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Abstract001

With the widespread of Large Language Mod-002
els (LLMs), there has been an increasing need003
to detect LLM-generated texts, prompting ex-004
tensive research in this area. However, ex-005
isting detection methods mainly evaluate on006
static benchmarks, which neglect the evolving007
nature of LLMs. Relying on existing static008
benchmarks could create a misleading sense of009
security, overestimating the real-world effec-010
tiveness of detection methods. To bridge this011
gap, we introduce EvoBench, a dynamic bench-012
mark considering a new dimension of gener-013
alization across continuously evolving LLMs.014
EvoBench categorizes the evolving LLMs into015
(1) updates over time and (2) developments like016
finetuning and pruning, covering 7 LLM fami-017
lies and their 30 evolving versions. To measure018
the generalization across evolving LLMs, we019
introduce a new EMG (Evolving Model Gen-020
eralization) metric. Our evaluation of 14 detec-021
tion methods on EvoBench reveals that they all022
struggle to maintain generalization when con-023
fronted with evolving LLMs. To mitigate the024
generalization problems, we further propose025
improvement strategies, demonstrating EMG026
performance improvements up to 12.15%. Our027
research sheds light on critical challenges in028
real-world LLM-generated text detection and029
represents a significant step toward practical030
applications.1031

1 Introduction032

Large Language Models (LLMs), such as Chat-033

GPT (OpenAI, 2022b), Claude (Anthropic, 2024),034

and LLaMA (Touvron et al., 2023a), have demon-035

strated remarkable capabilities in natural language036

understanding and task processing, leading to their037

widespread application (M Alshater, 2022; Yuan038

et al., 2022; Christian, 2023). However, concerns039

have been raised about the misuse of these models040

1The Evobench is now available at:
https://anonymous.4open.science/r/EvoBench.
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Figure 1: Current benchmarks (Guo et al., 2023; Bao
et al.; Wang et al., 2024b,a; Kwan et al., 2024) pri-
marily focus on specific versions of LLMs and neglect
vast ecosystem of evolving LLMs beneath the surface,
including updates over time or developments through
fine-tuning or pruning. The figure primarily includes
LLMs before Jan 2025.

in areas like social media (Ahmed et al., 2021), 041

education (Lee et al., 2023), and academic writ- 042

ing (Mitchell, 2022; Patrick Wood, 2023). For in- 043

stance, LLMs can be used to manipulate the public 044

by generating comments or to fabricate experimen- 045

tal data and statistical results in support of unveri- 046

fied hypotheses (Solaiman et al., 2019; Goldstein 047

et al., 2023). The potential misuse of LLMs high- 048

lights the urgent need to detect LLM-generated 049

text (Kaur et al., 2022; Chen and Shu, 2023). 050

The academic community has carried out ex- 051

tensive research to detect LLM-generated text ef- 052

fectively (Liu et al., 2019; Gehrmann et al., 2019; 053

Su et al., 2023; Solaiman et al., 2019). Current 054

methods can be categorized into supervised meth- 055

ods (Hu et al., 2023; Yu et al., 2024; Chen et al., 056

2024b) and zero-shot methods (Ippolito et al., 2020; 057

Yang et al.; Mitchell et al., 2023; Su et al., 2023; 058

Bao et al.). Supervised methods are typically 059

trained with a binary classifier to distinguish be- 060
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Figure 2: Detection accuracy (measured in AUROC) of Fast-DetectGPT when faced with the evolving LLMs.
Figure (a) shows a clear decline in average detection performance as the LLM updates. Figure (b) illustrates the
developments of LLMs, including fine-tuning and pruning.

tween texts generated by LLMs and those created061

by humans, while zero-shot methods primarily rely062

on statistical features gathered from pre-trained063

large language models. Although these meth-064

ods show strong performance on existing bench-065

marks (Bao et al.; Hu et al., 2023; Chen et al.,066

2024b; Yu et al., 2024), they often fall short in real-067

world applications as current benchmarks neglect068

the evolving nature of LLMs (Wang et al., 2024b;069

Guo et al., 2023; Wang et al., 2024a; He et al.,070

2024; Macko et al., 2023). As illustrated in Figure071

1, existing benchmarks include a limited versions072

of LLMs, much like observers seeing only the tip073

of an iceberg while overlooking the vast evolving074

LLMs hidden beneath the surface.075

In real-world applications, LLMs are contin-076

uously evolving via regular updates, fine tun-077

ing (Touvron et al., 2023b; Zhang et al., 2023),078

or pruning (Sun et al.; Liang et al., 2021), all of079

which affect LLMs’ output (Tao et al., 2024; Tou-080

vron et al., 2023a; Gunasekar et al., 2023), thereby081

impacting the detection performance. Figure 2082

illustrates that the detection performance of cur-083

rent detection methods suffers up to 25% drop as084

LLMs evolve.2 Therefore, relying on current static085

benchmarks for evaluation could create a mislead-086

ing sense of security, leading the research commu-087

nity to overestimate the real-world effectiveness088

of detection methods. Therefore, it is crucial to089

enhance existing benchmarks to better capture the090

ongoing evolving LLMs.091

In this paper, we propose EvoBench, a dynamic092

benchmark that extends traditional benchmarking093

to account for the evolving LLMs. EvoBench aims094

to provide a more accurate evaluation of detection095

2The widely used detection method, Fast-DetectGPT, de-
clines up to 25% drop when detecting the Claude-3-5-haiku-
20241022 compared to Claude-3-haiku-20240307.

methods by incorporating two dimensions of evolv- 096

ing LLMs: updates and developments, as shown 097

in Figure 1. Updates refer to changes made by 098

the LLM publishers, including LLM updates, i.e., 099

GPT-4o undergoes updates approximately every 3 100

months 3. On the other hand, developments refer 101

to optimizations made by LLM developers for spe- 102

cific application scenarios, such as fine-tuning and 103

pruning. EvoBench introduces a new dimension of 104

generalization, enabling the evaluation of detection 105

methods across evolving LLMs, covering 7 widely 106

used LLMs and their 30 evolving versions. 107

Using EvoBench, we evaluate 14 widely used de- 108

tection methods and find that all struggle to adapt to 109

the evolving nature of LLMs. To intuitive quantify 110

the generalization across evolving LLMs, we intro- 111

duce the EMG (Evolving Model Generalization) 112

metric. Results reveal that the performance of 14 113

current detection methods, including widely used 114

Fast-DetectGPT (Bao et al.) and RADAR (Hu et al., 115

2023) detectors, significantly drop when faced with 116

evolving versions, as reflected by low EMG values, 117

while some achieve high AUROC (0.91) scores on 118

individual models4. This phenomenon highlights 119

the limitations of current detection methods in gen- 120

eralization capabilities. 121

To mitigate this problem, we further explore 122

two strategies. For zero-shot methods like Fast- 123

DetectGPT (Bao et al.), we propose to prune the 124

scoring model to extract shared features for detec- 125

tion, which could lead to a 12.15% improvement 126

in EMG performance across developments of the 127

LLM. For supervised methods, improving the qual- 128

ity and distribution of training data - by contin- 129

3These versions are gpt-4o-2024-05-13, gpt-4o-2024-08-
06, gpt-4o-2024-11-20, and chatgpt-4o-latest.

4Fast-DetectGPT achieve 0.91 AUROC when detecting
Claude-Haiku-2024-03-07, but drop to 0.65 AUROC when
detecting the version of 2024-10-22.
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Figure 3: The construction pipeline and the dataset statistics of EvoBench. EvoBench includes three dimensions of
generalization: dataset domains, generation strategies, and evolving LLMs. The evolving LLMs are further divided
into two categories: updates and developments.

uously incorporating data from evolving LLMs -130

could increase 0.24% EMG performance across131

updates of the GPT-4. However, ensuring effective132

generalization across both updates and develop-133

ments simultaneously remains a significant chal-134

lenge. This finding provides valuable insight into135

the complexities of adapting detection methods to136

the continuously evolving LLMs.137

Overall, EvoBench serves as a complementary138

benchmark that focuses on the evolving nature of139

LLMs, offering a more accurate framework for140

evaluating the real-world applicability of detection141

methods. While it does not claim to be a one-size-142

fits-all solution, we envision EvoBench evolving143

alongside detection methods and other benchmarks,144

helping guide future developments in this area. In145

particular, we suggest that extracting shared fea-146

tures from evolving LLMs could enhance the gen-147

eralization of detection methods. With EvoBench,148

the community can more effectively evaluate and149

refine detection methods, contributing to more ro-150

bust and practical detection systems that mitigate151

LLM misuse in real-world applications.152

2 EvoBench153

2.1 Definition of Evolving LLMs154

EvoBench primarily considers two evolving path-155

ways for LLMs: (1) updates, which are released156

by publishers, and (2) developments, which in-157

volve optimization made by developers. These two158

evolving pathways present significant challenges159

to current detection methods.160

Updates. We focus on two types of updates that161

occur over time: model (Brown et al., 2020; Tao162

et al., 2024) and version updates (Brown et al.,163

2020). Model updates typically involve significant164

changes to the model’s architecture. For example,165

the transition from GPT-4 to GPT-4o represents a166

major architectural shift (Achiam et al., 2023). In 167

contrast, version updates occur more frequently, 168

with shorter cycles and less perception, such as the 169

regular releases of new versions of GPT-4 every 170

2-3 months, such as updates in May, August, and 171

November 2024. 172

Developments. In EvoBench, model developments 173

include fine-tuning (Hu et al., 2022; Mangrulkar 174

et al., 2022), pruning (Liang et al., 2021), often 175

used for domain adaptation and optimizing effi- 176

ciency for real-world applications. Unlike updates, 177

these actions are nearly imperceptible to the detec- 178

tor (Bhattacharjee et al., 2023). For example, devel- 179

opers may fine-tune LLMs using private datasets, 180

making the detection more challenging. 181

2.2 Dataset Collection 182

2.2.1 Data Collection Principle 183

EvoBench, incorporating the two evolving 184

pathways of LLMs, extends existing bench- 185

marks (Mitchell et al., 2023) widely used in current 186

detection methods, including DetectGPT (Mitchell 187

et al., 2023), Fast-DetectGPT (Bao et al.), and 188

ImBD (Chen et al., 2024b) to assess three key di- 189

mensions of generalization: (1) evolving LLMs, 190

(2) domain, and (3) generation paradigms. Figure 191

3 illustrates our data collection pipeline to cover 192

these three key dimensions. 193

Generalization to LLM Evolution. To compre- 194

hensively assess evolving, we consider 7 widely 195

used LLM families: GPT-4o, GPT-4, Claude, Gem- 196

ini, Qwen, LlaMA3, and LlaMA2, encompassing 197

a total of 30 evolving versions. For updates, we 198

focus on families of GPT-4o, GPT-4, Claude, Gem- 199

ini, Qwen, and LlaMA3, tracking how detection 200

methods perform across updates of these models. 201

For developments, we focus on the LlaMA2 family, 202

incorporating fine-tuning and pruning techniques. 203

Detailed specifications of all LLMs are provided in 204
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the Appendix C.205

Generalization to Domains. EvoBench in-206

cludes five datasets spanning diverse tasks:207

XSum (Narayan et al., 2018) for (1)news articles,208

WritingPrompts (Fan et al., 2018) for (2) creative209

story writing, and PubMed (Jin et al., 2019) for210

(3) biomedical research question answering. Addi-211

tionally, we also include two datasets: SocialMe-212

dia (Kula and Gregor, 2024) for (4) datasets on213

social media and PeerRead (Kang et al., 2018) for214

(5) peer-reviewed academic writing.215

Generalization to Generation Paradigms.216

EvoBench incorporates three distinct generation217

paradigms: (1) continuation-based generation,218

includes XSum, Writing, and PeerRead; (2)219

question-answering generation, including PubMed;220

(3) paraphrased generation, including SocialMedia.221

By integrating these diverse paradigms, EvoBench222

offers a more comprehensive framework to assess223

the robustness of detection methods in various text224

generation paradigms.225

2.2.2 Dataset Collection Process226

We detail our systematic dataset construction pro-227

cess following the three-dimensional generaliza-228

tion framework. For each dataset, we first carefully229

selected 150 human-authored texts as reference230

samples. To collect AI-generated texts, we em-231

ployed consistent prompting strategies across all232

evaluated models. Specifically, for continuation-233

based generation tasks (Xsum, Writing, PeerRead),234

we provided the prefix of human-written texts as235

context. For PubMed, we maintained the original236

question-answer format, while for SocialMedia, we237

implemented a paraphrasing approach where mod-238

els were tasked with preserving semantic meaning239

while using different words. Details of prompts are240

shown in Appendix E.241

2.3 Dataset Statistics242

EvoBench consists of 7 LLM families, encom-243

passing a total of 30 evolving versions. For each244

evolving LLM, we collect samples across 5 distinct245

datasets, with each dataset containing a balanced246

distribution of 150 human-authored texts and 150247

machine-generated texts. In total, EvoBench com-248

prises 30× 5× 150 = 22500 machine-generated249

samples, resulting in a comprehensive evaluation250

benchmark of 22, 500 pairs of text samples.251

2.4 Evaluation Metrics 252

To quantify the generalization ability of detection 253

methods to evolving LLMs, we introduce the EMG 254

ΦE (Evolving Model Generalization) metric, in- 255

spired by the coefficient of variation. It evaluates 256

the consistency and trend of detection performance 257

across evolving LLMs. 258

For an LLM family with m evolving versions, 259

the widely evaluated version is selected as the base 260

model, and the remaining m− 1 versions as evolv- 261

ing models. The performance (measured by AU- 262

ROC ΦA) change ∆Φi
A between the i-th models 263

and the base model is : 264

∆Φi
A = Φi

A − Φbase
A , (1) 265

where Φi
A and Φbase

A is the ΦA of the i-th evolving 266

model and base model, respectively. 267

The average performance change µE of ∆ΦA, 268

representing the overall performance change, is: 269

µE =
1

m− 1

m−1∑
i=1

(
∆Φi

A

)
. (2) 270

The volatility σE of ∆ΦA using the standard 271

deviation is: 272

σE =

√√√√ 1

m− 1

m−1∑
i=1

(
∆Φi

A − µE

)2
. (3) 273

The proposed ΦE is defined as follows: 274

ΦE =
µE

σE + λ
× γ, (4) 275

where λ is a regularization term to prevent fluctua- 276

tions, and γ is a scaling factor. In this study, we set 277

λ and γ as 1 and 100, respectively. 278

2.5 Detection Methods 279

We evaluate a range of supervised and zero-shot 280

detection methods to assess their generalization 281

ability against evolving LLMs. Additionally, we 282

conducted repeated generation processes to ensure 283

that output diversity does not significantly impact 284

detection performance in Appendix B. 285

2.5.1 Existing Methods 286

For supervised detectors, we tested the GPT-2 de- 287

tectors developed by OpenAI (Liu et al., 2019), 288

the RADAR detector (Hu et al., 2023), Text Flu- 289

oroscopy (Yu et al., 2024), and ImBD (Imitate 290

Before Detect) (Chen et al., 2024b). For zero- 291

shot detectors, we included Likelihood (average 292
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log probabilities) (Gehrmann et al., 2019), LRR293

(a hybrid method combining log probability and294

log-rank) (Su et al., 2023), LogRank (mean of295

the log ranks sorted in descending order of prob-296

abilities) (Solaiman et al., 2019), Entropy (aver-297

age token-level entropy from the predictive dis-298

tribution)(Ippolito et al., 2020), DNA-GPT (Yang299

et al.), DetectGPT (Mitchell et al., 2023), and its300

enhanced variants NPR (Su et al., 2023) and Fast-301

DetectGPT (Bao et al.).302

2.5.2 Optimizing Strategies303

Enhancing Supervised Detectors via optimizing304

Training Data. To enhance detection generaliza-305

tion across evolving models, we propose an incre-306

mental training approach: For a evolving LLM,307

we generate additional training data Devolving and308

update the training set Dold:309

Dnew = Dold ∪Devolving. (5)310

Using the new dataset Dnew, the detector fdetector311

is retrained to adapt to the evolving LLM.312

Enhancing Zero-shot Detector via Extracting313

Shared Features. To enhance the detection gen-314

eralization of the zero-shot method, we propose315

to prune the scoring model ppruned
θ to extract the316

shared features from the developments of LLMs.317

Based on Fast-DetectGPT, we define our detection318

metric d(x, p
pruned
θ ) based on conditional probabil-319

ity curvature:320

d(x, p
pruned
θ ) =

log p
pruned
θ (x|x)− µ̃

σ̃
, (6)321

where µ̃ represents the expected log probability322

under the pruned model:323

µ̃ = E
x̃∼p

pruned
θ (x̃|x)[log p

pruned
θ (x̃|x)], (7)324

and σ̃2 captures the variance of these log probabili-325

ties:326

σ̃2 = E
x̃∼p

pruned
θ (x̃|x)

[(
log p

pruned
θ (x̃|x)− µ̃

)2
]
.

(8)327

3 Exprimental Results328

3.1 Setup329

Detection Methods. To mimic real-world scenar-330

ios, we set up a black-box environment in which331

the detector is assumed to be unaware of the source332

model of the text to be detected under evalua-333

tion. We tested 14 detection methods, including334

5 supervised detectors and 9 zero-shot detectors. 335

Among them, RADAR (Hu et al., 2023) and Fast- 336

DetectGPT (Bao et al.) are well-known methods in 337

their respective categories. Details of experimen- 338

tal settings can be found in the Appendix D and 339

Appendix F. 340

3.2 Main Results 341

To begin with, we select two leading detection 342

methods, Fast-DetectGPT and RADAR detector, 343

and evaluate them on our EvoBench, the results are 344

shown in Table 1. The evaluation results of other 345

detection methods are shown in Appendix H. 346

First, a trend is that texts generated by more ad- 347

vanced LLMs are harder to detect in the same 348

LLM family. For instance, comparing Claude- 349

3-Haiku5 and Claude-3-Opus 6, the latter demon- 350

strates more advanced capabilities. When detect- 351

ing these two LLMs, Fast-DetectGPT and RADAR 352

showed decreased detection AUROC of 3.58% and 353

2.77%, respectively, as shown in Table 1. Similarly, 354

comparing detecting SocialMedia datasets gener- 355

ated by GPT-4o-mini with GPT-4o, two detectors 356

showed a decline in detection AUROC of 3.22% 357

and 6.69%, respectively. 358

Our results also reveal an intriguing pattern: ex- 359

isting detection methods often over-optimize for 360

specific LLM versions, rather than maintaining 361

robust generalization capabilities across different 362

evolving LLMs. Specifically, detectors with high 363

AUROC on widely used LLM families often show 364

performance degradation with newer versions of 365

the same family. For example, Fast-DetectGPT per- 366

formed excellently on the GPT-4o-05-13 version, 367

achieving an average detection accuracy of 0.8003 368

on EvoBench, but dropped to 0.7422 when facing 369

the GPT-4o-latest version. Similar patterns were 370

observed in other widely used LLM families, such 371

as GPT-4 and Claude-Sonnet. In contrast, when 372

evaluating less widely used LLMs like LlaMA3, 373

detectors tend to demonstrate better generalization 374

capabilities across evolving LLMs. For example, 375

the detection performance of the RADAR remained 376

stable across different versions of the LlaMA3 fam- 377

ily, with AUROC scores across five datasets rang- 378

ing from 0.7989 to 0.8348. 379

This suggests that the essence of generalization 380

lies in the overfitting problem. Current detec- 381

tors are often optimized to achieve superior per- 382

formance on existing benchmarks, which leads to 383

5claude-3-haiku-20240307
6claude-3-opus-20240229
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LLMs
Version Time/
Version Name

Fast-DetectGPT RADAR

Xsum Writing PubMed SocialMedia PeerRead Avg. Xsum Writing PubMed SocialMedia PeerRead Avg.

Updates

GPT-4o

2024-05-13 0.90 0.97 0.73 0.58 0.83 0.80 0.99 0.83 0.83 0.60 0.68 0.79

2024-08-06
0.87

(−2.75%)
0.94

(−2.41%)
0.70

(−3.54%)
0.59

(+1.76%)
0.77

(−5.89%)
0.77

(−2.57%)
0.99

(−0.11%)
0.86

(+3.27%)
0.82

(−0.53%)
0.62

(+2.12%)
0.69

(+0.75%)
0.80

(+1.10%)

2024-11-20
0.72

(−17.6%)
0.90

(−6.90%)
0.70

(−3.77%)
0.57

(−0.09%)
0.78

(−4.25%)
0.73

(−6.54%)
0.99

(−0.87%)
0.72

(−11.0%)
0.79

(−4.08%)
0.62

(+2.02%)
0.66

(−1.47%)
0.75

(−3.09%)

Latest
0.70

(−20.0%)
0.91

(−6.13%)
0.70

(−3.36%)
0.58

(+0.64%)
0.82

(−0.14%)
0.74

(−5.81%)
0.99

(−0.79%)
0.75

(−7.49%)
0.80

(−2.83%)
0.64

(+4.46%)
0.67

(−0.53%)
0.77

(−1.44%)

GPT-4o-mini 2024-07-18
0.91

(+0.91%)
0.97

(+0.12%)
0.73

(−0.42%)
0.61

(+3.02%)
0.80

(−2.14%)
0.80

(+0.30%)
1.00

(+0.33%)
0.87

(+3.82%)
0.82

(−0.68%)
0.66

(+6.69%)
0.64

(−3.96%)
0.80

(+1.24%)

GPT-4

2023-06-13 0.93 0.98 0.76 0.49 0.75 0.78 0.99 0.87 0.89 0.66 0.75 0.83

2023-11-06
0.92

(−0.85%)
0.93

(−4.76%)
0.73

(−2.94%)
0.55

(+5.43%)
0.83

(+7.71%)
0.79

(+0.92%)
0.99

(−0.01%)
0.79

(−8.49%)
0.80

(−8.81%)
0.66

(+0.24%)
0.63

(−12.3%)
0.77

(−5.88%)

2024-01-25
0.89

(−3.22%)
0.94

(−3.41%)
0.70

(−5.75%)
0.54

(+4.23%)
0.82

(+7.34%)
0.78

(−0.16%)
0.99

(−0.23%)
0.80

(−7.23%)
0.84

(−5.09%)
0.65

(−0.46%)
0.66

(−8.68%)
0.79

(−4.34%)

2024-04-09
0.83

(−9.30%)
0.91

(−6.56%)
0.72

(−4.39%)
0.58

(+8.27%)
0.79

(+4.08%)
0.77

(−1.58%)
0.99

(−0.36%)
0.79

(−8.45%)
0.82

(−7.07%)
0.60

(−5.92%)
0.60

(−14.8%)
0.76

(−7.32%)

Claude-Sonnet

2024-02-29 0.95 0.98 0.81 0.58 0.93 0.85 0.97 0.86 0.84 0.74 0.61 0.80

2024-06-20
0.97

(+2.33%)
0.99

(+0.80%)
0.77

(−4.32%)
0.66

(+7.69%)
0.90

(−2.90%)
0.86

(+0.72%)
0.99

(+1.61%)
0.81

(−5.21%)
0.82

(−2.44%)
0.72

(−1.05%)
0.55

(−5.57%)
0.78

(−2.53%)

2024-10-22
0.90

(−4.43%)
0.93

(−5.39%)
0.68

(−13.9%)
0.51

(−7.80%)
0.78

(−15.3%)
0.76

(−9.37%)
0.95

(−1.52%)
0.72

(−13.4%)
0.74

(−9.85%)
0.67

(−6.74%)
0.55

(−6.38%)
0.73

(−7.59%)

Claude-Haiku
2024-03-07 1.00 1.00 0.86 0.75 0.94 0.91 1.00 0.93 0.84 0.77 0.67 0.84

2024-10-22
0.84

(−15.5%)
0.92

(−7.56%)
0.64

(−21.7%)
0.39

(−35.9%)
0.46

(−47.4%)
0.65

(−25.6%)
1.00

(−0.07%)
0.86

(−7.50%)
0.73

(−10.9%)
0.70

(−6.38%)
0.82

(+14.7%)
0.82

(−2.04%)

Claude-Opus 2024-02-29
0.97

(−2.49%)
0.96

(−3.89%)
0.82

(−3.80%)
0.72

(−3.27%)
0.89

(−4.46%)
0.87

(−3.58%)
0.99

(−0.33%)
0.87

(−6.01%)
0.82

(−2.23%)
0.77

(+0.29%)
0.62

(−5.57%)
0.81

(−2.77%)

Qwen

Qwen1.5-7B 0.92 0.99 0.66 0.49 0.91 0.80 0.93 0.90 0.72 0.51 0.48 0.71

Qwen2-7B
0.99

(+6.86%)
1.00

(+0.29%)
0.74

(+7.35%)
0.46

(−2.75%)
0.89

(−1.37%)
0.82

(+2.08%)
0.89

(−4.13%)
0.87

(−3.42%)
0.82

(+9.46%)
0.52

(+1.35%)
0.54

(+6.14%)
0.73

(+1.88%)

Qwen2.5-7B
0.99

(+6.51%)
1.00

(+0.10%)
0.79

(+12.3%)
0.47

(−2.11%)
0.90

(−0.78%)
0.83

(+3.22%)
0.90

(−2.60%)
0.91

(+0.66%)
0.79

(+6.85%)
0.52

(+1.31%)
0.53

(+4.95%)
0.73

(+2.23%)

LlaMA3

LlaMA-3.1-8B 0.99 0.98 0.85 0.69 0.97 0.90 1.00 0.89 0.78 0.72 0.63 0.80

LlaMA-3.1-70B
1.00

(+0.31%)
1.00

(+1.50%)
0.81

(−3.72%)
0.67

(−1.73%)
0.96

(−0.96%)
0.89

(−0.92%)
1.00

(−0.19%)
0.88

(−1.32%)
0.76

(−1.57%)
0.74

(+1.29%)
0.62

(−1.22%)
0.80

(−0.60%)

LlaMA-3.2-1B
0.96

(−3.46%)
0.99

(+1.09%)
0.92

(+7.29%)
0.86

(+17.5%)
0.96

(−0.30%)
0.94

(+4.43%)
0.96

(−3.51%)
0.94

(+4.39%)
0.82

(+3.74%)
0.75

(+2.80%)
0.71

(+7.52%)
0.83

(+2.99%)

LlaMA-3.2-3B
0.99

(−0.13%)
0.99

(+0.31%)
0.91

(+6.56%)
0.77

(+8.32%)
0.96

(−0.30%)
0.93

(+2.95%)
0.99

(−0.44%)
0.92

(+2.71%)
0.82

(+3.70%)
0.77

(+4.23%)
0.66

(+2.80%)
0.83

(+2.60%)

LlaMA-3.3-70B
1.00

(+0.32%)
1.00

(+1.61%)
0.79

(−5.53%)
0.69

(+0.15%)
0.90

(−6.38%)
0.88

(−1.97%)
1.00

(−0.32%)
0.89

(−0.74%)
0.79

(+0.94%)
0.73

(+0.76%)
0.65

(+2.29%)
0.81

(+0.59%)

Developments

Fine-tuning

LlaMA-2-7B-chat-hf 0.97 0.99 0.91 0.90 0.97 0.95 0.68 0.63 0.49 0.64 0.64 0.62

Vicuna-1.5-7B
1.00

(+2.36%)
1.00

(+0.52%)
0.80

(−10.4%)
0.88

(−1.58%)
0.94

(−2.54%)
0.92

(−2.34%)
0.97

(+29.3%)
0.93

(+29.7%)
0.81

(+31.5%)
0.65

(+0.94%)
0.64

(−0.25%)
0.80

(+18.2%)

Wizardmath-7B
0.92

(−5.17%)
0.98

(−1.00%)
0.74

(−17.0%)
0.85

(−4.73%)
0.84

(−12.8%)
0.87

(−8.14%)
0.75

(+6.68%)
0.76

(+12.5%)
0.70

(+20.5%)
0.69

(+4.61%)
0.54

(−9.33%)
0.69

(+7.01%)

Pruning

Sheared-LlaMA1.3B
0.65

(−31.7%)
0.89

(−10.1%)
0.48

(−42.0%)
0.86

(−3.29%)
0.71

(−26.2%)
0.72

(−22.7%)
0.77

(+8.98%)
0.66

(+2.96%)
0.59

(+9.45%)
0.73

(+8.59%)
0.54

(−10.2%)
0.66

(+3.96%)

Sheared-LlaMA1.3B-pruned
0.41

(−56.0%)
0.81

(−18.2%)
0.35

(−55.3%)
0.75

(−14.3%)
0.46

(−51.0%)
0.56

(−38.9%)
0.92

(+24.0%)
0.79

(+15.7%)
0.70

(+20.8%)
0.87

(+22.7%)
0.65

(+1.59%)
0.79

(+16.9%)

Sheared-LlaMA2.7B-pruned
0.45

(−52.4%)
0.87

(−12.3%)
0.37

(−53.9%)
0.75

(−14.2%)
0.52

(−44.9%)
0.59

(−35.5%)
0.84

(+15.7%)
0.76

(+12.8%)
0.59

(+9.59%)
0.78

(+14.3%)
0.55

(−9.25%)
0.70

(+8.66%)

Sheared-LlaMA2.7B
0.70

(−26.7%)
0.92

(−7.50%)
0.50

(−40.0%)
0.82

(−7.72%)
0.65

(−31.7%)
0.72

(−22.7%)
0.75

(+6.88%)
0.68

(+4.81%)
0.58

(+8.83%)
0.67

(+3.47%)
0.47

(−17.2%)
0.63

(+1.35%)

Table 1: The detection performance (measured in AUROC) of two leading detection methods, Fast-DetectGPT
and RADAR, on EvoBench. For each LLM family, we set the LLMs that are widely evaluated in text generation
detection benchmarks as anchor points. ‘Latest’ refers to the LLM currently used in the web version of GPT-4o.

overfitting to a specific LLM version rather than384

being truly effective. This also reveals the vulnera-385

bility of current detection methods across evolving386

LLMs. From a practical perspective, a key priority387

for future research lies in developing more adapt-388

able detection frameworks that can simultaneously389

preserve detection performance while demonstrat-390

ing robust generalization across dataset domains391

and evolving LLMs.392

3.2.1 Detection Generalization across393

Evolving LLMs394

To visually demonstrate the generalization ability395

of detection methods across evolving LLMs, we396

evaluate the 14 detection methods using the EMG397

metric, with results shown in Table 2.398

Table 2 demonstrates that no method can399

maintain stable performance across all evolving 400

LLMs. Specifically, detectors like ImBD and Text- 401

Fluoroscopy perform well on complex models like 402

GPT-4o and GPT-4. Meanwhile, detectors like en- 403

tropy and RADAR exhibit better generalizations of 404

newer model families, including Qwen, LlaMA3, 405

and the developments of LlaMA2. This variation 406

in performance across different detectors suggests 407

that improving generalization might require adopt- 408

ing strategies that combine the strengths of dif- 409

ferent approaches, which may help improve the 410

adaptability of the detector and reduce sensitivity 411

to specific LLM evolution trends. 412

3.2.2 Performance of Optimizing Strategies 413

To improve the generalization of current detec- 414

tion methods across evolving LLMs, we have pre- 415
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Methods
Updates Developments

Avg.
GPT-4o GPT-4 Claude-Sonnet Claude-haiku Qwen LlaMA3 Fine-tuning Pruning

Supervised Detectors

RoBERTa-base −2.252 −4.593 −8.325 −15.95 +5.862 +1.457 −2.378 +6.871 −2.413
RoBERTa-large −1.878 −5.577 −10.06 −14.63 +4.646 +3.448 −0.725 +12.54 −1.530

RADAR −0.537 −5.775 −4.934 −2.394 +2.053 +1.372 +11.96 +7.302 +1.131
Text-Fluoroscopy −0.493 −0.655 +0.902 −0.123 −5.241 +1.895 −11.03 −15.77 −3.815

Imitate Before Detect +0.440 +2.397 −1.572 −4.445 +0.023 −0.054 +8.942 −9.842 −0.513

Zero-Shot Detectors

Likelihood −0.873 −0.047 −3.810 −8.280 −1.174 +0.439 −6.991 −32.99 −6.717
Rank −2.127 +1.071 −0.178 −12.09 +4.249 +1.023 −9.661 −7.109 −3.103

LogRank −1.316 −0.106 −4.272 −9.443 −0.608 +0.837 −6.851 −30.14 −6.488
Entropy −3.202 +0.416 +0.602 −3.411 +4.138 +2.145 +5.150 +25.12 +3.869

LRR −2.511 −0.075 −5.864 −14.26 +2.629 +1.911 −6.964 −17.45 −5.325
NPR −2.846 +7.436 −2.237 −15.26 +7.132 +0.866 −8.063 −31.18 −5.520

DNA-GPT −3.805 +1.249 −4.621 −12.26 −1.332 +1.337 −6.355 −36.11 −7.738
DetectGPT −4.095 +10.04 +2.258 −11.09 +2.357 −0.336 −5.442 −20.18 −3.312

Fast-DetectGPT −3.558 −0.271 −4.115 −13.16 +2.632 +1.094 −5.095 −27.94 −6.302

Table 2: EMG performance of 14 detection methods on EvoBench. Red indicates a negative EMG, signifying a
decrease in AUROC when facing evolving LLMs, while a larger EMG value reflects a better generalization of the
detection method.

Figure 4: EMG performance of two optimizing strategies compared with their corresponding original methods. The
left panel illustrates the improvement for zero-shot detection using the pruned scoring model, while the right panel
shows the optimization for supervised detection using the newer dataset.

liminarily explored two possible approaches, with416

results presented in Figure 4. For the zero-shot417

detection method, we compared the EMG perfor-418

mance of the Fast-DetectGPT (Bao et al.) detector419

with different scoring models, including GPT-J,420

LlaMA2, and the pruned version of LlaMA2. The421

results show that our proposed method outperforms422

by 12.152% in EMG when dealing with develop-423

ments, including fine-tuning and pruning. How-424

ever, for fine-tuned developments, using the pruned425

LlaMA2 sacrifices some performance compared to426

directly using LlaMA2.427

For the supervised detection method, we chose428

to improve Text-Fluoroscopy (Yu et al., 2024). The429

original training dataset was generated by GPT-3.5-430

turbo. We enhanced it by regenerating it with the431

initial version of the corresponding LLM family432

and retrained the detector. The details are shown 433

in the Appendix D. We observed improvements 434

in performance for GPT-4 and Claude-Sonnet but 435

a decline for GPT-4o. This suggests that while 436

dataset enhancement can improve performance in 437

some LLMs, it may not always yield better results 438

when faced with different evolving LLMs. 439

4 Related Work 440

4.1 Evolving LLMs 441

Updates of Pre-trained LLMs. The advent of 442

LLMs, such as ChatGPT (OpenAI, 2022a) and 443

GPT-4 (OpenAI, 2023), has marked a paradigm 444

shift in text generation. However, these pre-trained 445

models are not static (Tao et al., 2024; Touvron 446

et al., 2023a; Gunasekar et al., 2023; Biderman 447

et al., 2023); rather, they undergo continuous evo- 448
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lution, with models like ChatGPT frequently updat-449

ing their parameters to enhance performance and450

adapt to new application scenarios (Zheng et al.,451

2024; Touvron et al., 2023a).452

Developments on Pre-trained LLMs. The rise of453

open-source LLMs has facilitated their widespread454

usage in diverse domains. Developers can flex-455

ibly tailor LLMs to specific tasks through fine-456

tuning (Touvron et al., 2023a,b; Zhang et al., 2023),457

pruning (Sun et al.; Liang et al., 2021; Xia et al.),458

and quantization (Du et al., 2024; Chen et al.,459

2024a; Dettmers et al., 2023) techniques that mod-460

ify the model’s parameters or structure, ultimately461

influencing output characteristics. In this pro-462

cess, developers could use domain-specific datasets463

to enhance the model’s understanding of special-464

ized fields and their contextual knowledge (Kerner,465

2024). Furthermore, depending on practical ap-466

plication scenarios, users may select models with467

varying parameter scales to strike an optimal bal-468

ance between performance, speed, and resource469

consumption (Kim et al., 2024; Zhao et al., 2023).470

4.2 LLM-generated Text Detection471

Supervised Methods. Supervised methods (Liu472

et al., 2019; Chen et al., 2024b) are usually473

trained to differentiate between texts generated by474

LLMs and texts created by humans. For exam-475

ple, RADAR (Hu et al., 2023) introduces the idea476

of adversarial learning to train a detector that can477

resist paraphrase attacks. Text Fluoroscopy (Yu478

et al., 2024) extracts discriminative features from479

the intermediate layers of the language model and480

utilizes them to train a binary classifier, which481

enhances the generalization of supervised detec-482

tors across texts from different semantic domains.483

However, as LLMs continue to evolve, frequent484

adaptation mechanisms—including updates, fine-485

tuning, pruning, and other optimization strate-486

gies—introduce changes in their generated text,487

making it difficult to guarantee the effectiveness488

of existing detection methods on newer model ver-489

sions. This creates a significant gap between aca-490

demic detection models and real-world applica-491

tions, ultimately limiting the practical utility of492

these methods.493

Zero-shot Methods. Existing zero-shot methods494

primarily rely on statistical features extracted us-495

ing pre-trained large language models (Bao et al.;496

Mitchell et al., 2023). These features include like-497

lihood (Gehrmann et al., 2019), probability curva-498

ture (Mitchell et al., 2023), divergence between499

multiple completions of a truncated passage (Yang 500

et al.), and conditional probability curvature (Bao 501

et al.). Zero-shot detection methods are immune 502

to domain-specific degradation, demonstrating su- 503

perior generalization in detection tasks (Gehrmann 504

et al., 2019; Mitchell et al., 2023). However, the 505

effectiveness of zero-shot detection heavily de- 506

pends on the alignment between the pre-trained 507

LLM used for detection and the generation model 508

that produced the text to be detected (Bao et al.; 509

Mitchell et al., 2023). While current methods 510

achieve state-of-the-art results on existing bench- 511

marks (Guo et al., 2023; Bao et al.; Wang et al., 512

2024b,a; Kwan et al., 2024), the evolving nature 513

of LLMs introduces significant shifts in this align- 514

ment. As models continue to evolve, the pre-trained 515

LLMs used for detection may become increas- 516

ingly misaligned with the updated generation mod- 517

els, leading to a decline in detection performance. 518

This explains why many methods, despite ranking 519

highly on leaderboards, often fail when deployed 520

in real-world scenarios. 521

5 Conclusion 522

In this paper, we introduce EvoBench, a novel 523

benchmark for evaluating the generalization of 524

LLM-generated text detection methods across 525

evolving LLMs. EvoBench defines two key di- 526

mensions of LLM evolution: (1) updates made by 527

LLM publishers over time and (2) developments 528

carried out by developers, ensuring a comprehen- 529

sive understanding of how evolving LLMs impact 530

detection performance. To quantify this evolving 531

dimension generalization, we propose the EMG 532

(Evolving Model Generalization) metric. 533

We evaluate 14 widely used detection meth- 534

ods using EvoBench, revealing their vulnerabili- 535

ties when facing evolving LLMs. In response, to 536

improve the generalization of zero-shot methods 537

across developing LLMs, we propose two strate- 538

gies: for zero-shot methods, we suggest pruning 539

the scoring model to extract shared features across 540

LLM developments; for supervised methods, we 541

recommend augmenting training data with data 542

from LLM updates. Our benchmark represents a 543

key step towards bringing detection methods into 544

real-world scenarios for evolving LLMs. We also 545

envision continuously updating this benchmark to 546

cover a broader range of evolving LLMs, enabling 547

more comprehensive evaluations across various do- 548

mains and evolving LLMs. 549
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Limitations550

Although we have thoroughly considered the three551

key dimensions of generalization toward real-world552

scenarios, certain limitations remain that warrant553

further exploration in future research. First, it is554

important to emphasize that EvoBench is not in-555

tended to replace existing benchmarks for eval-556

uating the generalization of LLM-generated text557

detection methods but rather to complement them.558

Therefore, EvoBench primarily focuses on three559

key dimensions in real-world scenarios: domains,560

generation strategies, and evolving models. We561

have not covered other aspects of generalization,562

such as language. A potential direction for future563

research is to extend EvoBench to incorporate ad-564

ditional dimensions of generalization.565

Second, robustness has not been addressed in566

this study, as our focus was mainly on detection567

generalization. However, EvoBench could serve568

as a foundation for inspiring current robustness569

research, as robustness also involves tasks such as570

rewriting text using different LLMs.571
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A Examples of Texts Generated by 891

Different LLMs 892

In this section, we provided examples of responses 893

from different updates of the same LLMs to the 894

same question, offering a visual representation of 895

how changes in versions lead to variations in the 896

model’s output in Table 3 and Table 4. 897

B Additional Experiment 898

Additionally, to eliminate the influence of output 899

diversity on detection performance, we first gener- 900

ated 150 texts from each model for every dataset, 901

resulting in a total of 300 texts. Additionally, we 902

conducted repeated experiments with several mod- 903

els to ensure that output diversity does not signif- 904

icantly impact changes in detection difficulty. By 905

doing so, we ensure that the variations in detection 906

difficulty primarily stem from model evolution it- 907

self, rather than biases introduced by the diversity 908

of the generated texts. The results of this exper- 909

imental process are presented in Table 5, where 910

we highlight the potential range of biases caused 911

by the diversity of generated texts. This helps fur- 912

ther to understand the relationship between model 913

evolution and detection performance. 914

C Details of Evolving LLMs 915

The details of evolving LLMs are shown in Table 916

6. 917

D Details of Optimizing Strategies 918

In this section, we provide the details of two op- 919

timizing strategies. For the zero-shot detection 920

method, we chose to optimize the Fast-DetectGPT 921

detector. We use the pruned model ’princeton- 922

nlp/Sheared-LLaMA-2.7B-Pruned’ to replace the 923

scoring model ’meta-llama/Llama-2-7b-hf’ model 924

as the scoring model. For the supervised detector, 925

we chose to optimize the Text Fluoroscopy. Follow- 926

ing Text Fluoroscopy, we used the first 200 entries 927

of the open-source Human-ChatGPT Comparison 928

Corpus (HC3) (Guo et al., 2023) dataset collected 929

by previous researchers as a training set. The ratio 930

for splitting the training and validation is 8 : 1. We 931

use a specific LLM of the LLM families to regener- 932

ate machine text in the training dataset and then use 933

the new dataset and the original dataset to retrain 934

the detector. Specifically, we regenerated this part 935

of the training set using GPT-4-0613 and tested 936

the results on the GPT-4 family. For the GPT-4o 937
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Table 3: An example of content generated by different versions of the GPT-4o and GPT-4o-mini

Does airway surgery lower serum lipid levels in obstructive sleep apnea patients?

Human Answer Surgery may improve blood lipid levels in patients with OSA, especially in patients
with preoperative dyslipidemia, potentially yielding a major benefit in metabolism
and cardiovascular sequelae. Prospective studies should examine this ...

GPT-4o
2024-05-13

Airway surgery for obstructive sleep apnea (OSA) has been shown to reduce serum
lipid levels in some patients. The improvement is likely due to better oxygenation
and reduced inflammation following successful surgery, ...

GPT-4o
2024-08-06

Airway surgery can potentially lower serum lipid levels in obstructive sleep apnea
(OSA) patients. Surgical interventions that alleviate OSA symptoms may improve
metabolic profiles, including lipid levels, due to reduced hypoxia and ...

GPT-4o
2024-11-20

Yes, airway surgery in obstructive sleep apnea (OSA) patients may lower serum lipid
levels. Studies suggest that by improving oxygenation, reducing inflammation, and
addressing the metabolic impacts of OSA, surgeries like ...

GPT-4o
Latest

Yes, airway surgery for obstructive sleep apnea (OSA) can lower serum lipid levels.
By improving airway patency and reducing hypoxia, surgery may enhance lipid
metabolism and decrease systemic inflammation, which are linked ...

GPT-4o-mini
2024-07-18

Airway surgery in obstructive sleep apnea patients may lead to improvements in
overall health and potentially lower serum lipid levels. However, the extent of lipid
level changes can vary among individuals and ...

Table 4: An example of content generated by different versions of the Claude-Haiku and Calude-Opus

Neck pain treatment with acupuncture: does the number of needles matter?

Human Answer For this pathology, the number of needles, 5 or 11, seems not to be an important
variable in determining the therapeutic effect when the time of stimulation is the
same in the two groups.

Claude-Haiku
2024-03-07

Acupuncture for neck pain can be effective, but the number of needles used may
not be the most critical factor. The placement and selection of acupuncture points
tailored to the individual’s condition are more important ...

Claude-Haiku
2024-10-22

Research suggests that the number of acupuncture needles may not significantly
impact neck pain treatment. Effectiveness depends more on precise needle placement,
practitioner skill, and individual patient response. Further studies are needed to
definitively determine ...

Claude-Opus
2024-02-29

The number of needles used in acupuncture for neck pain treatment may impact its
effectiveness. However, factors such as needle placement, depth of insertion, and
stimulation technique are likely more important than the specific number ...

family, we used GPT-4o-2024-05-13, and for the938

Claude-Haiku family, we used Claude-3-sonnet-939

20240229. we use gte-Qwen1.5-7B-instruct7940

as the encoder and the classifier consists of three941

fully connected layers with Tanh function. The di-942

mensions of the intermediate layers in the classifier943

7https://huggingface.co/Alibaba-NLP/gte-Qwen1.5-7B-
instruct

are 1024 and 512, respectively. The batch size is 944

set to 16, and Adam (Kingma and Ba, 2014) opti- 945

mizer is employed with an initial learning rate of 946

3e− 3. 947

E Data Collection. 948

In this section, we describe the process of data 949

collection. Most of these datasets were generated 950
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Fast-DetectGPT RADAR Text-Fluoroscopy Imitate Before Detect RoBERTa-base RoBERTa-large Likelihood Rank LogRank Entropy DetectGPT LRR NPR DNA-GPT

GPT-3.5-turbo-2024-01-25 0.8301 0.8280 0.8904 0.8992 0.6621 0.6723 0.7701 0.6432 0.7663 0.4163 0.4910 0.7098 0.6072 0.8160
0.8420

(+1.19%)
0.8319

(+0.39%)
0.8917

(+0.13%)
0.9011

(+0.19%)
0.6629

(+0.08%)
0.6696

(−0.26%)
0.7822

(+1.21%)
0.6511

(+0.78%)
0.7787

(+1.24%)
0.4118

(−0.44%)
0.5008

(+0.98%)
0.7120

(+0.22%)
0.6276

(+2.05%)
0.8266

(+1.06%)

GPT-4o-mini-2024-07-18 0.8053 0.7954 0.8800 0.8831 0.5539 0.5799 0.7238 0.6474 0.7133 0.4617 0.5374 0.6341 0.6045 0.7255
0.8033

(−0.20%)
0.7976

(+0.22%)
0.8777

(−0.23%)
0.8886

(+0.55%)
0.5566

(+0.27%)
0.5827

(+0.28%)
0.7264

(+0.26%)
0.6494

(+0.20%)
0.7154

(+0.21%)
0.4543

(−0.74%)
0.5417

(+0.43%)
0.6356

(+0.15%)
0.6101

(+0.56%)
0.7291

(+0.36%)

GPT-4-turbo-2024-04-09 0.7644 0.7459 0.8535 0.8534 0.5053 0.5146 0.6959 0.6315 0.6856 0.4526 0.5229 0.6182 0.5982 0.7114
0.7661

(+0.17%)
0.7595

(+1.36%)
0.8504

(−0.31%)
0.8559

(+0.25%)
0.5034

(−0.18%)
0.5099

(−0.47%)
0.6953

(−0.06%)
0.6278

(−0.37%)
0.6848

(−0.08%)
0.4533

(+0.07%)
0.5208

(−0.20%)
0.6109

(−0.72%)
0.5925

(−0.57%)
0.6952

(−1.63%)

Table 5: We selected several LLMs and produced LLM-generated text many times, and then conducted inspections
to evaluate the impact of diversity on the detector.

following the dataset construction methodology951

used in DetectGPT and Fast-detectGPT, which are952

widely recognized in the literature on AI-generated953

text detection. This setting minimizes the influ-954

ence of factors, other than model evolution, on the955

detection performance.956

To assess the domain generalization capability957

of detection methods, we included the following958

datasets: Writing, PubMed, Community, and Peer-959

Read. We also incorporated three different genera-960

tion paradigms: continuation, question-answering,961

and paraphrasing. Specifically, the prompts used962

for generating each dataset are as follows:963

• Xsum: "Please write an article with about 150964

words starting exactly with: <prefix>"965

• Writing: "Please write an article with about966

150 words starting exactly with: <prefix>"967

• PubMed: "Please answer the question in968

about 50 words: <question>"969

• SocialMedia: "Generate text similar to the in-970

put social media text but using different words971

and sentence composition: <Full text>"972

• PeerRead: "Please write a peer review with973

about 150 words starting exactly with: <pre-974

fix>"975

F Experimental Setup Details976

In this section, we provide a detailed description977

of the experimental setup. Specifically, for zero-978

shot, we follow Fast-DetectGPT (Bao et al.) and979

use GPT-J-6B (Wang and Komatsuzaki, 2021) and980

GPT-Neo-2.7B (Black et al., 2021) as the scoring981

models for zero-shot methods. For supervised de-982

tectors, we used the pre-trained detectors provided983

by the authors. All experiments are conducted on a984

workstation equipped with 4 NVIDIA A100 GPUs.985

For the valuation metric, we measure the detec-986

tion performance using two metrics: AUROC(the987

area under the receiver operating characteristic) and988

EMG (evolving model generalization). A higher 989

AUROC value indicates better detection quality, 990

while a higher EMG metric indicates better gener- 991

alization ability across evolving LLMs. 992

G The explanation of EMG 993

In this section, we provide an explanation of EMG. 994

A positive EMG value indicates that the detection 995

performance improves as the LLM evolves, while 996

negative values reflect a decline in generalization. 997

The magnitude of the EMG value also reflects the 998

degree of improvement or decline in generaliza- 999

tion; smaller values indicate worse stability. EMG 1000

reflects the direction and degree of fluctuations. 1001

However, it does not directly indicate the actual 1002

detection performance regarding AUROC. 1003

For example, as shown in Table 2, in the GPT- 1004

4o family, the EMG values for RADAR and Text- 1005

Fluoroscopy are −0.537% and −0.493%, respec- 1006

tively. However, as shown in Table 1, the AUROC 1007

values for RADAR range from 0.8416 to 0.8694, 1008

while those for Text-Fluoroscopy fluctuate between 1009

0.75426 to 0.79618. Although the EMG values are 1010

similar, the AUROC differs significantly, suggest- 1011

ing that both methods have comparable general- 1012

ization abilities in the face of evolving LLMs, but 1013

their actual detection performance varies. There- 1014

fore, we recommend evaluating both AUROC and 1015

EMG together. 1016

H Results of Other 12 Detection Methods 1017

In this section, we provide the detailed results of 1018

the other detection methods in Table 7, 8, 9, 10, 1019

11, 12, 13. The results are presented with four 1020

decimal places in the tables. 1021
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Table 6: Details of evolving LLMs.

Evolving LLMs Version Time Source

GPT-4o 2024-05-13 gpt-4o-2024-05-13
GPT-4o 2024-08-06 gpt-4o-2024-08-06
GPT-4o 2024-11-20 gpt-4o-2024-11-20
GPT-4o Latest chatgpt-4o-latest
GPT-4o-mini 2024-07-18 gpt-4o-mini-2024-07-18
GPT-4 2023-06-13 gpt-4-0613
GPT-4 2023-11-06 gpt-4-1106-preview
GPT-4 2024-01-25 gpt-4-0125-preview
GPT-4 2024-04-09 gpt-4-turbo-2024-04-09
Claude-Sonnet 2024-02-29 claude-3-sonnet-20240229
Claude-Sonnet 2024-06-20 claude-3-5-sonnet-20240620
Claude-Sonnet 2024-10-22 claude-3-5-sonnet-20241022
Claude-Haiku 2024-03-07 claude-3-haiku-20240307
Claude-Haiku 2024-10-22 claude-3-5-haiku-20241022
Claude-Opus 2024-02-29 claude-3-opus-20240229
Qwen Qwen1.5-7B Qwen/Qwen1.5-7B-Chat
Qwen Qwen2-7B Qwen2-7B-Instruct
Qwen Qwen2.5-7B Qwen/Qwen2.5-7B-Instruct
LlaMa3 Llama-3.1-8B meta-llama/Meta-Llama-3.1-8B-Instruct
LlaMa3 Llama-3.1-70B meta-llama/Meta-Llama-3.1-70B-Instruct
LlaMa3 Llama-3.2-1B meta-llama/Meta-Llama-3.2-1B-Instruct
LlaMa3 Llama-3.2-3B meta-llama/Meta-Llama-3.2-3B-Instruct
LlaMa3 Llama-3.3-70B meta-llama/Meta-Llama-3.3-70B-Instruct
Fine-tuning LlaMA-2-7B-chat-hf meta-llama/Llama-2-7b-chat-hf
Fine-tuning Vicuna-1.5-7B lmsys/vicuna-7b-v1.5
Fine-tuning Wizardmath-7B WizardLMTeam/WizardMath-7B-V1.0
Pruning Sheared-LlaMA1.3B princeton-nlp/Sheared-LLaMA-1.3B
Pruning Sheared-LlaMA1.3B-pruned princeton-nlp/Sheared-LLaMA-1.3B-Pruned
Pruning Sheared-LlaMA2.7B-pruned princeton-nlp/Sheared-LLaMA-2.7B
Pruning Sheared-LlaMA2.7B princeton-nlp/Sheared-LLaMA-2.7B-Pruned
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LLMs
Version Time/
Version Name

Fast-DetectGPT RADAR

Xsum Writing PubMed SocialMedia PeerRead Avg. Xsum Writing PubMed SocialMedia PeerRead Avg.

Updates

GPT-4o

2024-05-13 0.8971 0.9688 0.7346 0.5756 0.8256 0.8003 0.9945 0.8281 0.8276 0.5976 0.6781 0.7852

2024-08-06
0.8696

(−2.75%)
0.9447

(−2.41%)
0.6992

(−3.54%)
0.5932

(+1.76%)
0.7667

(−5.89%)
0.7747

(−2.57%)
0.9934

(−0.11%)
0.8608

(+3.27%)
0.8223

(−0.53%)
0.6188

(+2.12%)
0.6856

(+0.75%)
0.7962

(+1.10%)

2024-11-20
0.7202

(−17.6%)
0.8998

(−6.90%)
0.6969

(−3.77%)
0.5747

(−0.09%)
0.7831

(−4.25%)
0.7349

(−6.54%)
0.9858

(−0.87%)
0.7175

(−11.0%)
0.7868

(−4.08%)
0.6178

(+2.02%)
0.6634

(−1.47%)
0.7543

(−3.09%)

Latest
0.6963

(−20.0%)
0.9075

(−6.13%)
0.7010

(−3.36%)
0.5820

(+0.64%)
0.8242

(−0.14%)
0.7422

(−5.81%)
0.9866

(−0.79%)
0.7532

(−7.49%)
0.7993

(−2.83%)
0.6422

(+4.46%)
0.6728

(−0.53%)
0.7708

(−1.44%)

GPT-4o-mini 2024-07-18
0.9062

(+0.91%)
0.9700

(+0.12%)
0.7304

(−0.42%)
0.6058

(+3.02%)
0.8042

(−2.14%)
0.8033

(+0.30%)
0.9978

(+0.33%)
0.8663

(+3.82%)
0.8208

(−0.68%)
0.6645

(+6.69%)
0.6385

(−3.96%)
0.7976

(+1.24%)

GPT-4

2023-06-13 0.9262 0.9776 0.7611 0.4937 0.7511 0.7819 0.9944 0.8725 0.8918 0.6562 0.7490 0.8328

2023-11-06
0.9177

(−0.85%)
0.9300

(−4.76%)
0.7317

(−2.94%)
0.5480

(+5.43%)
0.8282

(+7.71%)
0.7911

(+0.92%)
0.9943

(−0.01%)
0.7876

(−8.49%)
0.8037

(−8.81%)
0.6586

(+0.24%)
0.6259

(−12.3%)
0.7740

(−5.88%)

2024-01-25
0.8940

(−3.22%)
0.9435

(−3.41%)
0.7036

(−5.75%)
0.5360

(+4.23%)
0.8245

(+7.34%)
0.7803

(−0.16%)
0.9921

(−0.23%)
0.8002

(−7.23%)
0.8409

(−5.09%)
0.6516

(−0.46%)
0.6622

(−8.68%)
0.7894

(−4.34%)

2024-04-09
0.8332

(−9.30%)
0.9120

(−6.56%)
0.7172

(−4.39%)
0.5764

(+8.27%)
0.7919

(+4.08%)
0.7661

(−1.58%)
0.9908

(−0.36%)
0.7880

(−8.45%)
0.8211

(−7.07%)
0.5970

(−5.92%)
0.6008

(−14.8%)
0.7595

(−7.32%)

Claude-Sonnet

2024-02-29 0.9459 0.9804 0.8150 0.5836 0.9320 0.8514 0.9700 0.8582 0.8403 0.7355 0.6106 0.8029

2024-06-20
0.9692

(+2.33%)
0.9884

(+0.80%)
0.7718

(−4.32%)
0.6605

(+7.69%)
0.9030

(−2.90%)
0.8586

(+0.72%)
0.9861

(+1.61%)
0.8061

(−5.21%)
0.8159

(−2.44%)
0.7250

(−1.05%)
0.5549

(−5.57%)
0.7776

(−2.53%)

2024-10-22
0.9016

(−4.43%)
0.9265

(−5.39%)
0.6760

(−13.9%)
0.5056

(−7.80%)
0.7789

(−15.3%)
0.7577

(−9.37%)
0.9548

(−1.52%)
0.7238

(−13.4%)
0.7418

(−9.85%)
0.6681

(−6.74%)
0.5468

(−6.38%)
0.7271

(−7.59%)

Claude-Haiku
2024-03-07 0.9952 0.9993 0.8614 0.7486 0.9389 0.9087 0.9972 0.9328 0.8388 0.7669 0.6745 0.8420

2024-10-22
0.8396

(−15.5%)
0.9237

(−7.56%)
0.6439

(−21.7%)
0.3892

(−35.9%)
0.4641

(−47.4%)
0.6521

(−25.6%)
0.9965

(−0.07%)
0.8578

(−7.50%)
0.7293

(−10.9%)
0.7031

(−6.38%)
0.8217

(+14.7%)
0.8217

(−2.04%)

Claude-Opus 2024-02-29
0.9703

(−2.49%)
0.9604

(−3.89%)
0.8234

(−3.80%)
0.7159

(−3.27%)
0.8943

(−4.46%)
0.8729

(−3.58%)
0.9939

(−0.33%)
0.8727

(−6.01%)
0.8165

(−2.23%)
0.7698

(+0.29%)
0.6188

(−5.57%)
0.8143

(−2.77%)

Qwen

Qwen1.5-7B 0.9243 0.9945 0.6641 0.4897 0.9076 0.7960 0.9269 0.9034 0.7222 0.5074 0.4761 0.7072

Qwen2-7B
0.9929

(+6.86%)
0.9974

(+0.29%)
0.7376

(+7.35%)
0.4622

(−2.75%)
0.8939

(−1.37%)
0.8168

(+2.08%)
0.8856

(−4.13%)
0.8692

(−3.42%)
0.8168

(+9.46%)
0.5209

(+1.35%)
0.5375

(+6.14%)
0.7260

(+1.88%)

Qwen2.5-7B
0.9894

(+6.51%)
0.9955

(+0.10%)
0.7878

(+12.3%)
0.4686

(−2.11%)
0.8998

(−0.78%)
0.8282

(+3.22%)
0.9009

(−2.60%)
0.9100

(+0.66%)
0.7907

(+6.85%)
0.5205

(+1.31%)
0.5256

(+4.95%)
0.7295

(+2.23%)

LlaMA3

LlaMA-3.1-8B 0.9926 0.9839 0.8476 0.6866 0.9680 0.8957 0.9987 0.8939 0.7784 0.7232 0.6304 0.8049

LlaMA-3.1-70B
0.9957

(+0.31%)
0.9989

(+1.50%)
0.8104

(−3.72%)
0.6693

(−1.73%)
0.9584

(−0.96%)
0.8865

(−0.92%)
0.9968

(−0.19%)
0.8807

(−1.32%)
0.7627

(−1.57%)
0.7361

(+1.29%)
0.6182

(−1.22%)
0.7989

(−0.60%)

LlaMA-3.2-1B
0.9580

(−3.46%)
0.9948

(+1.09%)
0.9205

(+7.29%)
0.8617

(+17.5%)
0.9650

(−0.30%)
0.9400

(+4.43%)
0.9636

(−3.51%)
0.9378

(+4.39%)
0.8158

(+3.74%)
0.7512

(+2.80%)
0.7056

(+7.52%)
0.8348

(+2.99%)

LlaMA-3.2-3B
0.9913

(−0.13%)
0.9870

(+0.31%)
0.9132

(+6.56%)
0.7698

(+8.32%)
0.9650

(−0.30%)
0.9253

(+2.95%)
0.9943

(−0.44%)
0.9210

(+2.71%)
0.8154

(+3.70%)
0.7655

(+4.23%)
0.6584

(+2.80%)
0.8309

(+2.60%)

LlaMA-3.3-70B
0.9958

(+0.32%)
1.0000

(+1.61%)
0.7923

(−5.53%)
0.6881

(+0.15%)
0.9042

(−6.38%)
0.8761

(−1.97%)
0.9955

(−0.32%)
0.8865

(−0.74%)
0.7878

(+0.94%)
0.7308

(+0.76%)
0.6533

(+2.29%)
0.8108

(+0.59%)

Developments

Fine-tuning

LlaMA-2-7B-chat-hf 0.9722 0.9904 0.9055 0.8963 0.9693 0.9467 0.6808 0.6330 0.4911 0.6396 0.6380 0.6165

Vicuna-1.5-7B
0.9958

(+2.36%)
0.9956

(+0.52%)
0.8008

(−10.4%)
0.8805

(−1.58%)
0.9439

(−2.54%)
0.9233

(−2.34%)
0.9745

(+29.3%)
0.9305

(+29.7%)
0.8064

(+31.5%)
0.6490

(+0.94%)
0.6355

(−0.25%)
0.7992

(+18.2%)

Wizardmath-7B
0.9205

(−5.17%)
0.9804

(−1.00%)
0.7354

(−17.0%)
0.8490

(−4.73%)
0.8412

(−12.8%)
0.8653

(−8.14%)
0.7476

(+6.68%)
0.7582

(+12.5%)
0.6969

(+20.5%)
0.6857

(+4.61%)
0.5447

(−9.33%)
0.6866

(+7.01%)

Llama-2-7B-hf
0.6676

(−30.4%)
0.9023

(−8.81%)
0.4810

(−42.4%)
0.7783

(−11.8%)
0.7594

(−20.9%)
0.7177

(−22.9%)
0.9168

(+23.6%)
0.8058

(+17.2%)
0.6961

(+20.5%)
0.5787

(−6.09%)
0.4464

(−19.1%)
0.6888

(+7.23%)

Pruning

Sheared-LlaMA1.3B
0.6548

(−31.7%)
0.8888

(−10.1%)
0.4846

(−42.0%)
0.8634

(−3.29%)
0.7072

(−26.2%)
0.7198

(−22.7%)
0.7706

(+8.98%)
0.6626

(+2.96%)
0.5856

(+9.45%)
0.7255

(+8.59%)
0.5360

(−10.2%)
0.6561

(+3.96%)

Sheared-LlaMA1.3B-pruned
0.4118

(−56.0%)
0.8077

(−18.2%)
0.3524

(−55.3%)
0.7530

(−14.3%)
0.4593

(−51.0%)
0.5568

(−38.9%)
0.9213

(+24.0%)
0.7903

(+15.7%)
0.6991

(+20.8%)
0.8669

(+22.7%)
0.6539

(+1.59%)
0.7863

(+16.9%)

Sheared-LlaMA2.7B-pruned
0.4480

(−52.4%)
0.8672

(−12.3%)
0.3664

(−53.9%)
0.7543

(−14.2%)
0.5196

(−44.9%)
0.5911

(−35.5%)
0.8383

(+15.7%)
0.7618

(+12.8%)
0.5870

(+9.59%)
0.7831

(+14.3%)
0.5455

(−9.25%)
0.7031

(+8.66%)

Sheared-LlaMA2.7B
0.7049

(−26.7%)
0.9154

(−7.50%)
0.5047

(−40.0%)
0.8191

(−7.72%)
0.6520

(−31.7%)
0.7192

(−22.7%)
0.7496

(+6.88%)
0.6811

(+4.81%)
0.5794

(+8.83%)
0.6743

(+3.47%)
0.4655

(−17.2%)
0.6300

(+1.35%)

Table 7: The detection performance (measured in AUROC) of Fast-DetectGPT and RADAR on EvoBench.
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Updates

GPT-4o

2024-05-13 0.9994 0.9823 0.8510 0.6870 0.8124 0.8664 0.9964 0.9835 0.7189 0.6983 0.9126 0.8619

2024-08-06
0.9995

(+0.01%)
0.9867

(+0.44%)
0.8423

(−0.87%)
0.7072

(+2.02%)
0.8116

(−0.08%)
0.8695

(+0.30%)
0.9974

(+0.10%)
0.9836

(+0.01%)
0.7254

(+0.65%)
0.7416

(+4.33%)
0.9056

(−0.70%)
0.8707

(+0.88%)

2024-11-20
0.9997

(+0.03%)
0.9584

(−2.39%)
0.8130

(−3.80%)
0.6877

(+0.07%)
0.7496

(−6.28%)
0.8417

(−2.47%)
0.9802

(−1.62%)
0.9480

(−3.55%)
0.6889

(−3.00%)
0.7358

(+3.75%)
0.8998

(−1.28%)
0.8505

(−1.14%)

Latest
0.9994

(−0.00%)
0.9233

(−5.90%)
0.8020

(−4.90%)
0.7300

(+4.30%)
0.8293

(+1.69%)
0.8568

(−0.96%)
0.9838

(−1.26%)
0.9566

(−2.69%)
0.6847

(−3.42%)
0.7416

(+4.33%)
0.9121

(−0.05%)
0.8558

(−0.62%)

GPT-4o-mini 2024-07-18
1.0000

(+0.06%)
0.9894

(+0.71%)
0.8438

(−0.72%)
0.7185

(+3.15%)
0.8369

(+2.45%)
0.8777

(+1.13%)
0.9974

(+0.10%)
0.9897

(+0.62%)
0.7555

(+3.66%)
0.7887

(+9.04%)
0.9117

(−0.09%)
0.8886

(+2.67%)

GPT-4

2023-06-13 0.9997 0.9850 0.8748 0.6930 0.7289 0.8563 0.9951 0.9877 0.7094 0.6753 0.8619 0.8459

2023-11-06
0.9995

(−0.02%)
0.9722

(−1.28%)
0.8230

(−5.18%)
0.7298

(+3.68%)
0.7368

(+0.79%)
0.8523

(−0.40%)
0.9970

(+0.19%)
0.9684

(−1.93%)
0.7907

(+8.13%)
0.7854

(+11.0%)
0.9071

(+4.52%)
0.8897

(+4.38%)

2024-01-25
0.9998

(+0.01%)
0.9750

(−1.00%)
0.8079

(−6.69%)
0.7099

(+1.69%)
0.7397

(+1.08%)
0.8465

(−0.98%)
0.9956

(+0.05%)
0.9708

(−1.69%)
0.7433

(+3.39%)
0.7214

(+4.61%)
0.8936

(+3.17%)
0.8649

(+1.91%)

2024-04-09
0.9998

(+0.01%)
0.9779

(−0.71%)
0.8171

(−5.77%)
0.6901

(−0.29%)
0.7671

(+3.82%)
0.8504

(−0.59%)
0.9930

(−0.21%)
0.9615

(−2.62%)
0.7136

(+0.42%)
0.7186

(+4.33%)
0.8930

(+3.11%)
0.8559

(+1.01%)

Claude-Sonnet

2024-02-29 0.9913 0.9810 0.8494 0.7582 0.7972 0.8754 0.9804 0.9850 0.7732 0.8864 0.9080 0.9066

2024-06-20
0.9890

(−0.23%)
0.9759

(−0.51%)
0.8721

(+2.27%)
0.8188

(+6.06%)
0.8468

(+4.96%)
0.9005

(+2.51%)
0.9957

(+1.53%)
0.9883

(+0.33%)
0.8092

(+3.60%)
0.9127

(+2.63%)
0.9057

(−0.23%)
0.9223

(+1.57%)

2024-10-22
0.9906

(−0.07%)
0.9421

(−3.89%)
0.8096

(−3.98%)
0.7843

(+2.61%)
0.8167

(+1.95%)
0.8687

(−0.68%)
0.9916

(+1.12%)
0.9564

(−2.86%)
0.7138

(−5.94%)
0.7866

(−9.98%)
0.8437

(−6.43%)
0.8584

(−4.82%)

Claude-Haiku
2024-03-07 0.9998 0.9856 0.8482 0.8182 0.7997 0.8903 0.9996 0.9981 0.8428 0.9192 0.9331 0.9386

2024-10-22
0.9999

(+0.01%)
0.9650

(−2.06%)
0.8436

(−0.46%)
0.7944

(−2.38%)
0.8591

(+5.94%)
0.8924

(+0.21%)
0.9981

(−0.15%)
0.9796

(−1.85%)
0.7884

(−5.44%)
0.8375

(−8.17%)
0.7420

(−19.1%)
0.8691

(−6.94%)

Claude-Opus 2024-02-29
0.9968

(−0.30%)
0.9801

(−0.55%)
0.8403

(−0.79%)
0.7974

(−2.08%)
0.8140

(+1.43%)
0.8857

(−0.46%)
0.9899

(−0.97%)
0.9803

(−1.78%)
0.8080

(−3.48%)
0.9116

(−0.76%)
0.8950

(−3.81%)
0.9170

(−2.16%)

Qwen

Qwen1.5-7B 0.9017 0.9581 0.7955 0.5083 0.5593 0.7446 0.9493 0.9822 0.7517 0.4690 0.7928 0.7890

Qwen2-7B
0.6711

(−23.0%)
0.9378

(−2.03%)
0.7617

(−3.38%)
0.4819

(−2.64%)
0.5746

(+1.53%)
0.6854

(−5.92%)
0.9765

(+2.72%)
0.9883

(+0.61%)
0.7018

(−4.99%)
0.4779

(+0.89%)
0.7784

(−1.44%)
0.7846

(−0.44%)

Qwen2.5-7B
0.7734

(−12.8%)
0.9457

(−1.24%)
0.7208

(−7.47%)
0.4782

(−3.01%)
0.5731

(+1.38%)
0.6982

(−4.63%)
0.9676

(+1.83%)
0.9856

(+0.34%)
0.7594

(+0.77%)
0.4768

(+0.78%)
0.7801

(−1.27%)
0.7939

(+0.49%)

LlaMA3

LlaMA-3.1-8B 0.9997 0.9795 0.8108 0.7554 0.6524 0.8396 0.9988 0.9896 0.8630 0.8855 0.9040 0.9282

LlaMA-3.1-70B
0.9999

(+0.02%)
0.9908

(+1.13%)
0.7969

(−1.39%)
0.7700

(+1.46%)
0.6179

(−3.45%)
0.8351

(−0.45%)
0.9981

(−0.07%)
0.9957

(+0.61%)
0.7594

(−10.3%)
0.9103

(+2.48%)
0.8935

(−1.05%)
0.9114

(−1.68%)

LlaMA-3.2-1B
0.9838

(−1.59%)
0.9844

(+0.49%)
0.8541

(+4.33%)
0.8428

(+8.74%)
0.6758

(+2.34%)
0.8682

(+2.86%)
0.9915

(−0.73%)
0.9963

(+0.67%)
0.8981

(+3.51%)
0.9476

(+6.21%)
0.9146

(+1.06%)
0.9496

(+2.14%)

LlaMA-3.2-3B
0.9994

(−0.03%)
0.9779

(−0.16%)
0.8383

(+2.75%)
0.8077

(+5.23%)
0.6673

(+1.49%)
0.8581

(+1.86%)
0.9992

(+0.04%)
0.9952

(+0.56%)
0.8818

(+1.88%)
0.9579

(+7.24%)
0.9192

(+1.52%)
0.9507

(+2.25%)

LlaMA-3.3-70B
1.0000

(+0.03%)
0.9883

(+0.88%)
0.8240

(+1.32%)
0.7978

(+4.24%)
0.7587

(+10.6%)
0.8738

(+3.42%)
0.9969

(−0.19%)
0.9954

(+0.58%)
0.7246

(−13.8%)
0.9142

(+2.87%)
0.8629

(−4.11%)
0.8988

(−2.94%)

Developments

Fine-tuning

LlaMA-2-7B-chat-hf 0.8320 0.8940 0.7480 0.8427 0.7311 0.8096 0.7310 0.7203 0.5381 0.8248 0.9436 0.7516

Vicuna-1.5-7B
0.9138

(+8.18%)
0.9150

(+2.10%)
0.6650

(−8.30%)
0.6332

(−20.9%)
0.6375

(−9.36%)
0.7529

(−5.67%)
0.9974

(+26.6%)
0.9952

(+27.4%)
0.7742

(+23.6%)
0.7408

(−8.40%)
0.8704

(−7.32%)
0.8756

(+12.4%)

Wizardmath-7B
0.5421

(−28.9%)
0.7817

(−11.2%)
0.5774

(−17.0%)
0.6552

(−18.7%)
0.6048

(−12.6%)
0.6322

(−17.7%)
0.8829

(+15.1%)
0.9255

(+20.5%)
0.7119

(+17.3%)
0.7522

(−7.26%)
0.7878

(−15.5%)
0.8121

(+6.05%)

Llama-2-7B-hf
0.4764

(−35.5%)
0.6419

(−25.2%)
0.4751

(−27.2%)
0.7159

(−12.6%)
0.5464

(−18.4%)
0.5711

(−23.8%)
0.9748

(+24.3%)
0.9700

(+24.9%)
0.8896

(+35.1%)
0.7722

(−5.26%)
0.7270

(−21.6%)
0.8667

(+11.5%)

Pruning

Sheared-LlaMA1.3B
0.5258

(−30.6%)
0.6373

(−25.6%)
0.5212

(−22.6%)
0.8011

(−4.16%)
0.5287

(−20.2%)
0.6028

(−20.6%)
0.7478

(+1.68%)
0.7437

(+2.34%)
0.5591

(+2.10%)
0.7700

(−5.48%)
0.7246

(−21.9%)
0.7090

(−4.25%)

Sheared-LlaMA1.3B-pruned
0.8359

(+0.39%)
0.9438

(+4.98%)
0.6540

(−9.40%)
0.7971

(−4.56%)
0.6440

(−8.71%)
0.7750

(−3.46%)
0.6762

(−5.48%)
0.5737

(−14.6%)
0.4265

(−11.1%)
0.6502

(−17.4%)
0.5600

(−38.3%)
0.5773

(−17.4%)

Sheared-LlaMA2.7B-pruned
0.4902

(−34.1%)
0.6440

(−25.0%)
0.5300

(−21.8%)
0.6716

(−17.1%)
0.5846

(−14.6%)
0.5841

(−22.5%)
0.7472

(+1.62%)
0.7484

(+2.81%)
0.5405

(+0.24%)
0.7056

(−11.9%)
0.6300

(−31.3%)
0.6743

(−7.72%)

Sheared-LlaMA2.7B
0.5864

(−24.5%)
0.6454

(−24.8%)
0.5215

(−22.6%)
0.6637

(−17.9%)
0.5626

(−16.8%)
0.5959

(−21.3%)
0.7030

(−2.80%)
0.6804

(−3.99%)
0.4982

(−3.99%)
0.6789

(−14.5%)
0.6021

(−34.1%)
0.6325

(−11.9%)

Table 8: The detection performance (measured in AUROC) of Text-Fluoroscopy and Imitate Before Detect on
EvoBench.
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LLMs
Version Time/
Version Name

RoBERTa-base RoBERTa-large

Xsum Writing PubMed SocialMedia PeerRead Avg. Xsum Writing PubMed SocialMedia PeerRead Avg.

Updates

GPT-4o

2024-05-13 0.6696 0.4668 0.4680 0.4946 0.5584 0.5315 0.6124 0.3163 0.5102 0.5804 0.6031 0.5245

2024-08-06
0.5975

(−7.21%)
0.4108

(−5.60%)
0.4644

(−0.36%)
0.5487

(+5.41%)
0.5425

(−1.59%)
0.5128

(−1.87%)
0.6478

(+3.54%)
0.3191

(+0.28%)
0.5079

(−0.23%)
0.5897

(+0.93%)
0.5646

(−3.85%)
0.5258

(+0.13%)

2024-11-20
0.5858

(−8.38%)
0.3992

(−6.76%)
0.4331

(−3.49%)
0.4644

(−3.02%)
0.5061

(−5.23%)
0.4777

(−5.38%)
0.4226

(−18.9%)
0.2562

(−6.01%)
0.4536

(−5.66%)
0.5414

(−3.90%)
0.5402

(−6.29%)
0.4428

(−8.17%)

Latest
0.5417

(−12.7%)
0.3969

(−6.99%)
0.4386

(−2.94%)
0.5256

(+3.10%)
0.5269

(−3.15%)
0.4859

(−4.55%)
0.4151

(−19.7%)
0.2583

(−5.80%)
0.4599

(−5.03%)
0.6150

(+3.46%)
0.5889

(−1.42%)
0.4674

(−5.70%)

GPT-4o-mini 2024-07-18
0.7376

(+6.80%)
0.4991

(+3.23%)
0.4542

(−1.38%)
0.5608

(+6.62%)
0.5314

(−2.70%)
0.5566

(+2.51%)
0.7445

(+13.2%)
0.4498

(+13.3%)
0.5256

(+1.54%)
0.6047

(+2.43%)
0.5887

(−1.44%)
0.5827

(+5.82%)

GPT-4

2023-06-13 0.7349 0.5198 0.5286 0.5664 0.5205 0.5740 0.7368 0.3972 0.5917 0.6340 0.5932 0.5906

2023-11-06
0.6978

(−3.71%)
0.4235

(−9.63%)
0.4483

(−8.03%)
0.5488

(−1.76%)
0.5584

(+3.79%)
0.5354

(−3.87%)
0.6471

(−8.97%)
0.3444

(−5.28%)
0.5056

(−8.61%)
0.5924

(−4.16%)
0.6205

(+2.73%)
0.5420

(−4.86%)

2024-01-25
0.6728

(−6.21%)
0.4948

(−2.50%)
0.4545

(−7.41%)
0.5452

(−2.12%)
0.5484

(+2.79%)
0.5431

(−3.09%)
0.6634

(−7.34%)
0.3589

(−3.83%)
0.5221

(−6.96%)
0.5901

(−4.39%)
0.6137

(+2.05%)
0.5496

(−4.09%)

2024-04-09
0.5949

(−14.0%)
0.3947

(−12.5%)
0.4817

(−4.69%)
0.5029

(−6.35%)
0.5430

(+2.25%)
0.5034

(−7.06%)
0.6030

(−13.3%)
0.2916

(−10.5%)
0.5179

(−7.38%)
0.5550

(−7.90%)
0.5820

(−1.12%)
0.5099

(−8.07%)

Claude-Sonnet

2024-02-29 0.7459 0.5915 0.5312 0.6558 0.5397 0.6128 0.6757 0.4837 0.5679 0.7196 0.6077 0.6109

2024-06-20
0.7550

(+0.91%)
0.5054

(−8.61%)
0.4776

(−5.36%)
0.5935

(−6.23%)
0.5355

(−0.42%)
0.5734

(−3.94%)
0.6328

(−4.29%)
0.3337

(−15.0%)
0.5254

(−4.25%)
0.6633

(−5.63%)
0.5861

(−2.16%)
0.5483

(−6.27%)

2024-10-22
0.6080

(−13.7%)
0.3702

(−22.1%)
0.3741

(−15.7%)
0.5283

(−12.7%)
0.5082

(−3.15%)
0.4778

(−13.5%)
0.5696

(−10.6%)
0.2660

(−21.7%)
0.4148

(−15.3%)
0.5533

(−16.6%)
0.5147

(−9.30%)
0.4637

(−14.7%)

Claude-Haiku
2024-03-07 0.9427 0.8251 0.5400 0.6579 0.6523 0.7236 0.9162 0.6806 0.6079 0.7053 0.6716 0.7163

2024-10-22
0.6408

(−30.1%)
0.3626

(−46.2%)
0.3556

(−18.4%)
0.5740

(−8.39%)
0.5146

(−13.7%)
0.4895

(−23.4%)
0.6422

(−27.4%)
0.2771

(−40.3%)
0.4116

(−19.6%)
0.6527

(−5.26%)
0.5997

(−7.19%)
0.5167

(−19.9%)

Claude-Opus 2024-02-29
0.8337

(−10.9%)
0.6305

(−19.4%)
0.4875

(−5.25%)
0.5825

(−7.54%)
0.5565

(−9.58%)
0.6181

(−10.5%)
0.7674

(−14.8%)
0.4963

(−18.4%)
0.5180

(−8.99%)
0.6711

(−3.42%)
0.5954

(−7.62%)
0.6096

(−10.6%)

Qwen

Qwen1.5-7B 0.8357 0.8064 0.6017 0.4882 0.5339 0.6532 0.8891 0.7393 0.6413 0.5203 0.5213 0.6623

Qwen2-7B
0.9770

(+14.1%)
0.9259

(+11.9%)
0.6218

(+2.01%)
0.4980

(+0.98%)
0.5404

(+0.65%)
0.7126

(+5.94%)
0.9624

(+7.33%)
0.8716

(+13.2%)
0.6588

(+1.75%)
0.4953

(−2.50%)
0.5440

(+2.27%)
0.7064

(+4.42%)

Qwen2.5-7B
0.9776

(+14.1%)
0.8910

(+8.46%)
0.6249

(+2.32%)
0.5027

(+1.45%)
0.5592

(+2.53%)
0.7111

(+5.79%)
0.9645

(+7.54%)
0.8508

(+11.1%)
0.6841

(+4.28%)
0.5017

(−1.86%)
0.5552

(+3.39%)
0.7113

(+4.90%)

LlaMA3

LlaMA-3.1-8B 0.9590 0.8822 0.5254 0.5528 0.6138 0.7066 0.9344 0.7625 0.5748 0.5896 0.6216 0.6966

LlaMA-3.1-70B
0.9676

(+0.86%)
0.8311

(−5.11%)
0.4566

(−6.88%)
0.5980

(+4.52%)
0.5769

(−3.69%)
0.6860

(−2.06%)
0.9080

(−2.64%)
0.7065

(−5.60%)
0.5002

(−7.46%)
0.6352

(+4.56%)
0.5824

(−3.92%)
0.6665

(−3.01%)

LlaMA-3.2-1B
0.9983

(+3.93%)
0.9664

(+8.42%)
0.6148

(+8.94%)
0.6376

(+8.48%)
0.6326

(+1.88%)
0.7699

(+6.33%)
0.9946

(+6.02%)
0.9399

(+17.7%)
0.7275

(+15.2%)
0.7210

(+13.1%)
0.6772

(+5.56%)
0.8120

(+11.5%)

LlaMA-3.2-3B
0.9748

(+1.58%)
0.9216

(+3.94%)
0.5327

(+0.73%)
0.6107

(+5.79%)
0.6326

(+1.88%)
0.7345

(+2.78%)
0.9736

(+3.92%)
0.8459

(+8.34%)
0.6316

(+5.68%)
0.6768

(+8.72%)
0.6772

(+5.56%)
0.7610

(+6.44%)

LlaMA-3.3-70B
0.9534

(−0.56%)
0.8542

(−2.80%)
0.4533

(−7.21%)
0.6084

(+5.56%)
0.6123

(−0.15%)
0.6963

(−1.03%)
0.9315

(−0.29%)
0.7169

(−4.56%)
0.5106

(−6.42%)
0.6604

(+7.08%)
0.6438

(+2.22%)
0.6926

(−0.39%)

Developments

Fine-tuning

LlaMA-2-7B-chat-hf 0.9314 0.8601 0.6764 0.6858 0.6604 0.7628 0.9249 0.8129 0.7219 0.7028 0.6582 0.7641

Vicuna-1.5-7B
0.9606

(+2.92%)
0.9720

(+11.1%)
0.6742

(−0.22%)
0.5445

(−14.1%)
0.5766

(−8.38%)
0.7456

(−1.72%)
0.9647

(+3.98%)
0.9424

(+12.9%)
0.6928

(−2.91%)
0.5659

(−13.6%)
0.6096

(−4.86%)
0.7551

(−0.91%)

Wizardmath-7B
0.8680

(−6.34%)
0.8914

(+3.13%)
0.6902

(+1.38%)
0.6733

(−1.25%)
0.5380

(−12.2%)
0.7322

(−3.06%)
0.8845

(−4.04%)
0.8839

(+7.10%)
0.7396

(+1.77%)
0.7204

(+1.76%)
0.5649

(−9.33%)
0.7587

(−0.55%)

Llama-2-7B-hf
0.8712

(−6.02%)
0.8686

(+0.85%)
0.6093

(−6.71%)
0.7207

(+3.49%)
0.6179

(−4.25%)
0.7375

(−2.53%)
0.9268

(+0.19%)
0.9083

(+9.54%)
0.6849

(−3.70%)
0.7586

(+5.58%)
0.6668

(+0.86%)
0.7891

(+2.49%)

Pruning

Sheared-LlaMA1.3B
0.9268

(−0.46%)
0.9089

(+4.88%)
0.6990

(+2.26%)
0.8616

(+17.5%)
0.7411

(+8.07%)
0.8275

(+6.47%)
0.9864

(+6.15%)
0.9868

(+17.3%)
0.7582

(+3.63%)
0.9155

(+21.2%)
0.7953

(+13.7%)
0.8884

(+12.4%)

Sheared-LlaMA1.3B-pruned
0.9966

(+6.52%)
0.9924

(+13.2%)
0.8346

(+15.8%)
0.9131

(+22.7%)
0.7516

(+9.12%)
0.8977

(+13.4%)
1.0000

(+7.51%)
1.0000

(+18.7%)
0.9345

(+21.2%)
0.9827

(+27.9%)
0.8686

(+21.0%)
0.9572

(+19.3%)

Sheared-LlaMA2.7B-pruned
0.8837

(−4.77%)
0.8977

(+3.76%)
0.6818

(+0.54%)
0.7756

(+8.98%)
0.5835

(−7.69%)
0.7645

(+0.16%)
0.9693

(+4.44%)
0.9601

(+14.7%)
0.7168

(−0.51%)
0.8469

(+14.4%)
0.6222

(−3.60%)
0.8231

(+5.89%)

Sheared-LlaMA2.7B
0.9767

(+4.53%)
0.9649

(+10.4%)
0.7646

(+8.82%)
0.8799

(+19.4%)
0.6624

(+0.20%)
0.8497

(+8.69%)
0.9996

(+7.47%)
0.9999

(+18.7%)
0.8647

(+14.2%)
0.9480

(+24.5%)
0.7589

(+10.0%)
0.9142

(+15.0%)

Table 9: The detection performance (measured in AUROC) of RoBERTa-base and RoBERTa-large on EvoBench.
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LLMs
Version Time/
Version Name

Likelihood Rank

Xsum Writing PubMed SocialMedia PeerRead Avg. Xsum Writing PubMed SocialMedia PeerRead Avg.

Updates

GPT-4o

2024-05-13 0.7820 0.8560 0.8033 0.5452 0.7356 0.7444 0.6596 0.7265 0.5969 0.5359 0.6840 0.6406

2024-08-06
0.6980

(−8.40%)
0.8023

(−5.37%)
0.7717

(−3.16%)
0.5578

(+1.26%)
0.6823

(−5.33%)
0.7024

(−4.20%)
0.6751

(+1.55%)
0.7358

(+0.93%)
0.5920

(−0.49%)
0.5422

(+0.63%)
0.6643

(−1.97%)
0.6419

(+0.13%)

2024-11-20
0.8764

(+9.44%)
0.8361

(−1.99%)
0.7752

(−2.81%)
0.5889

(+4.37%)
0.6910

(−4.46%)
0.7535

(+0.91%)
0.4497

(−20.9%)
0.7078

(−1.87%)
0.6022

(+0.53%)
0.5432

(+0.73%)
0.6640

(−2.00%)
0.5934

(−4.72%)

Latest
0.8708

(+8.88%)
0.8846

(+2.86%)
0.7745

(−2.88%)
0.5498

(+0.46%)
0.7183

(−1.73%)
0.7596

(+1.52%)
0.4356

(−22.4%)
0.6846

(−4.19%)
0.5960

(−0.09%)
0.5584

(+2.25%)
0.6768

(−0.72%)
0.5903

(−5.03%)

GPT-4o-mini 2024-07-18
0.7304

(−5.16%)
0.8513

(−0.47%)
0.7716

(−3.17%)
0.5846

(+3.94%)
0.6941

(−4.15%)
0.7264

(−1.80%)
0.7024

(+4.28%)
0.7429

(+1.64%)
0.5981

(+0.12%)
0.5400

(+0.41%)
0.6635

(−2.05%)
0.6494

(+0.88%)

GPT-4

2023-06-13 0.7840 0.8392 0.8132 0.4396 0.6313 0.7015 0.6759 0.7207 0.6013 0.4415 0.6378 0.6154

2023-11-06
0.7546

(−2.94%)
0.7389

(−10.0%)
0.7907

(−2.25%)
0.4666

(+2.70%)
0.7287

(+9.74%)
0.6959

(−0.56%)
0.6718

(−0.41%)
0.6640

(−5.67%)
0.6010

(−0.03%)
0.4851

(+4.36%)
0.6710

(+3.32%)
0.6186

(+0.31%)

2024-01-25
0.6970

(−8.70%)
0.8465

(+0.73%)
0.7933

(−1.99%)
0.4902

(+5.06%)
0.7316

(+10.0%)
0.7117

(+1.03%)
0.6644

(−1.15%)
0.7181

(−0.26%)
0.5956

(−0.57%)
0.5064

(+6.49%)
0.6767

(+3.89%)
0.6322

(+1.68%)

2024-04-09
0.6850

(−9.90%)
0.7897

(−4.95%)
0.7978

(−1.54%)
0.5264

(+8.68%)
0.6777

(+4.64%)
0.6953

(−0.61%)
0.6795

(+0.36%)
0.7041

(−1.66%)
0.6011

(−0.02%)
0.4868

(+4.53%)
0.6676

(+2.98%)
0.6278

(+1.24%)

Claude-Sonnet

2024-02-29 0.8796 0.9386 0.8372 0.4578 0.8621 0.7951 0.7069 0.7629 0.6062 0.4769 0.7132 0.6532

2024-06-20
0.9123

(+3.27%)
0.9338

(−0.48%)
0.7980

(−3.92%)
0.5643

(+10.6%)
0.7927

(−6.94%)
0.8002

(+0.52%)
0.6962

(−1.07%)
0.7419

(−2.10%)
0.6055

(−0.07%)
0.5523

(+7.54%)
0.6988

(−1.44%)
0.6589

(+0.57%)

2024-10-22
0.8453

(−3.43%)
0.8024

(−13.6%)
0.7476

(−8.96%)
0.4584

(+0.06%)
0.6976

(−16.4%)
0.7103

(−8.48%)
0.6976

(−0.93%)
0.6954

(−6.75%)
0.6016

(−0.46%)
0.5305

(+5.36%)
0.6944

(−1.88%)
0.6439

(−0.93%)

Claude-Haiku
2024-03-07 0.9611 0.9821 0.8613 0.6133 0.8746 0.8585 0.7340 0.7948 0.6113 0.5825 0.7165 0.6878

2024-10-22
0.7885

(−17.2%)
0.8390

(−14.3%)
0.6958

(−16.5%)
0.3080

(−30.5%)
0.9291

(+5.45%)
0.7121

(−14.6%)
0.4851

(−24.8%)
0.5726

(−22.2%)
0.5940

(−1.73%)
0.4323

(−15.0%)
0.1547

(−56.1%)
0.4477

(−24.0%)

Claude-Opus 2024-02-29
0.9288

(−3.23%)
0.9581

(−2.40%)
0.8415

(−1.98%)
0.6053

(−0.80%)
0.8140

(−6.06%)
0.8295

(−2.89%)
0.6964

(−3.76%)
0.7513

(−4.35%)
0.6074

(−0.39%)
0.5458

(−3.67%)
0.7006

(−1.59%)
0.6603

(−2.75%)

Qwen

Qwen1.5-7B 0.9613 0.9724 0.7250 0.5598 0.8303 0.8098 0.5473 0.7721 0.4532 0.4838 0.6862 0.5885

Qwen2-7B
0.9897

(+2.84%)
0.9881

(+1.57%)
0.6697

(−5.53%)
0.4810

(−7.88%)
0.8378

(+0.75%)
0.7933

(−1.65%)
0.7598

(+21.2%)
0.8230

(+5.09%)
0.4206

(−3.26%)
0.4603

(−2.35%)
0.6856

(−0.06%)
0.6299

(+4.13%)

Qwen2.5-7B
0.9834

(+2.21%)
0.9905

(+1.81%)
0.7348

(+0.98%)
0.4825

(−7.73%)
0.8221

(−0.82%)
0.8027

(−0.71%)
0.7359

(+18.8%)
0.8209

(+4.88%)
0.4551

(+0.19%)
0.4652

(−1.86%)
0.6843

(−0.19%)
0.6323

(+4.38%)

LlaMA3

LlaMA-3.1-8B 0.9568 0.9577 0.8251 0.5852 0.9287 0.8507 0.7410 0.7805 0.6072 0.5506 0.7351 0.6829

LlaMA-3.1-70B
0.9377

(−1.91%)
0.9754

(+1.77%)
0.7928

(−3.23%)
0.5636

(−2.16%)
0.9168

(−1.19%)
0.8373

(−1.34%)
0.7304

(−1.06%)
0.7894

(+0.89%)
0.5918

(−1.54%)
0.5403

(−1.03%)
0.7212

(−1.39%)
0.6746

(−0.83%)

LlaMA-3.2-1B
0.9406

(−1.62%)
0.9839

(+2.62%)
0.8842

(+5.91%)
0.7317

(+14.6%)
0.9244

(−0.43%)
0.8930

(+4.23%)
0.7616

(+2.06%)
0.8172

(+3.67%)
0.6192

(+1.20%)
0.6720

(+12.1%)
0.7349

(−0.02%)
0.7210

(+3.81%)

LlaMA-3.2-3B
0.9766

(+1.98%)
0.9729

(+1.52%)
0.8718

(+4.67%)
0.6604

(+7.52%)
0.9244

(−0.43%)
0.8812

(+3.05%)
0.7503

(+0.93%)
0.8090

(+2.85%)
0.6142

(+0.70%)
0.6173

(+6.67%)
0.7349

(−0.02%)
0.7051

(+2.23%)

LlaMA-3.3-70B
0.9324

(−2.44%)
0.9741

(+1.64%)
0.7772

(−4.79%)
0.5779

(−0.73%)
0.7860

(−14.2%)
0.8095

(−4.12%)
0.7344

(−0.66%)
0.7873

(+0.68%)
0.5992

(−0.80%)
0.5592

(+0.86%)
0.6827

(−5.24%)
0.6726

(−1.03%)

Developments

Fine-tuning

LlaMA-2-7B-chat-hf 0.9604 0.9640 0.8568 0.8764 0.9433 0.9202 0.7120 0.7754 0.5840 0.6566 0.7868 0.7030

Vicuna-1.5-7B
0.9961

(+3.57%)
0.9945

(+3.05%)
0.7624

(−9.44%)
0.7932

(−8.32%)
0.8948

(−4.85%)
0.8882

(−3.20%)
0.5429

(−16.9%)
0.7583

(−1.71%)
0.4262

(−15.7%)
0.4776

(−17.9%)
0.6820

(−10.4%)
0.5774

(−12.5%)

Wizardmath-7B
0.8367

(−12.3%)
0.9352

(−2.88%)
0.6785

(−17.8%)
0.7574

(−11.9%)
0.8253

(−11.8%)
0.8066

(−11.3%)
0.6458

(−6.62%)
0.7476

(−2.78%)
0.4249

(−15.9%)
0.6588

(+0.22%)
0.6739

(−11.2%)
0.6302

(−7.28%)

Llama-2-7B-hf
0.6500

(−31.0%)
0.8027

(−16.1%)
0.5198

(−33.7%)
0.7768

(−9.96%)
0.7620

(−18.1%)
0.7023

(−21.7%)
0.6650

(−4.70%)
0.7413

(−3.41%)
0.4683

(−11.5%)
0.7340

(+7.74%)
0.7706

(−1.62%)
0.6758

(−2.71%)

Pruning

Sheared-LlaMA1.3B
0.5791

(−38.1%)
0.7824

(−18.1%)
0.4899

(−36.6%)
0.7466

(−12.9%)
0.6532

(−29.0%)
0.6502

(−26.9%)
0.6724

(−3.96%)
0.7359

(−3.95%)
0.5050

(−7.90%)
0.7945

(+13.7%)
0.7018

(−8.50%)
0.6819

(−2.10%)

Sheared-LlaMA1.3B-pruned
0.2053

(−75.5%)
0.6235

(−34.0%)
0.3066

(−55.0%)
0.5647

(−31.1%)
0.4081

(−53.5%)
0.4216

(−49.8%)
0.5174

(−19.4%)
0.7134

(−6.20%)
0.4448

(−13.9%)
0.6632

(+0.66%)
0.5871

(−19.9%)
0.5852

(−11.7%)

Sheared-LlaMA2.7B-pruned
0.6160

(−34.4%)
0.8162

(−14.7%)
0.4761

(−38.0%)
0.7341

(−14.2%)
0.6598

(−28.3%)
0.6604

(−25.9%)
0.6412

(−7.08%)
0.7476

(−2.78%)
0.5184

(−6.56%)
0.6959

(+3.93%)
0.6672

(−11.9%)
0.6541

(−4.89%)

Sheared-LlaMA2.7B
0.3425

(−61.7%)
0.6982

(−26.5%)
0.3254

(−53.1%)
0.6110

(−26.5%)
0.4911

(−45.2%)
0.4936

(−42.6%)
0.5199

(−19.2%)
0.7284

(−4.70%)
0.4564

(−12.7%)
0.6521

(−0.45%)
0.6174

(−16.9%)
0.5948

(−10.8%)

Table 10: The detection performance (measured in AUROC) of Likelihood and Rank on EvoBench.
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LLMs
Version Time/
Version Name

LogRank Entropy

Xsum Writing PubMed SocialMedia PeerRead Avg. Xsum Writing PubMed SocialMedia PeerRead Avg.

Updates

GPT-4o

2024-05-13 0.7804 0.8312 0.7888 0.5328 0.7234 0.7313 0.4602 0.3304 0.3091 0.5161 0.5264 0.4284

2024-08-06
0.6969

(−8.35%)
0.7743

(−5.69%)
0.7607

(−2.81%)
0.5484

(+1.56%)
0.6670

(−5.64%)
0.6895

(−4.19%)
0.5289

(+6.87%)
0.3723

(+4.19%)
0.3269

(+1.78%)
0.4856

(−3.05%)
0.5467

(+2.03%)
0.4521

(+2.36%)

2024-11-20
0.8408

(+6.04%)
0.8010

(−3.02%)
0.7668

(−2.20%)
0.5725

(+3.97%)
0.6758

(−4.76%)
0.7314

(+0.01%)
0.1507

(−30.9%)
0.2264

(−10.4%)
0.3105

(+0.14%)
0.4423

(−7.38%)
0.5325

(+0.61%)
0.3325

(−9.60%)

Latest
0.8299

(+4.95%)
0.8481

(+1.69%)
0.7605

(−2.83%)
0.5412

(+0.84%)
0.6972

(−2.62%)
0.7354

(+0.41%)
0.1458

(−31.4%)
0.1671

(−16.3%)
0.3216

(+1.25%)
0.5112

(−0.49%)
0.5505

(+2.41%)
0.3392

(−8.92%)

GPT-4o-mini 2024-07-18
0.7438

(−3.66%)
0.8219

(−0.93%)
0.7630

(−2.58%)
0.5720

(+3.92%)
0.6765

(−4.69%)
0.7154

(−1.59%)
0.5408

(+8.06%)
0.3355

(+0.51%)
0.3492

(+4.01%)
0.4825

(−3.36%)
0.5636

(+3.72%)
0.4543

(+2.59%)

GPT-4

2023-06-13 0.7825 0.8139 0.8048 0.4329 0.6275 0.6923 0.4676 0.3732 0.3184 0.5743 0.5788 0.4625

2023-11-06
0.7519

(−3.06%)
0.7061

(−10.7%)
0.7854

(−1.94%)
0.4642

(+3.13%)
0.7200

(+9.25%)
0.6855

(−0.68%)
0.5541

(+8.65%)
0.4646

(+9.14%)
0.3124

(−0.60%)
0.5726

(−0.17%)
0.5556

(−2.32%)
0.4919

(+2.94%)

2024-01-25
0.7042

(−7.83%)
0.8260

(+1.21%)
0.7808

(−2.40%)
0.4832

(+5.03%)
0.7229

(+9.54%)
0.7034

(+1.11%)
0.5677

(+10.0%)
0.3238

(−4.94%)
0.2975

(−2.09%)
0.5511

(−2.32%)
0.5346

(−4.42%)
0.4549

(−0.75%)

2024-04-09
0.6912

(−9.13%)
0.7563

(−5.76%)
0.7851

(−1.97%)
0.5158

(+8.29%)
0.6756

(+4.81%)
0.6848

(−0.75%)
0.5367

(+6.91%)
0.3414

(−3.18%)
0.3041

(−1.43%)
0.5134

(−6.09%)
0.5709

(−0.79%)
0.4533

(−0.92%)

Claude-Sonnet

2024-02-29 0.8854 0.9281 0.8322 0.4366 0.8678 0.7900 0.3882 0.2235 0.2986 0.5934 0.5103 0.4028

2024-06-20
0.9047

(+1.93%)
0.9156

(−1.25%)
0.7927

(−3.95%)
0.5397

(+10.3%)
0.7974

(−7.04%)
0.7900

(−0.00%)
0.3372

(−5.10%)
0.2327

(+0.92%)
0.3312

(+3.26%)
0.5531

(−4.03%)
0.5516

(+4.13%)
0.4012

(−0.16%)

2024-10-22
0.8404

(−4.50%)
0.7813

(−14.6%)
0.7426

(−8.96%)
0.4459

(+0.93%)
0.6936

(−17.4%)
0.7008

(−8.93%)
0.3324

(−5.58%)
0.3329

(+10.9%)
0.3414

(+4.28%)
0.5526

(−4.08%)
0.5236

(+1.33%)
0.4166

(+1.38%)

Claude-Haiku
2024-03-07 0.9675 0.9781 0.8583 0.5935 0.8824 0.8560 0.4216 0.2080 0.3073 0.5430 0.5176 0.3995

2024-10-22
0.7687

(−19.8%)
0.7928

(−18.5%)
0.6859

(−17.2%)
0.3033

(−29.0%)
0.8854

(+0.30%)
0.6872

(−16.8%)
0.3788

(−4.28%)
0.2764

(+6.84%)
0.4005

(+9.32%)
0.6444

(+10.1%)
0.0585

(−45.9%)
0.3517

(−4.78%)

Claude-Opus 2024-02-29
0.9286

(−3.89%)
0.9469

(−3.12%)
0.8331

(−2.52%)
0.5850

(−0.85%)
0.8214

(−6.10%)
0.8230

(−3.30%)
0.3669

(−5.47%)
0.1696

(−3.84%)
0.3086

(+0.13%)
0.5333

(−0.97%)
0.5123

(−0.53%)
0.3781

(−2.14%)

Qwen

Qwen1.5-7B 0.9631 0.9723 0.7135 0.5583 0.8379 0.8090 0.2406 0.2085 0.3407 0.4227 0.4648 0.3355

Qwen2-7B
0.9931

(+3.00%)
0.9886

(+1.63%)
0.6747

(−3.88%)
0.4851

(−7.32%)
0.8492

(+1.13%)
0.7981

(−1.09%)
0.2904

(+4.98%)
0.1665

(−4.20%)
0.4696

(+12.8%)
0.5022

(+7.95%)
0.4532

(−1.16%)
0.3764

(+4.09%)

Qwen2.5-7B
0.9892

(+2.61%)
0.9905

(+1.82%)
0.7334

(+1.99%)
0.4858

(−7.25%)
0.8395

(+0.16%)
0.8077

(−0.13%)
0.3210

(+8.04%)
0.1523

(−5.62%)
0.4165

(+7.58%)
0.5007

(+7.80%)
0.4962

(+3.14%)
0.3773

(+4.19%)

LlaMA3

LlaMA-3.1-8B 0.9625 0.9513 0.8099 0.5759 0.9393 0.8478 0.4501 0.2765 0.3204 0.5331 0.4246 0.4009

LlaMA-3.1-70B
0.9498

(−1.27%)
0.9726

(+2.13%)
0.7823

(−2.76%)
0.5460

(−2.99%)
0.9267

(−1.26%)
0.8355

(−1.23%)
0.5097

(+5.96%)
0.2724

(−0.41%)
0.3192

(−0.12%)
0.5419

(+0.88%)
0.4308

(+0.62%)
0.4148

(+1.39%)

LlaMA-3.2-1B
0.9423

(−2.02%)
0.9842

(+3.29%)
0.8808

(+7.09%)
0.7349

(+15.9%)
0.9418

(+0.25%)
0.8968

(+4.90%)
0.4843

(+3.42%)
0.2871

(+1.06%)
0.3330

(+1.26%)
0.5038

(−2.93%)
0.4826

(+5.80%)
0.4182

(+1.72%)

LlaMA-3.2-3B
0.9798

(+1.73%)
0.9734

(+2.21%)
0.8629

(+5.30%)
0.6417

(+6.58%)
0.9418

(+0.25%)
0.8799

(+3.21%)
0.4505

(+0.04%)
0.2719

(−0.46%)
0.3169

(−0.35%)
0.5083

(−2.48%)
0.4826

(+5.80%)
0.4060

(+0.51%)

LlaMA-3.3-70B
0.9514

(−1.11%)
0.9707

(+1.94%)
0.7760

(−3.39%)
0.5676

(−0.83%)
0.8020

(−13.7%)
0.8135

(−3.42%)
0.5398

(+8.97%)
0.2738

(−0.27%)
0.3270

(+0.66%)
0.5397

(+0.66%)
0.5801

(+15.5%)
0.4521

(+5.11%)

Developments

Fine-tuning

LlaMA-2-7B-chat-hf 0.9659 0.9636 0.8550 0.8860 0.9536 0.9248 0.2688 0.2043 0.3181 0.4155 0.3612 0.3136

Vicuna-1.5-7B
0.9968

(+3.09%)
0.9937

(+3.01%)
0.7628

(−9.22%)
0.7992

(−8.68%)
0.9140

(−3.96%)
0.8933

(−3.15%)
0.3321

(+6.33%)
0.1489

(−5.54%)
0.3581

(+4.00%)
0.4209

(+0.54%)
0.4604

(+9.92%)
0.3441

(+3.05%)

Wizardmath-7B
0.8487

(−11.7%)
0.9383

(−2.53%)
0.6720

(−18.3%)
0.7846

(−10.1%)
0.8257

(−12.7%)
0.8139

(−11.1%)
0.4049

(+13.6%)
0.2360

(+3.17%)
0.4409

(+12.2%)
0.4607

(+4.52%)
0.3993

(+3.81%)
0.3884

(+7.48%)

Llama-2-7B-hf
0.6918

(−27.4%)
0.8354

(−12.8%)
0.5242

(−33.0%)
0.8093

(−7.67%)
0.7749

(−17.8%)
0.7271

(−19.7%)
0.4626

(+19.3%)
0.3657

(+16.1%)
0.4919

(+17.3%)
0.3611

(−5.44%)
0.4684

(+10.7%)
0.4299

(+11.6%)

Pruning

Sheared-LlaMA1.3B
0.6329

(−33.3%)
0.8232

(−14.0%)
0.5013

(−35.3%)
0.7989

(−8.71%)
0.6832

(−27.0%)
0.6879

(−23.6%)
0.6036

(+33.4%)
0.4374

(+23.3%)
0.5483

(+23.0%)
0.5286

(+11.3%)
0.5848

(+22.3%)
0.5405

(+22.7%)

Sheared-LlaMA1.3B-pruned
0.2612

(−70.4%)
0.6781

(−28.5%)
0.3235

(−53.1%)
0.6188

(−26.7%)
0.4304

(−52.3%)
0.4624

(−46.2%)
0.8336

(+56.4%)
0.5806

(+37.6%)
0.6668

(+34.8%)
0.6672

(+25.1%)
0.6402

(+27.9%)
0.6777

(+36.4%)

Sheared-LlaMA2.7B-pruned
0.6664

(−29.9%)
0.8491

(−11.4%)
0.5012

(−35.3%)
0.7650

(−12.1%)
0.6758

(−27.7%)
0.6915

(−23.3%)
0.5406

(+27.1%)
0.3740

(+16.9%)
0.5650

(+24.6%)
0.4914

(+7.59%)
0.5100

(+14.8%)
0.4962

(+18.2%)

Sheared-LlaMA2.7B
0.4036

(−56.2%)
0.7400

(−22.3%)
0.3438

(−51.1%)
0.6612

(−22.4%)
0.5103

(−44.3%)
0.5318

(−39.3%)
0.7138

(+44.5%)
0.4800

(+27.5%)
0.6750

(+35.6%)
0.6056

(+19.0%)
0.5984

(+23.7%)
0.6146

(+30.1%)

Table 11: The detection performance (measured in AUROC) of LogRank and Entropy on EvoBench.

20



LLMs
Version Time/
Version Name

DetectGPT LRR

Xsum Writing PubMed SocialMedia PeerRead Avg. Xsum Writing PubMed SocialMedia PeerRead Avg.

Updates

GPT-4o

2024-05-13 0.5182 0.8413 0.4455 0.4921 0.4643 0.5523 0.7032 0.7057 0.6719 0.4871 0.6213 0.6378

2024-08-06
0.4785

(−3.97%)
0.7437

(−9.76%)
0.4558

(+1.03%)
0.5058

(+1.37%)
0.4450

(−1.93%)
0.5258

(−2.65%)
0.6655

(−3.77%)
0.6443

(−6.14%)
0.6601

(−1.18%)
0.5065

(+1.94%)
0.5744

(−4.69%)
0.6102

(−2.77%)

2024-11-20
0.2796

(−23.8%)
0.7283

(−11.3%)
0.4636

(+1.81%)
0.5469

(+5.48%)
0.4668

(+0.25%)
0.4970

(−5.52%)
0.6201

(−8.31%)
0.6486

(−5.71%)
0.6593

(−1.26%)
0.5000

(+1.29%)
0.5696

(−5.17%)
0.5995

(−3.83%)

Latest
0.2796

(−23.8%)
0.6685

(−17.2%)
0.4704

(+2.49%)
0.5108

(+1.87%)
0.4539

(−1.04%)
0.4766

(−7.56%)
0.6139

(−8.93%)
0.6611

(−4.46%)
0.6480

(−2.39%)
0.5103

(+2.32%)
0.5879

(−3.34%)
0.6042

(−3.36%)

GPT-4o-mini 2024-07-18
0.4990

(−1.92%)
0.7712

(−7.01%)
0.4474

(+0.19%)
0.5008

(+0.87%)
0.4902

(+2.59%)
0.5417

(−1.06%)
0.7239

(+2.07%)
0.6918

(−1.39%)
0.6569

(−1.50%)
0.5236

(+3.65%)
0.5818

(−3.95%)
0.6356

(−0.22%)

GPT-4

2023-06-13 0.3582 0.6876 0.3563 0.3688 0.3566 0.4255 0.7280 0.6961 0.6811 0.4311 0.5677 0.6208

2023-11-06
0.5470

(+18.8%)
0.7465

(+5.89%)
0.4392

(+8.29%)
0.4385

(+6.97%)
0.4951

(+13.8%)
0.5333

(+10.7%)
0.7020

(−2.60%)
0.5723

(−12.3%)
0.6838

(+0.27%)
0.4747

(+4.36%)
0.6275

(+5.98%)
0.6121

(−0.87%)

2024-01-25
0.5225

(+16.4%)
0.7256

(+3.80%)
0.4187

(+6.24%)
0.4772

(+10.8%)
0.4818

(+12.5%)
0.5252

(+9.97%)
0.6974

(−3.06%)
0.7293

(+3.32%)
0.6573

(−2.38%)
0.4677

(+3.66%)
0.6338

(+6.61%)
0.6371

(+1.63%)

2024-04-09
0.5240

(+16.5%)
0.7389

(+5.13%)
0.4031

(+4.68%)
0.4856

(+11.6%)
0.4526

(+9.60%)
0.5208

(+9.53%)
0.6788

(−4.92%)
0.6120

(−8.41%)
0.6684

(−1.27%)
0.4918

(+6.07%)
0.6037

(+3.60%)
0.6109

(−0.99%)

Claude-Sonnet

2024-02-29 0.6532 0.8303 0.4666 0.3497 0.6006 0.5801 0.8454 0.8629 0.7312 0.3942 0.7993 0.7266

2024-06-20
0.6551

(+0.19%)
0.8853

(+5.50%)
0.4738

(+0.72%)
0.4700

(+12.0%)
0.5718

(−2.88%)
0.6112

(+3.11%)
0.8236

(−2.18%)
0.8143

(−4.86%)
0.6860

(−4.52%)
0.4499

(+5.57%)
0.7341

(−6.52%)
0.7016

(−2.50%)

2024-10-22
0.5885

(−6.47%)
0.8112

(−1.91%)
0.5158

(+4.92%)
0.4866

(+13.6%)
0.5704

(−3.02%)
0.5945

(+1.44%)
0.7560

(−8.94%)
0.6939

(−16.9%)
0.6557

(−7.55%)
0.4221

(+2.79%)
0.6230

(−17.6%)
0.6301

(−9.65%)

Claude-Haiku
2024-03-07 0.5728 0.7993 0.4760 0.4571 0.5511 0.5713 0.9439 0.9340 0.7639 0.5228 0.8174 0.7964

2024-10-22
0.2622

(−31.0%)
0.4994

(−29.9%)
0.4924

(+1.64%)
0.3608

(−9.63%)
0.0210

(−53.0%)
0.3272

(−24.4%)
0.6454

(−29.8%)
0.5772

(−35.6%)
0.6065

(−15.7%)
0.3321

(−19.0%)
0.4288

(−38.8%)
0.5180

(−27.8%)

Claude-Opus 2024-02-29
0.5400

(−3.28%)
0.7742

(−2.51%)
0.5045

(+2.85%)
0.4575

(+0.04%)
0.5582

(+0.71%)
0.5669

(−0.44%)
0.8799

(−6.40%)
0.8756

(−5.84%)
0.7322

(−3.17%)
0.5164

(−0.64%)
0.7735

(−4.39%)
0.7555

(−4.09%)

Qwen

Qwen1.5-7B 0.4416 0.7407 0.3880 0.5055 0.6606 0.5473 0.9200 0.9508 0.6103 0.5260 0.7808 0.7576

Qwen2-7B
0.6027

(+16.1%)
0.7513

(+1.06%)
0.4386

(+5.06%)
0.5067

(+0.12%)
0.6234

(−3.72%)
0.5845

(+3.73%)
0.9866

(+6.66%)
0.9850

(+3.42%)
0.6436

(+3.33%)
0.4996

(−2.64%)
0.7939

(+1.31%)
0.7817

(+2.42%)

Qwen2.5-7B
0.5188

(+7.72%)
0.6895

(−5.12%)
0.4255

(+3.75%)
0.5146

(+0.91%)
0.6406

(−2.00%)
0.5578

(+1.05%)
0.9826

(+6.26%)
0.9819

(+3.11%)
0.6673

(+5.70%)
0.4999

(−2.61%)
0.7989

(+1.81%)
0.7861

(+2.85%)

LlaMA3

LlaMA-3.1-8B 0.5006 0.7926 0.4803 0.5480 0.6603 0.5964 0.9435 0.9057 0.6842 0.5301 0.9031 0.7933

LlaMA-3.1-70B
0.5933

(+9.27%)
0.8360

(+4.34%)
0.4429

(−3.74%)
0.4987

(−4.93%)
0.6765

(+1.62%)
0.6095

(+1.31%)
0.9313

(−1.22%)
0.9416

(+3.59%)
0.6669

(−1.73%)
0.4895

(−4.06%)
0.8832

(−1.99%)
0.7825

(−1.08%)

LlaMA-3.2-1B
0.4201

(−8.05%)
0.7794

(−1.32%)
0.4736

(−0.67%)
0.6325

(+8.45%)
0.6274

(−3.29%)
0.5866

(−0.98%)
0.9443

(+0.08%)
0.9827

(+7.70%)
0.7754

(+9.12%)
0.6932

(+16.3%)
0.9235

(+2.04%)
0.8638

(+7.05%)

LlaMA-3.2-3B
0.5017

(+0.11%)
0.8217

(+2.91%)
0.4506

(−2.97%)
0.5150

(−3.30%)
0.6274

(−3.29%)
0.5833

(−1.31%)
0.9725

(+2.90%)
0.9612

(+5.55%)
0.7428

(+5.86%)
0.5544

(+2.43%)
0.9235

(+2.04%)
0.8309

(+3.76%)

LlaMA-3.3-70B
0.5910

(+9.04%)
0.8195

(+2.69%)
0.4478

(−3.25%)
0.5073

(−4.07%)
0.5968

(−6.35%)
0.5925

(−0.39%)
0.9510

(+0.75%)
0.9366

(+3.09%)
0.7000

(+1.58%)
0.5253

(−0.48%)
0.7636

(−13.9%)
0.7753

(−1.80%)

Developments

Fine-tuning

LlaMA-2-7B-chat-hf 0.4919 0.7052 0.5017 0.7118 0.6650 0.6151 0.9579 0.9436 0.7791 0.8559 0.9300 0.8933

Vicuna-1.5-7B
0.4796

(−1.23%)
0.6116

(−9.36%)
0.3794

(−12.2%)
0.6358

(−7.60%)
0.5986

(−6.64%)
0.5410

(−7.41%)
0.9863

(+2.84%)
0.9815

(+3.79%)
0.7012

(−7.79%)
0.7583

(−9.76%)
0.8787

(−5.13%)
0.8612

(−3.21%)

Wizardmath-7B
0.5770

(+8.51%)
0.6076

(−9.76%)
0.4606

(−4.11%)
0.6652

(−4.66%)
0.5814

(−8.36%)
0.5784

(−3.68%)
0.8240

(−13.3%)
0.9186

(−2.50%)
0.6076

(−17.1%)
0.8084

(−4.75%)
0.7438

(−18.6%)
0.7805

(−11.2%)

Llama-2-7B-hf
0.4816

(−1.03%)
0.4501

(−25.5%)
0.5197

(+1.80%)
0.6717

(−4.01%)
0.5523

(−11.2%)
0.5351

(−8.00%)
0.7628

(−19.5%)
0.8694

(−7.42%)
0.5288

(−25.0%)
0.8418

(−1.41%)
0.7444

(−18.5%)
0.7494

(−14.3%)

Pruning

Sheared-LlaMA1.3B
0.4112

(−8.07%)
0.3640

(−34.1%)
0.4510

(−5.07%)
0.5996

(−11.2%)
0.3168

(−34.8%)
0.4285

(−18.6%)
0.7537

(−20.4%)
0.8866

(−5.70%)
0.5291

(−25.0%)
0.8554

(−0.05%)
0.7000

(−23.0%)
0.7450

(−14.8%)

Sheared-LlaMA1.3B-pruned
0.0297

(−46.2%)
0.0538

(−65.1%)
0.2284

(−27.3%)
0.3150

(−39.6%)
0.1406

(−52.4%)
0.1535

(−46.1%)
0.5272

(−43.0%)
0.7888

(−15.4%)
0.4092

(−36.9%)
0.7304

(−12.5%)
0.5318

(−39.8%)
0.5975

(−29.5%)

Sheared-LlaMA2.7B-pruned
0.5573

(+6.54%)
0.6327

(−7.25%)
0.4669

(−3.48%)
0.6359

(−7.59%)
0.4899

(−17.5%)
0.5565

(−5.86%)
0.9317

(−2.62%)
0.9638

(+2.02%)
0.5611

(−21.8%)
0.7985

(−5.74%)
0.6615

(−26.8%)
0.7833

(−11.0%)

Sheared-LlaMA2.7B
0.4398

(−5.21%)
0.4220

(−28.3%)
0.4388

(−6.29%)
0.4282

(−28.3%)
0.2548

(−41.0%)
0.3967

(−21.8%)
0.7510

(−20.6%)
0.8904

(−5.32%)
0.5631

(−21.6%)
0.7493

(−10.6%)
0.5490

(−38.1%)
0.7006

(−19.2%)

Table 12: The detection performance (measured in AUROC) of DetectGPT and LRR on EvoBench.
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LLMs
Version Time/
Version Name

NPR DNA-GPT

Xsum Writing PubMed SocialMedia PeerRead Avg. Xsum Writing PubMed SocialMedia PeerRead Avg.

Updates

GPT-4o

2024-05-13 0.8971 0.9688 0.7346 0.5756 0.8256 0.8003 0.9945 0.8281 0.8276 0.5976 0.6781 0.7852

2024-08-06
0.8696

(−2.75%)
0.9447

(−2.41%)
0.6992

(−3.54%)
0.5932

(+1.76%)
0.7667

(−5.89%)
0.7747

(−2.57%)
0.9934

(−0.11%)
0.8608

(+3.27%)
0.8223

(−0.53%)
0.6188

(+2.12%)
0.6856

(+0.75%)
0.7962

(+1.10%)

2024-11-20
0.7202

(−17.6%)
0.8998

(−6.90%)
0.6969

(−3.77%)
0.5747

(−0.09%)
0.7831

(−4.25%)
0.7349

(−6.54%)
0.9858

(−0.87%)
0.7175

(−11.0%)
0.7868

(−4.08%)
0.6178

(+2.02%)
0.6634

(−1.47%)
0.7543

(−3.09%)

Latest
0.6963

(−20.0%)
0.9075

(−6.13%)
0.7010

(−3.36%)
0.5820

(+0.64%)
0.8242

(−0.14%)
0.7422

(−5.81%)
0.9866

(−0.79%)
0.7532

(−7.49%)
0.7993

(−2.83%)
0.6422

(+4.46%)
0.6728

(−0.53%)
0.7708

(−1.44%)

GPT-4o-mini 2024-07-18
0.9062

(+0.91%)
0.9700

(+0.12%)
0.7304

(−0.42%)
0.6058

(+3.02%)
0.8042

(−2.14%)
0.8033

(+0.30%)
0.9978

(+0.33%)
0.8663

(+3.82%)
0.8208

(−0.68%)
0.6645

(+6.69%)
0.6385

(−3.96%)
0.7976

(+1.24%)

GPT-4

2023-06-13 0.9262 0.9776 0.7611 0.4937 0.7511 0.7819 0.9944 0.8725 0.8918 0.6562 0.7490 0.8328

2023-11-06
0.9177

(−0.85%)
0.9300

(−4.76%)
0.7317

(−2.94%)
0.5480

(+5.43%)
0.8282

(+7.71%)
0.7911

(+0.92%)
0.9943

(−0.01%)
0.7876

(−8.49%)
0.8037

(−8.81%)
0.6586

(+0.24%)
0.6259

(−12.3%)
0.7740

(−5.88%)

2024-01-25
0.8940

(−3.22%)
0.9435

(−3.41%)
0.7036

(−5.75%)
0.5360

(+4.23%)
0.8245

(+7.34%)
0.7803

(−0.16%)
0.9921

(−0.23%)
0.8002

(−7.23%)
0.8409

(−5.09%)
0.6516

(−0.46%)
0.6622

(−8.68%)
0.7894

(−4.34%)

2024-04-09
0.8332

(−9.30%)
0.9120

(−6.56%)
0.7172

(−4.39%)
0.5764

(+8.27%)
0.7919

(+4.08%)
0.7661

(−1.58%)
0.9908

(−0.36%)
0.7880

(−8.45%)
0.8211

(−7.07%)
0.5970

(−5.92%)
0.6008

(−14.8%)
0.7595

(−7.32%)

Claude-Sonnet

2024-02-29 0.9459 0.9804 0.8150 0.5836 0.9320 0.8514 0.9700 0.8582 0.8403 0.7355 0.6106 0.8029

2024-06-20
0.9692

(+2.33%)
0.9884

(+0.80%)
0.7718

(−4.32%)
0.6605

(+7.69%)
0.9030

(−2.90%)
0.8586

(+0.72%)
0.9861

(+1.61%)
0.8061

(−5.21%)
0.8159

(−2.44%)
0.7250

(−1.05%)
0.5549

(−5.57%)
0.7776

(−2.53%)

2024-10-22
0.9016

(−4.43%)
0.9265

(−5.39%)
0.6760

(−13.9%)
0.5056

(−7.80%)
0.7789

(−15.3%)
0.7577

(−9.37%)
0.9548

(−1.52%)
0.7238

(−13.4%)
0.7418

(−9.85%)
0.6681

(−6.74%)
0.5468

(−6.38%)
0.7271

(−7.59%)

Claude-Haiku
2024-03-07 0.9952 0.9993 0.8614 0.7486 0.9389 0.9087 0.9972 0.9328 0.8388 0.7669 0.6745 0.8420

2024-10-22
0.8396

(−15.5%)
0.9237

(−7.56%)
0.6439

(−21.7%)
0.3892

(−35.9%)
0.4641

(−47.4%)
0.6521

(−25.6%)
0.9965

(−0.07%)
0.8578

(−7.50%)
0.7293

(−10.9%)
0.7031

(−6.38%)
0.8217

(+14.7%)
0.8217

(−2.04%)

Claude-Opus 2024-02-29
0.9703

(−2.49%)
0.9604

(−3.89%)
0.8234

(−3.80%)
0.7159

(−3.27%)
0.8943

(−4.46%)
0.8729

(−3.58%)
0.9939

(−0.33%)
0.8727

(−6.01%)
0.8165

(−2.23%)
0.7698

(+0.29%)
0.6188

(−5.57%)
0.8143

(−2.77%)

Qwen

Qwen1.5-7B 0.9243 0.9945 0.6641 0.4897 0.9076 0.7960 0.9269 0.9034 0.7222 0.5074 0.4761 0.7072

Qwen2-7B
0.9929

(+6.86%)
0.9974

(+0.29%)
0.7376

(+7.35%)
0.4622

(−2.75%)
0.8939

(−1.37%)
0.8168

(+2.08%)
0.8856

(−4.13%)
0.8692

(−3.42%)
0.8168

(+9.46%)
0.5209

(+1.35%)
0.5375

(+6.14%)
0.7260

(+1.88%)

Qwen2.5-7B
0.9894

(+6.51%)
0.9955

(+0.10%)
0.7878

(+12.3%)
0.4686

(−2.11%)
0.8998

(−0.78%)
0.8282

(+3.22%)
0.9009

(−2.60%)
0.9100

(+0.66%)
0.7907

(+6.85%)
0.5205

(+1.31%)
0.5256

(+4.95%)
0.7295

(+2.23%)

LlaMA3

LlaMA-3.1-8B 0.9926 0.9839 0.8476 0.6866 0.9680 0.8957 0.9987 0.8939 0.7784 0.7232 0.6304 0.8049

LlaMA-3.1-70B
0.9957

(+0.31%)
0.9989

(+1.50%)
0.8104

(−3.72%)
0.6693

(−1.73%)
0.9584

(−0.96%)
0.8865

(−0.92%)
0.9968

(−0.19%)
0.8807

(−1.32%)
0.7627

(−1.57%)
0.7361

(+1.29%)
0.6182

(−1.22%)
0.7989

(−0.60%)

LlaMA-3.2-1B
0.9580

(−3.46%)
0.9948

(+1.09%)
0.9205

(+7.29%)
0.8617

(+17.5%)
0.9650

(−0.30%)
0.9400

(+4.43%)
0.9636

(−3.51%)
0.9378

(+4.39%)
0.8158

(+3.74%)
0.7512

(+2.80%)
0.7056

(+7.52%)
0.8348

(+2.99%)

LlaMA-3.2-3B
0.9913

(−0.13%)
0.9870

(+0.31%)
0.9132

(+6.56%)
0.7698

(+8.32%)
0.9650

(−0.30%)
0.9253

(+2.95%)
0.9943

(−0.44%)
0.9210

(+2.71%)
0.8154

(+3.70%)
0.7655

(+4.23%)
0.6584

(+2.80%)
0.8309

(+2.60%)

LlaMA-3.3-70B
0.9958

(+0.32%)
1.0000

(+1.61%)
0.7923

(−5.53%)
0.6881

(+0.15%)
0.9042

(−6.38%)
0.8761

(−1.97%)
0.9955

(−0.32%)
0.8865

(−0.74%)
0.7878

(+0.94%)
0.7308

(+0.76%)
0.6533

(+2.29%)
0.8108

(+0.59%)

Developments

Fine-tuning

LlaMA-2-7B-chat-hf 0.9722 0.9904 0.9055 0.8963 0.9693 0.9467 0.6808 0.6330 0.4911 0.6396 0.6380 0.6165

Vicuna-1.5-7B
0.9958

(+2.36%)
0.9956

(+0.52%)
0.8008

(−10.4%)
0.8805

(−1.58%)
0.9439

(−2.54%)
0.9233

(−2.34%)
0.9745

(+29.3%)
0.9305

(+29.7%)
0.8064

(+31.5%)
0.6490

(+0.94%)
0.6355

(−0.25%)
0.7992

(+18.2%)

Wizardmath-7B
0.9205

(−5.17%)
0.9804

(−1.00%)
0.7354

(−17.0%)
0.8490

(−4.73%)
0.8412

(−12.8%)
0.8653

(−8.14%)
0.7476

(+6.68%)
0.7582

(+12.5%)
0.6969

(+20.5%)
0.6857

(+4.61%)
0.5447

(−9.33%)
0.6866

(+7.01%)

Llama-2-7B-hf
0.5632

(−40.9%)
0.6202

(−37.0%)
0.4642

(−44.1%)
0.7395

(−15.6%)
0.6582

(−31.1%)
0.6091

(−33.7%)
0.6343

(−4.65%)
0.7310

(+9.80%)
0.4957

(+0.46%)
0.7474

(+10.7%)
0.7711

(+13.3%)
0.6759

(+5.94%)

Pruning

Sheared-LlaMA1.3B
0.6548

(−31.7%)
0.8888

(−10.1%)
0.4846

(−42.0%)
0.8634

(−3.29%)
0.7072

(−26.2%)
0.7198

(−22.7%)
0.7706

(+8.98%)
0.6626

(+2.96%)
0.5856

(+9.45%)
0.7255

(+8.59%)
0.5360

(−10.2%)
0.6561

(+3.96%)

Sheared-LlaMA1.3B-pruned
0.4118

(−56.0%)
0.8077

(−18.2%)
0.3524

(−55.3%)
0.7530

(−14.3%)
0.4593

(−51.0%)
0.5568

(−38.9%)
0.9213

(+24.0%)
0.7903

(+15.7%)
0.6991

(+20.8%)
0.8669

(+22.7%)
0.6539

(+1.59%)
0.7863

(+16.9%)

Sheared-LlaMA2.7B-pruned
0.4480

(−52.4%)
0.8672

(−12.3%)
0.3664

(−53.9%)
0.7543

(−14.2%)
0.5196

(−44.9%)
0.5911

(−35.5%)
0.8383

(+15.7%)
0.7618

(+12.8%)
0.5870

(+9.59%)
0.7831

(+14.3%)
0.5455

(−9.25%)
0.7031

(+8.66%)

Sheared-LlaMA2.7B
0.7049

(−26.7%)
0.9154

(−7.50%)
0.5047

(−40.0%)
0.8191

(−7.72%)
0.6520

(−31.7%)
0.7192

(−22.7%)
0.7496

(+6.88%)
0.6811

(+4.81%)
0.5794

(+8.83%)
0.6743

(+3.47%)
0.4655

(−17.2%)
0.6300

(+1.35%)

Table 13: The detection performance (measured in AUROC) of NPR and DNA-GPT on EvoBench.
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