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ABSTRACT

Domain shifts pose a significant challenge in deep learning applications. Exist-
ing methods typically address domain shifts by treating each domain in isolation,
overlooking the underlying factors driving the shifts, or focus on only one factor.
However, domain shifts in the real world often occur across multiple dimensions
simultaneously. For example, medical datasets from different hospitals can ex-
hibit variations in factors including demographics, equipment manufacturers, and
imaging protocols, demonstrating a three-dimensional shifts. In this paper, we
introduce a novel approach to address the complexity of multi-dimensional do-
main shifts. Our method leverages an ensemble of mixtures of experts (EMoE),
with each MoE specialized in different dimensions. Crucially, we innovate a do-
main estimator to address a particularly challenging issue frequently encountered
in practice: domain labels may be missing or unreliable. A significant advantage
of our method is its generalizability and adaptability to both centralized and fed-
erated learning settings, as well as its versatility across various tasks. Extensive
experiments on six datasets demonstrate the superiority of our method over state-
of-the-art domain generalization and personalized federated learning approaches.

1 INTRODUCTION

Deep learning has significantly advanced computer vision tasks in recent years. However, deploying
these models in real-world scenarios often encounters severe performance degradation due to the
problem of domain shifts (Quinonero-Candela et al., 2008). Domain Generalization (DG) (Wang
et al., 2022) has been proposed to address these challenges, focusing on developing models robust
to changes in data distributions. A promising direction within these efforts is to characterize data
of data distributions as mixtures of domains, training models on one mixture and then aiming to
generalize across unknown mixtures, involving both seen and unseen domains.

Traditional DG studies typically use domain labels indexed by a single factor. In contrast, real-world
domain shifts often emerge from multiple factors. For instance, in medical image analysis, shifts
can be attributed to differences in ethnic groups, equipment manufacturers, or imaging protocols
and workflows (Karani et al., 2018; Ciompi et al., 2017; Garrucho et al., 2022; Mårtensson et al.,
2020). Without utilizing the structure of multi-dimensional domains, existing methods fail to adapt
to the shifts across different domain dimensions simultaneously. Thus, it is crucial to consider
domain dimensions concurrently as they convey various aspects of data. For example, in medical
image analysis, domain shifts from different manufacturers or imaging protocols can affect model
robustness, while shifts among different ethnic groups of patients raise significant concerns about
fairness, as discussed in Parikh et al. (2019); Seyyed-Kalantari et al. (2020); Hinton (2018).

Due to the inherent heterogeneity of the data sources, domain shifts become even more challenging
in federated learning (FL), where models are trained across multiple decentralized clients without
exchanging local data samples. Personalized Federated Learning (PFL) (Sattler et al., 2020) and
Federated Domain Generalization (FDG) (Liu et al., 2021) were proposed to mitigate this problem
and improve generalization on clients involved in FL and unseen datasets outside the federated train-
ing, respectively. Yet, these works presuppose that clients each have distinct and isolated domains.
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Figure 1: Illustration of multi-dimensional domain shifts in centralized and federated learning set-
tings, featuring an example of 2-dimensional indexed domains based on color and shape. Different
icons represent samples from different domains.

This assumption does not hold in many real-world scenarios, such as in medical images, where the
data source at a single client may contain a variety of devices or diverse patient demographics.

In this paper, we address the complex issue of domain shifts in both centralized and federated learn-
ing scenarios, where data distributions are a mixture of multi-dimensionally indexed domains. Our
motivation stems from the need to effectively generalize across unseen mixtures of data domains, as
illustrated in Figure 1. A straightforward approach would be to group data with the same domain
indices across all dimensions and apply existing DG techniques. However, this method is funda-
mentally flawed, as certain groups may be underrepresented or entirely absent during training due
to the granular domain labels, making it difficult to ensure generalizability. Moreover, this approach
overlooks the inherent structure of domain labels, leading to suboptimal model performance.

To address these challenges, we introduce the Ensemble of Mixtures of Experts (EMoE) and its
federated learning counterpart, FedEMoE. For each domain dimension, we design a Mixture of
Experts (MoE) to address specific domain shifts, and we ensemble these MoEs to account for all
potential domain shifts factors. Our model is explicitly optimized to ensure equal effectiveness
across all domains within each dimension, enabling it to generalize robustly across a wide range of
test set mixtures. This design maximally leverages information from structured domain labels.

A significant challenge arises when domain labels are partially missing, or when predefined domain
labels cannot accurately characterize the data distribution. This is common in practical scenarios,
where domain labels—like patient demographics or equipment manufacturers—may be incomplete
or unable to fully capture the complexity of domain shifts. To address this, our approach integrates
a domain estimator that learns to assign experts based on the data itself, allowing the model not only
to bypass reliance on domain labels at inference time but also to surpass the performance of models
using predefined domain labels. This solution addresses a key limitation highlighted in (Zhong et al.,
2022), increasing the model’s flexibility and practicality in real-world applications.

Our contributions are summarized as follows: (1) We introduce a unified framework to address
the domain shifts challenge in both centralized and federated learning, based on mixtures of multi-
dimensionally indexed domains. (2) We propose a novel approach, EMoE, to effectively manage
multi-dimensional domain shifts, requiring only partial or no domain labels during training and test-
ing. This method is naturally extended to federated learning, ensuring robust generalization across
both training and unseen testing sites. (3) We integrate a domain estimator that assigns experts based
on the data itself, enabling our model to overcome the limitations of missing or unreliable domain
labels, further improving its adaptability. (4) We demonstrate the effectiveness of our method across
five centralized learning tasks and one real-world federated learning scenario, outperforming exist-
ing DG, PFL, and FDG methods. Our approach comprehensively handles various domain shifts and
generalizes effectively to unseen data distributions without the need for domain labels.

2 RELATED WORK

2.1 DOMAIN GENERALIZATION

In domain generalization, training data from one or more source domains is used while test data
originates from different, unseen target domains. This approach, distinct from domain adaptation,
does not involve target domain data during training, as outlined by Quinonero-Candela et al. (2008).
We explore scenarios where training data consists of diverse, multi-dimensional domains, acknowl-
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edging that domain shifts are multifactorial and these domains are identified and known to some
extent. Koh et al. (2021) differentiates “domain generalization” from “subpopulation shift,” where
training and test domains overlap but vary in composition. Our study extends the concept of DG to
include both scenarios, in line with Gulrajani & Lopez-Paz (2020); Shi et al. (2021).

Approaches in DG include: i) Domain-invariant representation learning, which seeks to extract
features making domains indistinguishable for prediction, inspired by generalization error bounds
(Ganin et al., 2016; Ben-David et al., 2010). Techniques include domain prediction penalization
(Ganin et al., 2016; Wang et al., 2019a; Huang et al., 2020), feature distribution matching across do-
mains (Sun & Saenko, 2016; Li et al., 2018a), domain gradient alignment (Koyama & Yamaguchi,
2020; Shi et al., 2021), data augmentation (Yue et al., 2019; Xu et al., 2020; Yao et al., 2022b),
and learning through pretext tasks (Carlucci et al., 2019). ii) Invariant Risk Minimization (IRM) by
Arjovsky et al. (2020), aims for a universal representation where domain-specific optimal classifiers
are identical, addressing invariant causal relationships and domain-specific noise, with extensions
like IB-IRM (Ahuja et al., 2021). iii) Distributional Robustness, which minimizes worst-case losses
across data distributions from different training domains, addressing covariate shifts and subpop-
ulation shifts, discussed in Rojas-Carulla et al. (2015); Quiñonero-Candela et al. (2008); Hu et al.
(2018); Sagawa et al. (2019).

2.2 PERSONALIZED FEDERATED LEARNING

Personalized federated learning has been explored through various approaches, each offering unique
strategies for tailoring models to individual clients. These approaches include: i) Clustered FL,
which divides clients into clusters to develop an optimal model for each group, as discussed in Sattler
et al. (2020); Mansour et al. (2020); Ghosh et al. (2020). ii) Meta-learning techniques, which adapt
the model to new clients using prior knowledge, covered in works like Chen et al. (2018); Fallah
et al. (2020); Jiang et al. (2019); Khodak et al. (2019). iii) Local and global model interpolation,
an approach that combines local client models with a global model, as seen in Deng et al. (2020);
Corinzia et al. (2019); Mansour et al. (2020). iv) Multi-Task Learning (MTL), where separate but
related tasks are learned simultaneously, as explained in Vanhaesebrouck et al. (2017); Smith et al.
(2017); Zantedeschi et al. (2020) and further explored in Hanzely & Richtárik (2020); Hanzely et al.
(2020); T Dinh et al. (2020); Huang et al. (2021); Li et al. (2021a). v) Local fine-tuning methods,
where individual models are adjusted post-training, as presented in Wang et al. (2019b); Yu et al.
(2020). vi) Developing local representations or heads for individual clients, a strategy outlined in
Arivazhagan et al. (2019); Liang et al. (2020); Collins et al. (2021a). vii) Creating personalized
models using hypernetworks or supermodels, as proposed in Shamsian et al. (2021); Chen & Chao
(2021); Xu et al. (2022).

2.3 FEDERATED DOMAIN GENERALIZATION

In contrast to PFL, Federated Domain Generalization (FDG) aims to enhance model performance
on unseen clients. Research in this area is limited; Liu et al. (2021) employ amplitude spectrum
analysis for data distribution as information to exchange, increasing costs and privacy risks. Jiang
et al. (2022) introduce a flatness-aware optimization, while Zhang et al. (2023) adjust aggregation
weights based on domain generalization gaps. Xu et al. (2022) combine PFL techniques by selecting
the most similar personalized local model for an unseen client.

Most existing PFL and FDG approaches treat each client as a distinct domain. However, this often
overlooks the significant interconnections in data distributions across different sites. Recent studies,
such as those by Marfoq et al. (2021) and Wu et al. (2023), propose that the data distribution at each
client’s end is more accurately represented as a mixture of several underlying unknown distributions.
Nevertheless, these studies do not fully exploit the available domain information.

Our work extends the data distribution assumptions from Zhong et al. (2022) in FL and Koh et al.
(2021) in centralized settings, treating data as mixtures of predefined domains. By considering the
multifactorial domain shifts, we concentrate on scenarios where the data distributions are character-
ized as mixtures of multi-dimensional indexed domains. Our model’s design is crafted to be readily
applicable to any new data distribution. This approach allows for a more nuanced understanding of
domain shifts, offering avenues for developing models that are both more robust and adaptable to
diverse data landscapes.
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Figure 2: Illustration of our EMoE framework. Each sample is assigned to an expert via the domain
estimator and each MoE addresses domain shifts within each specific domain dimension. These
MoEs are then ensembled across various domain dimensions, producing the final model outputs.

3 PROBLEM AND METHODOLOGY

In this section, we begin by formalizing our problem setting, followed by the introduction our pro-
posed solution, EMoE. We break down the framework of EMoE into four parts: (1) the learning
objective, (2) the MoE ensemble design, (3) the domain estimator, and (4) the learning algorithms.

3.1 PRELIMINARY

We address a setting where one predicts the label y ∈ Y from the input feature x ∈ X . We assume
the data are generated from multi-dimensional domains. Specifically, there are K dimensions of
domains with {M1,M2, · · · ,MK} predefined domains in each dimension. For example, gender
can be one dimension with male and female as two domains, and race can be another dimension
with white, black, Asian as three domains. We denote the domain label by a domain vector z =
[z1, · · · , zK ] ∈ Z = [M1] × · · · × [MK ] that indicates which domains this sample belongs to
(for each domain dimension). Our goal is to learn a predictor that works for any domains at any
domain dimension. Thus, we care not only about the average performance but the worst domain
performance as well. Following Zhong et al. (2022); Koh et al. (2021), we regard each unique
domain vector z to be associated with a data distribution Dz . Then we can formulate any data
distribution as the mixture of multi-dimensional domains, i.e., D =

∑
z∈Z P (z)Dz , where {P (z)}

denotes the mixture coefficients.

In Centralized Learning, domain generalization aims to train a model on a training distribution
Dtr =

∑
z∈Z Ptr(z)Dz . The goal is for this model to generalize effectively to a distinct test distri-

bution Dts =
∑

z∈Z Pts(z)Dz , where the training and test domain mixture coefficients, {Ptr(z)}
and {Pts(z)}, are not identical. In Federated Learning, the aim is to develop a model that learns
from a diverse set of client-specific data distributions, formulated as Di =

∑
z∈Z Pi(z)Dz for

each client. With n representing the total number of clients, where each client is indexed by
i ∈ [n] ≡ {1, 2, ..., n}, the challenge lies in enabling this model to generalize effectively not
just across the participating clients during training but also to any unseen clients characterized by
Duk =

∑
z∈Z Puk(z)Dz , where {Puk(z)} remains unknown.

3.2 LEARNING OBJECTIVE WITH DOMAIN REWEIGHTING

Given a task, the task-specific loss is defined by Ltask : Y × Y → R. A model, represented as
f : X × Z → Y , makes predictions based on inputs and domain labels. Our method focuses on
achieving equitable minimization of risks, formulated as Rz(f) := E(x,y)∼Dz

Ltask(f(x, z), y),

4
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across each multi-dimensionally indexed domain z. This is key to achieving strong generalization,
even when the mixture coefficients {P (z)} differ significantly from those in the training set.

In centralized learning, this goal can be straightforwardly accomplished through reweighting sam-
ples in different domains. However, in federated learning, this straightforward approach is not fea-
sible due to the distribution of data across various clients. Therefore, we introduce proper weights
for each training sample at different local clients. Specifically, suppose each client i has a col-
lection of data samples Si = {(xj , yj , zj)}Li

j=1, we use Si,k,m to denote the set of samples from
domain m at dimension k in client i, with Li,k,m := |Si,k,m| denoting the sample size. Further,
Li :=

∑Mk

m=1 Li,k,m,∀k is the number of samples in client i while Lk,m :=
∑n

i=1 Li,k,m is the
total number of samples belonging to domain m at dimension k across all the clients. We denote
the empirical risk at client i specific to domain m at dimension k as R̂i,k,m(f). Following a similar
approach as in Zhong et al. (2022), by using uk,m = L

Lk,m·Mk
to reweight the risk for each domain

at each dimension, we derive our learning objective:

R̂(f) :=
n∑

i=1

Li

L
R̂i(f) =

1

K

K∑
k=1

1

Mk

Mk∑
m=1

R̂k,m(f), (1)

where R̂k,m(f) :=
∑n

i=1
Li,k,m

Lk,m
R̂i,k,m(f). Our objective treats each domain within every di-

mension equally, whereas standard FL treats each client equally, ignoring the latent domain struc-
ture. In practice, our objective can be implemented simply by weighting samples individually using
u = 1

K

∑K
k=1

L
Lk,m·Mk

when computing the loss.

3.3 ENSEMBLE OF MIXTURES OF EXPERTS

The design of EMoE is motivated by the need to effectively handle the complexity of multi-
dimensional domain shifts, which are common in real-world scenarios. Fig. 2 illustrates the
overview of our EMoE framework, consisting of a shared encoder (representation extractor) ϕ and
K distinct Mixtures of Experts (MoEs). Each MoE k is specialized to address domain dimension k
by incorporating a mixture of Mk experts, labeled as hk,m for each m ∈ [Mk]. This modular design
enables each MoE to focus on specific factors contributing to domain shifts, allowing the model to
adapt flexibly to various domain combinations. By isolating and addressing shifts across multiple
dimensions, EMoE enhances the model’s ability to generalize effectively to unseen domains. Ad-
ditionally, this architecture is versatile and can be easily integrated with a wide range of existing
models, making it both effective and practical for addressing complex domain shifts.

Specifically, it first computes the output through corresponding MoE for each domain dimension,
i.e., ok :=

∑Mk

m=1 z̃k,mok,m, where ok,m := hk,m(ϕ(x)) is output of expert k,m and z̃k,m is the
expert assignment score used to choose proper experts. If the true domain label is accessible, it
can be directly used as expert assignment score with one hot embedding, z̃k = one hot(zk).
Otherwise, we adopt an domain estimator/expert router (orange box in Fig. 2) to estimate an expert
assignment scores ẑk.

To compile the final model output, we apply an aggregation function AGG(·) to ensemble the outputs
from all MoEs, i.e., o = AGG({ok}Kk=1). We define three aggregation functions: AVG, MAX and PRO.
The AVG function refers to averaging the MoE’s outputs as the final prediction. The MAX function
refers to using the MoE with the highest confidence level (largest prediction probability for multi-
class classification) as the final output.

AVG: o =
1

K

K∑
k=1

ok MAX: o = ok∗ , where k∗ = argmax
k

conf(ok) (2)

Probabilistic Aggregation PRO is a prediction aggregation method under the assumption that dif-
ferent domains have independent effect to the relation between x and y. Specifically, we assume
z1, · · · , zK are mutually independent given either x or x, y, i.e., p(z1, · · · , zK |x) =

∏K
k=1 p(zk|x)

and p(z1, · · · , zK |x, y) =
∏K

k=1 p(zk|x, y). Under the assumption, we can show that,

p(y|x, z1, · · · , zK) =

K∏
k=1

p(y|x, zk)
/

p(y|x)K−1 (3)
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Inspired by the above equation, we design a new aggregation

PRO: o =

K∑
k=1

ok − (K − 1)obase, (4)

where obase is the output of an unconditioned predictor which does not consider domains.

3.4 DOMAIN ESTIMATOR/EXPERT ROUTER

In practical scenarios, it is common for specific domain labels for some data samples to be missing,
unreliable, or unable to accurately characterize domain information. For example, a patient may
choose not to disclose their demographics, or the available domain labels might not fully capture the
complexities of the data. This issue often arises during both the training and testing phases. Missing
or inaccurate domain information may result from initial data collection or from data originating in
a new, previously unseen domain, where no corresponding domain expert exists. To address these
challenges, our framework incorporates a domain estimator to autonomously identify the domain of
the data, enabling the allocation of a suitable expert for prediction.

During training, the domain estimator calculates a set of domain assignment scores {ẑk} to assign
each sample to an expert via Gumbel-Softmax (Jang et al., 2016; Maddison et al., 2016):

z̄k,m =
exp(lk,m + γm)∑Mk

j=1 exp(lk,j + γj)
, (5)

where lk,j is the logits computed by the estimator for j-th domain of k-th dimension, and {γj}
are i.i.d random samples drawn from the Gumbel(0, 1) distribution. We assign the expert using
one-hot operation with argmax over all the domains. Since one-hot operation with argmax is not
differentiable, we use the straight through trick in (Van Den Oord et al., 2017) to calculate the
assignment score:

ẑk = one hot(z̄k,argmax) + z̄k − sg(z̄k), (6)

where sg is the stop gradient operator. We denote this one-hot assignment strategy as hard as-
signment. An alternative way is to directly set ẑk = z̄k, which we referred as soft assignment.
Empirically we find that hard assignment outperforms soft assignment (as shown in Table 3 and
Table 12). During inference, the scores are calculated through plain soft max.

The domain estimator can be effectively trained using direct supervision with the cross-entropy loss,
denoted as Ldomain = Lce(lk, z̃k), when domain labels are available. Alternatively, it can also be
trained using Ltask on the model’s final output, as the domain estimator is a differentiable compo-
nent of the overall model. Empirically, we found that initially training the model with both Ldomain
and Ltask for each MoE, followed by training with only Ltask on the final output, yields the best
results. We refer to this first phase as the pretraining of EMoE. This approach is advantageous be-
cause it leverages domain-related information directly from the data itself, rather than relying solely
on predefined domain labels, which may not fully capture the underlying domain characteristics.
More discussion can be found in Section 4.2.

3.5 LEARNING ALGORITHMS

Centralized Learning. The training process consists of two phases: pretraining and training, sum-
marized in Algorithm 1. In the pretraining phase, the model is updated using two losses: Ldomain
for the domain estimator output lk and Ltask for the MoE output ok, aiming to establish a strong
initialization. This phase uses possibly unreliable predefined domain labels. In the subsequent train-
ing phase, the model focuses solely on Ltask applied to the final output o, discarding the predefined
domain labels and training all components end-to-end based on data-driven domain estimation.

Federated Learning. We decouple the learning of the shared encoder and MoEs to stabilize the
learning procedure. At each communication round, we first update the domain experts locally us-
ing the specific task loss Ltask, and then aggregate them at the server. Next, we update the shared
representation and domain estimators by minimizing L = Ltask+λLdomain, where λ is a hyperpa-
rameter. The learning procedure is summarized in Algorithm 2.
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Algorithm 1 EMOE

Input: Data set S; pretraining epochs Tpre; total epochs T .
for t = 1 to Tpre do

Pretrain model using domain estimation loss Ldomain based on domain estimator outputs {lk}
and task-specific loss Ltask on the outputs of MoEs {ok}.

end for
for t = Tpre + 1 to T do

Train model using task-specific loss Ltask based on the final aggregated output o.
end for

Algorithm 2 FEDEMOE

Input: Data S1:n; number of local updates τh for the experts, τϕ for representation; number of
communication rounds T ; learning rate η.
Initialize representation, estimators and experts ϕ0, {e0k}, {h0

k,m}.
for t = 1, 2, ..., T do

Server sends ϕt−1, {et−1
k }, {ht−1

k,m} to the n clients;
for client i = 1, 2, ..., n in parallel do

update experts {ht
k,m(i)} with τh epochs of LocalTraining(ϕt−1, {et−1

k }, {ht−1
k,m}) using

Ltask
Client i sends updated {ht

k,m(i)} to the server.
end for
Server aggregate the experts, update {ht

k,m} and send them back to n clients;
for client i = 1, 2, ..., n in parallel do

update domain estimator {etk(i)}, shared representation {ϕt(i)} with τϕ epochs of
LocalTraining(ϕt−1, {et−1

k }, {ht
k,m}) using L

Client i sends updated {etk(i)}, {ϕt(i)} to server.
end for
Server updates representation and estimators ϕt ←

∑n
i=1

Li

L × ϕt(i), et ←
∑n

i=1
Li

L × et(i).
end for

Table 1: Experiment setups. All tasks are binary classification.

Dataset Domains Classification Task

CMNIST 2 digit colors x 2 background colors digit (0,1,2,3,4) vs. digit (5,6,7,8,9)
CelebA 2 genders x 2 age groups blonde vs. non-blonde
FairFace 2 genders x 7 races age<40 vs. age≥40
EXAM portability x 6 manufacturers x 5 races severe symptoms vs. not

4 EXPERIMENTS

Our experimental evaluation consists of two parts. First, we assess our methodology in a central-
ized learning setting, using three binary classification datasets characterized by two-dimensional
domain shifts. This part is aimed at showcasing the enhanced capability of our method in handling
multi-dimensional domain shifts, compared to existing methods that tackle simpler domain shifts
scenarios. Our approach is adaptable to a range of tasks, due to space constraints, results for image
regression and segmentation in the centralized setting are provided in Appendix B.

Next, we focus on a real-world FL dataset. This section aims to demonstrate the superiority of
our method over previous approaches designed for heterogeneous data distributions in FL settings.
The employed dataset offers a robust platform to highlight the effectiveness of our model in a more
complex and realistic FL environment.

4.1 EVALUATION IN CENTRALIZED LEARNING

Datasets. In our centralized learning evaluation, we utilize three datasets: Colored MNIST (CM-
NIST), CelebA Liu et al. (2015), and FairFace Karkkainen & Joo (2021). Domains and label infor-
mation are presented in Table 1. CMNIST is crafted to feature digit color and background color as
its two-dimensional domains, with the binary label determined by the digit shifting depending on

7
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Table 2: Performance on centralized learning with multi-dimensional domain shift. Each cell reports the worst
group accuracy (%). We consider groups defined only by the first domain dimension (dim1) or the second
dimension (dim2) as well as two dimension jointly (all).

CMNIST CelebA FairFace

dim1 dim2 all dim1 dim2 all dim1 dim2 all

ERM 97.4 97.6 96.0 79.1 90.3 25.8 80.4 80.3 45.0
UW 97.4 97.8 96.8 90.2 92.5 73.1 83.4 83.6 72.0
RIDG 98.2 98.4 97.1 90.2 92.6 71.5 84.1 84.6 73.1
SAGM 98.3 98.3 97.3 90.8 92.8 80.1 84.5 84.3 74.1

IRM
dim1 97.6 97.9 96.3 90.7 92.6 72.6 83.6 83.8 72.1
dim2 97.9 97.9 96.6 88.6 93.1 63.4 83.2 83.7 66.4

all 97.8 97.9 97.0 90.3 92.5 72.6 83.0 83.1 70.2

LISA
dim1 97.5 97.8 96.4 91.1 92.2 80.0 82.9 82.7 55.8
dim2 97.6 97.5 96.2 86.4 92.5 50.5 82.4 83.1 61.6

all 98.0 97.9 96.9 90.8 92.2 77.4 82.5 82.6 71.2

GroupDRO
dim1 97.4 97.9 96.6 90.7 92.3 73.1 83.3 83.0 73.0
dim2 98.0 97.9 96.6 87.8 93.0 59.2 83.2 83.6 67.4

all 97.9 98.0 96.5 89.7 91.8 76.9 82.5 82.9 73.7

EMoE (ours)
avg 98.5 98.3 97.4 91.5 92.2 81.1 82.7 83.2 71.8
max 98.2 98.3 97.5 91.4 92.2 82.3 83.1 83.7 72.1
pro 98.4 98.3 97.1 92.1 92.5 83.9 83.9 83.8 75.1

both domain dimensions. CelebA and FairFace, both face recognition datasets, use various attributes
to define the dimensions of their respective domains, with domain shifts inherent to the data. The
comprehensive details of domain shifts for each dataset are available in Appendix A.
Evaluation Protocols. In line with the approach in Sagawa et al. (2019), we employ worst-group
accuracy to assess the performance of all methods. To ensure a thorough evaluation relative to
different domain dimensions, we define groups variably. For domain dimension k, we define groups
as g = (dk, y) where dk is the domain index at dimension k to evaluate performance specific to
that dimension. We also use g = (d1, . . . , dK , y) for an evaluation that considers all dimensions
collectively. The hyper-parameters and training details are listed in Appendix A.
Baselines. We compare our approach against Empirical Risk Minimization (ERM) and several
domain generalization methods: IRM (Arjovsky et al., 2020), GroupDRO (Sagawa et al., 2019),
LISA (Yao et al., 2022b), RIDG (Chen et al., 2023), and SAGM (Wang et al., 2023), in addition
to upweighting (UW), which is widely recognized for addressing subpopulation shifts. To ensure
a fair comparison, we apply upweighting to all methods except ERM, as the imbalance in group
distributions significantly affects performance. For algorithms such as IRM, GroupDRO, and LISA,
which leverage domain labels, we perform evaluations using different domain definitions d̂. This
includes d̂ = dk for each k in |K|, focusing on single-dimensional domain information, as well as
d̂ = (d1, . . . , dK), which considers all dimensions collectively but treats them as separate categories,
disregarding their inherent multi-dimensional structure.
Results. Table 2 compares the performance of EMoE method against established baselines across
the CMNIST, CelebA, and FairFace datasets. The baseline models, which incorporate domain infor-
mation, generally show enhanced performance on the specific domain dimensions they were tailored
for. However, utilizing all domain dimensions without domain structure awareness sometimes can
hurt the performance. For example for LISA, using ALL dimensional domains is worse than using
only the first dimension of domain in CelebA dataset. In contrast, EMoE method demonstrates su-
perior performance consistently across all three datasets and for different domain evaluations. This
underscores the robustness of EMoE in handling multi-dimensional domain shifts. More results,
including experiments on additional datasets and detailed ablation studies, are in Appendix B.
Effects of Aggregation Methods. The PRO aggregation method significantly outperforms other
methods in the CelebA and FairFace datasets, confirming the hypothesis that domain dimensions
operate independently. Specifically, in CelebA, the attributes of age (young/old) and gender manifest
as independent variables when considered against hair color. Similarly, in FairFace, the attributes
of race and gender prove to be independent when conditioned on age. These findings validate the
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(a) Results with partial domain annotation (b) The t-SNE visualization of domains.

Figure 3: (a)Effectiveness of our method with limited domain label annotations, demonstrated on
CelebA and FairFace datasets. (b) The t-SNE visualization of the input of the domain estimators on
the three independent test sites.

Table 3: AUC results on independent test sites.

Method Site1 Site2 Site3 Avg

FedAvg McMahan et al. (2017) .802±.020 .892±.006 .835±.009 .843±.008
FedProx Li et al. (2018b) .813±.010 .891±.002 .880±.019 .861±.007
FedDG GA Zhang et al. (2023) .818±.009 .881±.004 .832±.026 .844±.011
FedDAR Zhong et al. (2022) .824±.009 .910±.003 .890±.007 .874±.004

FedEMoE (Single) .850±.003 .917±.001 .912±.005 .893±.002
FedEMoE (Soft) .844±.004 .917±.003 .924±.009 .895±.003
FedEMoE (Hard) .854±.004 .921±.001 .920±.005 .899±.002

FedEMoE (GT) .840±.004 .917±.003 .877±.012 .878±.004

assumption underpinning our domain dimensionality strategy and reinforce the efficacy of PRO
aggregation in our EMoE framework.
Effects of Missing Domain Labels. We assess our model’s capacity to handle missing domain
labels under varying levels of annotation availability, as depicted in Figure 3a. The dashed line
illustrates the performance of an identical model architecture trained without any domain labels.
Our method continues to operate effectively despite the scarcity of domain labels. However, at
lower label ratios, there is a noticeable decline in performance, attributable primarily to insufficient
pretraining of the domain estimator, especially within underrepresented domains.

4.2 EVALUATION IN FEDERATED LEARNING

Dataset. We conduct experiments on the EXAM dataset (Dayan et al., 2021), which is a large-scale,
real-world healthcare FL study. Our training/validation dataset consists of a portion of the dataset,
which includes 6 sites and a total of 7,681 cases, while our test dataset includes 3 independent sites
and 1,454 cases. This dataset contains electronic medical records (EMR) and Chest X-rays (CXR)
of patients suspected of COVID-19 in emergency departments (ED). The task is to predict the need
for oxygen therapy exceeding high-flow oxygen within 72 hours, signifying severe symptoms. We
use the same data preprocessing and model architecture as in the original work (Dayan et al., 2021).
Model Specifications & Evaluation Protocols. Our model for the EXAM dataset includes three
MoEs, reflecting the K = 3 domain dimensions: (1) CXR device portability, (2) manufacturer, and
(3) patients’ race group, with M1 = 2, M2 = 6, and M3 = 5. It is important to note that in practice,
some domains may be unknown or have too few samples; in such cases, we group them as a single
domain and assign an additional expert. All experiments were run with 5 random seeds, reporting the
mean and standard error of the AUC, averaged over the last five communication rounds, following
prior work (Collins et al., 2021b; Zhong et al., 2022).
Federated Domain Generalization on Unseen Test Sites. We first evaluate our method on three
independent test sites that are not seen during model training, comparing it with FedAvg, FedProx,
FedDAR, and FedDG GA. To ensure fairness, no domain labels are provided to the models. Note
that in this experiment, we do not include client-wise PFL methods as baselines, as there are no
standard protocols to apply them to external test sites. These methods can personalize the model
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Table 4: AUCs results on different domain dimensions with 5-fold cross validation.

Method Portable (P) Manufacturer (M) Race group (R) Client AvgWorst Avg Worst Avg Worst Avg

FedAvg .860±.009 .882±.005 .816±.017 .886±.007 .843±.013 .898±.010 .886±.006
FedProx .860±.006 .876±.005 .812±.009 .879±.006 .829±.014 .896±.010 .880±.005
FedDG GA .846±.006 .862±.007 .802±.009 .869±.008 .825±.009 .881±.007 .860±.008

FedBN Li et al. (2021b) .798±.006 .831±.004 .802±.012 .860±.004 .732±.040 .830±.015 .868±.003
FedPer Arivazhagan et al. (2019) .857±.011 .878±.009 .814±.016 .880±.010 .842±.015 .893±.011 .879±.009
FedRep Collins et al. (2021a) .864±.006 .872±.008 .816±.011 .879±.006 .840±.012 .881±.011 .880±.006
LG-FedAvg Liang et al. (2019) .830±.005 .877±.007 .811±.016 .858±.009 .814±.024 .880±.014 .867±.008

FedDAR .888±.005 .900±.004 .863±.006 .902±.004 .856±.008 .915±.006 .901±.003

FedEMoE (Ours) .895±.005 .906±.003 .874±.006 .914±.004 .863±.009 .918±.004 .909±.003

for each client involved in the training, but cannot be trivially applied to a new client. The results
presented in Table 3, show that our model generalizes well to unseen sites under FL, even without
any domain information. FedEMoE consistently achieves 2% to 2.5% higher AUC than all baselines.
Effectiveness of Domain Estimator. We evaluate different variants of our model to assess the
effectiveness of various strategies for handling missing domain labels, as shown in Table 3: (1)
using only the expert assigned to the unknown domain (single), (2) applying soft assignment (soft),
and (3) applying hard assignment (hard). For reference, we also include the results of EMoE when
using ground truth domain labels (GT). Our experiments reveal that the hard assignment strategy
consistently outperforms the others. Notably, the model demonstrated superior performance with
estimated domain assignments over ground truth domain labels, particularly for Site3. We find
that domain labels alone do not fully capture the data distribution, as they may overlook critical
factors, especially in medical data, where a patient’s condition cannot easily be defined by a few
labels. Although most samples in Site3 come from a manufacturer seen during training, the images
appear significantly different from those at the training sites due to varying imaging protocols or
device models. Domain shifts exists even within the same data group. In our method, domain labels
initially serve as a preliminary cluster assignment during training. As training progresses, the model
accurately assigns each sample to the appropriate expert, aligning more closely with the actual data
distributions. This approach has consistently improved performance across multiple experiments, as
confirmed by the ablation study of pretraining in a centralized setting (Appendix B.3). Abandoning
the ground truth domain labels after a period of domain estimator pretraining yields the best results.

Figure 3 employs t-SNE (Van der Maaten & Hinton, 2008) to depict the domain estimators’ learned
input features. The figure illustrates that while the domain dimension portable is more distinct, over-
laps remain. In the domain dimension of manufacturers, the unknown/unseen domain distribution
appears significantly dispersed. Compared to manufacturer 1, which exhibits a tighter clustering,
manufacturer 2 shows a more widely spread distribution. These results further confirm the superi-
ority of estimating the domain from the data itself over relying solely on the given domain labels.
Effectiveness of MoEs Ensemble The effectiveness of the MoEs ensemble is evaluated through
5-fold cross-validation across six training sites. The unseen test sites are excluded from domain-
wise evaluation due to an inadequate number of samples. We compare our method, FedEMoE , with
FL baselines FedAvg, FedProx, client-wise PFL methods FedBN, FedRep, FedPer, and LG-FedAvg,
domain-wise PFL methods FedDAR, and a federated DG approach FedDG GA. Results summarized
in Table 4 reveal that FedEMoE consistently surpasses the baseline models in terms of both average
and minimum AUC scores, across all evaluated domains and clients. Compared with the results
of FedDAR which only focus on race domains, the ensemble of multiple MoEs notably improves
performance along two other domain dimensions, which elevates the overall generalizability.

5 CONCLUSION

In this study, we introduced EMoE, a domain generalization method to address multi-dimensional
domain shifts in both centralized and federated learning. Unlike prior methods focusing on sin-
gle dimensions or isolated domains, EMoE handles shifts across multiple dimensions, ensuring
strong generalization. Our approach uses an Ensemble of Mixtures of Experts (EMoE), with each
MoE specializing in a domain dimension. We also integrated a domain estimator to manage miss-
ing or unreliable labels, enhancing flexibility and practicality. Extensive experiments across six
datasets demonstrated EMoE’s superior performance, outperforming state-of-the-art DG, PFL, and
FDG methods. Particularly in federated learning, FedEMoE significantly improves fairness and
robustness, setting a new benchmark for federated domain generalization research.
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Paul Vanhaesebrouck, Aurélien Bellet, and Marc Tommasi. Decentralized collaborative learning of
personalized models over networks. In Artificial Intelligence and Statistics, pp. 509–517. PMLR,
2017.

Haohan Wang, Songwei Ge, Zachary Lipton, and Eric P Xing. Learning robust global representa-
tions by penalizing local predictive power. Advances in Neural Information Processing Systems,
32, 2019a.

Jindong Wang, Cuiling Lan, Chang Liu, Yidong Ouyang, Tao Qin, Wang Lu, Yiqiang Chen, Wenjun
Zeng, and Philip Yu. Generalizing to unseen domains: A survey on domain generalization. IEEE
Transactions on Knowledge and Data Engineering, 2022.
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A DATASETS AND IMPLEMENTATION DETAILS

A.1 DATASET DETAILS

Colored MNIST (CMNIST) We use the digit and background colors as two domain dimensions.
The task involves classifying digits into 2 classes, with conditional shifts across domains. In the de-
fault setting, where digits are red and backgrounds are black, the classes are (0,1,2,3,4) vs (5,6,7,8,9).
When the digit color changes to green, the labels for digits 2 and 5 will flip. With a white back-
ground, the labels for digits 4 and 9 will flip. In the training set, the proportion of red to green
samples is set at 8:2, and the proportion of black to white backgrounds is also 8: 2. For the valida-
tion set, the proportions are equal to 1:1 for all domain dimensions. In the test set, the proportion of
red to green samples is 1:9, and the proportion of black to white backgrounds is also 1:9. The data
sizes of train, validation, and test sets are 30000, 10000, and 20000, respectively.

CelebA Adhering to the preprocessing steps outlined in Sagawa et al. (2019), we utilize CelebA’s
celebrity face images. The objective is to categorize hair color as either ”blond” or ”not blond”.
Gender and age are employed as two domain dimensions. Notably, the dataset exhibits a significant
imbalance in group distribution. Within the training set, the most populous group is (not blond,
female, young) with 64,036 samples, whereas the smallest group is (blond, male, old), comprising
merely 463 samples.

FairFace (Kärkkäinen & Joo, 2019) FairFace is a publicly available face attribute dataset that
ensures a balanced representation of race, gender, and age for bias analysis. It features seven racial
groups, nine age groups, and two genders. In this dataset, gender and race serve as the domain
dimensions. The classification task involves determining whether an individual’s age is 40 or older.
The original dataset comprises 66,744 samples in the training set and 10,954 samples in the valida-
tion set. We evenly partition the initial validation set, using the first 50% for validation purposes and
the remaining 50% for testing.

EXAM (Dayan et al., 2021) We provide detailed statistics of the partial EXAM dataset for each
domain dimension in Tables 5 and 6. Site 7,8,9 are the three independent test sites that were not
included during FL training. For the race groups, the ”Other” category includes American Indian
or Alaska Native, Native Hawaiian, or Other Pacific Islander, and patients with more than one race
or unknown race. For the manufacturer dimension, the ”Other” category includes Varian, Philips,
Dongkang, Canon, Siemens, Samsung, Kodak, GE, and unknown manufacturer.

Table 5: Statistics of the race domain dimension and the label for the partial EXAM dataset used in our study.
Site White Black Asian Latino Other ≥HFO %

Site-1 59.6% 10.0% 3.4% 2.0% 24.9% 12.4%
Site-2 75.0% 11.1% 2.8% 0.6% 10.5% 9.1%
Site-3 46.5% 26.3% 4.2% 7.0% 16.0% 9.6%
Site-4 71.4% 6.3% 4.2% 0.8% 17.2% 11.4%
Site-5 44.0% 28.4% 1.6% 6.3% 19.8% 9.9%
Site-6 0.0% 0.0% 100.0% 0.0% 0.0% 18.8%

Site-7 75.7% 7.1% 1.1% 0.0% 16.2% 2.4%
Site-8 82.9% 2.8% 2.1% 0.2% 12.0% 11.0%
Site-9 79.1% 7.9% 1.2% 2.4% 9.4% 2.4%

Table 6: Statistics for the manufacturer and portable domain dimensions for the partial EXAM dataset used in
our study.

Site Non-portable Portable Unknown Agfa Fuji Konica Minolta Thales CareStream Other

Site-1 79.4% 20.6% 0.0% 91.5% 0.7% 0.0% 0.0% 0.0% 7.8%
Site-2 5.5% 94.5% 0.0% 0.0% 99.7% 0.0% 0.0% 0.0% 0.3%
Site-3 8.6% 91.4% 0.0% 0.3% 0.1% 94.0% 0.8% 0.0% 4.8%
Site-4 6.6% 93.4% 0.0% 31.1% 0.0% 0.0% 0.0% 60.0% 8.9%
Site-5 6.3% 88.4% 5.3% 0.0% 0.0% 0.2% 95.1% 0.0% 4.7%
Site-6 76.6% 22.8% 0.6% 0.0% 0.9% 0.0% 0.0% 0.9% 98.3%

Site-7 27.2% 62.0% 10.7% 0.0% 0.0% 10.7% 0.0% 0.0% 89.3%
Site-8 17.6% 82.4% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 100.0%
Site-9 18.9% 0.0% 81.1% 0.0% 81.1% 0.0% 0.0% 0.0% 18.9%
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Table 7: Hyper-parameters for the domain shifts.
Dataset CMNIST CelebA FairFace PovertyMap Prostate MRI Seg.

Learning rate 1e-3 1e-4 1e-4 1e-3 1e-4
Weight decay 1e-4 1e-4 1e-4 0 0
Scheduler n/a n/a n/a ExponentialLR ExponentialLR
Batch size 32 32 32 64 16
Type of mixup mixup Zhang et al. (2017) CutMix Yun et al. (2019) CutMix CutMix+C-Mixup Yao et al. (2022a) n/a
Architecture ResNet18 ResNet50 ResNet50 ResNet18 U-Net
Optimizer SGD SGD SGD Adam Adam
Evaluation Iters 200 100 100 200 6
Pretrain Iters 2,000 1,000 1,000 2,000 60
Maximum Iters 10,000 4,000 10,000 10,000 600

Table 8: Pearson correlation r (higher is better) on out-of-distribution (unseen countries) held-out
sets in PovertyMap-wilds. All results are averaged over 5 different OOD country folds, with standard
deviations across different folds in parentheses.

Validation (OOD) Test (OOD)

Average
ERM 0.80 (0.04) 0.78 (0.04)
CORAL 0.80 (0.04) 0.78 (0.05)
IRM 0.81 (0.05) 0.77 (0.05)
Group DRO 0.78 (0.05) 0.75 (0.07)
C-Mixup 0.81 (0.04) 0.79 (0.05)
EMoE 0.81 (0.03) 0.79 (0.04)

Worst
ERM 0.51 (0.06) 0.45 (0.06)
CORAL 0.52 (0.06) 0.44 (0.06)
IRM 0.53 (0.05) 0.43 (0.07)
Group DRO 0.46 (0.04) 0.39 (0.06)
C-Mixup 0.55 (0.07) 0.50 (0.07)
EMoE 0.55 (0.05) 0.50 (0.07)

A.2 TRAINING DETAILS

All hyperparameters used across the datasets in the centralized setting are enumerated in Table 7.
Hyperparameters that are common to all methods are consistently maintained. We have tuned all
hyperparameters through a grid search approach. For mixup, it is applied only to sample pairs that
share the same domain in at least one domain dimension or have the same label. All the models are
trained with early stopping based on the performance on validation set.

For the federated learning setting, all the models are trained with T = 20 global communication
rounds with Adam optimizer and a learning rate of 1× 10−4. For all methods we execute 3 epochs
of update except FedDAR and FedEMoE , for which we do 3 epochs of head update and only 1
epoch of representation update. We set the hyperparameter for domain estimation loss as λ = 0.1.

B ADDITIONAL EXPERIMENTS

B.1 ADDITIONAL EXPERIMENTS ON SATELLITE IMAGE REGRESSION

PovertyMap-Wilds (Koh et al., 2021) This dataset consists of satellite images from 23 African
countries, used for predicting the village-level real-valued asset wealth index. Each input is a 224 x
224 multispectral LandSat satellite image comprising eight channels, the label being the real-valued
asset wealth index. The images are characterized by two domain dimensions: the countries and the
urban/rural classification. The dataset includes 5 different cross-validation folds, with countries in
these splits being disjoint to support an out-of-distribution setting. All experimental settings are in
accordance with Koh et al. (2021).

Results All experiments were carried out using five distinct cross-validation folds. We report the
Pearson correlation coefficient (r) for the sample average and the worst-case group performance in
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Table 9: Worst group Pearson correlation r on PovertyMap-wilds with respect to different domain
dimensions.

Rural/Urban Country All

C-Mixup 0.50 (0.07) 0.72 (0.05) 0.18 (0.14)
EMoE 0.50 (0.07) 0.75 (0.03) 0.26 (0.06)

Table 10: Dataset details including sample numbers and imaging protocols for each site in the MRI
prostate segmentation task.

Dataset Institution No. of Case Field strength (T) Resolution (in/through plane) (mm) Endorectal Coil Manufacturer

Site A RUNMC 30 3 0.6-0.625/3.6-4 Surface Siemens
Site B BMC 30 1.5 0.4/3 Endorectal Philips
Site C HCRUDB 19 3 0.67-0.79/1.25 No Siemens
Site D UCL 13 1.5 and 3 0.325-0.625/3.3-6 No Siemens
Site E BIDMC 12 3 0.25/2.2-3 Endorectal GE
Site F HK 12 1.5 0.625/3.6 Endorectal Siemens

Table 8. The results demonstrate that the performance of EMoE is comparable to the previous state-
of-the-art (SotA) method, C-mixup (Yao et al., 2022b). Further analysis presented in Table 9 reveals
that EMoE method significantly outperforms C-mixup, exhibiting lower variance, particularly when
considering the country dimension or both dimensions simultaneously. These findings highlight
EMoE ’s capability to account for all domain dimensions, thereby ensuring fairer performance across
them. They also confirm the adaptability of EMoE for application in image regression tasks.

B.2 ADDITIONAL EXPERIMENTS ON MEDICAL IMAGE SEGMENTATION

Dataset Details We utilize a multi-site dataset for prostate MRI segmentation as introduced by Liu
et al. (2020). This dataset comprises prostate T2-weighted MRI data, complete with segmentation
masks, gathered from six distinct data sources spanning three public datasets. The sample counts
and imaging protocols for each site are summarized in Table 10. We adopt three domain dimensions
including field strength, endorectal coil, and manufacturers. For site D, the specific field strength
for each case is not labeled, so we treat all of them as unknown. For segmentation, 2D patches are
extracted from the 3D volumes. Each sample is resized to 384x384 pixels in the axial plane and
normalized to zero mean and unit variance, in accordance with the preprocessing steps described
by Liu et al. (2020).

Implementation Details In line with the leave-one-domain-out strategy detailed in Liu et al.
(2020), we train on data from K − 1 sites while testing on the remaining unseen target site. We
employ a U-Net (Ronneberger et al., 2015) architecture enhanced with dilated convolution, com-
prising four blocks in both the encoder and decoder, and a bottleneck depth of four. The output
feature dimension of the first layer is set to 32. Other detailed hyperparameters are enumerated in
Table 7.

Results As depicted in Table 11, EMoE markedly enhances out-of-distribution generalization,
particularly for Sites B, C, and E, where ERM’s performance suffers due to a significant domain gap
from the source sites. These results corroborate the adaptability of EMoE method to more complex
tasks such as Medical Image Segmentation.

Table 11: Results on MRI prostate segmentation with different sites as held-out test set. Dice (%)
score are reported.

Method Site A Site B Site C Site D Site E Site F Average

ERM 91.8 58.9 55.1 84.8 69.5 85.4 74.3

EMoE (Avg) 92.9 65.0 58.8 84.0 72.1 88.0 76.8
EMoE (Max) 92.3 62.7 60.8 81.2 72.9 85.8 76.0
EMoE (Pro) 91.8 56.6 61.5 86.4 73.6 86.7 76.1
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B.3 ABLATION STUDY

We conducted ablation experiments with different configurations of EMoE on the CelebA and Fair-
Face datasets to evaluate the effectiveness of each component of our method. The results are pre-
sented in Table 12. All the results use probabilistic aggregation.

Table 12: The worst group accuracy across all domain dimensions for different configurations of
EMoE. All results are averaged over 3 runs with different random seeds, with standard deviations in
parentheses.

Estimation Pretrain CelebA FairFace

Hard No 77.4 ± 2.3% 70.3 ± 3.7%
GT Only Pretrain 75.8 ± 1.3% 75.6 ± 1.6%
Soft Yes 82.3 ± 0.5% 71.8 ± 2.5%
Hard Yes 83.9 ± 1.3% 75.1 ± 1.6%

Table 13: The worst group accuracy across all domain dimensions when EMoE take different di-
mensions of domains into account. All results are averaged over 3 runs with different random seeds,
with standard deviations in parentheses.

Domain Dim. CelebA FairFace

dim1 80.6 ± 1.3% 57.4 ± 6.1%
dim2 54.8 ± 1.3% 65.1 ± 5.0%
dim1 x dim2 80.6 ± 0.6% 58.1 ± 1.9%
EMoE 83.9 ± 1.3% 75.1 ± 1.6%

Effects of Pretraining on EMoE A comparison between the first and fourth rows of Table 12
demonstrates that proper pretraining significantly improves the initialization for the domain estima-
tor and domain-specific predictor, enabling the model to achieve enhanced performance.

Effects of Different Domain Estimation Strategies An analysis of the last three rows of Table 12
reveals that a hard domain assignment for the domain-wise personalized predictor surpasses the per-
formance of soft assignment. This suggests that outputs for different domains cannot be effectively
combined in a simple linear fashion. Employing the actual domain label (GT) surpasses hard as-
signment on the FairFace dataset, likely because certain domain information is not readily inferable
from the image alone; incorporating the actual domain label provides additional context. We adopt
hard assignment as our standard approach, operating under the assumption that domain labels are
unavailable at test time.

Effectiveness of MoEs Ensemble Design The effectiveness of the MoEs ensemble design is eval-
uated under various settings. The results are shown in Table 13. For Dim.1 or Dim.2, a single MoE
is employed, focused exclusively on the corresponding domain dimension. In contrast, Dim.1 x
Dim.2 considers both dimensions, yet it treats the combined domain uniformly with a single MoE as
well. The results demonstrate that the ensemble of MoEs specialized for all domain dimensions sub-
stantially enhances the performance for the worst-case group considering all dimensions. Moreover,
the MoEs ensemble approach, which capitalizes on the inherent structure of domain information,
proves superior to a uniform treatment of multi-dimensional domains.

B.4 ADDITIONAL RESULTS

The full results for centralized learning evaluation, inclusive of standard errors from trials with three
distinct random seeds, are presented in Table 14.
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Table 14: Full results of centralized learning evaluation with standard error. We show the worst
group accuracy regarding only one or all domain dimensions.

CMNIST CelebA FairFace

dim1 dim2 all dim1 dim2 all dim1 dim2 all

ERM 97.4 ± 0.2% 97.6 ± 0.0% 96.0 ± 0.3% 79.1 ± 0.2% 90.3 ± 0.3% 25.8 ± 1.3% 80.4 ± 0.1% 80.3 ± 0.4% 45.0 ± 1.7%
UW 97.4 ± 0.1% 97.8 ± 0.0% 96.8 ± 0.1% 90.2 ± 0.1% 92.5 ± 0.2% 73.1 ± 2.2% 83.4 ± 0.5% 83.6 ± 0.6% 72.0 ± 2.1%
RIDG 98.2 ± 0.1% 98.4 ± 0.0% 97.2 ± 0.1% 90.2 ± 0.1% 92.6 ± 0.1% 71.5 ± 1.9% 84.1 ± 0.1% 84.6 ± 0.3% 73.1 ± 1.6%
SAGM 98.3 ± 0.1% 98.3 ± 0.0% 97.3 ± 0.1% 90.8 ± 0.5% 92.8 ± 0.1% 80.1 ± 0.5% 84.5 ± 0.5% 84.3 ± 0.6% 74.1 ± 1.0%

IRM
dim1 97.6 ± 0.1% 97.9 ± 0.1% 96.3 ± 0.1% 90.7 ± 0.1% 92.6 ± 0.1% 72.6 ± 1.3% 83.6 ± 0.2% 83.8 ± 0.2% 72.1 ± 1.0%
dim2 97.9 ± 0.1% 97.9 ± 0.1% 96.6 ± 0.1% 88.6 ± 0.1% 93.1 ± 0.1% 63.4 ± 1.2% 83.2 ± 0.1% 83.7 ± 0.1% 66.4 ± 2.6%

all 97.8 ± 0.1% 97.9 ± 0.1% 97.0 ± 0.2% 90.3 ± 0.2% 92.5 ± 0.1% 72.6 ± 2.7% 83.0 ± 0.1% 83.1 ± 0.2% 70.2 ± 1.3%

LISA
dim1 97.5 ± 0.1% 97.8 ± 0.1% 96.4 ± 0.3% 91.1 ± 0.2% 92.2 ± 0.1% 80.0 ± 0.4% 82.9 ± 0.1% 82.7 ± 0.2% 55.8 ± 2.9%
dim2 97.6 ± 0.1% 97.5 ± 0.1% 96.2 ± 0.3% 86.4 ± 0.2% 92.5 ± 0.1% 50.5 ± 1.7% 82.4 ± 0.2% 83.1 ± 0.1% 61.6 ± 3.3%

all 98.0 ± 0.1% 97.9 ± 0.1% 96.9 ± 0.1% 90.8 ± 0.3% 92.2 ± 0.1% 77.4 ± 1.5% 82.5 ± 0.1% 82.6 ± 0.1% 71.2 ± 0.6%

GroupDRO
dim1 97.4 ± 0.2% 97.9 ± 0.1% 96.6 ± 0.1% 90.7 ± 0.3% 92.3 ± 0.1% 73.1 ± 0.9% 83.3 ± 0.2% 83.0 ± 0.3% 73.0 ± 0.4%
dim2 98.0 ± 0.1% 97.9 ± 0.1% 96.6 ± 0.2% 87.8 ± 0.2% 93.0 ± 0.1% 59.2 ± 0.5% 83.2 ± 0.1% 83.6 ± 0.2% 67.4 ± 1.2%

all 97.9 ± 0.1% 98.0 ± 0.1% 96.5 ± 0.2% 89.7 ± 0.2% 91.8 ± 0.1% 76.9 ± 0.5% 82.5 ± 0.2% 82.9 ± 0.3% 73.7 ± 1.2%

EMoE (ours)
AVG 98.5 ± 0.0% 98.3 ± 0.1% 97.4 ± 0.1% 91.5 ± 0.2% 92.2 ± 0.1% 81.1 ± 1.7% 82.7 ± 0.2% 83.2 ± 0.1% 71.8 ± 0.8%
MAX 98.2 ± 0.0% 98.3 ± 0.0% 97.5 ± 0.1% 91.4 ± 0.1% 92.2 ± 0.1% 82.3 ± 0.8% 83.1 ± 0.3% 83.7 ± 0.1% 72.1 ± 1.1%
PRO 98.4 ± 0.1% 98.3 ± 0.1% 97.1 ± 0.3% 92.1 ± 0.1% 92.5 ± 0.1% 83.9 ± 0.8% 83.9 ± 0.2% 83.8 ± 0.3% 75.1 ± 0.9%

C METHODOLOGY

Probabilistic Aggregation for Regression In Section 3.3, we introduced Probabilistic Ag-
gregation in the context of classification. Here, we demonstrate that Equation 8 is also
applicable to regression models. Recall that ok(x) represents the prediction of the k-th
MoE, implying a distribution p(y|x, zk) = N (ok(x), σ

2), or equivalently, p(y|x, zk) ∝
exp(− 1

2σ2 (y − ok)
2). Therefore, based on Equation 7, we have p(y|x, z1, · · · , zk) ∝

exp
(
− 1

2σ2

(∑K
k=1(y − ok)

2
)
− (K − 1)(y − obase)

2
)

. By maximizing the joint distribution, we

obtain o = argmaxy p(y|x, z1, · · · , zk) =
∑K

k=1 ok − (K − 1)obase, aligning with the formula in
Equation 8.
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