
after k steps as:
Lemma 4.1 (Cumulative Error). After iterating eq. (8) for k steps which introduce new perturbations
ϵm at every step m ∈ [0, k], the total error satisfies:

δun+k =

k−1∑
m=0

(
k−1∏

i=m+1

G(un+i)

)[
G(un+m)ϵmu +∆tϵms

]
, (9)

Detailed derivation is provided in appendix B.2. To compare different effects of errors perturbed by
ϵu and ϵs, we define the error dominance ratio Rk by setting ϵs = 0 or ϵu = 0 in eq. (9):
Definition 4.2 (Error Dominance Ratio).

Rk =
∥δun+k∥ϵs=0

∥δun+k∥ϵu=0
=

∥∥∥∑k−1
m=0

(∏k−1
i=m+1 G(un+i)

)
G(un+m)ϵmu

∥∥∥∥∥∥∑k−1
m=0

(∏k−1
i=m+1 G(un+i)

)
∆tϵms

∥∥∥ (10)

Remark 4.1. The products in eq. (10) describe the propagation of perturbations through long unrolled
trajectories. The outer sums in turn represent the introduction of new perturbations at every timestep.
Depending on the characteristics of the underlying dynamics, either term can dominate.

Proposition 4.2. Under the assumption that the nominator and denominator of eq. (10) grow like
their upper bounds, the ratio Rk can be simplified to:

Rk ∼ ∆t−1 + L≫ 1. (11)

where L is the Lipschitz bound. Proof see appendix B.3.

Remark 4.2. The ratio Rk relates the growth of direct and indirect perturbations. Since L ≥ 0 by
definition and ∆t≪ 1 in general, one can state that Rk ∼ ∆t−1 ≫ 1 in most practical applications.
The growth of the error in an unrolled trajectory is thus dominated by the perturbation ϵu.

An even stronger statement can be made for chaotic dynamics, where the growth of perturbations can
be related to Lyapunov stability.
Theorem 4.1 (Lyapunov Stability). The Lyapunov stability framework characterizes the response
of dynamical systems to perturbations. A chaotic PDE has a positive maximum Lyapunov exponent
λmax > 0. For a trajectory u(t), it is defined as:

λmax = lim sup
t→∞

1

t
ln
∥δu(t)∥
∥δu(0)∥

. (12)
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Proposition 4.3 (Lyapunov Stability with upper-bounds). In current linearized dynamics analysis,
the Lyapunov exponents are determined by J(u) and bounded by L. Specifically, λmax ≤ L. Proof
can be found in appendix B.4. Thus, L upper-bounds λmax with L > max(0, λmax).
Remark 4.3 (Numerical Implications). In stable systems with (λmax < 0), the error ratio Rk is not
affected by the Lyapunov exponent and is bounded by the non-negativity of L. The effects detailed
in the previous remark 4.2 remain. In chaotic system with L ≥ λmax > 0, the error ratio follows
Rk ∼ ∆t−1 + L, implying that direct perturbation errors δu grow far more rapidly than indirect
perturbation errors δs. The exponential growth of perturbation in chaotic dynamics thus further
amplifies the dominance of direct errors δu.

Moreover, the amplified ϵu-error may drive the numerical solution outside the neighborhood where
the Lipschitz bound λmax ≤ L holds, risking a loss of convergence or blowup. This is further
exacerbated for hybrid solvers where NNs may exhibit high sensitivity to input perturbations [40], so
the compounded amplification from Rk undermines both accuracy and stability of the learned model.

The above theoretical analysis is based on linearized error dynamics under the assumption of small
perturbations. This assumption enables a tractable derivation and a clear understanding of how direct
and indirect correction mechanisms differ in error-amplification. To address this theoretical limitation,
on the one hand, we deploy a pure numerical study by introducing Gaussian noise as a perturbation at
each time step via direct/indirect mechanisms as detailed in appendix C. On the other hand, we have
extended our experimental setup to include various challenging scenarios, like chaotic and turbulent
cases, which are detailed in section 6.

5 Experimental Configurations

We compare INC to three other architectures: SITL, SITL∗, and RNN. Both SITL and SITL∗ are
direct correction methods and only differ in the order in which the direct correction and the solver
operate. For SITL, the correction is applied after the solver [21, 23]. Here, a coarse numerical solver
T first advances the state, producing an intermediate solution u∗

n = T (un). Then, a neural network
Gθ directly corrects the solver output to yield the next state: un+1 = Gθ

(
u∗
n

)
. This incorporates a

residual connection such that Gθ

(
u∗
n

)
= u∗

n + θ(u∗
n). SITL

∗ is a simple pre-correction variant of
SITL. Instead of adding the learned correction after the solver update, SITL∗ applies the neural term
before the solver step. First, the network calculates u∗

n = Gθ

(
un

)
= un + θ(un), which is then used

as input to the coarse solver such that un+1 = T (u∗
n). We also compared our work with CSM [24]

in appendix I. CSM is a variant of SITL that scales the correction with the time step. By evaluating
SITL, SITL∗, and CSM, we ensure that our work encompasses the entire landscape of direct
methods. Furthermore, the implementation of the RNN follows the FNO architecture [4]. It takes a
sequence of past solution states (un−T+1, . . . , un) and predicts the next state un+1 while operating
autoregressively. Herein, following FNO, we set T = 10. In contrast to the other approaches, the
RNN is a solver-free and fully data-driven transition operator; other setups are kept identical to a
hybrid solver, relying on learned temporal dependencies through autoregression.

We employ unrolling multiple time steps at training time [18, 21, 23]. It improves inference perfor-
mance and increases the memory requirements since it is necessary to store neural network activations
inside each unrolled time step in the forward pass. In our work, the choice of unrolling length is
guided by the characteristic timescale tc of the dynamical systems. For each case, tc is derived from
system-specific properties, like the inverse of the maximum Lyapunov exponent for the KS equation.
More details about tc for other cases are listed in appendix H. After calculation of tc and setting the
time step as ∆t, we compute the number of steps per characteristic timescale as N = tc

∆t . We then
set the unrolling length during training to approximately 0.04 ·N . During inference, we significantly
extend this horizon to approximately 100 times longer, typically 4·N to 6·N , to rigorously evaluate
long-term stability and accuracy.

We comprehensively evaluate INC across 3 distinct numerical solvers, each representing a canonical
class of spatial discretizations and temporal schemes:

• A finite-difference method (FDM) solver for the Burgers equation, combining fifth-order WENO
spatial reconstruction with explicit forward Euler time integration [1].

• A Fourier pseudo-spectral solver (PS) for the KS equation, employing the exponential time
differencing Runge-Kutta scheme (ETDRK) [2].
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• A finite-volume method (FVM) solver for the incompressible Navier-Stokes equations, leveraging
the semi-implicit PISO algorithm for pressure-velocity coupling [3].

While INC universally corrects solutions by integrating Gθ in the RHS of the governing equations, its
mechanism for integration varies slightly across temporal schemes. For forward Euler steps, Gθ is
appended to the source term and advanced in time via first-order explicit integration. For ETDRK,
Gθ is fused with the nonlinear term in Fourier space during the ETD integration step, inheriting the
scheme’s exact treatment of stiff linear operators while retaining spectral accuracy. For PISO, Gθ is
embedded within the momentum equation’s source term, influencing both the velocity predictor step
and the iterative pressure correction process continuously.

We deploy two inherently different types of neural networks: convolution-based architectures like
ResNet and UNet, as well as FNO and DeepONet as operator-based ones. We demonstrate the
accuracy and long-term stability of our methods on multiple tasks with varying difficulty and with
different numerical schemes. Details for each case and solver type are provided in the appendix H.

Kuramoto–Sivashinsky (KS) Equation The KS equation is a well-known chaotic system mod-
elling intrinsic instabilities, such as reaction-diffusion systems [41, 42]. It can be written as:
∂u
∂t + u∂u

∂x + ∂2u
∂x2 + ∂4u

∂x4 = 0. The interplay between the contrasting terms leads to significant
spatio-temporal complexity [43], sensitive to domain length L. When L varies, the KS equation
produces distinctly different dynamics [18, 41, 42]. A Pseudo-Spectral method with Exponential
Time Differencing [2] was applied, where the non-linear terms are treated with a second order
Runge-Kutta time integration [44, 45] with ∆t = 0.01. The spatial resolution was fixed to 64.

Burgers’ Equation The Burgers’ equation is a nonlinear advection–diffusion PDE with shock
formation: ∂u

∂t +u∂u
∂x = ν ∂2u

∂x2 +δ(x, t). We use a scenario with forcing δ(t, x) =
∑J

j=1 Aj sin(ωjt+

2πℓjx/L+ ϕj). The setup follows Bar-Sinai et al. [20], where J = 5, L = 16, Aj ∼ U [−0.5, 0.5],
ωj ∼ U [−0.4,−0.4], ℓj ∈ {1, 2, 3}, and ϕj ∈ [0, 2π]. The domain is discretized on nx = 512 with
periodic boundary and advanced explicitly in time with ∆t = 10−3. A solver based on WENO-5 has
been applied to capture shocks.

Navier–Stokes (NS) Equation The Navier–Stokes equations describe the motion of fluids and
are fundamental in modeling phenomena such as turbulence, boundary layer flows, and vortex
dynamics [46, 47]. Herein, we consider the incompressible NS equation, which can be expressed as
∂u
∂t + (u · ∇)u = −∇p+ ν∇2u+ f with ∇ · u = 0 for conservation of mass. Here u denotes the
velocity field, p is the pressure, ν represents the kinematic viscosity, and f is external forcing. The
divergence-free condition ensures the incompressibility of the flow. We used a differentiable solver
based on the 2nd-order PISO algorithm with a spatially adaptive finite-volume discretization. To
comprehensively study INC, we evaluate three different turbulent cases, 2D Karman vortex shedding
(Karman), 2D Backward facing step (BFS) and a turbulent channel flow (TCF) in 3D. All cases, and
especially the 3D TCF case, feature complex dynamics and a large number of degrees of freedom.

6 Results

In the following, we evaluate INC with tests designed to investigate long-term accuracy, solver
stability under unstable conditions, and applicability to accelerate complex turbulent cases.

6.1 Accuracy in Long Autoregressive Rollouts

To evaluate INC’s ability to suppress perturbation growth during autoregressive rollout while main-
taining high fidelity, we test it with the chaotic KS equation (denoted by KS1) and the shock-forming
Burgers case. Both inference simulations are conducted with a fine timescale and a large number
of steps, 4000 and 5000 for Burgers and KS. 1 To compare, we benchmark against a classic direct
approach SITL [23], a pre-correction variant SITL∗, and a recurrent baseline without solver RNN
following, e.g., Li et al. [4]. All variants, including INC, use identical NN architectures.

1The simulation times for KS and Burgers are approximately 4.5tc,KS and 4tc,BG. The characteristic
timescale tc reflects fundamental properties of the dynamical systems, as detailed in the appendix H.
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Figure 1: R2 correlation of KS1 over 5000 steps for different methods (INC, RNN, SITL, SITL∗)
applied to four models (FNO, DeepONet, UNet, ResNet). The INC method consistently demonstrates
the most stable long-term behavior, maintaining high accuracy even beyond 5000 steps.
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Figure 2: Top MSE of 4000-step Burgers rollouts across different neural architectures and spatial
resolutions. Bottom Spatiotemporal evolution of the velocity field by different methods with 4000
steps. INC always performs the best

Enhanced Accuracy for Chaotic Systems Chaotic systems exponentially amplify perturbations,
causing pointwise divergence over the Lyapunov timescale. Thus, maintaining frame-by-frame
trajectory accuracy (R2) indicates strong perturbation control with reduced errors from each step.
INC constantly performes better than direct corrections SITL and SITL∗, as shown in fig. 1. Across
the four architectures, the improvement in R2 is up to 158.71% compared to SITL for a UNet
architecture. For the FNO, INC only shows an improvement by ca. 3% over the SITL versions,
which can be explained by the FNO’s architecture being very similar to the underlying pseudo-spectral
solver [33]. For DeepONet, which employs MLPs instead of convolutions like the other models, INC
improves by 35.26% / 37.15% over SITL / SITL∗.

Enhanced Accuracy for Shock Waves with Reduced Resolution Reduced resolutions lower the
computational costs but smear critical details, particularly for challenging discontinuities like shocks.
Autoregressive perturbations can exacerbate errors in these setups, demanding robust correction
methods. This sets the stage for testing INC, which consistently achieves the lowest MSE across
all resolutions and neural architectures. Compared to both SITL and SITL∗, INC reduces MSE
by 39% to 99%, with the largest decrease seen against SITL with a ResNet. Fig. 2 further shows
INC’s ability to accurately reconstruct the detailed features of the flow field across 4000 steps, closely
resembling the reference. Both SITL∗ and SITL methods, while capturing general trends, clearly
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suffer from notable distortion, particularly evident at later time steps. These observations collectively
highlight INC’s capability to effectively address resolution-induced inaccuracies and autoregressive
error propagation, preserving essential flow characteristics at reduced computational resolutions.

It is worth noting that across both KS1 and Burgers cases, the RNN approach consistently underper-
forms in comparison to the hybrid neural solvers in all metrics. This unsatisfactory performance aligns
with known limitations of RNN-based methods, such as the absence of an embedded solver [18, 21],
and their inherent sensitivity to gradient divergence in chaotic regimes [15]. Consequently, we exclude
the RNN from subsequent, more challenging experiments. Since INC invariably outperformed other
direct correction methods across all tested neural backbones, we will now fix the network architecture
to focus on analyzing other aspect of the method. We use a convolution-based architecture in all
following experiments, apart from the following KS case, where we employ an FNO due to its
similarity to the pseudo-spectral solver used for KS.

6.2 Improving Numerical Stability
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Figure 3: (a) KS2 simulation results with L = 21.6π, dt = 0.5s. Reference at the top, and errors of
the no correction baseline and different hybrid solvers below. The solver (No Model) fails after 28
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Figure 4: R2 correlation over time ( 1
N

∑N
i=1 R

2)
for different architectures (INC, RNN, SITL,
SITL∗) for both KS2 and Karman cases. All
hybrid solvers improve stability compared to
No Model, with INC giving the highest correla-
tions.

With INC effectively dampening perturbations
through long-term rollout, we next assess its
capability of improving numerical stability in
two test cases where a coarse standard solver
(No Model) fails.

Low-order Temporal Schemes When the nu-
merical solver utilizes a simple low-order time
integrator with a large time step, it can diverge
rapidly. For 1D KS, with a first-order Runge-
Kutta time integration with ∆t = 0.5, the sim-
ulation blow-up typically occurs within t ≈ 14s,
as shown in fig. 3a. We denote this case by KS2.
Under the same low-order time integrator, SITL
and SITL∗ manage to reach t = 50s but with
a degraded R2 accuracy of 0.65 and 0.58. In
contrast, INC attains a correlation of 0.78, representing a 20.0% improvement over SITL and a
decrease by 36.9% in terms of MSE relative to SITL∗, as detailed in fig. 4.
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250 500 1000 1500
Steps

10 3

10 2

10 1

100

M
SE

 o
n 

St
at

is
tic

s

102 103 104

Simulation Time (s)

No Model64
No Model256

SITL
SITL*

INC

Figure 6: Right panels show three visualizations of states from the 3D TCF scenario with INC (ux

near wall, ux bulk, uy), while the two graphs on the left show accuracy over rollout steps and runtime.
For the turbulent dynamics of this test case INC yields clear improvements on both fronts.

Oversized time steps A No Model simulation diverges within 395 steps on average when the CFL
number is set to 2.0, which is twice the conventional stability limit of CFL < 1.0. Combined with
the spatial challenges caused by low resolution, this leads to a quick failure of the solver. SITL and
SITL∗ manage to simulate 1000 steps but deliver only modest fidelity with an R2 of 0.74 and 0.71.
INC improves the R2 to 0.80, and successfully reduces the MSE by 26.9% and 36.5%, respectively.

6.3 Acceleration and Accuracy Improvements for Complex Cases

Traditional solvers often impose strict discretization constraints to ensure stability and accuracy,
which limits computational efficiency. Building on INC’s accuracy in extended rollouts and stability
in blow-up regimes, we further apply it to two turbulent flows with engineering relevance: a 2D BFS
with 1200 rollout steps, and a 3D TCF with 1500 rollout steps.1

Emerging Structures in Backward Facing Step We apply hybrid solvers to BFS with 4× spatial
and 20× temporal down-sampling, resulting in CFL = 4.0. In contrast, the No Model requires
adaptive time steps with CFL< 0.8 for stability. This scenario is challenging as accurately resolving
the right vortex positions that emerge from the transient flow over longer intervals requires very high
solving accuracies. The No Model and SITL baselines both fail to capture this behavior, as shown in
comparison to a high-fidelity reference in fig. 5. The INC variant not only yields a stable simulation
with a large CFL condition but also closely matches the emerging vortex structures.

The MSE of the averaged velocities confirms that INC achieves the highest accuracy, comparable to a
high-fidelity No Model256 simulation, which is conducted at approximately 2× the spatial resolution
and 10 × temporal resolution. Quantitatively, INC reduces the MSE by 97.1% compared to SITL.
All hybrid solvers exhibit similar computational efficiency, achieving speedups of approximately 3
to 7× compared to the No Model variants. As highlighted in the graph shown on the right of fig. 5,
INC occupies the best position in the accuracy-performance Pareto front, yielding an accuracy that is
on-par with No Model256, while being 7× faster.

Matching Turbulence Statistics in 3D Flows For the 3D TCF case, featuring complex dynamics
with a high number of degrees of freedom, we target a particularly challenging learning task: the
hybrid solvers are trained to match turbulence statistics obtained from a high-fidelity spectral solver

1The simulation time is approximately 4tc,BFS and 6tc,TCF for BFS and TCF, as detailed in the appendix.
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at high resolution [48], rather than reproducing individual grid values. Practical turbulent modeling
prioritizes statistical consistency, e.g., mean velocity profiles and Reynolds stress, which characterize
the average behavior of the flow and are robust to chaotic fluctuations [47]. For the TCF we employ
these statistics as training loss instead of an L2 loss. Details are provided in appendix H.5.

The baseline methods, No Model, SITL, and SITL∗ employ a resolution of 64× 32× 32 at a stable
CFL = 0.8. INC utilizes the same spatial resolution but thanks to its stabilizing properties enables
a 2× time step, equivalent to CFL = 1.6. This CFL condition is unstable for the other baselines.
Qualitative examples of an INC rollout, on the left side of fig. 6, show the intricate vortex structures
forming in the volume.

Despite using larger timesteps, INC outperforms other methods, clearly occupying the best position
in the accuracy-performance Pareto front shown on the right of fig. 6. While SITL∗ achieves a
slightly better accuracy initially, it diverges significantly over time, reflecting its intrinsic sensitivity to
perturbations during rollouts. Quantitatively, INC reduces the MSE on statistics by 80.7% compared
to SITL. To achieve a comparable statistical accuracy without learned corrections, a significantly
finer resolution of 256 × 128 × 128 under extreme numerical stability constraints (CFL= 0.1) is
necessary. This corresponds to a 43× increase in spatial, and approximately 50× temporal refinement.
Consequently, even when running both solvers with the same GPU support and hardware, INC
achieves a 330× speed up compared to No Model256 at equivalent statistical accuracy levels.

7 Concluding Remarks

In this work, we have introduced a unified theoretical framework to characterize error propagation
in hybrid neural–physics solvers under autoregressive rollout, showing that direct correction terms
amplify perturbations fundamentally faster than perturbations of indirect corrections. The resulting
INC methodology leads to significantly reduced error growth, enhances accuracy, and maintains
long-term stability across diverse PDE systems, architectures, and solver types. As a consequence,
it achieves substantial improvements in predictive performance and computational efficiency for
learned hybrid solvers.

While INC broadly enhances stability and accuracy, its advantage hinges on the dynamical stiffness of
the PDE and the time-integrator’s inherent stability region. In problems that are already well-damped
or when employing unconditionally stable implicit schemes with large time steps, the relative benefits
can diminish. Looking ahead, a highly interesting avenue for future work will be to investigate
optimal strategies to choose rollout length, trading computational cost against learning effectiveness.
Overall, our work makes an important step towards stable and accurate hybrid solvers, and applying
it in real-world applications ranging from civil and maritime engineering to medical applications
poses highly promising directions.

8 Acknowledgments

The authors are grateful for constructive discussions with Rene Winchenbach, Luca Guastoni, Mario
Lino, Felix Köhler, Chengyun Wang, Yunjia Yang, Qiang Liu, Patrick Schnell, and Xiyu Huang.

References
[1] Guang-Shan Jiang and Chi-Wang Shu. Efficient implementation of weighted eno schemes.

Journal of computational physics, 126(1):202–228, 1996.

[2] Steven M Cox and Paul C Matthews. Exponential time differencing for stiff systems. Journal
of Computational Physics, 176(2):430–455, 2002.

[3] Raad I Issa. Solution of the implicitly discretised fluid flow equations by operator-splitting.
Journal of computational physics, 62(1):40–65, 1986.

[4] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya,
Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differen-
tial equations. arXiv preprint arXiv:2010.08895, 2020.

10



[5] Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and
Peter Battaglia. Learning to simulate complex physics with graph networks. In International
conference on machine learning, pages 8459–8468. PMLR, 2020.

[6] Alasdair Tran, Alexander Mathews, Lexing Xie, and Cheng Soon Ong. Factorized fourier neural
operators. arXiv preprint arXiv:2111.13802, 2021.

[7] Jaideep Pathak, Brian Hunt, Michelle Girvan, Zhixin Lu, and Edward Ott. Model-free prediction
of large spatiotemporally chaotic systems from data: A reservoir computing approach. Physical
review letters, 120(2):024102, 2018.

[8] Johannes Brandstetter, Daniel Worrall, and Max Welling. Message passing neural pde solvers.
arXiv preprint arXiv:2202.03376, 2022.

[9] Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via deeponet based on the universal approximation theorem of operators.
Nature machine intelligence, 3(3):218–229, 2021.

[10] Bogdan Raonic, Roberto Molinaro, Tim De Ryck, Tobias Rohner, Francesca Bartolucci, Rima
Alaifari, Siddhartha Mishra, and Emmanuel de Bézenac. Convolutional neural operators for
robust and accurate learning of pdes. Advances in Neural Information Processing Systems,
36:77187–77200, 2023.

[11] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

[12] Chuwei Wang, Julius Berner, Zongyi Li, Di Zhou, Jiayun Wang, Jane Bae, and Anima Anandku-
mar. Beyond closure models: Learning chaotic-systems via physics-informed neural operators.
arXiv preprint arXiv:2408.05177, 2024.

[13] Zhiqing Sun, Yiming Yang, and Shinjae Yoo. A neural pde solver with temporal stencil
modeling. In International Conference on Machine Learning, pages 33135–33155. PMLR,
2023.

[14] Phillip Lippe, Bas Veeling, Paris Perdikaris, Richard Turner, and Johannes Brandstetter. Pde-
refiner: Achieving accurate long rollouts with neural pde solvers. Advances in Neural Informa-
tion Processing Systems, 36:67398–67433, 2023.

[15] Jonas Mikhaeil, Zahra Monfared, and Daniel Durstewitz. On the difficulty of learning chaotic
dynamics with rnns. Advances in neural information processing systems, 35:11297–11312,
2022.

[16] Ruoxi Jiang, Peter Y Lu, Elena Orlova, and Rebecca Willett. Training neural operators to
preserve invariant measures of chaotic attractors. Advances in Neural Information Processing
Systems, 36:27645–27669, 2023.

[17] Chris Pedersen, Laure Zanna, and Joan Bruna. Thermalizer: Stable autoregressive neural
emulation of spatiotemporal chaos. arXiv preprint arXiv:2503.18731, 2025.

[18] Bjoern List, Li-Wei Chen, Kartik Bali, and Nils Thuerey. Differentiability in unrolled training
of neural physics simulators on transient dynamics. Computer Methods in Applied Mechanics
and Engineering, 433:117441, 2025.

[19] Karthik Duraisamy, Gianluca Iaccarino, and Heng Xiao. Turbulence modeling in the age of
data. Annual review of fluid mechanics, 51(1):357–377, 2019.

[20] Yohai Bar-Sinai, Stephan Hoyer, Jason Hickey, and Michael P Brenner. Learning data-driven
discretizations for partial differential equations. Proceedings of the National Academy of
Sciences, 116(31):15344–15349, 2019.

[21] Dmitrii Kochkov, Jamie A Smith, Ayya Alieva, Qing Wang, Michael P Brenner, and Stephan
Hoyer. Machine learning–accelerated computational fluid dynamics. Proceedings of the
National Academy of Sciences, 118(21):e2101784118, 2021.

11



[22] Benjamin Sanderse, Panos Stinis, Romit Maulik, and Shady E Ahmed. Scientific machine
learning for closure models in multiscale problems: A review. arXiv preprint arXiv:2403.02913,
2024.

[23] Kiwon Um, Robert Brand, Yun Raymond Fei, Philipp Holl, and Nils Thuerey. Solver-in-the-
loop: Learning from differentiable physics to interact with iterative pde-solvers. Advances in
neural information processing systems, 33:6111–6122, 2020.

[24] Gideon Dresdner, Dmitrii Kochkov, Peter Norgaard, Leonardo Zepeda-Nunez, Jamie A Smith,
Michael P Brenner, and Stephan Hoyer. Learning to correct spectral methods for simulating
turbulent flows. arXiv preprint arXiv:2207.00556, 2022.

[25] André Freitas, Kiwon Um, Mathieu Desbrun, Michele Buzzicotti, and Luca Biferale. Solver-in-
the-loop approach to turbulence closure. arXiv preprint arXiv:2411.13194, 2024.

[26] Justin Sirignano, Jonathan F MacArt, and Jonathan B Freund. Dpm: A deep learning pde
augmentation method with application to large-eddy simulation. Journal of Computational
Physics, 423:109811, 2020.

[27] Björn List, Li-Wei Chen, and Nils Thuerey. Learned turbulence modelling with differen-
tiable fluid solvers: physics-based loss functions and optimisation horizons. Journal of Fluid
Mechanics, 949:A25, 2022.

[28] Philipp Holl, Vladlen Koltun, and Nils Thuerey. Learning to control pdes with differentiable
physics. arXiv preprint arXiv:2001.07457, 2020.

[29] Syver Døving Agdestein and Benjamin Sanderse. Discretize first, filter next: Learning
divergence-consistent closure models for large-eddy simulation. Journal of Computational
Physics, 522:113577, 2025.

[30] Hugo Frezat, Julien Le Sommer, Ronan Fablet, Guillaume Balarac, and Redouane Lguensat. A
posteriori learning for quasi-geostrophic turbulence parametrization. Journal of Advances in
Modeling Earth Systems, 14(11):e2022MS003124, 2022.

[31] David E Keyes, Lois C McInnes, Carol Woodward, William Gropp, Eric Myra, Michael Pernice,
John Bell, Jed Brown, Alain Clo, Jeffrey Connors, et al. Multiphysics simulations: Challenges
and opportunities. The International Journal of High Performance Computing Applications,
27(1):4–83, 2013.

[32] Kim Stachenfeld, Drummond Buschman Fielding, Dmitrii Kochkov, Miles Cranmer, Tobias
Pfaff, Jonathan Godwin, Can Cui, Shirley Ho, Peter Battaglia, and Alvaro Sanchez-Gonzalez.
Learned simulators for turbulence. In International conference on learning representations,
2021.

[33] Michael McCabe, Peter Harrington, Shashank Subramanian, and Jed Brown. Towards stability
of autoregressive neural operators. arXiv preprint arXiv:2306.10619, 2023.

[34] Remi Lam, Alvaro Sanchez-Gonzalez, Matthew Willson, Peter Wirnsberger, Meire Fortunato,
Ferran Alet, Suman Ravuri, Timo Ewalds, Zach Eaton-Rosen, Weihua Hu, et al. Learning
skillful medium-range global weather forecasting. Science, 382(6677):1416–1421, 2023.

[35] Jaideep Pathak, Shashank Subramanian, Peter Harrington, Sanjeev Raja, Ashesh Chattopadhyay,
Morteza Mardani, Thorsten Kurth, David Hall, Zongyi Li, Kamyar Azizzadenesheli, et al.
Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural
operators. arXiv preprint arXiv:2202.11214, 2022.

[36] Kaifeng Bi, Lingxi Xie, Hengheng Zhang, Xin Chen, Xiaotao Gu, and Qi Tian. Accurate
medium-range global weather forecasting with 3d neural networks. Nature, 619(7970):533–538,
2023.

[37] Zongyi Li, Miguel Liu-Schiaffini, Nikola Kovachki, Burigede Liu, Kamyar Azizzadenesheli,
Kaushik Bhattacharya, Andrew Stuart, and Anima Anandkumar. Learning dissipative dynamics
in chaotic systems. arXiv preprint arXiv:2106.06898, 2021.

12



[38] Hugo Frezat, Ronan Fablet, Guillaume Balarac, and Julien Le Sommer. Gradient-free online
learning of subgrid-scale dynamics with neural emulators. arXiv preprint arXiv:2310.19385,
2023.

[39] Sindre Stenen Blakseth, Adil Rasheed, Trond Kvamsdal, and Omer San. Deep neural network
enabled corrective source term approach to hybrid analysis and modeling. Neural Networks,
146:181–199, 2022.

[40] Aladin Virmaux and Kevin Scaman. Lipschitz regularity of deep neural networks: analysis and
efficient estimation. Advances in Neural Information Processing Systems, 31, 2018.

[41] Russell A Edson, Judith E Bunder, Trent W Mattner, and Anthony J Roberts. Lyapunov
exponents of the kuramoto–sivashinsky pde. The ANZIAM Journal, 61(3):270–285, 2019.

[42] James M Hyman and Basil Nicolaenko. The kuramoto-sivashinsky equation: a bridge between
pde’s and dynamical systems. Physica D: Nonlinear Phenomena, 18(1-3):113–126, 1986.
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Appendix
Below, we present the complete theoretical developments referenced in the main text, beginning
with the formal assumptions in appendix A and continuing with the detailed proofs provided in
appendix B. These are followed by a numerical perturbation study in appendix C, which complements
our theoretical analysis. In appendix D, we provide an in-depth description of our proposed method,
Indirect Neural Correction (INC), including a schematic illustration that clarifies its core mecha-
nisms. Subsequently, we outline the differentiable solvers used to implement the INC framework.
Specifically, we detail the use of the Weighted Essentially Non-Oscillatory (WENO) scheme for the
Burgers equation in appendix E, the Fourier pseudo-spectral method in appendix F, and the Pressure
Implicit with Splitting of Operators (PISO) algorithm in appendix G. Finally, we provide additional
implementation details and hyperparameters for all experiments in appendix H.

A Assumptions

In this section, we provide the assumptions for the theoretical framework.
Assumption A.1 (Well-posedness). The initial value problem for the PDE is well-posed in Hs(X),
the Sobolev space of order s. Specifically:

• Existence and Uniqueness: For every initial condition u(0) ∈ Hs(X), there exists T > 0 and a
unique solution u ∈ C([0, T ];Hs(X)).

• Continuous Dependence: The solution map u0 7→ u(t) is continuous in the Hs-norm for t ∈ [0, T ].

Assumption A.2 ( Numerical Stability). The temporal discretization adheres to a stability constraint
of the form:

∆t ≤ Cstabh
β , (A.1)

where h is the spatial resolution, β > 0 is an exponent determined by the highest-order spatial
derivative in the PDE, and Cstab > 0 is a scheme-dependent constant derived from stability analysis
(e.g., CFL condition).

Assumption A.3 (Small Perturbation). The perturbations ϵ are small, such that:

• Validity of Linearization: Perturbations ϵ satisfy |ϵ| ≪ 1, ensuring residual terms of order O(ϵ2)
are negligible in Taylor expansions of relevant operators.

• Lipschitz Bound: There exists L > 0 such that the Jacobian J(u) = ∂N/∂u satisfies:

∥J(u)∥Hs ≤ L ∀u ∈ Hs(X), (A.2)

and perturbations ϵ are sufficiently small to ensure the perturbed solutions u+ ϵδu remain in a
neighborhood where this bound holds uniformly.

B Proofs

B.1 Proof of Proposition 4.1

Consider an explicit Euler time-stepping scheme for clarity. The numerical solution evolves as:

un+1 = Tt
[
un+1,N (un)

]
= un +∆tN (un). (B.1)

Based on eq. (7), the perturbed solution, subject to a solution perturbation ϵnu at step n and a source
perturbation ϵns during the step, evolves as:

(un+1 + δun+1) = (un + ϵnu) + ∆t
(
N (un + ϵnu) + ϵns

)
, (B.2)

and by rearrangement

(un+1 + δun+1)− (un + ϵnu)

∆t
= N (un + ϵnu) + ϵns . (B.3)
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Subtracting the exact update from the perturbed update yields:
δun+1 − ϵnu

∆t
= N (un + ϵnu)−N (un) + ϵns . (B.4)

By assumption A.3, perturbations are small, allowing a first-order Taylor expansion of N (·) around
un:

N (un + ϵnu) ≈ N (un) + J(un)ϵnu, (B.5)
where J(un) = ∂N

∂u

∣∣
un is the Jacobian ofN evaluated at un. Substituting this into the error equation

gives:
δun+1 − ϵnu

∆t
≈ J(un)ϵnu + ϵns . (B.6)

Rearranging for δun+1:
δun+1 ≈ ϵnu +∆tJ(un)ϵnu +∆tϵns = (I +∆tJ(un))ϵnu +∆tϵns . (B.7)

Defining the error amplification matrix G(un) := I +∆tJ(un), we obtain eq. (8):

δun+1 = G(un)ϵnu +∆tϵns .

This completes the proof.

B.2 Proof of Lemma 4.1

We prove by induction on k. For k = 1, the claim is exactly eq. (8).
δun+1 = G(un)ϵnu +∆tϵns , (B.8)

Then for step n+ 2 :
δun+2 = G(un+1)G(un)ϵnu +G(un+1)∆tϵns︸ ︷︷ ︸

From n+1

+G(un+1)ϵn+1
u +∆tϵn+1

s︸ ︷︷ ︸
From n+2

. (B.9)

Thus, for k steps, the global error δun+k is a sum over all perturbations introduced at each step m,
amplified by the product of G(u) matrices from subsequent steps:

δun+k =

k−1∑
m=0

(
k−1∏

i=m+1

G(un+i)

)[
G(un+m)ϵmu +∆tϵms

]
. (B.10)

B.3 Proof of Proposition 4.2

Based on assumption A.3, we have eq. (A.2), the norm of the error amplification matrix G(u) =
I +∆tJ(u) is bounded:

∥G(u)∥ = ∥I +∆tJ(u)∥ ≤ ∥I∥+∆t∥J(u)∥ ≤ 1 + ∆tL. (B.11)
The product of amplification matrices is thus bounded by:∥∥∥∥∥

k−1∏
i=m+1

G(un+i)

∥∥∥∥∥ ≤
k−1∏

i=m+1

∥G(un+i)∥ ≤ (1 + ∆tL)k−1−(m+1)+1 = (1 +∆tL)k−m−1. (B.12)

Consider the numerator of Rk (contribution from ϵu only, i.e., ϵ(m)
s = 0 for all m):

∥δun+k∥ϵs=0 =

∥∥∥∥∥
k−1∑
m=0

(
k−1∏

i=m+1

G(un+i)

)
G(un+m)ϵ(m)

u

∥∥∥∥∥ (B.13)

≤
k−1∑
m=0

∥∥∥∥∥
k−1∏

i=m+1

G(un+i)

∥∥∥∥∥ ∥G(un+m)∥∥ϵ(m)
u ∥ (B.14)

≤
k−1∑
m=0

(1 + ∆tL)k−m−1(1 + ∆tL)ϵ (B.15)

= ϵ

k−1∑
m=0

(1 + ∆tL)k−m. (B.16)
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Consider the denominator of Rk (contribution from ϵs only, i.e., ϵ(m)
u = 0 for all m):

∥δun+k∥ϵu=0 =

∥∥∥∥∥
k−1∑
m=0

(
k−1∏

i=m+1

G(un+i)

)
∆tϵ(m)

s

∥∥∥∥∥ (B.17)

≤
k−1∑
m=0

∥∥∥∥∥
k−1∏

i=m+1

G(un+i)

∥∥∥∥∥∆t∥ϵ(m)
s ∥ (B.18)

≤
k−1∑
m=0

(1 + ∆tL)k−m−1∆tϵ (B.19)

= ∆tϵ

k−1∑
m=0

(1 + ∆tL)k−m−1. (B.20)

The ratio Rk is then approximately:

Rk =
∥δun+k∥ϵs=0

∥δun+k∥ϵu=0
≈

ϵ
∑k−1

m=0(1 + ∆tL)k−m

∆tϵ
∑k−1

m=0(1 + ∆tL)k−m−1
. (B.21)

Both the numerator and the denominator are geometric series.

For the numerator, set r = 1 +∆tL, j = k −m, and simplify via the sum of a geometric series:

k−1∑
m=0

rk−m =

k∑
j=1

rj = r
rk − 1

r − 1

Similarly, for the denominator, let j = k −m− 1, we can get:

k−1∑
m=0

rk−m−1 =

k−1∑
j=0

rj =
rk − 1

r − 1

Thus, we can simplify Rk to:

Rk =
ϵ
∑k−1

m=0 r
k−m

∆tϵ
∑k−1

m=0 r
k−m−1

=
r rk−1

r−1

∆t r
k−1
r−1

=
r

∆t
=

1 +∆tL

∆t
. (B.22)

This completes the proof.

It is worth noting that we have used an upper-bound instead of the exact products of G(u) to simplify
the ratio Rk. It may overestimate the true ratio, but since the matrix products

(∏k−1
i=m+1 G(un+i)

)
appear in both the numerator and the denominator, applying upper bounds to both and taking their
ratio largely preserves the order of magnitude. This simplification transforms a complex expression
into a tractable form, enabling clear focus on the dominant scaling behavior of Rk, which is critical
for perturbation and stability analysis. Numerical studies of the perturbation growth in chaotic and
non-chaotic systems are shown to comply with this theoretical result in appendix C.

B.4 Proof of Proposition 4.3

Consider the maximum Lyapunov exponent λmax defined in eq. (12),

λmax = lim sup
t→∞

1

t
ln
∥δu(t)∥
∥δu(0)∥

(B.23)

Based on current PDE setup, δu(t) satisfies the linearized equation:

∂t(δu) = J(u)δu, J(u) =
∂N
∂u

. (B.24)

17



Lipschitz constant L Typically, L is defined via the nonlinear operator N :

∥N (u)−N (v)∥Hs ≤ L∥u− v∥Hs . (B.25)

Since N is differentiable, apply the mean value theorem:

∥N (u)−N (v)∥Hs ≤ sup
w
∥J(w)∥Hs∥u− v∥Hs , (B.26)

Then we define L as the supremum of the operator norm of the Jacobian,

L = sup
u
∥J(u)∥Hs , such that∥J(u)∥Hs ≤ L (B.27)

Using Grönwall’s inequality on ∂t(δu) = J(u)δu:

∥δu(t)∥ ≤ ∥δu(0)∥e
∫ t
0
∥J(u(s))∥Hs ds. (B.28)

Taking the logarithm and dividing by t:

1

t
ln
∥δu(t)∥
∥δu(0)∥

≤ 1

t

∫ t

0

∥J(u(s))∥Hs ds, (B.29)

since ∥J(u(s))∥Hs ≤ L, thus
∫ t

0
∥J(u(s))∥Hsds ≤

∫ t

0
Lds = Lt. Then:

1

t
ln
∥δu(t)∥
∥δu(0)∥

≤ L. (B.30)

Since for every finite t the quantity 1
t ln

∥δu(t)∥
∥δu(0)∥ is bounded above by L, its lim sup as t→∞ also

cannot exceed L. Thus

λmax = lim sup
t→∞

1

t
ln
∥δu(t)∥
∥δu(0)∥

≤ L. (B.31)

The assertion that λmax > 0 for chaotic systems is a standard criterion for chaos, reflecting exponential
divergence of trajectories. Combined with eq. (B.31), this gives:

L ≥ λmax > 0. (B.32)

This completes the proof. Meanwhile, the above proofs are for N is differentiable, which is valid for
the current setup. As for non-differentiable functions, there exists a similar relation between L and
λmax; more details can be found in the literature [49]. The next section shows how the insights from
our derivation above carry over to real-world experiments with non-linear PDEs.

C Numerical studies of the error dominance ratio

To investigate the sensitivity of different correction methods to perturbations, we introduce Gaussian
noise as a perturbation at each time step via two distinct mechanisms: (1) direct injection, where the
noise is directly added to the solution, mimicking existing neural correction methods like SITL. (2)
indirect injection, where noise influences the solution indirectly, as employed in our proposed INC
framework. The injected noise is sampled from a zero-mean Gaussian distribution, η ∼ N (0, ϵ2 · I),
where ϵ controls the noise strength. To comprehensively study the impact of perturbations under
varying dynamical regimes, we evaluate both a stable system (1D Burgers equation) and a chaotic
system (1D Kuramoto–Sivashinsky equation). For Burgers, the perturbation magnitude is sampled in
{10−4, 10−2, 1}, while for KS ϵ ∈ {10−4, 10−2, 10−1}.
The experimental results clearly demonstrate that solutions subjected to direct perturbation are
significantly more sensitive compared to those influenced indirectly. In the Burgers scenario, injecting
perturbations directly leads to rapid error accumulation. At high noise levels (ϵ = 1), the rollout
becomes numerically unstable, diverging almost immediately. Indirect perturbation, by contrast,
maintains stable dynamics and low error accumulation across all tested values of ϵ, as detailed in
fig. 7. For KS, with its chaotic nature, perturbations grow exponentially over time. As a result, the
MSE naturally increases along the rollout horizon, regardless of the perturbation magnitude and
injection methods. Nevertheless, how the perturbations are introduced has a substantial impact on
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Figure 7: Numerical study of noise injected directly/indirectly, with indirect injection being more
stable to noise 19



the rate and severity of this divergence. When perturbations are injected directly into the solution
at each time step, the resulting trajectories exhibit rapid error amplification, with the MSE growing
quickly and the rollouts becoming unstable or even collapsing under moderate to large perturbations.
Conversely, when the perturbation is injected indirectly, the error growth is noticeably slower, and the
rollout remains more coherent over longer timescales. This damping effect indicates that, compared
with injecting perturbations directly, injecting indirectly can suppress the exponential sensitivity of
the chaotic system, leading to improved numerical stability and more reliable long-term forecasts,
even under significant noise levels. These empirical observations are consistent with and further
support the theoretical analysis developed in this work.

D Details and schematic illustration

In this section, we provide more details about our Indirect Neural Correction (INC) method. The
autoregressive rollout process for INC is illustrated in fig. 8. At each timestep n, the solution un is
updated through a temporal scheme T , which integrates the physical dynamics governed by spatial
derivatives N combined with a neural correction Gθ(un). The neural corrector provides indirect
corrections by modifying the PDE’s right-hand side, influencing the system’s evolution at every step.
This correction strategy continues iteratively, performing k sequential autoregressive rollouts. As
depicted, the neural corrector output is integrated directly within each time-step operator, rather than
being applied post hoc, fundamentally affecting the system’s stability and long-term error propagation.
The dashed lines indicate the feedback mechanism from the neural corrector to the spatial derivative
calculation, highlighting the indirect nature of this correction and its role in stabilizing the numerical
integration across multiple time steps.
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𝒖𝑘

Figure 8: Schematic illustration of our Indirect Neural Correction (INC) rollout procedure. At
each timestep n, the solution un is advanced through the temporal integrator T , incorporating the
physical dynamics governed by spatial derivatives N and indirect neural corrections Gθ(un). This
autoregressive approach is repeated iteratively for k steps, highlighting how INC influences each
integration step.

E Weighted Essentially Non-Oscillatory (WENO) based finite-difference
method for Burgers

The following three sections provide details of the differentiable solvers that were used for the
experiments in our paper. Details of the experiments will be provided afterwards.

The viscous Burgers equation represents a fundamental model combining nonlinear advection with
diffusive effects:

∂u

∂t
+

∂

∂x

(
u2

2

)
= ν

∂2u

∂x2
, (E.1)

where u(x, t) denotes the velocity field and ν the kinematic viscosity. This PDE system presents
numerical challenges due to the shock formation while requiring accurate resolution.
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E.1 Weighted Essentially Non-Oscillatory (WENO) Scheme

The fifth-order WENO (WENO5) scheme, originally developed by Jiang and Shu [1, 50], provides
an effective framework for resolving both smooth structures and discontinuities. Building upon
the Essentially Non-Oscillatory (ENO) concept, WENO improves reconstruction accuracy through
convex combination of multiple candidate stencils, weighted by local smoothness measures.

E.2 Lax-Friedrichs Flux Splitting

To facilitate stable upwind reconstruction in characteristic space, we employ the local Lax-Friedrichs
flux splitting technique [51]. This approach decomposes the nonlinear flux f(u) = u2/2 into
positively and negatively propagating components:

f±(u) =
1

2
(f(u)± αu) , (E.2)

where α = max |u| represents the maximum characteristic speed over the computational domain.
The splitting parameter α ensures the numerical flux Jacobians satisfy:

∂f+

∂u
≥ 0,

∂f−

∂u
≤ 0, (E.3)

guaranteeing the upwind property for each component.

E.3 Weighted Essentially Non-Oscillatory (WENO) Reconstruction Procedure

The fifth-order WENO (WENO5) algorithm constructs interface flux values through the following
systematic process:

Stencil Configuration For each interface xi+1/2, three candidate stencils are considered for both
flux components:

• Positive fluxes (f+): Upwind-biased stencils

S+
0 = {xi−2, xi−1, xi}

S+
1 = {xi−1, xi, xi+1}

S+
2 = {xi, xi+1, xi+2}

• Negative fluxes (f−): Downwind-biased stencils

S−
0 = {xi+2, xi+1, xi}

S−
1 = {xi+1, xi, xi−1}

S−
2 = {xi, xi−1, xi−2}

This dual stencil arrangement ensures proper upwinding directionality for each flux component while
maintaining the formal five-point spatial support.

Polynomial Reconstruction Each 3-point stencil generates a quadratic polynomial pk(x) approxi-
mating the flux function. Through Taylor series expansion about xi+1/2, we derive the optimal linear
weights γk that would yield fifth-order accuracy if applied uniformly in smooth regions. For the
positive flux component, the interface extrapolations yield:

f
(0)+
i+1/2 =

1

3
fi−2 −

7

6
fi−1 +

11

6
fi (E.4)

f
(1)+
i+1/2 = −1

6
fi−1 +

5

6
fi +

1

3
fi+1 (E.5)

f
(2)+
i+1/2 =

1

3
fi +

5

6
fi+1 −

1

6
fi+2 (E.6)

Negative flux components employ symmetrized coefficients through index reflection about xi+1/2.
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Smoothness Indicators Oscillation detection is quantified through the Sobolev-type smoothness
measure:

βk =

2∑
m=1

∆x2m−1

∫ xi+1/2

xi−1/2

(
dmpk
dxm

)2

dx, (E.7)

which penalizes high-order derivatives to detect nonsmooth features. Expanding for each stencil:

β0 =
13

12
(fi−2 − 2fi−1 + fi)

2 +
1

4
(fi−2 − 4fi−1 + 3fi)

2

β1 =
13

12
(fi−1 − 2fi + fi+1)

2 +
1

4
(fi−1 − fi+1)

2

β2 =
13

12
(fi − 2fi+1 + fi+2)

2 +
1

4
(3fi − 4fi+1 + fi+2)

2 (E.8)

Smaller βk values indicate smoother stencils, preferentially weighted in the reconstruction.

Adaptive Weighting Strategy Nonlinear weights combine stencil contributions while enforcing
the ENO property:

ω±
k =

γk

(ϵ+ β±
k )2

, ϵ = 10−12, (E.9)

where γ = [0.1, 0.6, 0.3] are the optimal linear weights for smooth solutions. The regularization
parameter ϵ prevents division by zero while maintaining weights near optimal values in smooth
regions. Final weights are normalized as:

ω±
k ←

ω±
k∑2

m=0 ω
±
m

(E.10)

This weighting strategy automatically assigns dominant weight to the smoothest stencil while retaining
high-order accuracy when all stencils are smooth.

Flux Reconstruction The interface flux combines weighted contributions from all stencils:

f̂i+1/2 =

2∑
k=0

(
ω+
k f

(k)+
i+1/2 + ω−

k f
(k)−
i+1/2

)
(E.11)

The complete WENO5 procedure achieves fifth-order accuracy in smooth regions while providing
non-oscillatory shock transitions.

The diffusion term employs second-order central differences:

∂2u

∂x2

∣∣∣∣
i

=
ui+1 − 2ui + ui−1

∆x2
+O(∆x2) (E.12)

E.4 Temporal Integration

A forward Euler method is used to advance the solution:

un+1 = un +∆t

[
− ∂

∂x

(
u2

2

)n

+ ν
∂2u

∂x2

∣∣∣∣n] (E.13)

In order to ensure stability, adaptive time forward is supported with a constrained time step by the
CFL condition:

∆t ≤ CFL ·min

(
∆x

max |un|

)
(E.14)

where CFL ∈ (0, 1] is a user-specified parameter. The code implements adaptive sub-stepping to
guarantee this condition at each iteration.

Periodic boundaries are enforced through index mapping:

ui+k = u(i+k) mod N , k ∈ {−2,−1, 0, 1, 2} (E.15)
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E.5 Validation Cases

To validate our solver, we consider two problems with known analytical solutions: a homogeneous
case and a case with a quadratic source term. The former checks pure advection, while the latter
verifies correct handling of source terms.

Homogeneous Burgers Equation We solve the homogeneous Burgers equation
ut + uux = 0, u(x, 0) = h0(x) = sin

(
2πx
L

)
, (E.16)

on the periodic domain x ∈ [0, L] with L = 2. The entropy solution can be written via the Hopf–Lax
formula [52]:

u(x, t) = arg miny

{
F (y) +

(x− y)2

2t

}
, (E.17)

where F (y) = − 1
π cos(πy) is the antiderivative of the initial condition u0.

Figure 9 compares the numerical and analytical solutions from t = 0 to 2 s, demonstrating excellent
agreement.
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Figure 9: Analytical (left) vs. numerical (right) solutions of the homogeneous Burgers equation.

Burgers Equation with a Quadratic Source Term Next, we test the solver on
ut + uux = β u2, u(x, 0) = h0(x), (E.18)

again with periodic boundary conditions on x ∈ [0, 1]. Using the method of characteristics [53], one
obtains

u(x, t) =
h0(y)

1− βth0(y)
, where y − ln(1− βth0(y))

β
= x (E.19)

For β = −2 and h0(x) = sin(2πx) this simplifies to

u(x, t) =
sin(2πy)

1 + 2t sin(2πy)
, where y +

1

2
ln(1 + 2t sin(2πy)) = x. (E.20)

Figure 10 shows that the numerical solution aligns well with the analytical one for t ∈ [0, 0.15] s.

F Fourier Pseudo-Spectral Exponential Time Differencing Method for
Kuramoto-Sivashinsky equation

F.1 Governing Equations

The one-dimensional Kuramoto-Sivashinsky (KS) equation governs spatiotemporal pattern formation
in dissipative systems:

∂u

∂t
+ u

∂u

∂x
+

∂2u

∂x2
+

∂4u

∂x4
= 0, (F.1)

where u(x, t) represents the scalar field of interest. The equation combines:

• Nonlinear advection through the u∂u/∂x term
• Energy production/dissipation via the ∂2u/∂x2 operator
• High-wavenumber stabilization from the ∂4u/∂x4 hyperviscosity
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Figure 10: Analytical (left) vs. numerical (right) solutions of the Burgers equation with quadratic
source term.

F.2 Spectral Discretization

We employ a pseudospectral method with periodic boundary conditions on domain x ∈ [0, L]. The
solution is discretized over N collocation points and transformed to Fourier space via:

û(kn, t) = F{u(x, t)} =
N−1∑
j=0

u(xj , t)e
−iknxj , (F.2)

where wavenumbers kn = 2πn
L for n ∈ [−N/2 + 1, N/2].

Spatial derivatives become algebraic operations in Fourier space:

F
{
∂mu

∂xm

}
= (ik)mû(k, t). (F.3)

The linear operator for KS becomes:

L = −((ik)2 + (ik)4). (F.4)

The advection term transforms via convolution theorem:

F
{
u
∂u

∂x

}
= − ik

2
F{u2}, (F.5)

The semi-discrete Fourier-transformed KS equation becomes:

dû

dt
= Lû+N (û), (F.6)

where N (û) = − ik
2 F{u

2} contains nonlinear terms.

F.3 Exponential Time Differencing

Using the variation-of-constants formula, the exact solution evolves as:

û(t+∆t) = eL∆tû(t) +

∫ ∆t

0

eL(∆t−τ)N (û(t+ τ))dτ. (F.7)

For the non-linear part, there are different scheme to approximate,

Approximating the nonlinear term as constant over τ ∈ [0,∆t]:

ûn+1 = eL∆tûn + L−1(eL∆t − I)N (ûn). (F.8)

We also implement a higher order of temporal scheme, second-order Runge-Kutta scheme (ETDRK2)
to improves temporal accuracy:

û∗ = eL∆tûn + L−1(eL∆t − I)N (ûn) (F.9)

ûn+1 = û∗ +
eL∆t − I − L∆t

L2∆t
(N (û∗)−N (ûn)). (F.10)
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F.4 Source Term Incorporation

For forced systems ∂tu = · · ·+ S(x, t), the semi-discrete equation becomes:

dû

dt
= Lû+N (û) + Ŝ. (F.11)

The ETD framework naturally extends through modified integration:

ûn+1 = eL∆tûn +

∫ ∆t

0

eL(∆t−τ)(N (ûn + τ)) + Ŝ)dτ, (F.12)

with source terms treated analogously to nonlinear terms in temporal discretization.

G Pressure Implicit with Splitting of Operators method (PISO) for
incompressible Navier–Stokes equation

The Pressure Implicit with Splitting of Operators (PISO) algorithm is a widely used predictor-corrector
method in computational fluid dynamics [3]. It can be written as:

G.1 Predictor Step

The velocity predictor equation is given by:
1

∆t
u∗ +∇ · (unu∗)− ν∇2u∗ =

1

∆t
un −∇p+ Sn, (G.1)

where u∗ is the predicted velocity field, ν is the kinematic viscosity, and Sn represents the source
term at time step n.

Rewriting this equation in matrix form:

Cu∗ =
1

∆t
un −∇p+ Sn. (G.2)

G.2 Pressure Correction Step

For the corrector step, the matrix C is decomposed into its diagonal component A and off-diagonal
component H . Defining:

h = −Hu∗ +
un

∆t
, (G.3)

the predicted velocity u∗ can be expressed as:

u∗ = A−1h−A−1∇p+A−1Sn. (G.4)

Applying the divergence-free constraint∇ · u∗∗ = 0, we obtain:

∇ · (A−1h−A−1∇p∗ +A−1Sn) = 0. (G.5)

Defining the intermediate velocity correction term:

h = A−1(h+ Sn), (G.6)

we arrive at the pressure Poisson equation:

∇ · (A−1∇p∗) = ∇2(A−1p∗) = ∇ · h. (G.7)

G.3 Velocity Correction

Once the pressure p∗ is solved, the velocity field is corrected to ensure divergence-free conditions:

u∗∗ = h−A−1∇p∗. (G.8)

The corrected velocity u∗∗ is then used in the next iteration of the correction loop, repeating the
pressure correction step to further improve accuracy. Typically, this correction process is performed
twice to enhance solution stability.
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Table 1: Summary of numerical solvers for different cases. Temporal schemes and spatial discretiza-
tions are validated for each case.

Case Dimension Temporal Scheme Spatial Discretization
Kuramoto–Sivashinsky (KS1/KS2) 1D ETDRK Pseudo-Spectral
Burgers’ Equation (Burgers) 1D forward Euler WENO-5 (Finite Difference)
Kármán Vortex Street (Karman) 2D Semi-implicit (PISO) Finite Volume Method
Backward–Facing Step (BFS) 2D Semi-implicit (PISO) Finite Volume Method
Turbulent Channel Flow (TCF) 3D Semi-implicit (PISO) Finite Volume Method

H Training details

Our experiments employ three different solvers with substantially different numerical schemes. An
overview is given in table 1.

H.1 Experiment 1 & 3: Kuramoto–Sivashinsky equation

Numerical setup The Kuramoto–Sivashinsky (KS) equation serves as a prototypical example of
spatiotemporal chaos. In this study, we consider two experimental setups. The first, denoted as
KS1, operates at a fine temporal resolution with ∆t = 10−2 and extends for 5000 steps, as detailed
in section 6.1, to assess model performance under extreme multi-step rollout conditions. The second,
referred to as KS2, employs an extremely coarse time step of ∆t = 0.5, which makes the simulation
blow up typically within 28 steps. This setup is designed to test the capability of improving the
numerical stability of the hybrid solver in a numerically unstable setting, as discussed in section 6.2.
For both KS1 and KS2, the total simulation time is held constant at 50s, and the same first-order
Runge–Kutta (RK1) temporal integration scheme is used. This simulation time corresponds to
approximately 4.5 tc,KS, where the characteristic timescale is defined by the inverse of the maximum
Lyapunov exponent [18]:

tc,KS =
1

λmax
=

1

0.0882
≈ 11.3 s. (H.1)

The domain size L plays a central role in determining the chaotic dynamics of the KS system [18,
41, 42]. To evaluate generalization, we vary L between training and testing: the training domain
lengths are set to Ltrain = 2π · {6.4, 7.2, 8.0, 8.8, 9.6, 10.4}, and the testing domain lengths are
Ltest = 2π · {6.0, 8.4, 10.8}. The spatial resolution is fixed at 64 grid points for all experiments.

Training setup INC, SITL and SITL∗ are trained together with the differentiable solver. I.e.,
they employ solver-in-the-loop training with a multi-step unrolled optimization strategy, each step
being supervised by a high-fidelity reference state. The training data is generated from high-fidelity
simulations and downsampled to a low resolution. During the training phase, the neural corrector is
optimized to minimize the discrepancy between trajectories produced by the hybrid solver (the coarse
numerical solver combined with the neural corrector) and the downsampled high-fidelity solutions.
The loss function is an L2 loss computed over multi-step autoregressive rollouts. This multi-step
training is conducted in an end-to-end differentiable framework (all solvers are implemented in
PyTorch and CUDA), allowing gradients to backpropagate through both the neural corrector and the
numerical solver steps for the whole rollout. This training paradigm ensures that the neural corrector
learns corrections optimized explicitly for long-term stability and accuracy, and accounts for the
solver’s intrinsic numerical dynamics. In our work, the choice of unrolling length is guided by the
characteristic timescale tc of the dynamical systems. For each case, tc is derived from system-specific
properties, like the inverse of the maximum Lyapunov exponent for the Kuramoto–Sivashinsky
equation. More details about tc for each case are detailed in the following paragraph. After calculation
of tc and setting the time step as ∆t, we compute the number of steps per characteristic timescale
as N = tc

∆t . We then set the unrolling length during training to approximately 0.04 · N . During
inference, we significantly extend this horizon by a factor of about 100, typically to 4·N 6·N , to
rigorously evaluate long-term stability and accuracy. We believe that anchoring both training and
inference lengths to the system’s intrinsic timescale results in a more physically grounded and robust
learning process. Similar to the training setup, the hybrid solver couples neural networks with a
low-resolution solver also in the inference phase.

26



We evaluate four distinct network architectures, comprising both convolution-based and operator-
based models. Specifically, we deploy ResNet and UNet as convolutional models, and Fourier Neural
Operator (FNO) and DeepONet as operator-learning approaches. For neural correctors (INC, SITL,
SITL∗), the input consists of two channels: the solution u and the corresponding positional grid. For
recurrent architectures such as RNN, we follow the setup of Li et al.[4], using 11 input channels (10
historical time steps plus 1 positional grid).

ResNet [54] is implemented as a 1D architecture composed of six residual blocks, each with 32
feature channels. Circular padding is applied to Conv1D layers (kernel size 5), and identity mappings
are used as residual connections. ReLU is adopted as the activation function throughout. A final 1× 1
Conv1D layer maps features to a single output channel. The total number of trainable parameters is
62.2k for correctors and 63.6k for RNN.

UNet [55] adopts a symmetric encoder–decoder design, initialized with 32 base features. The network
includes circularly padded Conv1D layers (kernel size 5) with ReLU activations, max-pooling (kernel
size 2) in the encoder, transposed convolutions (kernel size 2) in the decoder, and skip connections to
preserve high-resolution features. A final 1× 1 Conv1D produces the output. The parameter count is
257.1k for correctors and 258.5k for RNN.

FNO [4] begins with a linear layer that maps the input into a feature space with 64 channels, followed
by four Fourier layers, each multiplying 16 modes in the frequency domain, plus 1×1 Conv1d residual
branches and GeLU activations. Total trainable parameters are 549.6k/550.1k for correctors/RNN.

DeepONet [9] utilizes a branch–trunk architecture. The branch net processes inputs at 100 sensor
points using four fully connected layers with 128 neurons and Tanh activations. The trunk net mirrors
this structure, with transfer of the input to a Fourier basis function (4 modes). Outputs from the
branch and trunk networks are combined via a dot product and a learnable bias term. The total
parameter count is 113.4k for correctors and 228.6k for the RNN.

All models are trained using the Adam optimizer with a fixed learning rate of 10−4, an ℓ2 regular-
ization coefficient of 10−7, and a batch size of 64. Training is conducted for 100 epochs using a
multi-step rollout strategy, with 100 time steps for KS1 and 10 time steps for KS2. The iterations
are 42k in total. To prevent overfitting, 10% of the training data is set aside for validation. The
model exhibiting the best validation loss is selected as the final checkpoint. A learning rate scheduler
(ReduceLROnPlateau) is employed, which reduces the learning rate by a factor of 0.5 after 5 epochs
without improvement in validation loss. The minimum learning rate is capped at 10−7. An early
stopping criterion halts training if no improvement is observed for 15 consecutive epochs. The
training time is approximately 2 hours for KS1 and 4 hours for KS2 on a single NVIDIA RTX 2080
Ti GPU. This variation arises from the differing rollout lengths used during training.

H.2 Experiment 2: Burgers equation

Numerical setup For Burgers, our objective is to evaluate how neural correctors perform under
spatially downsampled settings with long-term rollout (4000 steps) and a fine temporal resolution
(∆t = 10−3). The total simulation time spans 4s, which corresponds to at least 4tc,BG, where tc,BG

denotes the characteristic time at which the first pair of characteristics intersect and is determined
numerically. Spatial downsampling is applied to the reference solution with a resolution of 512,
producing coarser grids at resolutions 128, 64, 32, and 16—corresponding to downsampling factors
of 4×, 8×, 16× and 32×, respectively. To further evaluate the generalization capability of the neural
correctors beyond random initial condition variations (as discussed in section 5), we introduce a
viscosity shift between training and testing. Specifically, the viscosity is set to νtrain = 0.2 and
νtest = 0.25.

Training setup The neural network configurations mirror those used in the KS experiments. For
all models, the architecture and training procedures remain identical, with one exception: for FNO
at the lowest resolution (16 grid points), the number of retained Fourier modes is reduced from 16
to 8 to accommodate the smaller spatial domain. Herein, the unrolled step for training is 50. Under
this modification, the number of trainable parameters for FNO becomes 287.4k for correctors and
288.0k for RNN. The training procedure also closely follows that of the KS setup, albeit with one
adjustment. To account for the increased numerical sensitivity in Burgers simulations, the learning
rate is slightly reduced to 10−5. All other hyperparameters—including batch size, optimizer (Adam),
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regularization strategy, learning rate scheduling, and early stopping criteria—remain consistent with
the KS training configuration. The training time ranges from approximately 10 to 18 hours on a single
NVIDIA RTX 2080 Ti GPU. The variation is primarily due to differences in spatial resolution across
cases and the use of an early stopping mechanism, which terminates training based on validation
performance.

H.3 Experiment 4: Karman

Numerical setup 2D Karman vortex shedding is a classic benchmark problem controlled by the
incompressible Navier–Stokes equation. In this study, we focus on turbulent regimes characterized
by Reynolds numbers in Re ∈ {500, 600}, using a rectangular obstacle placed centrally within the
domain. The sharp corners of the obstacle induce localized disturbances that propagate across the
domain, introducing numerical challenges due to their sensitivity to spatial resolution and stability.
These disturbances can generate checkerboard artifacts when the flow is simulated under coarse
discretization, as illustrated in fig. 3b for the No Model at 10s. In this study, we apply a 4×
downsampling in both spatial directions, yielding a coarse grid resolution of 67× 36. Additionally,
we set the CFL number to 2, which is relatively high compared to the typical stability criterion of
CFL < 1.0, further challenging the numerical solver. To test the generalization of the corrector, we
vary the obstacle height y, with training configurations sampled from ytrain ∈ {1.0, 1.5} and testing
conducted at ytest = 2.0.

Training setup For neural network architecture, this scenario used a 2D CNN with 7 layers and 16,
32, 64, 64, 64, 64, and 2 filters, respectively. The kernel sizes of the filters are 72, 52, 52, 32, 32, 12,
and 12, respectively, for a total of 144.7k parameters. The stride is 1 in all layers, and we use ReLU
as the activation function. Given the variation in Reynolds number and geometry across simulations,
the input channel includes both parameters in addition to the 2D velocity fields, resulting in four
input channels.

Training is conducted using the Adam optimizer with a learning rate of 10−4 with a fixed weight
decay 10−1. Due to the increased numerical difficulty and sensitivity in 2D simulations, early-stage
instability poses a significant challenge during training. To mitigate this issue, a staged multi-step
rollout strategy is employed. The model is first trained with a rollout length of 2 steps for 24,000
iterations, followed by 8 steps for an additional 24,000 iterations. This progressive increase in rollout
horizon is crucial for stabilizing the learning process during the initial phase of training. The total
training time is approximately 13 hours on a single NVIDIA RTX 2080 Ti GPU.

H.4 Experiment 5: Backward facing step

Numerical setup The Backward-facing step (BFS) is a classic example of separated flow induced
by an abrupt geometric expansion. The flow evolves spatially along the downstream region, requiring
long-term accuracy and stability to consistently reproduce turbulent statistics [56, 57]. Furthermore,
BFS is inherently sensitive to resolution due to grid-induced oscillations [58]. In our numerical setup,
we apply a 4× spatial and 20× temporal downsampling. This setup results in a CFL number of CFL =
4.0, with the time step set to ∆t = 0.1. The spatial resolution in the core domain—encompassing the
region of vortex separation and reattachment, excluding the inlet and outlet, is set to 128× 32. To
validate the efficiency of INC, we compare it with two high-resolution simulations performed under
numerically stable settings (CFL < 0.8), using resolutions of 192 × 48 and 256 × 64, donated as
No Model192 and No Model256, respectively.

Two primary parameters strongly influence BFS flow behavior: the expansion ratio (H/h) and the
Reynolds number (Re = 2hUb/ν), as they significantly affect critical metrics such as reattachment
length [56, 57]. To further challenge the hybrid solver, we vary both the viscosity ν and the height h
(the height of the gap between the step and the top wall). During training, the parameters are sampled
from htrain ∈ {0.85, 0.875} and Retrain ∈ {1300, 1350}; for testing, they are set to htest = 1.0
and Retest = 1400. We simulate 1200 steps during testing, corresponding to a physical time of
t · h

Ub
= 4tc,BFS, where Ub is the bulk velocity. The tc,BFS is defined as the time required for fluid to

convect through the entire post-expansion region [59].
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Training setup The neural network architecture and training procedure employed for BFS follow
the same configuration of Karman as described before. The total training time is about 16h on a
single NVIDIA RTX 2080 Ti GPU.

H.5 Experiment 6: Turbulent channel flow

Numerical setup A turbulent channel flow (TCF) is a canonical wall-bounded shear flow governed
by the incompressible Navier–Stokes equations. It is extensively employed to investigate the dynamics
of near-wall turbulence and to evaluate the performance of turbulence modeling approaches. In this
study, we consider the case of Reτ = 550, utilizing a coarse spatial resolution of 64× 32× 32. For
SITL, SITL∗ and No Model, a CFL=0.8 is chosen to ensure numerical stability. In contrast, for
INC, owing to its stabilizing properties, a 2× larger time step is applied. This corresponds to a CFL
number of 1.6, which is unstable for other models, yielding ∆t = 0.11. To facilitate comparison, a
high-resolution baseline case with 256× 128× 128, referred to as No Model256 is employed. The
No Model256 is under extreme numerical stability constraints with CFL=0.1. The distinction between
training and testing lies in the number of forward steps. During training, the model is exposed to 12
multi-step rollouts, with a maximum warm-up period of 96 steps. Notably, the warm-up phase is
used solely for forward simulation and does not involve gradient backpropagation. For evaluation,
the models are tested over 1500 time steps, corresponding to 6tc,TCF [60]. Here, the characteristic
time scale tc,TCF is defined as t · uτ

δ , where δ is the ratio of the channel half-width and uτ is the wall
friction velocity. This timescale characterizes the evolution period of the largest energy-containing
structures in the flow.

Training setup For 3D TCF, we address a particularly challenging learning objective: training
hybrid solvers to match turbulence statistics generated by a high-fidelity spectral solver at high
resolution, rather than directly reproducing individual grid values. To ensure that the predicted flow
fields accurately reflect the target turbulence statistics both globally and locally, the statistical loss
is decomposed into two components: the averaged statistics loss during rollout training, and the
frame-by-frame statistics loss, as described in detail below.

Consider a sequence of predicted velocity fields un
i (x, y, z) at time steps n = 0, 1, . . . , N , where

index i represents the velocity component (e.g., i = 1, 2, 3 for streamwise x, wall-normal y, and
spanwise directions z). It’s generated autoregressively from an initial state ũ0

i via a hybrid solver
such that:

un
i = (T |N |Gθ)n(ũ0

i ), (H.2)

For each step n, we compute spatial averages over the homogeneous directions (streamwise x and
spanwise z):

⟨ui⟩n(y) =
1

XZ

X−1∑
x=0

Z−1∑
z=0

un
i (x, y, z), (H.3)

where X and Z are the grid resolutions in x and z. The velocity fluctuation at step n is:

u′n
i (x, y, z) = un

i (x, y, z)− ⟨ui⟩n(y), (H.4)

and the spatial Reynolds stress is:

⟨u′
iu

′
j⟩n(y) =

1

XZ

X−1∑
x=0

Z−1∑
z=0

u′n
i (x, y, z)u′n

j (x, y, z). (H.5)

The per-frame loss terms enforce statistical fidelity at each step n:

Ln
ui

=
1

Y

Y−1∑
y=0

L2

(
⟨ui⟩n(y), ũi(y)

)
, (H.6)

Ln
u′
ij
=

1

Y

Y−1∑
y=0

L2

(
⟨u′

iu
′
j⟩n(y), ũ′

iũ
′
j(y)

)
, (H.7)

where Y is the wall-normal resolution, and ũi(y) is the target time-averaged mean velocity from a
high-fidelity spectral solver at high resolution[61].
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For the averaged statistical losses over N steps, we define:

ui
0:N (y) =

1

N

N∑
n=1

⟨ui⟩n(y), (H.8)

u′
iu

′
j

0:N
(y) =

1

N

N∑
n=1

(
1

XZ

X−1∑
x=0

Z−1∑
z=0

(
un
i (x, y, z)− ui

0:N (y)
) (

un
j (x, y, z)− uj

0:N (y)
))

,

(H.9)

yielding:

L0:N
ui

=
1

Y

Y−1∑
y=0

L2

(
ui

0:N (y), ũi(y)
)
, (H.10)

L0:N
u′
ij

=
1

Y

Y−1∑
y=0

L2

(
u′
iu

′
j

0:N
(y), ũ′

iũ
′
j(y)

)
. (H.11)

The total statistical loss combines these terms with weighting coefficients:

Lstats =

3∑
i=1

λui
L0:N
ui

+

3∑
i=1

3∑
j=1

λu′
ij
L0:N
u′
ij︸ ︷︷ ︸

mean stats loss

+

N∑
n=0

λn
stats

 3∑
i=1

λui
Ln
ui

+

3∑
i=1

3∑
j=1

λu′
ij
Ln
u′
ij


︸ ︷︷ ︸

frame-by-frame stats loss

, (H.12)

where λui
, λu′

ij
, and λn

stats are hyperparameters tuning the contribution of each term. Specifically, we
set λu1

= 1 λu2
= λu3

= 0.5, λu′
ij
= 1.0 and λn

stats = 0.5.

To quantitatively assess the accuracy of the hybrid solver in TCF case, we compute a statistical error
metric that aggregates multiple normalized mean squared errors across key turbulence statistics. The
error is defined as

LMSEstats =
∑
qi∈Q

max |qrefi (y)| 1
Y

Y−1∑
y=0

L2

(
qi(y), q

ref
i (y)

)
∆y (H.13)

where Q =
{
u1/uτ , u′u′, v′v′, w′w′, u′v′

}
is the set of statistics, corresponding to mean streamwise

velocity and key Reynolds stress components.

For this 3D case, we employ a convolution-based network as the neural corrector. The network
architecture consists of successive convolutional layers with 8, 64, 64, 32, 16, 8, 4, and 3 channels,
respectively. Each layer uses a kernel size of 33, except for the last layer, which employs a kernel
size of 13. This gives 198.9k trainable parameters in total. ReLU activations are used for all but the
last layer. The input to the network comprises four channels: the three components of the 3D velocity
field and a normalized wall distance term defined as 1− |yδ |.
Training is performed using the Adam optimizer. The warm-up strategy is staged to facilitate stable
learning. Initially, the network is trained for 6,000 iterations without any warm-up steps. This is
followed by 20,000 iterations with warm-up steps randomly sampled from the range [0, 12], 8,000
iterations with warm-up in [0, 24], 20 iterations with warm-up in [0, 48], and a final 20 iterations
with warm-up in [0, 96]. To accelerate training, we omit gradient computation for the linear solves,
including both the advection linear solve and the Poisson solver used in the PISO solver. The total
training time is approximately 42 hours on a single NVIDIA RTX 2080 Ti GPU.

I Extended results

I.1 CSM results

Conceptually, CSM shares the same spirit as SITL: it applies the learned correction directly to
the coarse solver’s output, but scales the correction by the time-step ∆t. To provide a more direct
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comparison, we have run additional experiments on both the Kuramoto–Sivashinsky (KS) and
Backward-Facing Step (BFS) cases. We evaluate each method using the same metrics as in section 6,
specifically R2 for KS and MSE for the BFS. Since CSM only slightly differs from SITL, it also
remains susceptible to perturbation growth, particularly in chaotic regimes where small errors can
rapidly magnify over long-term rollouts. The quantitative results in table 2 confirm INC’s superiority
across all network architectures on the KS system and in the BFS flow. For the KS problem, INC
achieves R2 scores markedly higher than the corresponding CSM results, and a roughly 42% relative
increase in R2 has been observed with the DeepONet model. In the BFS case, the flow separation and
reattachment zones are inherently unstable, where perturbations can trigger significant changes in such
zones by affecting the main flow and the shear layer. INC attains an MSE of (0.24± 0.07)× 10−3,
compared to (8.09 ± 1.52) × 10−3 for CSM, an improvement in error magnitude by a factor of
approximately 33. These results reinforce the effectiveness of our indirect correction strategy.

Table 2: Comparison of R2 (larger is better, used for KS metrics) and MSE (smaller is better, used
for BFS) across models.

R2 (↑) MSE (↓)
KS(FNO) KS(DeepONet) KS(UNet) KS(ResNet) BFS(CNN)

INC 0.97± 0.08 0.91± 0.14 0.97± 0.06 0.93± 0.13 (0.24± 0.07)× 10−3

CSM 0.90± 0.17 0.64± 0.34 0.89± 0.19 0.72± 0.32 (8.09± 1.52)× 10−3

I.2 Modern-UNet results

We integrated a Modern-UNet [62] with our INC method and conducted comparative experiments.
The results of these new experiments are fully consistent with the findings reported for other networks
in the manuscript, as listed in table 3. Among the hybrid methods, INC achieves the lowest error
rates, with a reduction of ca. 70% compared to SITL. Doubling the spatial resolution to 32 points
further accentuates INC’s advantage, representing an approximate 84% reduction relative to SITL.
Similar to the results in the manuscript, the hybrid-solver approaches also clearly outperform the
purely data-driven RNN method.

Table 3: Comparison of methods on Burgers of Morden-Unet (MSE).
MSE (↓)

INC SITL SITL∗ RNN
Burgers-Res16 (×10−2) 1.24± 1.43 4.62± 3.31 4.31± 3.01 334.98± 79.78
Burgers-Res32 (×10−2) 0.29± 0.46 1.81± 1.83 1.97± 1.99 355.41± 112.18

I.3 Physical metrics

For clarity, the evaluation of most cases is limited to standard statistical metrics in this manuscript,
except for the TCF. In the following, we present a dedicated analysis tailored to each configuration.
For the KS system, the energy spectrum is examined to identify the characteristic modes of the
cascade. The energy is defined as

En = 1
2 |ûn|2, (I.1)

where ûn(t) is the velocity field in Fourier space, which can be expressed as

ûn(t) =
1

L

∫ L

0

u(x, t) e−ikx dx, k =
2πn

L
, (I.2)

where un(t) is the velocity and L is the domain length.

For the Karman case, the viscous drag coefficient quantifies the tangential shear contribution to the
total aerodynamic drag. The force acting on the obstacle surface Γ is given by

F viscous
d =

∫
Γ

τw · tx dΓ, (I.3)
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where τw = µ
(
∇u+∇uT

)
· n is the viscous stress vector acting on the surface, µ is the dynamic

viscosity, n denotes the local unit normal pointing into the fluid, and tx is the unit vector aligned
with the streamwise direction. The corresponding viscous drag coefficient is defined as

Cviscous
d (t) =

1
1
2ρU

2
refΓ

∫
Γ

µ
[(
∇u+∇uT

)
· n
]
· tx dΓ, (I.4)

where ρ is the fluid density, Uref a reference velocity, and Γ the total surface area.

For the BFS case, wall-shear dynamics govern the flow separation, recirculation, and reattachment
processes. Accordingly, the local skin-friction coefficient is defined as

Cf (x, t) =
τw(x, t)
1
2ρU

2
b

, (I.5)

where ρ is the fluid density and Ub denotes the bulk velocity. The wall shear stress τw is obtained
from the tangential velocity gradient at the wall,

τw(x, t) = µ
∂ut

∂n

∣∣∣∣
wall

, (I.6)

with µ the dynamic viscosity, ut the tangential velocity component, and n the coordinate normal
to the wall. This formulation enables direct evaluation of the instantaneous wall-shear distribution,
providing quantitative insight into the near-wall momentum exchange and reattachment behavior
downstream of the step.

The mean squared errors (MSE) of the statistical quantities are summarized in table 4.

Table 4: MSE of case-specific physical statistics for different methods.
INC SITL SITL∗

KS (×10−4) 1.49± 5.94 34.94± 43.82 23.76± 28.70
BFS (×10−3) 6.05± 0.57 21.75± 1.06 23.34± 2.91
Karman (×10−2) 1.87± 1.54 5.70± 5.17 8.48± 6.09
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We describe our method in section 3, the theoretical framework in section 4,
and results in section 6.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations have been discussed in section 7, as the advantage of our
method hinges on the dynamical stiffness of the PDE and the time-integrator’s inherent
stability region.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We introduce the theoretical framework in section 4. The appendix provides
detailed proofs and assumptions made.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The algorithm is described in section 3. The details of all experiments
(numerical methods, system parameters, optimization parameters) are given in the appendix.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Our source code is available at https://github.com/tum-pbs/INC

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The appendix includes a detailed description of the experiments.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Results typically report the mean ± one standard deviation over three models
trained with different random seeds.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
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Answer: [Yes]

Justification: The details on the compute resources are provided in the appendix.

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read and commit to adhering the NeurIPS Code of Ethics.

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work classifies as foundational research.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The answer NA means that the paper poses no such risks

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The answer NA means that the paper does not use existing assets.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The answer NA means that the paper does not release new assets.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The answer NA means that the paper does not involve crowdsourcing nor
research with human subjects.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer:[NA]

Justification: The answer NA means that the paper does not involve crowdsourcing nor
research with human subjects.

16. Declaration of LLM usage
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https://neurips.cc/public/EthicsGuidelines


Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The answer NA means that the core method development in this research does
not involve LLMs as any important, original, or non-standard components.
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