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Abstract

We study whether and how the choice of optimization algorithm can impact group
fairness in deep neural networks. Through stochastic differential equation analysis
of optimization dynamics in an analytically tractable setup, we demonstrate that
the choice of optimization algorithm indeed influences fairness outcomes, par-
ticularly under severe imbalance. Furthermore, we show that when comparing
two categories of optimizers, adaptive methods and stochastic methods, RMSProp
(from the adaptive category) has a higher likelihood of converging to fairer minima
than SGD (from the stochastic category). Building on this insight, we derive two
new theoretical guarantees showing that, under appropriate conditions, RMSProp
exhibits fairer parameter updates and improved fairness in a single optimization
step compared to SGD. We then validate these findings through extensive ex-
periments on three publicly available datasets, namely CelebA, FairFace, and
MS-COCO, across different tasks as facial expression recognition, gender clas-
sification, and multi-label classification, using various backbones. Considering
multiple fairness definitions including equalized odds, equal opportunity, and
demographic parity, adaptive optimizers like RMSProp and Adam consistently
outperform SGD in terms of group fairness, while maintaining comparable predic-
tive accuracy. Our results highlight the role of adaptive updates as a crucial yet
overlooked mechanism for promoting fair outcomes. We release the source code
at: https://github.com/Mkolahdoozi/Some-Optimizers-Are-More-Equal.

1 Introduction

Machine learning is increasingly applied to a wide variety of domains, many of which have significant
social implications [} 43]]. These include, but are not limited to, decision-making systems, risk
assessment models, recommendation engines, and personalized health interventions [12}146]. These
systems influence people’s lives and can lead to unintended biases or disparities [38]], for instance by
treating different groups of people differently. To address this, researchers have developed various
techniques to ensure group fairness in machine learning algorithms [20} [13]].

Prior work has demonstrated that a variety of factors such as training data imbalance [45]] and model
hyper-parameters [[10] can impact the performance of deep neural networks in terms of group fairness
and bias. In this paper, we pose the following question for the first time:

Does the choice of optimization algorithm impact group fairness in deep
neural networks? and how?

The limited theoretical and empirical analysis in this area leaves a major gap in our understanding of
how optimizers impact the inherent performance of models in terms of bias. Consequently, we believe
that this question can have significant implications in developing models that perform consistently
across various groups, as optimization is a fundamental component of any deep learning model.
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In this paper, we bridge this gap by first analyzing the impact of optimization in group fairness in
an analytically tractable setup. This initial study confirms our hypothesis: that indeed the choice of
optimizer impacts group fairness in downstream applications, particularly in the presence of severe
bias in the training set. Next, we delve deep into the problem by proposing and proving two new
theorems that demonstrate that among the two primary families of optimization algorithms, adaptive
gradient methods such as Adam and RMSProp, and stochastic gradient methods such as SGD, the
former is more likely to exhibit better group fairness. Next, we validate our theoretical findings by
conducting extensive experiments on three publicly available datasets-MS-COCO [27]], CelebA [31],
and FairFace [16] across three different tasks: multi-label classification, facial expression recogni-
tion, and gender classification. We carefully evaluate fairness using three widely adopted metrics:
Equalized Odds, Equal Opportunity, and Demographic Parity. The results are strongly aligned with
our theoretical analysis, consistently demonstrating that adaptive gradient methods achieve better
fairness scores compared to stochastic gradient methods.

Our contributions in this paper are summarized as follows: (1) First, we provide a detailed mathemat-
ical analysis to study the impact of optimization algorithms on fairness in an analytically tractable
setting. Here, we demonstrate that adaptive gradient algorithms like RMSProp have a higher proba-
bility of converging to fairer minima. (2) Next, we establish and prove two theorems showing that
under appropriate conditions: (a) RMSProp provides fairer updates than SGD, and (b) the worst-case
bias introduced by RMSProp in a single optimization step has an upper bound equal to that of SGD.
These theoretical insights highlight key properties of optimization algorithms that contribute to their
advantages in terms of fairness. (3) Through extensive experiments on multiple publicly available
datasets and tasks, we empirically validate our theoretical findings. We systematically evaluate the
fairness of models optimized using adaptive gradient methods and compare the outcomes to those
obtained from stochastic gradient methods. Our results consistently show that adaptive gradient
methods lead to fairer minima. (4) To enable rapid reproducibility and contribute to the area, we make
our code publicly available at: https://github.com/Mkolahdoozi/Some-Optimizers-Are-More-Equal.

2 Related work

Group fairness. Bias in machine learning models leads to discriminatory outcomes, and as these
models are increasingly being deployed in real-life applications, such biases can impose risks to
society [38]]. This risk is particularly important in high-stakes applications, such as hiring [[17],
healthcare [22]], etc. When models yield biased outcomes, they favor certain demographic groups,
which reinforces social inequalities. As an example, facial expression recognition models show
higher error rates for darker skin tones [S5]]. Such biases undermine trust in machine learning models
and pose ethical and legal challenges. To analyze fairness in machine learning, researchers in this
area often distinguish the notion of “group fairness” and “individual fairness” [38]. Group fairness
focuses on the notion that machine learning models treat different demographic groups, such as those
defined by race, the same. However, individual fairness dictates that similar individuals should be
treated similarly. In this paper, we focus on group fairness, which is more widely recognized in
practical applications [/7].

One of the main sources of bias in machine learning models is data imbalance [9)]. When certain
demographic subgroups are underrepresented, models prioritize patterns from the majority group,
leading to biased decisions. To tackle this, a variety of methods have been proposed that can
be categorized into 3 main groups [6]: pre-processing, in-processing, and post-processing. Pre-
processing methods often apply some type of transformation to data to make the demographic
information less recognizable to the model. As an example, [48] augments the training set with
synthetically generated samples, thereby ensuring an equal distribution for demographic subgroups.
In-processing methods directly modify the learning algorithm of the model. As an example, [20]
proposes a new loss function based on maximum mean discrepancy statistical distance to enhance
fairness. Post-processing methods intervene after training is completed. For instance, [44] introduces
a post-processing approach using graph Laplacian regularization to enforce individual fairness
constraints while preserving accuracy. Nevertheless, in practice, these fairness-enhancing methods
are rarely used in real-world pipelines [39]. One major limitation is their computational overhead
or interference with the training phase. As an example, pre-processing methods require extensive
data augmentation or transformations. Considering these challenges, an alternative approach to
enhance fairness is to use components that are inherently present in every training pipeline. One of
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the fundamental building blocks of modern deep learning is optimization [52]]. Understanding the
role of different optimization algorithms in fairness is crucial for practitioners seeking to develop
fairer models without additional fairness-specific modifications. The work in [29] provides a key
theoretical analysis, showing that standard and unconstrained machine learning implicitly favors one
fairness criterion over others. The authors prove that a model’s deviation from calibration is bounded
by its excess risk. This is related to our work as it also investigates the fairness properties that emerge
from a standard training process. Furthermore, [56] focuses on in-processing fairness methods that
use surrogate functions to ensure fairness. Their theory also highlights that balanced datasets are
beneficial for achieving tighter fairness and stability guarantees. This is relevant to our findings, as
we also identify data imbalance as a critical factor through stochastic differential equation analysis.

Optimization algorithms. Optimization algorithms in deep learning generally fall into two main
categories: SGD and adaptive gradient methods (e.g., Adam [[18] and RMSProp [34]]). SGD updates
model parameters using a constant learning rate [[15], while adaptive methods dynamically adjust
per-parameter learning rates based on past gradients, often leading to faster convergence [35]]. The
impact of these two types of optimization algorithms on group fairness remains not well understood.
Nonetheless, several studies have explored their effects in other areas. For instance, [34] empirically
demonstrates that models trained with SGD are more robust to input perturbations than those trained
with adaptive methods. Fairness and robustness are often competing objectives in deep learning
[36]. This hints that adaptive optimizers may yield better fairness compared to SGD. However, this
relationship remains largely unexplored.

3 Method

3.1 Preliminaries

Optimization algorithms. Stochastic gradient methods like SGD and adaptive gradient methods
such as RMSProp and Adam are widely used for optimizing deep neural networks [58]]. Given a loss
function £(w), SGD updates the model parameters w at each iteration k as:

Wet1 = wy — NVL(wy), )

where 7 denotes the learning rate. Adaptive gradient methods improve the speed of convergence by
applying coordinate-wise scaling to the gradient [41]. Specifically, RMSProp normalizes the gradient
with an exponentially decaying average of its squared values:

n
v = yop—1 + (1 = 7)VL(wp)?, w = w — ——=V L(wg), 2
k YVk—-1 ( 7) ( k) k+1 k \/W ( k) ( )
where vy, is the moving average of squared gradients, + is the decay factor, and € is a small constant
added for numerical stability. On the other hand, Adam works by considering both the first and the
second moments of gradients:

my = fimi—1 + (1 — B1)VL(wg), 3)

v = Bovg—1 + (1 — B2) VL(wp)?, 4)
. m . v

mkzl_kf7 Uk:ﬁ7 (5)
U .
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where (31 and (35 are the first and second moment decay factors, respectively.
Stochastic Differential Equations (SDE). Given the interval [0, T where T' > 0, we have [51]:

dX, = a(X(t),t)dt + b(X (1), t)dB(t), )

where X; € R is a stochastic process (the solution of the SDE), a : R¢ x [0, T] — R% is the drift
term, b : R x [0, 7] — R*** is the diffusion term, and B(t) € R® is s-dimensional Brownian
motion. Intuitively, SDEs extend ordinary differential equations (ODEs) by incorporating stochastic
noise. Analyzing functions involving stochastic processes requires tools beyond classical calculus. A
fundamental theorem in stochastic analysis is Itd’s lemma, extending the chain rule to the functions



of stochastic processes [1]. Please see the Appendix [A]for It6’s lemma. Unlike ODEs, the solution of
an SDE is a stochastic process X;. Formally, the solution can be represented as:

t t
X, :XO+/ a(XT,T)dT+/ b(X,,7)dB:. (8)
0 0

The second integral, also known as the Itd’s integral, captures the stochastic contribution driven by
Brownian motion. It is defined as:

t
/0 b(X,7)dB; = lim_ Ze ( )b(Xm,l,m_lem—Bm,n, ©)
Tk \Tk—1&T(N

where 7(n) denotes a sequence of n partitions in [0, ], and lim shows convergence in probability. In
many cases, explicitly computing X is intractable. Instead, it is often more practical to analyze the
probability distribution of X;. The Fokker-Planck equation, also known as the forward Kolmogorov
equation, describes the time evolution of the probability density function p(x, t) of X, [21] as:

Op(x,t)
ot

where V- represents the divergence operator. For completeness, we provide the derivation of the
Fokker-Planck equation from Eq. [7]in Appendix [B]

SDE approximations for optimization algorithms. SDEs provide a powerful framework for analyz-
ing the dynamics of discrete optimization algorithms such as SGD and RMSProp in a continuous
setup. While direct analysis of discrete updates is often challenging [26], SDE approximations enable
the study of optimization trajectories. In the context of optimization, the sources of stochasticity
include mini-batch gradient noise which are variations due to data heterogeneity (e.g., differences
in mini-batches drawn from different subpopulations), among others. To formalize this, we adopt
the Noisy Gradient Oracle with Scale Parameter (NGOS) [37], which models stochastic gradients
as g(w) = VL(w) + Oz, where O is a noise scale parameter, and z is a random variable that
follows a distribution with covariance matrix ¥(w) and mean of zero. NGOS formally models the
gradients used in mini-batch training. It describes the gradient from a small data batch as the “true”
gradient (which would come from the full dataset) plus random noise introduced by the sampling

process. A well-behaved NGOS is defined as V£ (w) being Lipschitz and /% (w) being bounded.
See Appendix [C]for a detailed description of a well-behaved NGOS. Note that these assumptions are
common and standard in prior works that study optimization using SDEs [25]].

Under well-behaved NGOS, SGD can be approximated by the following SDE [235]:
dW, = =V L(W,)dt + (n=(W;))Y2dB(t), (11)

where W, represents an approximation of wy, at discrete time steps k 7. More recently, SDE approxi-
mation for RMSProp has been proposed as a coupled system of equations [37]:

= V- (ale, ol 1) + 3V (V- (0 0)'p(e ), (10)

AW, = — P! (VE(Wt)dt + @nZl/Q(Wt)dB(t)) o dug = 177_27(dz’ag(Z(Wt))—ut)dt, (12)

where P, = On diag(ut)% + en I and uy is defined as g%. Note that these SDE approximations
converge to wy, in the weak sense, meaning that while individual trajectories of the discrete and
continuous processes may differ, their probability distributions remain close. Please see Appendix D]
for a formal formulation of the convergence.

3.2 SDE analysis of optimizers

To illustrate the different behaviors of SGD and RMSProp in terms of group fairness, let’s consider a
warm-up example. In this example, assume a training set consisting of two equally-sized subgroups,
denoted as subgroups 0 and 1. That is, each group constitutes 50% of the total population. Please note
this example can be generalized over more than 2 subgroups. For simplicity, assume each subgroup
has its own loss function, denoted as:

Lo(w) = 3w =17, Lafw) = 3w +1)2 (13)



The objective is to minimize a population-level loss function defined as the weighted sum of the
subgroup losses as:

Lpop(w) = 0.5Lo(w) + 0.5L1 (w), (14)
where the weights correspond to the proportion of each subgroup in the population. In this setup, the
optimal solution for subgroup 0 is wg = 1, while the optimal solution for subgroup 1 is w1 = -1
However, The population’s optimal solution is obtained by minimizing L, (w), leading to Wpop = 0.
The following lemma shows that under the demographic parity definition of group fairness [38]],
Wpop = 0 1s the fairest minima.

Lemma 1. Let Lo(w) = 3(w — 1)? and L£1(w) = L(w + 1)? be the loss functions for subgroups
0 and 1, respectively. Define the population loss as Lp,,(w) = 0.5Lo(w) + 0. 5£1( ). Under the

demographic parity definition of fairness, the fairest minimizer of L,q,(w) is Wpop = 0.
Proof. See Appendix [E] O

In practice, we do not have access to the full population above, rather we have access to the set
Q of N individual samples, sampled uniformly from the population. Additionally, set {2 may not
contain an equal number of samples from subgroups 0 and 1, thus introducing bias. We assume
that the probability of subgroup 0 in €2 is pg while the probablhty of subgroup lisp; =1 — po.
For a given set 2, the empirical minimization problem used in practice is defined as: L, (w) =
+ 2 cq Lq, (w), where g, € {0, 1} corresponds to samples from subgroups 0 and 1. Note that as

— 00, Lemp — Lpop. In min-batch training with batch size of 1, at each iteration, the optimizer
processes a single individual from subgroup 0 with a probability of py and from subgroup 1 with
a probability p;. In other words, with both SGD and RMSProp, the model receives VLo (w) with
a probability of pg and VL, (w) with a probability of p;, updating w according to Eqs. and
respectively. If po > p1, the optimization trajectory is biased towards the group-specific minimum
atw = 1, and w = —1 otherwise. This demonstrates that disproportionate sampling of subgroups
leads to unfair minima, which is particularly relevant in practical settings. The following theorem
establishes that when the sampling bias |pg — p1| exceeds a certain threshold, RMSProp has a higher
probability of converging to wy,,, compared to SGD.

Theorem 1. Let pg,p1 € (0, 1) with pg + p1 = 1 be the subgroup sampling probabilities for the loss
functions Lo(w) = &(w—1)% and L1(w) = &(w+1)% Suppose we optimize the empirical objective
Lemp(w) = 3 cq Ly (w), where each sample q, € {0,1} is drawn i.i.d. with probability
po for subgroup 0 or py for subgroup 1. Consider mini-batch gradient updates of size 1 (i.e., one

sample per iteration) using SGD and RMSProp optimization algorithms. Then there exists a constant
Prms (w:mp)

A(pip2,m) > 0 such that, whenever |pg — p1| > A(pip2,n), we have: ooy > 1, where
sg pop

Prms(Wp,p) and psga(wy,,) are the probabilities of RMSProp and SGD converging to fair minima

Wyop = 0, respectively.

Proof. As mentioned earlier, the gradient of L., is V.Lo(w) with a probability py and VL (w)
with a probability of p;. Thus, the covariance is X(W;) = 4pgp;. This means (W) is independent
of W;. When convergence occurs for RMSProp, u; defined in Eq.|12|converges to X (W;). Thus,
uy = 4pop1. With this in mind, let’s derive the SDE for RMSProp:

th = (Vﬁpop(Wt)dt + 2@77\/p0p1dBt). (15)

-1
n(20/pop1 + €)

Here, € is added for numerical stability, but it can be ignored as it is commonly done so in prior
work [37]]. Next, let’s derive the SDE for SGD:

th = —Vﬁpop(Wt)dt + 2\/ﬁx/p()p1dB(t). (16)
For analyzing the two SDEs above, we use the Fokker-Planck equations, presented in Eq.[I0} When
convergence occurs, Op (w b — . Thus, Fokker-Planck for RMSProp can be written as:

i VLpop(w) lazp(w) _
3w(p(w) % 210 /pop1 2 ow?

a7)



Substituting VL, = & (w — 1) + & (w + 1) in the equation above, we obtain:

0 w—1)+p(w+1 10%p(w
I (p(w) x ol ) +pi( )) L p(2 ) 0. (18)
Ow 4nO/Pop1 2 Ow
Similarly, the Fokker-Planck equation for SGD can be written as:
0 po(w—1)+p1(w+1) 0?p(w)
_- 2 =0. 1
g (P(w) % 5 ) + 20popr— 5= =0 (19)

Eq.[T§]is an analytically solvable ordinary differential equation, which can be written as:

prms(w) = \/iexp (—K,(’LU - (Po - pl))2) ) (20)

_ 1 . . . . . .
where Kk = ST ENITIR As a sanity check, we can see that the expectation of the distribution in Eq.

is equal to pg — p1. This means in the case of py = p1, i.e. no sampling bias, the weight converges to
w* = 0, the unbiased minimum. Similarly, we can write the analytical solution of Eq.[I9]as:

9
psgd(w) = \/Zexp (—19(11) - (pO _pl))z) ) (21
where ¢ = 87];010171' As we use a batch size of 1, we can set © = 1 [37]. Then, 1 >= 2,/pop1
inequality holds. With this in mind, by substituting wj,,, = 0 in Egs.[20|and 21] we can conclude

Prms (w;op)
Psgd (w;op)

> 1 holds if and only if [pp — p1| > A(p1pa, 1), where A(pypa,n) = /222, O

1 ,’ .

i 20( | ertetERlanenatenia
/
L
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learning rate to = 0.1 and apply SGD and
RMSProp for 100 epochs. Each experiment )

is repeated 1000 times, and at every epoch we 0 Epoth 1o 0 Epoth 100
record the fraction of runs converging to the

neighborhood of the fair optimum w?,__, de- Figure 1: Percentage of 1000 runs converging

fined by |w —w?, | < 0.2. The result ig C;Zf;own within the fair neighborhood for SGD and RM-
op 2.

in Fig.[T|(left). As it is evident from this figure, SProp, under severe bias (po = 0.1) and mild bias
approximately 10% of the runs under RMSProp (po = 0.3).

lie in the neighborhood of wy,,, whereas SGD

rarely converges to this fair region. Now, let’s induce a milder bias by setting pg = 0.3 and p; = 0.7
and run the same experiment. The results are illustrated in Fig. [T](right). As shown in this figure, in the
milder bias, the two optimizers behave more similarly, yet RMSProp attains a slightly higher fraction
of solutions near wy,,,,. These observations align with our theoretical findings in Theorem|I} To show
that our findings are true for a wider range of 7 and alternative definitions of the fair neighborhood,

we refer the reader to Appendix [F]for additional experiments.

20

Now, let’s perform a quick simulation to verify 100 po=0.1 100 po=0.3
our findings. We use the loss functions de- ‘& g —~- SGD 80 ~+- SGD
fined in E d =0.1 d =09 5 | RMSProp | RMSProp
ned in Eq.[I3]and set py = 0.1 and p; = 0. § 60| 1 6ol
. . . p I\
to induce a severe sampling bias. We fix the § a0 I} a0 1N
a

3.3 Group fairness analysis

The detailed SDE analysis carried out in Subsection [3.2] highlights the distinct behaviors of SGD
and RMSProp concerning group fairness. However, extending this analysis to higher dimensions,
particularly through the Fokker-Planck Eq.[I0] introduces significant complexity. To address this
challenge, we present two theorems that leverage alternative mathematical tools beyond SDE, to study
the impact of SGD and RMSProp on group fairness. First, we illustrate how adaptive optimizers
like RMSProp suppress subgroup disparities at the level of parameter updates. The second theorem
quantifies the consequence, showing that this mechanism translates into provably smaller fairness
violations in terms of demographic parity.

Theorem 2. Consider a population that consists of two subgroups with subgroup-specific loss
functions Lo(w) and L1(w), sampled with probabilities py and p, respectively. Suppose a stochastic
(online) training regime, in which each parameter update is computed from a sample drawn from



one of the two subgroups. Suppose the gradients NV Lo(wy,) and V L1 (wy,) are well-behaved isotropic
NGOs, namely N (19, ©21) and N (11, ©31), respectively. Then, the difference in parameter updates
between subgroups 0 and I under RMSProp has an upper bound given by the corresponding difference
under SGD. Consequently, RMSProp offers fairer updates across subgroups.

Proof. For SGD, the difference between the parameter updates across subgroups can be quantified as
[|VLy — VL1||. However, as the RMSProp scales the updates using exponentially decaying average,
computing the difference is more complex. Let’s compute the expected value of v, defined in Eq. [2}

E[ve] = 7" vo + (1 — 9) S0 E[V LY. (22)
Given that £ (loss function) is a discrete mixture of Gaussians, E[V £?] can be calculated as:
E[VL?] = po (ug + OF1) +p1 (13 + O71) (23)

where 1 denotes a vector of all 1s. Substituting the equation above in Eq.[22] yields:
E[vi] = v*v0 + (1 = ") [po (15 + ©51) + p1 (13 + ©31)]. (24)

The equation above demonstrates that after enough steps, given that v < 1, E[vy] converges to Eq.
Next, let’s analyze the variance of the jth coordinate of vg, vg;, to see its spread. To this end, we

compute the variance of VE?j using the law of total variance as:
var(VL) = Elvar(VLE | Z)] + var(E[V L], | Z]), (25)

where Z is a random variable denoting the subgroup. Finally, assuming that (a) ©3 and ©? are larger
than ;2 and p?, as shown experimentally in prior work [37], and (b) there is bias in the training
set (i.e., pop1 is small), the variance var(vy,) can be computed as O((1 — 7)(@3], + @‘111_ )). For a
large ~, typical in practical training, var (v, ) becomes negligible, and thus vy, — E[v]. Using this,
we can approximate the difference between the parameter updates across subgroups for RMSProp
as ||[D(VLy — Vﬁl)H where D is a diagonal matrlx whose jjth element can be computed as:
. As ©2 > % and in stochastic (online) training setup, we

Djj =
\/:Do (HO +032 )+p1 (ul +02. )+e
can set ©2 — 1, then D;; < 1. In other words, the eigenvalues of matrix D is less than 1, thus
proving the theorem. O

Theorem 2] shows that RMSProp, unlike SGD, shrinks disparities between subgroups in the updates.
In other words, RMSProp prevents large gradient disparities from dominating the training dynamics.
Consequently, the final model is less likely to be pulled toward the subgroup with the larger gradients.
Over many iterations, this can help prevent large performance gaps between subgroups. While this
does not establish a universal fairness guarantee, it outlines why RMSProp’s dynamics yield fairer
minima across subgroups. We relax the isotropic noise assumption in Theorem [2]and generalize it
to the anisotropic case in Appendix |G| The following theorem analyzes fairness through the lens of
demographic parity and establishes that, under appropriate conditions in a single iteration, RMSProp’s
worst-case increase in the gap of demographic parity has an upper-bound no greater than that of SGD.

Theorem 3. Consider a population that consists of two subgroups with subgroup-specific loss
functions Lo(w) and L1(w), sampled with probabilities py and p, respectively. Suppose a stochastic
(online) training regime in which each parameter update is computed from a sample drawn from one
of the two subgroups. Suppose that the gradients ¥V Lo(wy;) and ¥V L1 (wy,) are well-behaved isotropic
NGOs, namely N (uo,G%I ) and N (uy,©321), respectively, with py > po. Then, in expectation,
the worst-case increase in the demographic parity gap after one iteration of RMSProp has an
upper-bound no greater than the corresponding increase under SGD.

Proof. See Appendix [H] O

Theorem [3establishes that the adaptive learning rate of RMSProp, which scales updates based on past
squared gradients, helps mitigate demographic parity gaps that can occur during training, whereas
SGD does not offer such a mechanism. We relax the isotropic noise assumption in Theorem [3|and
generalize the result to the anisotropic case in Appendix [I}



4 Experiments

Setup. We use three public datasets that are widely used in this area: CelebA [31], FairFace [16], and
MS-COCO [27]]. CelebA and FairFace are datasets commonly used for group fairness analysis, while
we also use a general-purpose dataset, MS-COCO, for further completeness. The details about these
datasets are presented in Appendix [J| The training protocol and backbones used in our experiments
are described in Appendix [K] We report the performance across different tasks using accuracy and F1.
We evaluate group fairness using three widely recognized fairness criteria [38]: equalized odds, equal
opportunity, and demographic parity. A predictor is fair under equalized odds definition if the true
positive and false positive rates are equal across demographic subgroups. We measure the violation
of this criterion as:

(26)

= cily = c¢i, 24 = ci Ci, 2§
Frop = minmin(X0 =01V = Cu20) PO =alv 7 %))
.0 p() = cily = ci,29) " p() = cily # i, %)
In the equation above, ¢; demonstrates class i. A classifier satisfies equal opportunity if the true
positive rate is equal across demographic subgroups. The related fairness measure is defined as:

C
. o1 TPR; .
Hmpzmmé%#44*% 27)
4 31 TPRj

where TPR; . denotes the true positive rate for the ™ subgroup on class c. Finally, a predictor is said
to be fair from a demographic parity point of view if the predicted label distribution is independent of
sensitive attributes. The corresponding measure is defined as:

Fppa = min A0 =6 28)
a0 p( = cilzg)

For all the above fairness metrics, higher values indicate better (fairer) outcomes.

Implementation details. We use PyTorch [42] and up to four Nvidia A100 GPUs. The hyperparame-
ter values are provided in Appendix |L} which have been optimized using Weights & Biases [4].

Results and analysis. We first calculate the fairness metrics for the ViT backbone across different
datasets and different sensitive attributes (gender: G, race: R, and age: A). Fig. 2| presents the results
for SGD, RMSProp, and Adam. Considering F'rop, Adam consistently outperforms SGD across all
scenarios, mostly by substantial margins. For instance, on CelebA dataset with gender as the sensitive
attribute, Adam achieves an 8% improvement over SGD. Furthermore, RMSProp outperforms SGD
in 4 out of 5 scenarios, and they both achieve zero Fgop for MS-COCO dataset. Given that MS-
COCO contains some extremely underrepresented object categories, this result suggests that the
disparity captured by Fgop is largely driven by rare categories receiving no correct classifications.
The largest gap between RMSProp and SGD is observed on the FairFace dataset with race as the
sensitive attribute, where RMSProp outperforms SGD by 9%. Another point to mention is that Adam
and RMSProp yield comparable Frop values, as expected. Considering Frop, both Adam and
RMSProp outperform SGD in all 5 scenarios. To shed more light, the largest difference between
the two is 6% in the case of FairFace dataset with age as the sensitive attribute. Additionally, unlike
SGD, both RMSProp and Adam achieve a near-perfect Fpop in the case of CelebA dataset with
gender as the sensitive attribute, indicating their effectiveness in reaching fairer minima.
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Figure 2: Fairness for ViT across different datasets, attributes (G: gender, A: age, R: race), and
metrics.

Regarding F'pp 4, Adam consistently outperforms SGD, while RMSProp surpasses SGD in 4 out
of 5 scenarios. Both optimizers achieve zero Fpp4 on MS-COCO with gender as the sensitive



attribute. Interestingly, the largest discrepancy between RMSProp and SGD occurs on the FairFace
dataset with age as the sensitive attribute. This aligns with our theoretical insights from Theorem I}
Specifically, FairFace exhibits extreme imbalance, with a minority-to-all ratio of approximately
0.9%, whereas CelebA with gender as the sensitive attribute has a substantially higher ratio of 42%.
These findings highlight that as dataset imbalance intensifies, the gap between adaptive optimizers
and SGD becomes more evident. We refer the reader to Appendix [M] for the results on fairness
metrics for other backbones across CelebA, FairFace, and MS-COCO datasets with different sensitive
attributes. The results are well-aligned with the results above. To further validate our findings across
different variants of optimizers, we conduct additional experiments with SGD w/ momentum [30],
AdamW [32]], and AdaBound [33] optimizers. The results are provided in Appendix

Beyond tuning the learning rate, we further inves-
tigate the influence of additional hyperparameters
on fairness outcomes. Specifically, we extend the
hyperparameter tuning using Bayesian Optimiza-

Table 1: Fairness comparison across optimizers
with tuning learning rate, decay rate, and batch

size.
tion over the learning rate, decay rate, and batch
size. This comprehensive search is performed Gender Age
using the ViT backbone on the CelebA dataset, Adam RMSProp SGD Adam RMSProp SGD
considering gender and age as sensitive attributes.  Feop 6521 6518 6266 7234 7199 68.40
The results are reported in Table [} As shown, £ 2% %2 % pu 20 o

adaptive optimizers like Adam still achieve better
fairness compared to SGD. This confirm that the
fairness trends observed in our main study remain consistent even when multiple hyperparameters
are jointly tuned.

To demonstrate that our training is successful Table 2: Comparison of accuracy and F1 across

and the models are well-behaved, we evaluate the ~different optimizers and datasets.
classification performance of ViT on the three

Accuracy F1 score

H H T4 : Dataset
iiagalsetls folrﬁ fa01.a1 exprdesswg reclogn.lgon,. multi- SGD RMSProp Adam SGD RMSProp Adam
abel classification, and gender classification, re- CelebA 9123 9154 9208 92.12 9117 92.09
spectively. The results are presented in Table 2] MS-COCO 89.62 89.71 90.03 6835 71.03 74.10
FairfFace  89.41 9137 9220 91.13 9207 92.17

The performance of the other models are pre-
sented in Appendix [O] Here, we can confirm that
in most cases, all three optimizers exhibit comparable accuracy and F1 scores across all tasks. For
instance, on the CelebA dataset, SGD and RMSProp achieve an accuracy of 91%, while Adam attains
92%. This trend is consistent with previous findings in the prior work [34]. As evident, the improved
fairness observed with adaptive gradient algorithms cannot be solely attributed to their performance.
For instance, on the CelebA dataset, the F1 score for SGD is higher than that of RMSProp, whereas
on FairFace, RMSProp achieves a higher F1 score than SGD. However, in both cases, RMSProp
demonstrates better fairness performance, as shown in Fig. [2] This further supports our theoretical
conclusion that RMSProp is fairer than SGD, regardless of overall performance.

To rigorously assess the significance of fairness

improvement of Adam and RMSProp over SGD,  Taple 3: p-values from the Wilcoxon test com-

we conduct the following experiment. We train
ViT on CelebA dataset 10 times using SGD, RM-
SProp, and Adam, while recording fairness met-
rics for both gender and age attributes in each

paring SGD vs. RMSProp and SGD vs. Adam
optimizers on the CelebA dataset for gender and
age attributes.

run. To evaluate statistical significance, we per-  yregric Gender Age

form a paired Wilcoxon signed-rank test [3] on SGD-RMSProp SGD-Adam SGD-RMSProp SGD-Adam

the fairness metrics and report the corresponding ~ Frop  1x107%  1x1073  1x107%  1x107°

p-values in Table[3] As shown in the table, most ? pop  1x 10:; Ix 10:2 1x 10:2 5x 10:;
ppa  2x10 1x 10 7x 10 3x10

scenarios yield p-values in the order of 0.001, in-
dicating a statistically significant improvement in
fairness for adaptive gradient optimizers compared to SGD. The worst p-value in the table corresponds
to SGD vs. RMSProp on CelebA with age as the sensitive attribute. However, even this value remains
statistically significant under the conventional threshold of 0.05 14} 40].

Theorem [I] provides theoretical insight that under the demographic parity fairness criterion, RMSProp
is more likely to converge to a fairer minimum than SGD in highly imbalanced datasets. Moreover, it
predicts that as the dataset becomes more balanced, the fairness advantage of RMSProp over SGD



Table 4: Comparison of fairness metrics across optimizers, with and without fairness-enhancing
methods. Lower values indicate better fairness.

Gap in Equal Opportunity Gap in Equalized Odds Gap in Demographic Parity
Dataset Adam RMSProp SGD Adam RMSProp SGD Adam RMSProp SGD
With fairness-enhancing
ProPublica COMPAS  0.45 0.48 0.71 2.79 2.78 2.90 0.86 0.86 2.60
AdultCensus 3.15 3.16 3.38 2.39 2.41 4.28 7.00 6.80 11.79
Without fairness-enhancing
ProPublica COMPAS  13.99 13.90 15.19 13.99 13.95 14.98 11.49 11.45 11.80
AdultCensus 21.04 2091 21.29 20.90 2091 21.14 12.19 12.23 12.42

gradually diminishes. To empirically validate this behavior, we conduct an experiment where we ran-
domly downsample the ‘male’ subgroup in the CelebA dataset from its native male-to-all ratio of 42%
down to 22% and 2%. We then train a model on each downsampled version using both RMSProp and
SGD. We repeat this process five times while recording the values of Fpp 4 and Frop. Fig. E] shows
the results, illustrating the absolute difference in F'pp 4 and Frop between SGD and RMSProp across
different male-to-all ratios. As expected, the gap in demographic parity is maximum at the most severe
imbalance level (2% male-to-all ratio). As the male-to-all ratio increases (indicating less imbalance),
the absolute difference between the two optimizers gradually decreases, a trend that also holds for
equalized odds. This empirical finding strongly aligns with the theoretical predictions in Theorem [T}

Theorems [2] and [3] are general with respect to the loss —— Equalized Odds
function, which suggests their fairness benefits should be g
complementary to existing fairness-enhancing methods
that add regularization terms to the primary loss. To val-
idate this hypothesis, we conduct an experiment where we 4
test the impact of optimizers in addition to the fairness- , \‘\_
enhancing method [47]] on two tabular datasets (ProPublica % 2% dataset
COMPAS [2] and AdultCensus [[19]) with gender as the Male-to-all ratio rete
;e(r}lls)m;fi1 attribute. The results are presented in Table M for Figure 3: Difference of RMSProp and
, Adam, and RMSProp. Following [47], we report the N L
average gap in equal opportunity, gap in equalized odds SGD’s faimness in different male-to-all
: : I . ' ratios for CelebA dataset with gender as
and gap in demographic parity (lower is better) over 10 .. .
runs. Regarding the fairness enhancing method, across sensitive attribute.
all metrics on both datasets, Adam and RMSProp achieve
substantially lower (better) fairness gaps than SGD. This
experiment demonstrates that the fairness benefits of adaptive optimizers are not limited to standard
training but are complementary to and can amplify the effectiveness of existing fairness interventions.
Additionally, Table[d]shows that in the absence of any fairness-enhancing method, adaptive optimizers
yield better fairness outcomes than SGD. This finding further indicates that the fairness advantage of
adaptive optimizers extends beyond computer vision applications.

Absolute Difference (%)

5 Conclusion

This paper provided both theoretical and empirical evidence that the choice of optimizer can sig-
nificantly affect the group fairness of resulting deep learning models. Through establishing an
analytically tractable setup and analyzing it via stochastic differential equations, we showed that
SGD and RMSProp can converge to different minima with regards to fairness, with RMSProp more
frequently reaching fairer optima. Next, we provided two theorems that showed 1) adaptive gradient
methods (e.g., RMSProp) shrink subgroup-specific gradients more effectively, thereby reducing
unfair updates compared to their SGD counterparts; 2) In a single optimization step, the worst case
demographic disparity of RMSProp has the upper bound given by that of SGD. We validated these
theoretical findings on three diverse datasets, namely CelebA, FairFace, and MS-COCO, and on
multiple tasks. Across a range of group fairness criteria, i.e, equalized odds, equal opportunity, and
demographic parity, adaptive optimizers consistently led to fairer solutions. We hope our work will
encourage broader adoption of adaptive optimizers in fairness-critical domains, and we envision this
research as a step toward developing more equitable deep learning models.

10



Acknowledgment

This work was partially funded by the Natural Sciences and Engineering Research Council of Canada
(NSERC), and was enabled in part by the support provided by the Digital Research Alliance of
Canada.

References

[1] Jing An, Lexing Ying, and Yuhua Zhu. Why resampling outperforms reweighting for cor-
recting sampling bias with stochastic gradients. In International Conference on Learning
Representations, 2020.

[2] Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. Machine bias: There’s software
used across the country to predict future criminals. and its biased against blacks. ProPublica,
2016.

[3] Alessio Benavoli, Giorgio Corani, Francesca Mangili, Marco Zaffalon, and Fabrizio Ruggeri. A
bayesian wilcoxon signed-rank test based on the dirichlet process. In International Conference
on Machine Learning, pages 1026-1034, 2014.

[4] Lukas Biewald. Experiment tracking with weights and biases, 2020. URL https://www!
wandb. com/. Software available from wandb.com.

[5] Joy Buolamwini and Timnit Gebru. Gender shades: Intersectional accuracy disparities in com-
mercial gender classification. In Proceedings of the 1st Conference on Fairness, Accountability
and Transparency, volume 81, pages 77-91, 2018.

[6] Junyi Chai and Xiaoqian Wang. Fairness with adaptive weights. In Proceedings of the 39th
International Conference on Machine Learning, volume 162, pages 2853-2866, 2022.

[7] Eunice Chan, Zhining Liu, Ruizhong Qiu, Yuheng Zhang, Ross Maciejewski, and Hanghang
Tong. Group fairness via group consensus. In Proceedings of the 2024 ACM Conference on
Fairness, Accountability, and Transparency, page 1788-1808, 2024.

[8] Jiankang Deng, Jia Guo, Evangelos Ververas, Irene Kotsia, and Stefanos Zafeiriou. Retinaface:
Single-shot multi-level face localisation in the wild. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 5203-5212, 2020.

[9] Zhun Deng, Jiayao Zhang, Linjun Zhang, Ting Ye, Yates Coley, Weijie Su, and James Zou. Fifa:
Making fairness more generalizable in classifiers trained on imbalanced data. In International
Conference on Learning Representations, 2023.

[10] Samuel Dooley, Rhea Sukthanker, John Dickerson, Colin White, Frank Hutter, and Micah
Goldblum. Rethinking bias mitigation: Fairer architectures make for fairer face recognition. In
Advances in Neural Information Processing Systems, volume 36, pages 74366—74393, 2023.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for im-
age recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 770-778, 2016.

[12] Jeevith Hegde and Bgrge Rokseth. Applications of machine learning methods for engineering
risk assessment — a review. Safety Science, 122:104492, 2020.

[13] Mohammad Mehdi Hosseini, Ali Pourramezan Fard, and Mohammad H Mahoor. Faces of
fairness: Examining bias in facial expression recognition datasets and models. arXiv preprint
arXiv:2502.11049, 2025.

[14] Arthur Juliani and Jordan T. Ash. A study of plasticity loss in on-policy deep reinforcement
learning. In Advances in Neural Information Processing Systems, volume 37, pages 113884—
113910, 2024.

[15] Dayal Singh Kalra and Maissam Barkeshli. Why warmup the learning rate? underlying
mechanisms and improvements. In Advances in Neural Information Processing Systems,
volume 37, pages 111760-111801, 2024.

11


https://www.wandb.com/
https://www.wandb.com/

[16] Kimmo Karkkainen and Jungseock Joo. Fairface: Face attribute dataset for balanced race,
gender, and age for bias measurement and mitigation. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, pages 1548—1558, 2021.

[17] Aislinn Kelly-Lyth. Challenging biased hiring algorithms. Oxford Journal of Legal Studies, 41:
899-928, 2021.

[18] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[19] Ron Kohavi et al. Scaling up the accuracy of naive-bayes classifiers: A decision-tree hybrid. In
Kdd, 1996.

[20] Mojtaba Kolahdouzi and Ali Etemad. Toward fair facial expression recognition with improved
distribution alignment. In Proceedings of the 25th International Conference on Multimodal
Interaction, page 574-583, 2023.

[21] Chieh-Hsin Lai, Yuhta Takida, Naoki Murata, Toshimitsu Uesaka, Yuki Mitsufuji, and Stefano
Ermon. Fp-diffusion: Improving score-based diffusion models by enforcing the underlying score
fokker-planck equation. In International Conference on Machine Learning, pages 18365-18398,
2023.

[22] Elle Lett and William G La Cava. Translating intersectionality to fair machine learning in health
sciences. Nature Machine Intelligence, 5:476—479, 2023.

[23] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hy-
perband: A novel bandit-based approach to hyperparameter optimization. Journal of Machine
Learning Research, 18:1-52, 2018.

[24] Peizhao Li and Hongfu Liu. Achieving fairness at no utility cost via data reweighing with
influence. In International Conference on Machine Learning, pages 12917-12930, 2022.

[25] Qianxiao Li, Cheng Tai, and E Weinan. Stochastic modified equations and adaptive stochastic
gradient algorithms. In International Conference on Machine Learning, pages 2101-2110,
2017.

[26] Zhiyuan Li, Sadhika Malladi, and Sanjeev Arora. On the validity of modeling sgd with stochastic
differential equations (sdes). In Advances in Neural Information Processing Systems, volume 34,
pages 12712-12725, 2021.

[27] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollér, and C. Lawrence Zitnick. Microsoft coco: Common objects in context. In European
Conference on Computer Vision, pages 740-755, 2014.

[28] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollar. Focal loss for dense
object detection. In Proceedings of the IEEE International Conference on Computer Vision,
pages 2980-2988, 2017.

[29] Lydia T Liu, Max Simchowitz, and Moritz Hardt. The implicit fairness criterion of unconstrained
learning. In International Conference on Machine Learning, 2019.

[30] Yanli Liu, Yuan Gao, and Wotao Yin. An improved analysis of stochastic gradient descent with
momentum. Advances in Neural Information Processing Systems, 2020.

[31] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the
wild. In Proceedings of International Conference on Computer Vision, 2015.

[32] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International
Conference on Learning Representations, 2019.

[33] Liangchen Luo, Yuanhao Xiong, Yan Liu, and Xu Sun. Adaptive gradient methods with dynamic
bound of learning rate. arXiv preprint arXiv:1902.09843, 2019.

12



[34] Avery Ma, Yangchen Pan, and Amir-massoud Farahmand. Understanding the robustness
difference between stochastic gradient descent and adaptive gradient methods. Transactions on
Machine Learning Research, 2023.

[35] Chao Ma, Lei Wu, and E Weinan. A qualitative study of the dynamic behavior for adaptive
gradient algorithms. In Mathematical and Scientific Machine Learning, pages 671-692, 2022.

[36] Xinsong Ma, Zekai Wang, and Weiwei Liu. On the tradeoff between robustness and fairness. In
Advances in Neural Information Processing Systems, volume 35, pages 26230-26241, 2022.

[37] Sadhika Malladi, Kaifeng Lyu, Abhishek Panigrahi, and Sanjeev Arora. On the sdes and scaling
rules for adaptive gradient algorithms. In Advances in Neural Information Processing Systems,
volume 35, pages 7697-7711, 2022.

[38] Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram Galstyan. A
survey on bias and fairness in machine learning. ACM Computing Surveys, 54, 2021.

[39] Oluseun Olulana, Kathleen Cachel, Fabricio Murai, and Elke Rundensteiner. Hidden or inferred:
Fair learning-to-rank with unknown demographics. Proceedings of the AAAI/ACM Conference
on Al Ethics, and Society, 7:1088—1099, 2024.

[40] Rohan Paleja, Muyleng Ghuy, Nadun Ranawaka Arachchige, Reed Jensen, and Matthew
Gombolay. The utility of explainable ai in ad hoc human-machine teaming. Advances in Neural
Information Processing Systems, 34:610-623, 2021.

[41] Yan Pan and Yuanzhi Li. Toward understanding why adam converges faster than sgd for
transformers. In OPT 2022: Optimization for Machine Learning Workshop, Advances in Neural
Information Processing Systems, 2022.

[42] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. Advances in Neural Information Processing
Systems, 32, 2019.

[43] Dana Pessach and Erez Shmueli. A review on fairness in machine learning. ACM Computing
Surveys, 55, 2022.

[44] Felix Petersen, Debarghya Mukherjee, Yuekai Sun, and Mikhail Yurochkin. Post-processing for
individual fairness. In Advances in Neural Information Processing Systems, volume 34, pages
25944-25955, 2021.

[45] Esther Puyol-Antén, Bram Ruijsink, Stefan K. Piechnik, Stefan Neubauer, Steffen E. Petersen,
Reza Razavi, and Andrew P. King. Fairness in cardiac mr image analysis: An investigation of
bias due to data imbalance in deep learning based segmentation. In Medical Image Computing
and Computer Assisted Intervention, pages 413-423, 2021.

[46] Samira Abbasgholizadeh Rahimi, Mojtaba Kolahdoozi, Arka Mitra, Jose L Salmeron, Amir Mo-
hammad Navali, Alireza Sadeghpour, and Seyed Amir Mir Mohammadi. Quantum-inspired
interpretable ai-empowered decision support system for detection of early-stage rheumatoid
arthritis in primary care using scarce dataset. Mathematics, 10:496, 2022.

[47] Yuji Roh, Kangwook Lee, Steven Euijong Whang, and Changho Suh. Fairbatch: Batch selection
for model fairness. arXiv preprint arXiv:2012.01696, 2020.

[48] Shubham Sharma, Yunfeng Zhang, Jestis M. Rios Aliaga, Djallel Bouneffouf, Vinod Muthusamy,
and Kush R. Varshney. Data augmentation for discrimination prevention and bias disambiguation.
In Proceedings of the AAAI/ACM Conference on Al, Ethics, and Society, page 358-364, 2020.

[49] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[50] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine
learning algorithms. In Advances in Neural Information Processing Systems, volume 25, 2012.

13



[51] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generative modeling through stochastic differential equations. In
International Conference on Learning Representations, 2021.

[52] Mathieu Tanneau and Pascal Van Hentenryck. Dual lagrangian learning for conic optimization.
In Advances in Neural Information Processing Systems, volume 37, pages 55538-55561, 2024.

[53] Bart Thomee, David A Shamma, Gerald Friedland, Benjamin Elizalde, Karl Ni, Douglas Poland,
Damian Borth, and Li-Jia Li. Yfcc100m: The new data in multimedia research. Communications
of the ACM, 59:64-73, 2016.

[54] Kan Wu, Jinnian Zhang, Houwen Peng, Mengchen Liu, Bin Xiao, Jianlong Fu, and Lu Yuan.
Tinyvit: Fast pretraining distillation for small vision transformers. In European Conference on
Computer Vision, pages 68—85, 2022.

[55] Tian Xu, Jennifer White, Sinan Kalkan, and Hatice Gunes. Investigating bias and fairness in
facial expression recognition. In European Conference on Computer Vision Workshops, pages
506-523, 2020.

[56] Wei Yao, Zhanke Zhou, Zhicong Li, Bo Han, and Yong Liu. Understanding fairness surrogate
functions in algorithmic fairness. arXiv preprint arXiv:2310.11211, 2023.

[57] Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Ordonez, and Kai-Wei Chang. Men also like
shopping: Reducing gender bias amplification using corpus-level constraints. In Proceedings of
the 2017 Conference on Empirical Methods in Natural Language Processing, pages 2979-2989,
2017.

[58] Yingxue Zhou, Belhal Karimi, Jinxing Yu, Zhigiang Xu, and Ping Li. Towards better general-
ization of adaptive gradient methods. In Advances in Neural Information Processing Systems,
volume 33, pages 810-821, 2020.

14



Appendix

A  Ito’s Lemma

Itd’s lemma extends the chain rule of classical calculus to stochastic calculus, thereby accommodating
functions that depend on Brownian motion B(t). Suppose that the following stochastic differential
equation (SDE) is given:
dX(t) = M(t, X(t))dt + N(t, X (t))dB(t). (29)
In the equation above, X(t) is a stochastic process, M() and N() are the functions of X (¢) and ¢. Let’s
define stochastic process Y (t) by:
Y(t) = Q(t, X(1)), (30)

where, Q)() is a function of stochastic process X (¢) and ¢. Itd’s lemma states that we can compute
dY (t) by using the following:
2

Ay (1) = <()§th(t,X) + %Q(t,X) M X (D) + o.5jﬁQ(t,X)N2(t,X(t))> di+
31)

(CZCQ(t’X) : N(t,X(t))) dB(t).

In the above equation, as the term 0.5 d” Q(t, X)N?(t, X (t)) does not appear in classic calculus, it

dx?
is often referred to as Itd’s correction term.

B Fokker-Planck equation

In this section, for completeness, we provide the derivation of fokker-planck equation from a given
SDE. This is a well-known equation in the analysis of SDEs. Suppose the following SDE is given:
dX(t) = M(t, X(¢))dt + N(t, X (t))dB(t). (32)

Also, suppose that () is a function which is 0 outside of a bounded interval. For simplicity, we use
X instead of X (¢). By It0’s lemma, we have:

dQ(X) = (M(t, X)Q'(X) + 0.5N?(t, X)Q" (X)) dt + N(t, X)Q'(X)dB(t). (33)

Let’s integrate the equation above from O to ¢ and then take the expected value from both sides:

E[Q(X)*Q(O)]:/O E[(M (1, X)Q'(X) + 0.5N*(r, X)Q"(X))]dr+
(34)

/0 E[N(r, X)Q'(X)dB(r)].

Suppose X is independent of B, then as E[dB(7)] = 0, the second integral above is zero. Next, let’s
take the derivative with regards to ¢ from both sides:

G EIQX)] = E[(M(1, X)Q'(X) + 05N, X)Q"(X)) (35)

To make the distribution of X appear in the equations, let’s use the definition of E[.] in the equation
above:

+o00 +oo o0
/ %p(t,x)@(x) _ / Dt 2) M (1, 2)Q (2)dx + / p(t 2)0.5N2(t, 2)Q (2)dz (36)

— —00 —o00
In the equation above, p(t, ) is the distribution of stochastic process X. By applying integration by
part to the integrals in the Eq.[36] and re-arranging the terms, we get:

2

+oo
/ (;P(Lx) + %(p(t, z)M(t,z)) — 0.5;332(29@@)]\72@&))) Q@dz=0  (7)

As the equation above holds for all Q(z), then the other factor must equal to zero. Thus, we have:

2

Dot )+ (ol ))M(1,2)) — 05~ (p(t, )N (1, 2) = 0 G8)

The equation above is known as Fokker-Planck equation.
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C Well-behaved NGOS

Noisy Gradient Oracle with Scale Parameter (NGOS) models stochastic gradients as g(w) = V.L(w)+
Oz, where O is a noise scale parameter, and z is a random variable that follows a distribution with
covariance matrix ¥ (w) and a mean of zero. An NGOS is well-behaved if the conditions below are
satisfied [37]:

1. VL(w) is Lipschitz.
2. Square root of covariance matrix is Lipschitz and bounded.

3. Both V£(w) and ¥(w) are differentiable and their partial derivatives up to 4-th order have
polynomial growth.

4. Noise distribution in the NGOS must have low skewness. In other words, there must exist a
function of polynomial growth such that |E[23]| is equal or less than that function divided by ©.

5. Noise distribution must have bounded moments. In other words, there must exist a constant x such
1
that E[||2][**]2F < &(1 + [Jw]]).

Gaussian noise is a well-behaved NGOS. However, the noise in NGOS is not restricted to Gaussian.
Particularly, if the noise distribution is not heavy-tailed, then it satisfies requirements 4 and 5.
Whether or not the noise distribution in real-world applications is heavy-tailed is still an open
problem. Nevertheless, several experimental results denote that the conditions described above are
not too strong [37].

D Approximation Quality of SDE for SGD

The dynamics of SGD can be approximated by the following SDE [25]]:
dW, = =V L(W,)dt + (n=(W;))Y2dB(t), (39)

where W, represents an approximation of wy, at discrete time steps k 7 and X is the covariance matrix
of the underlying NGOS. The noises that make the individual paths for the above SDE and the SGD
are independent processes. Hence, SGD and its SDE approximation do not share the same sample
paths; rather, they are close to each other in “distribution” or “weak sense” [25]. To formalize this
mathematically, suppose Z be the set of functions, f(x), of polynomial growth, i.e. Ja,b € RT
such that |f(x)| < a(1 + |x|®). Then, SDE defined in Eq.[39|is the order 7 weak approximation
of SGD if for each function f(z) in Z, there exists a constant C' such that for all k = 1... N,
[E[f(Wky)] — E[f(wk)]| < Cn". This is a well-known result in analyzing optimization algorithms
using SDEs, first time proposed in [25]. Similar theorems for RMSProp and Adam are available
in [37].

E Proof of Lemma 1

The demographic parity criterion for fairness between two subgroups is defined as:
P(glz=0) = P(ylz=1), (40)

where z denotes the subgroup, and ¢ represents the output of a model. The gap in demographic parity
serves as a fairness measure [38]. A common approach to quantifying this gap is through the zero-one
loss difference [24]: |[¢y/1(w)|z = 0] — [£y/1(w)|z = 1]|. As established in prior work [24]], the
zero-one loss can be approximated by the training loss, leading to the following fairness measure
F(w) = |[L(w)]z = 0] — [L(w)]|z = 1]|. Substituting the given loss functions Lo (w) and L1 (w),
we obtain F(w) = 2|w|. Since F(w) achieves its minimum at w = 0, this proves that w = 0 is the
fairest minimizer.

F Additional Results for Theorem [I]

In this section, we extend our empirical analysis of Theorem|I]by evaluating our findings with broader
choices of learning rates and alternative definitions of the fair neighborhood.
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Table 5: Hyperparameter configurations for the experimental scenarios.

Configuration 7Wrymsprop Nsgp  Fairness Threshold

1 0.01 0.1 0.2
2 0.1 0.2 0.2
3 0.01 0.1 0.1
4 0.01 0.1 0.4
5 0.1 0.2 0.1
6 0.1 0.2 0.4
QlOO Po = 0.1 100 Po = 0.3
* & —e- SGD —e- SGD
; 80 I —=— RMSProp 80 —=— RMSProp
2 601 I} 60|
c [ [
g 400 | 0 |y
g 20 | ! 20 ," i L LT H
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Figure 4: Convergence rates of RMSProp (n = 0.01) and SGD (n = 0.1) to the fair neighbourhood,
defined by threshold of 0.2.

Theoremestablishes that for subgroup sampling probabilities po, p; € (0,1) with pg + p; = 1, and
loss functions Lo(w) = %(w — 1)? and £, (w) = 3(w + 1), the optimization of the empirical loss

function:

1
Lemp(w) = NZL%‘(w), 41)

reQ

where each sample ¢, € 0,1 is drawn i.i.d. with probability pg for subgroup 0 or p; for subgroup
1, leads to an increased likelihood of RMSProp converging to the fair optimum wy,,, = 0 as the
imbalance between pg and p; grows. To empirically validate these theoretical insights, we conducted
simulations using a fixed learning rate of n = 0.1, training for 1000 independent runs per experiment.
The fraction of runs converging to the neighborhood of the fair optimum, defined as [w —w;,,,| < 0.2,
was recorded at each epoch. We call 0.2 the fairness threshold. To assess the robustness of our
findings, we extend our analysis by examining a broader range of 1) values and explore more restrictive
and relaxed fairness thresholds. Table[5|summarizes the hyperparameter configurations used in our
experiments. Fig.s [ to 0] illustrate the convergence behavior of RMSProp and SGD under the

specified configurations in the table.

The figures reveal a consistent trend in the convergence behavior of RMSProp and SGD. In the
severely biased setting (py = 0.1), RMSProp exhibits a higher likelihood of converging to the fair
neighborhood, regardless of the learning rate. As the bias decreases (pg = 0.3), the behavior of
RMSProp and SGD becomes more similar. These experimental findings are in line with theoretical
findings in Theorem|[I} Additionally, a more restrictive fairness threshold reduces the probability
of convergence to the fair neighborhood, whereas a relaxed threshold increases it. This is expected,
as stricter definitions impose tighter constraints on acceptable fair solutions, while relaxed criteria
naturally allow a higher fraction of runs to qualify as fair.

G Extension of Theorem 2/to Anisotropic Noise

Theorem 4. Consider a population that consists of two subgroups with subgroup-specific loss
Sunctions Lo(w) and L1(w), sampled with probabilities py and p1, respectively. Suppose a stochastic
(online) training regime, in which each parameter update is computed from a sample drawn from one
of the two subgroups. Suppose the gradients ¥V Lo(wy) and V L1 (wy,) are well-behaved anisotropic
NGOs, namely N (uo, Xo) and N'(u1, 1), respectively. Then, the difference in parameter updates
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Figure 5: Convergence rates of RMSProp (n = 0.1) and SGD (n = 0.2) to the fair neighbourhood,
defined by threshold of 0.2.
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Figure 6: Convergence rates of RMSProp (n = 0.01) and SGD (n = 0.1) to the fair neighbourhood,
defined by threshold of 0.1.

between subgroups 0 and I under RMSProp has an upper bound given by the corresponding difference
under SGD. Consequently, RMSProp offers fairer updates across subgroups.

Proof. The proof is similar to Theorem 2] For SGD, the difference between the parameter updates
across subgroups is ||VLy — VL£L1]|. Regarding RMSProp, let’s compute the expected value and the
variance of vy:

E[ve] = vFvo + (1 — %) [po (12 + diag(S0)) + p1 (43 + diag(S1))]. (42)

Where diag(X) and diag(31) are the vectors with the diagonal elements of Xy and X1, respectively.
Similar to the the isotropic case, we can show that the variance of vy, is negligible and thus v, — E[vy].
Hence, the difference between parameter updates are ||D(V Ly — VL1)||, where D is a diagonal
matrix, whose jjth element can be computed as:

1
Dy = (43)

oo (i, +8) + (2, +01) 4

Prior work [37] has experimentally shown that 0 > 2. Additionally, in stochastic (online) training
setup: ©2 — 1. Thus, D;; < 1. This completes the proof. O

H Proof of Theorem

Proof. As described in the proof of Lemmal[I] the following can be used to approximate the gap in
demographic parity: F(w) = |[[L(w)|z = 0] — [£(w)|z = 1]|. Let’s define the function ¥ (wy) =
Lo(wg) — L1(wy). Also, define p(wy) = % Let’s expand F(wy,) around wy, using
Taylor series:

F(wy, —‘1-5) — Flwg) = V]-‘(wk)té (44)
We can compute VF (wy,) as:

VF(wi) = e(wp) - (VI (wy)). (45)
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Figure 7: Convergence rates of RMSProp (n = 0.01) and SGD (n = 0.1) to the fair neighbourhood,
defined by threshold of 0.4.

_100 Po=0.1 100 Po=0.3

£ g0 —«- SGD 80 —e- SGD

= —=— RMSProp —=— RMSProp

g 60 60

e

g 40 40

g 20 201 I~

a 4\ . ,-’ :;"*"‘H-fuh‘-‘“n-uu
0% 50 100 90 50 100

Epoch Epoch

Figure 8: Convergence rates of RMSProp (n = 0.1) and SGD (n = 0.2) to the fair neighbourhood,
defined by threshold of 0.1.

If in Eq. 44| we set 6 — nV.L(wy), given the updates of SGD in Eq.[I] we can re-write Eq. [44]as:
Flwisr,,,) = Flwy) = =no(wi) VE(wi) VL, (46)
where F(wy41,,,) is the value of function F() after one iteration using SGD. Using the proof of
Theorem 2] we can perform a similar operation for RMSProp:
Flwiia,,,.) = F(wk) = —ne(wi) V¥ (w) DV L. (47)

In the equation above, F (w1, ) is the value of F() after one iteration using RMSProp, and matrix
D is a diagonal matrix defined in the proof of Theorem[2] As 119 < p1, then the worst case increase
in the gap of demographic parity for SGD occurs when VU (wy,) aligns with VL. Mathematically,
the increase can be modeled as:

F (Wht1,,0) = F(wi)| = nlewe) VI (wp) VL < [V (w)]| - VL. (48)
Similarity, for RMSProp, we have:

F (Wht1,,,.) = F(wi)| = nleo(wp) VE(wi) DVL] < [ DVE(wy)|| - [| VL]
<V (we)ll - [[VL.

In the equation above, as diagonal elements of D are strictly less than 1, we have a strict inequality.
Comparing Eqs. #8|and A9} we conclude the proof. O

(49)

I Extension of Theorem [3|to Anisotropic Noise

Theorem 5. Consider a population that consists of two subgroups with subgroup-specific loss
Sunctions Lo(w) and L1(w), sampled with probabilities py and p1, respectively. Suppose a stochastic
(online) training regime in which each parameter update is computed from a sample drawn from one of
the two subgroups. Suppose that the gradients V Lo(wy,) and V L1 (wy,) are well-behaved anisotropic
NGOs, namely N (110, 20) and N (u1, X1), respectively, with u1 > po. Then, in expectation, the worst-
case increase in the demographic parity gap after one iteration of RMSProp has an upper-bound no
greater than the corresponding increase under SGD.

19



po =0.1 po = 0.3

ELlOO 100
* 8 —~- SGD —=- SGD
s 80 801
= ~-=— RMSProp Iy ~-=— RMSProp
g 601 601 |\
H | Seseea 0, -

S a0 i\ 401 i TR
5 I [
g 20 ,’« 20( | #
> sag gty gt ey g o
= IR i s i St oLt

0 50 100 0 50 100

Epoch Epoch

Figure 9: Convergence rates of RMSProp (n = 0.1) and SGD (n = 0.2) to the fair neighbourhood,
defined by threshold of 0.4.

Proof. The proof follows directly as the proof of this Theorem relies on the conclusion of the
extension of the Theorem 2] which is already proved in Theorem 4} O

J Datasets

CelebA [31]] is a large-scale and real-world dataset, which include 202,599 facial images from over
10,000 individuals. Each image is annotated with 40 distinct attributes, and the dataset is officially
partitioned into training, validation, and test sets. In this study, we use gender (male vs. female) and
age (young vs. old) as sensitive attributes, while performing facial expression recognition based on
the “happy” attribute. Notably, the dataset exhibits an imbalance in demographic distribution, with
the probability of an image depicting a male being 0.42 and the probability of depicting a young
individual being 0.77. This skewed distribution indicates the presence of bias in the training set.

FairFace [16] is a large-scale face attribute dataset, mainly designed to mitigate racial bias in facial
analysis tasks. It includes 108,501 facial images sourced primarily from the YFCC-100M Flickr
dataset [53]]. Each image is annotated for gender, age (9 sub-groups), and race (7 sub-groups). In
this study, we leverage FairFace for gender classification, treating age and race as sensitive attributes.
Given its broad demographic representation, FairFace serves as a robust benchmark in fairness related
tasks.

MS-COCO [27] is a large-scale, real-world benchmark dataset widely used for multi-label classifi-
cation, object detection, and image captioning. It consists of over 330,000 images, including more
than 200,000 labeled images spanning 80 object categories. In this study, we leverage MS-COCO for
multi-label classification. Notably, the dataset does not provide explicit gender annotations. To infer
gender labels, we follow a protocol established in previous works [57], utilizing the five associated
captions per image. Specifically, we retain images where at least one caption contains either the
term “man” or “woman”. Additionally, we remove object categories that are not strongly associated
with humans. Human-associated objects are defined as those appearing at least 100 times alongside
either “man” or “woman” in the captions, resulting in a reduced set of 75 object categories. Fig. [I0]
provides sample captions and their corresponding inferred gender labels. It is worth mentioning that
the probability of an image depicting a male is 0.71.

K Training Protocol

For facial expression recognition, we employ RetinaFace [8] to detect and crop faces from images.
The images in the FairFace dataset are already cropped by default. As part of the preprocessing
pipeline for all tasks, we normalize the images and resize them to 224 x 224. Data augmentation
consists of random horizontal flipping and random rotation. Facial expression recognition and gender
classification tasks are trained using the cross-entropy loss L., defined as:

N
Z yjlog(g;) + (1 — ;) log(1 — §;)]. (50)
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(a) 1. a woman prepares several sub
sandwiches at a deli counter.

2. a person behind a display glass preparing
food

3. alady behind a sneeze guard making sub
sandwiches.

4. a woman behind a deli counter making
sub sandwiches.

(b) 1. a man in a yellow shirt holding a white
dog and making a face

2. a man holding a hot dog bun beside his
puppy.

3. a man putting a hot dog bun on a puppy
and pretending to eat

4. a man holding a white puppy and a red

5. there is a woman that is making leash.
sandwiches at a deli 5. a man who is pretending to bite a puppy.

Figure 10: Two example images from MS-COCO dataset along with their captions. The inferred
gender labels from the captions for the left and right images are “woman” and “man”, respectively.

For the multi-label classification task, given the class imbalance in MS-COCO, we employ the focal
loss [28] to mitigate overfitting to majority classes. It is formulated as:

N

Lpoeat = ¢ S lews (1~ 55)" og(d) + (1 - (1 )i log(1 —3p)), 6D
j=1

where ¢ is the balancing factor and v is the focusing parameter. To optimize the learning rate during
training, we leverage Bayesian optimization [50] combined with the Hyperband algorithm [23]]. The
best-performing models are trained twice, and we report the average performance across these runs.

We experiment with multiple backbone architectures, including ResNet-18 and ResNet-50 [11]],
VGG-16 [49], and a recently proposed vision transformer (tiny ViT)[34]]. These architectures have
been widely used in studies analyzing the impact of optimization methods on different learning
paradigms[34]], as well as in fairness-focused works [55]]. ResNet models leverage residual connec-
tions to facilitate deep representation learning, while VGG-16 provides a structured CNN design with
uniform filter sizes. The tiny ViT, a transformer-based model, processes images as patch embeddings,
and showed state-of-the-art performance [54]. This diverse selection allows us to investigate fairness
effects across both convolutional and transformer-based architectures.

L. Hyperparameters

We employ Bayesian Optimization [50] with Hyperband [23]] algorithm to systematically tune the
learning rate across different optimizers. Hyperband efficiently allocates training resources to more
promising setups and progressively eliminate underperforming ones. It evaluates training at specific
checkpoints, called “brackets”. We set Hyperband brackets to [10, 20, 40], allowing enough time for
each run to demonstrate its potential. Additionally, the learning rate is sampled using a log-uniform
distribution within the following search spaces:

+ SGD: [1073,107}]
« RMSProp: [1075,1072]
¢ Adam: [107°,1072]

All models are trained for maximum of 60 epochs with a batch size of 64 and weight decay of 10~%.
We use Pytorch default values for optimizer specific hyperparameters:
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Figure 11: Fairness metrics for ResNet-18 across different datasets and sensitive attributes.

e RMSProp: v=0.9
* Adam: $8; =0.9, B2 = 0.999

Additionally, we use “Reduce-on-Plateau” scheduler of Pytorch to decrease the learning rate during
the training. if no improvement is observed for 5 epochs, then the learning rate is multiplied by 0.5.

M Additional Fairness Results across Different Backbones and Datasets

In this section, we present fairness metrics for SGD, RMSProp, and Adam across ResNet-18, ResNet-
50, and VGG-16 backbones, evaluated on multiple datasets with different sensitive attributes.

ResNet-18: Fig. illustrates fairness metrics for the ResNet-18 backbone. Considering Frop,
both Adam and RMSProp consistently outperform SGD across all datasets and sensitive attributes.
The only exception is the MS-COCO dataset, where both RMSProp and SGD yield an Fop of zero.
This is due to MS-COCQ’s 75 object classes, some of which are highly underrepresented, leading
to an effective fairness score of zero. The largest difference in Fgop is observed on the CelebA
dataset with age as the sensitive attribute, where RMSProp significantly surpasses SGD. Adam and
RMSProp exhibit comparable performance, as expected.

For the F'gop metric, both RMSProp and Adam outperform SGD across all datasets. For example, in
the FairFace dataset with age as the sensitive attribute, Adam achieves an Fgop of 80%, compared to
72% with SGD. Regarding F'p p 4, Adam surpasses SGD in four out of five cases. The only exception
is CelebA with age as the sensitive attribute, where both optimizers yield similar F'pp 4. This aligns
with Theorem|I] as CelebA is not sufficiently biased for adaptive gradient methods to demonstrate a
significant fairness advantage.

ResNet-50: Fig. 12| presents results for the ResNet-50 backbone. For Frop, Adam consistently
outperforms SGD, while RMSProp surpasses SGD in four out of five cases, with MS-COCO again
being the exception. The difference between Adam and SGD reaches approximately 15% in CelebA
when using age as the sensitive attribute. Similar trends emerge for F'rop, where both Adam and
RMSProp outperform SGD across all datasets. Finally, for F'pp4, more biased datasets, such as
FairFace with age as the sensitive attribute, show a higher gap between adaptive gradient methods
and SGD.

VGG-16: Fig.|13|shows fairness metrics for the VGG-16 backbone. As with the previous archi-
tectures, Adam outperforms SGD in all cases for Frop. For Frop, both Adam and RMSProp
demonstrate superior fairness compared to SGD. In FairFace with age as the sensitive attribute, the
difference between Adam and SGD reaches approximately 10%. For F'pp 4, the most significant
difference is again observed in FairFace with age as the sensitive attribute, which reinforces our
theoretical findings.

Across all three fairness metrics, we observe consistent trends across multiple architectures, datasets,
and problems, including gender classification, facial expression recognition, and multi-label clas-
sification. These extensive experiments provide strong empirical evidence that adaptive gradient
methods, such as Adam and RMSProp, converge to fairer minima with higher probability compared
to SGD.
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Figure 13: Fairness metrics for VGG-16 across different datasets and sensitive attributes.

N Additional Fairness Results across Different Variants of Optimizers

Our theoretical analysis identifies gradient normalization via second moment as the key mechanism
for improving group fairness. This provides a clear framework for predicting the behavior of other
optimizers with regards to fairness. To validate these predictions, we have conducted a new set of
experiments with SGD w/ momentum [30], AdamW [32], and AdaBound [33] variants. Following
the protocol from our main experiments, we use the CelebA dataset with a ViT backbone, treating
gender and age as sensitive attributes. We tuned the learning rate for each optimizer using Bayesian
optimization with Hyperband and report the average fairness scores in Table[6] As shown in the
table, AdamW consistently achieves the best fairness scores. This is expected, as AdamW retains
the normalization mechanism of Adam and RMSProp via the second moment. In contrast, SGD
w/momentum, lacking the normalization via the second moment, performs more biased. The
performance of AdaBound is comparable to SGD w/momentum. The reason is that the AdaBound
algorithm deliberately clips the second moments to make it act like SGD, which in turn limits the
fairness advantage.

O Additional Classification Results across Different Backbones and Datasets

Table[7]reports the accuracy and F1 scores of SGD, RMSProp, and Adam optimizers across ResNet-
18, ResNet-50, and ViT backbones. We evaluate these optimizers on CelebA (facial expression
recognition), MS-COCO (multi-label classification), and FairFace (gender classification) datasets.
For CelebA, the performance of SGD, RMSProp, and Adam is comparable, with only minor variations.
For instance, using the VGG-16 backbone, SGD achieves an accuracy of 92.22%, while RMSProp
and Adam yield 92.37% and 91.42%, respectively. Similarly, for MS-COCO and FairFace, the
performance differences across the optimizers remain limited. The largest accuracy gap between SGD

Table 6: Fairness comparison of optimizer variants.

Gender Age
AdamW AdaBound SGD w/ mom. AdamW AdaBound SGD w/ mom.
FEeop 64.90 61.10 61.12 71.11 67.20 67.25
Feop 99.90 96.10 95.07 98.95 96.60 96.55
Fbpa 73.11 70.01 69.50 98.11 95.39 95.39
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Table 7: Performance of different backbones across datasets. Each cell reports three numbers
corresponding to SGD, RMSProp, and Adam, respectively.

Backbones

Dataset ResNet18 ResNet50 VGGl16

Acc. Fl1 Acc. Fl1 Acc. Fl1

CelebA 91.12,92.21,92.19 91.41,92.76,92.80 91.19,92.60,92.39 91.33,92.09,92.25 92.22,92.37,91.42  92.20, 92.28, 92.50
MS-COCO 88.31,91.10,90.42  66.96,71.26,69.37 89.15,91.89,91.70 67.68,70.48,70.16 89.48,90.11,91.57 66.47,72.04,73.20
FairFace 86.16,90.36,90.31  87.15,88.71,90.30  88.48,90.58,92.41 89.67,90.77,91.57 91.70,91.81,92.09 90.59, 91.66, 92.69

and adaptive optimizers occurs on MS-COCO with the VGG-16 backbone, reaching approximately
5.5%. However, the highest disparity in fairness metrics does not occur on MS-COCO but rather on
FairFace dataset. These findings indicate that the differences between SGD and adaptive optimization
algorithms cannot be solely attributed to their performance. Instead, as demonstrated in Theorems|TH3]
the normalization behavior of these optimizers plays a crucial role in shaping their fairness properties.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly articulate the main research question, and
the contributions are explicitly listed in a numbered format.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Each theorem provided in the paper clearly states its assumptions.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Each theorem is preceded by a clear statement of assumptions, followed by a
complete and rigorous proof.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all relevant information, including details on open-source datasets,
hyperparameter values, and implementation. Additionally, the source code is made publicly
available.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We use publicly available datasets and have released the source code with
sufficient instructions to reproduce results.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper includes all relevant experimental details, including hyperparameter
values, optimizer types, and other training configurations.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report statistical significance using Wilcoxon signed-rank tests, as shown
in Table[3

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The implementation details section includes information on the compute
resources used.

Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have thoroughly reviewed the NeurIPS Code of Ethics and confirm that
our research adheres to its principles.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper provides practical insights to practitioners into how optimizer choice
affects group fairness. We discuss the implications in the paper.

Guidelines:
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» The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper does not involve the release of high-risk models or data.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All datasets and external tools used in the paper are publicly available and
properly cited.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We release the source code used in our experiments, accompanied by a
README file that includes the guidelines.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

 The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve any crowdsourcing or research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
* Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve research with human subjects and therefore does
not require IRB approval

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: LLMs were not used as part of the core methodology or any original component
of the research.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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