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a b s t r a c t

Recent years have witnessed an increasing focus on graph-based semi-supervised learning with Graph
Neural Networks (GNNs). Despite existing GNNs having achieved remarkable accuracy, research on the
quality of graph supervision information has inadvertently been ignored. In fact, there are significant
differences in the quality of supervision information provided by different labeled nodes, and treating
supervision information with different qualities equally may lead to sub-optimal performance of GNNs.
We refer to this as the graph supervision loyalty problem, which is a new perspective for improving the
performance of GNNs. In this paper, we devise FT-Score to quantify node loyalty by considering both
the local feature similarity and the local topology similarity, and nodes with higher loyalty are more
likely to provide higher-quality supervision. Based on this, we propose LoyalDE (Loyal Node Discovery
and Emphasis), a model-agnostic hot-plugging training strategy, which can discover potential nodes
with high loyalty to expand the training set, and then emphasize nodes with high loyalty during
model training to improve performance. Experiments demonstrate that the graph supervision loyalty
problem will fail most existing GNNs. In contrast, LoyalDE brings about at most 9.1% performance
improvement to vanilla GNNs and consistently outperforms several state-of-the-art training strategies
for semi-supervised node classification.

© 2023 Elsevier Ltd. All rights reserved.
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1. Introduction

Graph-structured data widely exists in the real world and is
sed to characterize the potential relationships between enti-
ies in multiple fields, including social recommendation (Guo &
ang, 2020), drug discovery (Li et al., 2017), and financial risk

ontrol (Yang et al., 2020). Due to the high cost of the label-
ng process, real-world graph-structured data usually has a few
abeled and many unlabeled samples. Therefore, simultaneously
earning labeled and unlabeled samples in the graph is an essen-
ial and natural task, which is called graph-based semi-supervised
earning.

As the standard paradigm for graph machine learning, Graph
eural Networks (GNNs) establish an efficient graph represen-
ation mechanism based on spectral theory and deep learning.
arious of GNNs can be applied for graph-based semi-supervised
earning tasks, such as ChebNet (Defferrard et al., 2016), Cay-
eyNet (Levie et al., 2018), GCN (Kipf & Welling, 2016), GAT
Veličković et al., 2017), and GraphSAGE (Hamilton et al., 2017).

✩ The code will be available at https://github.com/Haotong-Wei/LoyalDE after
paper acceptance for publication.
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However, due to the low proportion of labeled nodes, information
cannot effectively propagate from labeled nodes to unlabeled
nodes, which limits the performance of GNNs (Li et al., 2018).
To this end, some effective training strategies seek to expand the
training set to promote the model training (Coskun et al., 2019;
Li et al., 2018; Tan et al., 2020).

Despite their effectiveness, these methods focus too much on
the quantity of labeled nodes, inadvertently ignoring the quality
of labeled nodes. For many real-world graph-structured data,
there are significant differences in the quality of supervision
information provided by different labeled nodes. Treating these
labeled nodes with different qualities equally during learning may
result in the sub-optimal performance of these above-mentioned
GNNs. We refer to this as the graph supervision loyalty problem,
nd the quality of supervision information of labeled nodes in
raphs is called node loyalty.
Considering the complexity of graph data and limited re-

search on the topic, how to measure node loyalty is a significant
challenge. However, most GNNs perform better when handling
graphs with higher homophily (Zhu et al., 2020), leading us to
intuitively assume that nodes with stronger local homophily can
provide better supervision information for GNNs (i.e., have higher
loyalty). To verify this assumption, we introduce a novel measure
called FT-Score, which is based on local feature similarity and
topology similarity. We randomly sample training nodes from

https://doi.org/10.1016/j.neunet.2023.05.023
https://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2023.05.023&domain=pdf
https://github.com/Haotong-Wei/LoyalDE
mailto:weihaotong@mail.sdu.edu.cn
mailto:jiangbin@sdu.edu.cn
https://doi.org/10.1016/j.neunet.2023.05.023
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Fig. 1. Impact of the graph supervision loyalty problem on the performance of
GNNs. The x-axis indicates the proportion of nodes sampled from the top half
f the FT-Score distribution for each class.

Fig. 2. The message-passing process of loyal and disloyal nodes. Yellow and blue
orrespond to two different classes.

he top and bottom halves of the FT-Score distribution according
o certain proportions and evaluate the performance of GCN on
he Cora dataset for each proportion. The experimental result
s presented in Fig. 1. As observed, the performance of GNNs
s poor when the proportion of nodes from the top half of the
T-Score distribution in the training set is low. Conversely, as
he proportion of nodes from the top half of the FT-Score dis-
ribution in the training set increases, the performance of GNNs
lso increases. This finding demonstrates that nodes with higher
T-Score tend to provide higher-quality supervision information,
.e., higher loyalty. Furthermore, this result reveals that the graph
upervision loyalty problem significantly affects the ability of
NNs to learn from labeled nodes. We contend that addressing
he graph supervision loyalty problem is a novel perspective for
mproving the performance of GNNs.

To obtain a deeper understanding of the graph supervision
oyalty problem, we qualitatively divide the nodes in the network
nto two classes: (1) Loyal node, which tends to have strong local
omophily (i.e., similar nodes are more likely to be proximal,
nd vice versa) and have positive effects on model training; (2)
isloyal node, which tends to have poor local homophily and have
imited or even negative effects on model training. Fig. 2 illus-
rates the message-passing process of loyal nodes and disloyal
odes. The positive impact of loyal nodes on the model can be
ivided into two perspectives. On the one hand, a loyal node with
trong local homophily tends to have more typical characteristics
f its class, and the provided supervision can help GNNs capture
he pattern of its class more effectively; On the other hand, during
he message-passing process, plenty of unlabeled neighbors in
he same class can obtain latent representations similar to the
oyal node, which helps GNNs identify them more accurately.
n contrast, due to its poor local homophily, the supervision

rovided by a disloyal node cannot represent the pattern of its
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class and may mislead the latent representations of neighbors in
different classes during the message-passing process.

Based on this, we propose a novel model-agnostic
hot-plugging training strategy LoyalDE, which can effectively
discover and emphasize potential loyal nodes, thus providing
high-quality supervision for training GNNs and improving their
performance. The overall process of LoyalDE can be divided into
two steps: (1) Loyal node discovery: We first train a vanilla
GNN using the original training nodes and obtain the predicted
soft label. Then, we use a learnable adaptive scaler to obtain a
personalized scaling temperature for each node, thereby boosting
the confidence of loyal nodes and reducing the confidence of
disloyal nodes. Finally, we expand the training set by select-
ing high-confidence nodes from the scaled soft label; (2) Loyal
node emphasis: We calculate the FT-Score for each node in the
expanded training set, and nodes with higher FT-Score will be
assigned larger training weights, promoting the model to obtain
high-quality supervision from loyal nodes.

In summary, the contributions of this work are as follows:

• We discover and define the graph supervision loyalty prob-
lem, which is a new perspective for improving the perfor-
mance of GNNs.

• We devise FT-Score to measure the quality of graph super-
vision information. Based on this, we propose LoyalDE, a
model-agnostic hot-plugging GNN training strategy.

• Experiments demonstrate the effectiveness of LoyalDE,
which significantly improves the performance of GNNs and
consistently outperforms several state-of-the-art GNN train-
ing strategies.

The remainder of this paper is organized as follows. Section 2
explains the notations used in this paper and briefly reviews
related research about GNNs and semi-supervised node classifi-
cation. Section 3 presents the details of our proposed node loyalty
measure FT-Score and the hot-plugging training strategy LoyalDE.
Then, Section 4 reports the experimental results of the proposed
LoyalDE. Finally, we conclude our work in Section 5.

2. Preliminaries and related works

We first explain the meaning of the notations used in this
paper in Section 2.1. Then, we briefly review GNNs in Section 2.2
and semi-supervised node classification in Section 2.3.

2.1. Notation definitions

We use bold upper case letters to represent the matrix (e.g.,
W ), bold lower case letters to represent the vector (e.g., f ), and AT

to represent the transpose of matrix A. Moreover, the ith element
of vector a is denoted as ai, and Aij represents the element of
atrix A at the ith row and jth column. Further definitions of

notations commonly used in the graph learning field are provided
in Table 1.

2.2. Graph Neural Networks (GNNs)

Earlier research on GNNs proposes spatial convolution based
on hierarchical clustering and spectral convolution based on the
spectrum of graph Laplacian, both of which generalize CNNs to
graph-structured data (Bruna et al., 2013). However, the proposed
convolution operations have a considerable amount of parame-
ters and high computation costs. To this end, ChebNet (Defferrard
et al., 2016) employs Chebyshev polynomials to approximate
the K-order localized spectral filter. GCN (Kipf & Welling, 2016)
further simplifies the graph convolution by employing the 1-
order Chebyshev filter to capture local neighborhood information.
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Table 1
Description of notations commonly used in this article.
Notations Definitions

N Number of nodes
C Number of classes
V Node set
Vlabeled Node set with labels
Vunlabeled Node set without labels
E Edge set
F Dimension of node features
X Node feature matrix
A Adjacency matrix
Y Node label matrix
Ŷ Predicted soft label matrix
Ni Neighbors of ith node, including itself

However, as the aggregation weights of each central node to
different neighbor nodes are fixed and equal, the modeling capa-
bility of GCN is limited. To this end, GAT (Veličković et al., 2017)
employs the graph attention mechanism to adjust the aggregation
weights of nodes to their neighbors adaptively, therefore having
a stronger modeling capability. Moreover, GCN is difficult to
deal with the semi-supervised graph task of inductive learning.
GraphSAGE (Hamilton et al., 2017) addresses this limitation by
introducing various learnable aggregation functions to perform
convolution on each sampled subgraph.

The node representations learned by GNNs can be applied to
arious graph machine-learning tasks, such as node classifica-
ion (Dornaika et al., 2023), link prediction (Dai et al., 2022), node
lustering (Xia et al., 2022), graph classification (Ju et al., 2022), all
f which achieve remarkable performance. More works on GNNs
an be found in surveys Wu et al. (2020) and Zhou et al. (2020).

.3. Semi-supervised node classification

Given an attributed graph G = (V, E,X), where V denotes the
ode set, E denotes the edge set, and X = [x1, x2, . . . , xN ]

T
∈

N×F is the node feature matrix, xi ∈ RF is the F-dimensional
eature vector of node vi, and N = |V| holds. Let Vlabeled and
unlabeled be the set of labeled nodes and unlabeled nodes, where
labeled ∩ Vunlabeled = ∅ and Vlabeled ∪ Vunlabeled = V . The node
abel matrix Y ∈ RN×C consists of one-hot encoding vectors for
abeled nodes and zero vectors for unlabeled nodes, where C
s the number of classes. The goal of the semi-supervised node
lassification task is to predict the labels of unlabeled nodes
unlabeled. Compared with the supervised setting, where only the
eature of labeled nodes could be used, semi-supervised node
lassification allows the models to use the feature of both labeled
nd unlabeled nodes to classify unlabeled nodes.
Most of the early research about graph-based semi-supervised

earning is based on the cluster assumption (Chapelle & Zien,
005), which assumes that two topologically close nodes tend
o belong to the same class. As a result, these methods mainly
xploit graph topology to guide semi-supervised learning, includ-
ng min-cuts (Blum & Chawla, 2001), randomized min-cuts (Blum
t al., 2004), spectral graph transducer (Joachims, 2003), label
ropagation (Zhu et al., 2003), etc.
However, these above-mentioned methods have unintention-

lly neglected to utilize node features, which also have great
alue for identifying class patterns. To this end, many graph-
ased semi-supervised learning methods aim to jointly model the
opological structure and the node features, such as deep semi-
upervised embedding (Weston et al., 2008) and Planetoid (Yang
t al., 2016).
Research from the same perspective also includes various

epresentative GNNs mentioned in Section 2.2, all of which can
e effectively applied for the semi-supervised node classification
721
asks. Moreover, many advanced training strategies are proposed
o address the issue that GNNs’ performance degrades in the
ace of a few labeled nodes. Self-Training and Co-Training (Li
t al., 2018) seek to expand the labeled node set and supple-
ent additional supervision information for GNNs training by

everaging the model prediction and the topological structure.
ExiCoL (Coskun et al., 2019) identifies latent community struc-
ures to discover unlabeled nodes similar to labeled nodes based
n clustering. Other effective training strategies also augment the
raining set by exploring graph properties (Dong et al., 2020; Tan
t al., 2020; Wang, Shao, et al., 2021).
Despite their effectiveness, these methods inadvertently ig-

ore the impact of supervision quality on the performance of
NNs. How to design an advanced training method for GNNs
hat consider the impact of supervision information quality is an
mportant challenge. In this paper, we address this challenge by
horoughly analyzing the effect of supervision quality on GNN
erformance and propose a novel training strategy, LoyalDE, that
nhances GNN performance by incorporating supervision quality
onsiderations.

. Proposed method

In this section, we present the proposed node loyalty mea-
ure FT-Score and the hot-plugging training strategy LoyalDE,
hich can discover and emphasize potential nodes with high

oyalty during model training to improve the model’s perfor-
ance. Specifically, Section 3.1 presents the detail of FT-Score,
nd LoyalDE is discussed in Section 3.2.

.1. FT-score: the measure of node loyalty

As introduced earlier, FT-Score considers both local feature
imilarity and topology similarity, thus effectively measuring the
oyalty of nodes. Specifically, we employ the cosine similarity to
ompute the feature similarity. The feature similarity Sfeat (vi, vj)
etween vi and each neighbor vj ∈ Ni, as follows:

Sfeat (vi, vj) =
xixj

∥xi∥ ∥xj∥
, (1)

where xi and xj is the feature of node vi and vj, respectively.
According to related studies (Liben-Nowell & Kleinberg, 2003),

odes with stronger homophily tend to have more common
eighbors with their neighbors. Therefore, we measure the topol-
gy similarity as the Jaccard coefficient, which considers the
roportion of common neighbors. Specifically, the topology sim-
larity Stopo(vi, vj) between vi and each neighbor vj ∈ Ni is
alculated as follows:

topo(vi, vj) =
|Ni ∩ Nj|

|Ni ∪ Nj|
. (2)

Finally, we use a trade-off parameter α to perform linear
weighting on local feature similarity and local topology similarity.
Formally, the FT-Score of node vi is calculated as follows:

FT (vi) =

∑
j∈Ni

α
xixj

∥xi∥ ∥xj∥
+ (1 − α)

|Ni ∩ Nj|

|Ni ∪ Nj|
. (3)

We claim that the proposed FT-Score is intuitive and ex-
plainable. We can employ the FT-Score to effectively measure
the loyalty of nodes in the network, which in turn provides
guidance for optimizing the quality of supervision in graph-based
semi-supervised learning.

3.2. LoyalDE: the proposed training strategy

The overall workflow of the proposed training strategy Loy-
alDE is shown in Fig. 3. As mentioned earlier, the pipeline of Loy-
alDE can be divided into two processes: (1) loyal node discovery
and (2) loyal node emphasis.
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Fig. 3. The overall workflow of LoyalDE for semi-supervised node classification with GNNs. LoyalDE can be divided into two phases: (1) Loyal Node Discovery:
discover potential unlabeled loyal nodes through personalized confidence adjustment, thereby expanding the training set (2) Loyal Node Emphasis: use the expanded
training set to train a loyalty-aware GNN, which adaptively assigns the training weights of nodes according to FT-Score.
t

Loyal node discovery. The loyal node discovery phase aims to dis-
over potential high-loyalty unlabeled nodes from the prediction
f vanilla GNNs and use them to expand the training set, therefore
mproving the quality of supervision information.

Specifically, for a given graph G = (V, E,X) with original
abeled and unlabeled node sets Vlabeled and Vunlabeled, where V =

labeled ∪ Vunlabeled holds, we first train a vanilla GNN model
y optimizing the vanilla cross-entropy loss function for semi-
upervised node classification, which is computed as follows:

vanilla = −

∑
i∈Vlabeled

C∑
k=1

Y i,k log(Ŷ i,k), (4)

here C denotes the number of classes, Y denotes the ground-
ruth, and Ŷ represents the predicted soft label of the vanilla GNN.

For the obtained predicted soft labels Ŷ , both loyal nodes
nd disloyal nodes may have high confidence, therefore directly
mploying it to expand the training set will introduce low-quality
upervision from disloyal nodes, resulting in suboptimal per-
ormance. In other words, we should reduce the confidence of
isloyal nodes.
As disloyal nodes tend to have poor local homophily, their

redicted soft label should be significantly different from their
eighborhoods. Based on this, we first conduct K rounds of soft
abel diffusion, which can be regarded as a Laplacian smoothing
rocess of soft labels. If the central node is a disloyal node, which
as poor local homophily, its diffused soft label should come to
e smooth, and its confidence is also reduced; The diffused soft
abel Ŷ D is calculated as follows:

ˆ D = (D̃
−

1
2 ÃD̃

−
1
2 )K Ŷ , (5)

where Ã denotes the adjacency matrix with self-loop (i.e., Ã =

A + I , I represents the identity matrix), D̃ denotes the degree
matrix with self-loop (i.e., D̃ = D + I , Dii =

∑N
j=1 Aij), and K

enotes the number of diffusion rounds.
However, the diffusion process may change the predicted node

abels. Since our goal is to adjust the confidence without chang-
ng the predicted classes, we feed the diffused soft label Ŷ D to
n adaptive scaler based on multi-layer perceptron to learn a
ersonalized scaling temperature t i for each node vi. The scaling
emperature T is computed as:

T = log(1 + exp (Ŷ DW )), (6)

where W ∈ RC is the learnable parameter, and log(1 + exp(·))
conducts an element-wise soft plus activation for the adaptive
scaler.
722
Then, we employ the scaling temperature T to perform per-
sonalized confidence adjustment on the predicted soft label Ŷ ,
herefore obtaining a scaled soft label, i.e., Ŷ S = T Ŷ . The scaled
soft label Ŷ S has high confidence for loyal nodes and low confi-
dence for disloyal nodes.

Since minimizing NLL loss (Friedman et al., 2001) can help
improve the confidence of correctly predicted samples (Murphy,
1973), and the confidence of wrongly predicted samples can be
reduced by minimizing the gap between the largest and second
largest in scaled soft label (Wang, Liu, et al., 2021), we design the
objective function of the adaptive scaler as follows:

Lscaler = −

∑
i∈Vlabeled

C∑
k=1

Y i,k log(Ŷ Si,k )+

1
|Vlabeled|

(
|cor|∑
i=1

1 − Ŷ
(cor)
Si,l + Ŷ

(cor)
Si,s +

|wro|∑
i=1

Ŷ
(wro)
Si,l − Ŷ

(wro)
Si,s ),

(7)

where (cor) and (wro) represent the correctly and wrongly pre-
dicted node, respectively. Ŷ Si,l and Ŷ Si,s denote the largest and
second-largest components of the scaled soft label of node vi,
respectively.

Afterward, we use a mapping function based on information
entropy (Shannon, 1948) to map the scaled soft label Ŷ Si of each
node vi to its acceptance factor mi ∈ [0, C exp (−1)], which is
calculated as follows:

mi = C exp (−1) − H(σ (Ŷ Si )), (8)

where H(·) is the information entropy function, i.e., H(x) =

−
∑

i xi log(xi), σ (·) is the softmax function. Since σ (Ŷ Si ) is always
sum to 1, it can be proved that for a node vi with higher confi-
dence, the difference of each component value of σ (Ŷ Si ) is greater,
its information entropy H(σ (Ŷ Si )) is smaller, and its acceptance
factor mi is larger.

Finally, we select the unlabeled nodes with high acceptance
factor (i.e, high confidence, essentially) to expand the labeled
node set, whose pseudo labels are set according to the scaled
soft label (i.e., argmax(Ŷ S)). The expanded label node set V∗

labeled
is computed as follows:

V∗

labeled = Vlabeled ∪ {vi|vi ∈ Vunlabeled,

mi ≥
1

|Vlabeled|

∑
mj}.

(9)
j∈Vlabeled
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Compared with the original training set, the expanded training
set has more training nodes, which can provide more supervision
information for GNNs training. Moreover, the expanded training
set is holistically more loyal due to the enhanced confidence of
unlabeled loyal nodes during the loyal node discovery phase.

Loyal node emphasis. After the loyal node discovery phase, we
get the expanded labeled node set V∗

labeled, which will be used to
rain the GNN model. To make the trained loyalty-aware, we use
T-Score to measure the loyalty of all labeled nodes and increase
he training weight of nodes with high loyalty. Specifically, we
ropose a novel annealing mechanism for the training weights
f labeled nodes based on their FT-Score. The modified training
eight wi for node vi is computed as follows:

i = wmin +
1
2
(wmax − wmin)(1 − cos (

Rank(FT (vi))
|V∗

labeled|
π )), (10)

here wmin and wmax are hyperparameters used to adjust the
ower and upper bounds of the training weights, respectively,
nd Rank(FT (vi)) ∈ [1, |V∗

labeled|] is the FT-Score non-decreasing
ank of node vi among V∗

labeled. It can be proved that in Eq. (10),
labeled node with a lower FT-Score will be assigned a lower

raining weight, and the modified training weight of each node
ill be in the range of [wmin, wmax].
After obtaining the modified training weights, we define the

raining loss of the loyalty-aware GNN, which is calculated as
ollows:

loyalty = −

∑
i∈V∗

labeled

wi

C∑
k=1

Y Li,k log(Ŷ Li,k ), (11)

where Y L is the label of the expanded labeled node set V∗

labeled
(ground-truth for the original labeled nodes, and pseudo labels
for the expanded nodes), and Ŷ L is the predicted soft label of
the loyalty-aware GNN. The difference between the loyalty-aware
GNN objective function (i.e., Eq. (11)) and vanilla GNN objective
function (i.e., Eq. (4)) is that for loyalty-aware GNN, we assign
personalized training weights to each training node according
to its FT-Score, which encourages loyalty-aware GNN to accept
high-quality supervision.

By employing the LoyalDE strategies, we discover and em-
phasize loyal nodes to obtain a loyalty-aware GNN, therefore
achieving superior performance under low-quality supervision.
The overall process of the proposed LoyalDE training strategy is
summarized as Algorithm 1.

4. Experiments

In this section, we evaluate the performance of our proposed
training strategy LoyalDE. Specifically, in Section 4.1, we intro-
duce five public benchmark datasets for the semi-supervised
node classification task. In Section 4.2, we present the used GNNs
and some state-of-the-art training strategies for enhancing GNNs.
In Section 4.3, detailed experimental settings are provided. Sec-
tion 4.4 presents the comparative results of LoyalDE and baselines
on the semi-supervised node classification task. We also conduct
an ablation study and sensitivity analysis in Sections 4.5 and 4.6,
respectively. Moreover, we provide in-depth analyses of the loyal
node discovery and loyal node emphasis in Sections 4.7 and 4.8,
respectively. Furthermore, in Section 4.9, We verify the general-
ization of LoyalDE by transferring it to the graph classification
task. Finally, we analyze the node loyalty distribution of typical

graphs in Section 4.10.
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Algorithm 1 Training GNNs for Semi-supervised Node Classifica-
tion using LoyalDE Strategy.
Input: attributed graph G = (V, E,X), labeled node set Vlabeled,

unlabeled node set Vunlabeled, node label matrix Y , FT-Score
trade-off parameter α, soft label diffusion times K , the
boundary of modified training weights wmin and wmax.

1: Train vanilla GNN model via optimizing Eq. (4);
2: Employ vanilla GNN to obtain the predicted soft label Ŷ ;
3: Conduct K-rounds soft label diffusion to obtain Ŷ D via Eq. (5);

4: Train adaptive scaler via optimizing Eq. (7);
5: Obtain personalized scaling temperature T via Eq. (6)
6: Employ personalized scaling temperature T and predicted soft

label Ŷ to compute the scaled soft label Ŷ S
7: Obtain the expanded training set V∗

labeled via Eq. (8) and Eq. (9).

8: Compute the FT-Score for each node in the expanded training
set V∗

labeled via Eq. (3);
9: Obtain modified weight for each node according to their

FT-Score rank via Eq. (10);
0: Train loyalty-aware GNN model via optimizing Eq. (11);
1: Employ the loyalty-aware GNN model to obtain the predicted

label Ŷ L;
utput: predicted label Ŷ L.

Table 2
Statistics of the five public benchmark datasets for node classification.
Dataset #Nodes #Features #Edges #Classes

Cora 2708 1433 5278 7
CiteSeer 3327 3703 4552 6
PubMed 19,717 500 44,324 3
CoraFull 19,793 8710 63,421 70
OGB-Arxiv 169,343 128 1,166,243 40

4.1. Datasets

We conduct experiments on five public benchmark datasets,
including Cora, CiteSeer, PubMed, CoraFull, and OGB-Arxiv, to
verify the performance of LoyalDE. These datasets originate from
the commonly used citation networks (Hu et al., 2020; Sen et al.,
2008). Each dataset owns the complete information of the at-
tributed graph (i.e., topological structure, node attributes, and
node labels). Nodes represent documents, and edges represent
reference links. It is worth noting that the OGB-Arxiv dataset is
a directed graph, and we preprocess it into an undirected graph
before GNNs training. Table 2 shows the statistics of the above
datasets.

4.2. Baselines

Since our proposed LoyalDE is a model-agnostic hot-plugging
training strategy for semi-supervised node classification, we se-
lected three representative GNNs as our vanilla GNN model:

• GCN (Kipf & Welling, 2016) This method employs the Cheby-
shev first-order convolutions based on spectral theory to
capture the global graph structure and learn node embed-
dings.

• GAT (Veličković et al., 2017) This method adaptively adjusts
the learning weight of the central node to different neighbor
information through the learnable attention coefficient to
effectively learn the node embeddings.

• GraphSAGE (Hamilton et al., 2017) This method samples

a fixed number of neighbors for each central node and
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Table 3
Experimental results of node classification with baselines on the Cora, CiteSeer, PubMed and CoraFull datasets about test accuracy (%).
Dataset Cora CiteSeer PubMed CoraFull

Loyal proportion 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

GCN 77.1 79.1 82.3 66.9 69.3 71.0 74.7 76.7 79.8 57.0 58.5 60.7
GCN (Self-Training) 78.5(+1.4%) 78.9(−0.2%) 77.8(−4.5%) 63.6(−3.3%) 64.6(−4.7%) 67.9(−3.1%) 75.7(+1.0%) 77.3(+0.6%) 78.6(−1.2%) 57.7(+0.7%) 58.6(+0.1%) 59.4(−1.3%)
GCN (Co-Training) 77.9(+0.8%) 78.3(−0.8%) 81.2(−1.1%) 70.2(+3.3%) 70.8(+1.5%) 72.0(+1.0%) 80.3(+5.6%) 82.2(+5.5%) 80.8(+1.0%) 57.7(+0.7%) 59.0(+0.5%) 57.8(−2.9%)
GCN (LoyalDE) 84.6(+7.5%) 83.5(+4.4%) 85.5(+3.2%) 71.1(+4.2%) 75.0(+5.7%) 74.1(+3.1%) 83.5(+8.8%) 83.2(+6.5%) 83.3(+3.5%) 59.5(+2.5%) 60.4(+1.9%) 62.3(+1.6%)
GAT 72.3 76.9 80.3 65.6 68.8 69.0 74.7 76.9 81.5 55.8 56.5 58.7
GAT (Self-Training) 68.3(−4.0%) 70.2(−6.7%) 75.0(−5.3%) 68.8(+3.2%) 64.8(−4.0%) 69.6(+0.6%) 54.9(−19.8%) 76.2(−0.7%) 77.6(−3.9%) 56.9(+1.1%) 58.7(+2.2%) 59.2(+0.5%)
GAT (Co-Training) 75.9(+3.6%) 77.1(+0.2%) 80.4(+0.1%) 69.8(+4.2%) 70.7(+1.9%) 70.8(+1.8%) 80.8(+6.1%) 81.5(+4.6%) 80.9(−0.6%) 56.3(+0.5%) 55.2(−1.3%) 56.5(−2.2%)
GAT (LoyalDE) 79.6(+7.3%) 81.0(+4.1%) 84.0(+3.7%) 71.8(+6.2%) 72.0(+3.2%) 72.1(+3.1%) 82.3(+7.6%) 82.1(+5.2%) 82.6(+1.1%) 57.3(+1.5%) 59.3(+2.8%) 60.1(+1.4%)
GraphSAGE 71.1 72.3 73.3 61.4 64.4 69.4 67.0 69.5 72.7 51.1 54.1 55.2
GraphSAGE (Self-Training) 72.5(+1.4%) 72.2(−0.1%) 71.3(−2.0%) 66.0(+4.6%) 67.7(+3.3%) 66.8(−2.6%) 62.9(−4.1%) 70.5(+1.0%) 72.0(−0.7%) 57.0(+5.9%) 57.8(+3.7%) 58.3(+3.1%)
GraphSAGE (Co-Training) 73.4(+2.3%) 72.7(+0.4%) 73.3(+0.0%) 67.1(+5.7%) 71.5(+7.1%) 69.8(+0.4%) 72.4(+5.4%) 76.1(+6.6%) 79.4(+6.7%) 54.8(+3.7%) 55.3(+1.2%) 56.1(+0.9%)
GraphSAGE (LoyalDE) 77.2(+6.1%) 75.0(+2.7%) 76.3(+3.0%) 69.2(+7.8%) 73.9(+9.5%) 74.5(+5.1%) 76.1(+9.1%) 78.5(+9.0%) 80.7(+8.0%) 58.0(+6.9%) 60.4(+6.3%) 58.5(+3.3%)
conducts information aggregation. We choose GCN as the
aggregator in all experiments.

We further compare the proposed training strategy LoyalDE
ith state-of-the-art training strategies for enhancing GNNs. Brief
escriptions of these methods are presented below:

• Self-Training (Li et al., 2018) This approach combines self-
training with GNNs and expands the training set by collect-
ing the most confident predictions for each class.

• Co-Training (Li et al., 2018) This approach expands the
training set by utilizing random walks to explore the topo-
logical structure of the graph and find the most confident
nodes for each class.

.3. Experimental settings

For the reproducibility of experimental results, we fixed the
andom seed as 2022 in all experiments. For the Cora, CiteSeer,
nd PubMed datasets, the split of validation nodes and test nodes
ollows the Planetoid setting (Yang et al., 2016). For the CoraFull
ataset, we randomly sample 500 validation nodes and 1000 test
odes. For the OGB-Arxiv dataset, the split of validation nodes
nd test nodes follows the original default setting. In order to
eveal the influence of the graph supervision loyalty problem,
or all datasets, we sort nodes not in the validation set and test
et according to their FT-Score. Then, for each class, 20 training
odes are randomly sampled from the top half (as loyal nodes)
nd the bottom half (as disloyal nodes) of the FT-Score according
o a certain loyal proportion (i.e., 0.0, 0.5, 1.0). For each vanilla
NN model (i.e., GCN, GAT, GraphSAGE), we adopt a 2-layer struc-
ure, the dimension of the hidden layer is 64, and the activation
unction is ReLu (Agarap, 2018). Moreover, for each dataset, the
earning rate is set to 1e-2, the maximum number of epochs is
00, and the optimization is realized by the Adam optimizer. For
ora, CiteSeer, and PubMed datasets, the dropout rate is set to
.5, and the weight decay is set to 5e-4. For the CoraFull dataset,
he weight decay is set to 5e-3. In addition, for the proposed
oyalDE training strategy, we introduced four hyper-parameters,
T-Score trade-off parameter α, soft label diffusion times K , and
oundary of modified training weights wmin and wmax, in all
xperiments, we set α = 0.5, and tune K between 2 and 10, wmin
etween 0.2 and 0.5, and wmax between 0.7 and 1.0. In addition,
e perform the hyperparameter search for LoyalDE using the
ptuna framework (Akiba et al., 2019), which only contains K ,
min and wmax. The implementation of all methods is based on
yG and Pytorch frameworks. All experiments are conducted on a
achine with Intel Xeon Gold 5218R CPU, two GeForce RTX 3090
PUs, and 250 GB Memory. The operating environment is Ubuntu
2.04, with CUDA 11.8.
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Table 4
Experimental results of node classification with baselines on the OGB-Arxiv
dataset about test accuracy (%). ‘–’: Run more than 24 h.
Dataset OGB-Arxiv

Loyal proportion 0.0 0.5 1.0

GCN 54.6 58.9 62.8
GCN (Self-Training) 55.2(+0.6%) 59.4(+0.5%) 61.1(−1.7%)
GCN (Co-Training) – – –
GCN (LoyalDE) 62.3(+7.7%) 61.9(+3.0%) 64.1(+1.3%)

GAT 54.1 58.6 63.1
GAT (Self-Training) 57.5(+3.4%) 57.1(−1.5%) 62.0(−1.1%)
GAT (Co-Training) – – –
GAT (LoyalDE) 61.7(+7.6%) 60.9(+2.3%) 63.4(+0.3%)

GraphSAGE 53.5 57.3 60.2
GraphSAGE (Self-Training) 52.7(−0.8%) 56.8(−0.5%) 59.8(−0.4%)
GraphSAGE (Co-Training) – – –
GraphSAGE (LoyalDE) 60.3(+6.8%) 60.1(+2.8%) 63.7(+3.5%)

4.4. Experimental results

The comparative results of the proposed LoyalDE and other
baseline training strategies with several vanilla GNN models are
shown in Tables 3 and 4. Each column in the table represents a
data split. For each data split, we compare the performance of
three vanilla GNNs (GCN, GAT, GraphSAGE) trained using four
different GNN training strategies (vanilla training, Self-Training,
Co-Training, and LoyalDE). We indicate the best-performing train-
ing strategy for each vanilla GNN model in bold and the sub-
optimal performance in underline. Additionally, we report the im-
provement or decrease in performance for each training strategy
compared to vanilla GNNs as subscripts. Moreover, We provide
the detailed settings corresponding to each result in Appendix A.

It can be observed that for each dataset, the performance
of vanilla GNNs gradually improves as the proportion of loyal
nodes in the training set increases, which again illustrates the
significant impact of the graph supervision loyalty problem on
the semi-supervised node classification. After employing the pro-
posed LoyalDE training strategy, the performance of the GNNs
outperforms vanilla training consistently. Particularly, LoyalDE
brings up to 9.1% performance improvement to vanilla GNNs
on the PubMed dataset. Moreover, after performing LoyalDE, the
performance of GNNs is no longer as sensitive to the proportion
of loyal nodes in the training set as vanilla training. This reveals
that through our loyal node discovery and emphasis strategy,
potential loyal nodes are injected into the original training set,
and the model performance can indeed be improved by adjusting
the training weights of loyal nodes.

Compared with the other two training strategies, it can be
found that LoyalDE always maintains superior performance. It
is worth noting that for extreme cases, when all nodes in the
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Table 5
Ablation study on the Cora and CiteSeer datasets about test accuracy (%).
Dayaset Cora CiteSeer

GNN model GCN GAT GraphSAGE GCN GAT GraphSAGE

Loyal proportion 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

w/o Discovery 79.6 80.0 82.0 77.3 80.4 82.3 69.5 70.4 69.8 67.7 72.3 73.5 66.0 67.6 69.9 63.0 69.3 67.7
w/o Emphasis 81.2 80.7 82.4 75.4 77.7 81.7 73.7 72.6 72.6 68.7 73.6 71.4 68.5 70.5 71.3 64.3 70.4 68.0
LoyalDE 84.6 83.5 85.5 79.6 81.0 84.0 77.2 75.0 76.3 71.1 75.0 74.1 71.8 72.0 72.1 69.2 73.9 74.5
Fig. 4. Sensitivity analysis about the soft label diffusion times K .

training set are disloyal nodes, LoyalDE achieves 6.1%∼7.5% per-
formance improvement on the Cora dataset, while Co-Training
only brings 0.8%∼3.6% improvement, which is the suboptimal
method in most cases. Moreover, Self-Training and Co-Training
have a limited or even negative impact on model training in
certain cases (e.g., GAT on the PubMed and CoraFull datasets with
0.0 loyal proportion). Since Self-Training discovers potential high-
confidence unlabeled nodes by utilizing the model’s prediction,
we argue that when the quality of the labeled nodes is poor,
the predicted soft label is likely to be wrong, which will bring
label noise. Moreover, Co-Training employs random walks to dis-
cover potential high-confidence unlabeled nodes near the labeled
nodes. We argue that the poor local homophily around disloyal
nodes will also lead to the random walks injecting label noise
to model training. Furthermore, for large-scale graph datasets
like OGB-Arxiv, Co-Training cannot complete the training in the
stipulated time limit, as it requires large-scale matrix inversion
operation. In contrast, LoyalDE can still achieve efficient perfor-
mance within a short time, indicating its scalability. Moreover,
the primary source of computational overhead in LoyalDE arises
from the calculation of the FT-Score for each node, but this can
be preprocessed to reduce computation.

4.5. Ablation study

In this section, we conduct an ablation study to investigate
each component’s importance in LoyalDE. As mentioned above,
LoyalDE can be divided into the loyal node discovery phase and
the loyal node emphasis phase. Therefore, we remove the loyal
node discovery phase (w/o Discovery for short) and the loyal
node emphasis phase (w/o Emphasis for short), respectively, and
compare their test accuracy with the completed LoyalDE on Cora
and CiteSeer datasets with three vanilla GNNs. Specifically, for
w/o Discovery, we simply conduct the loyal node emphasis to
the original training sets Vlabeled instead of the expanded training
set V∗ obtained by Eq. (9); For w/o Emphasis, we do not
labeled
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modify the training weights of each node in V∗

labeled according
to Eq. (10), the objective function is the vanilla cross-entropy
loss on V∗

labeled, whose labels are ground-truth for the original
labeled nodes, and pseudo labels for the expanded nodes. The
other experimental settings for the ablation study are the same
as the settings introduced in Section 4.3 and Appendix A. The
experimental results of the ablation study are shown in Table 5.

From the experimental results, for different vanilla GNNs, both
removing the loyal node discovery phase and the loyal node
emphasis phase will lead to different degrees of performance
degradation of the LoyalDE training strategy. For the Cora dataset
with the GCN model, removing the loyal node discovery phase
leads to a performance drop of 3.5%∼5.0%; Removing the loyal
node emphasis phase leads to a performance drop of 2.8%∼3.4%.
For the CiteSeer dataset with the GCN model, removing the loyal
node discovery phase leads to a performance drop of 0.6%∼3.4%;
Removing the loyal node emphasis phase leads to a performance
drop of 1.4%∼2.7%. This reveals that both these two components
have a non-negligible impact on the performance of LoyalDE.

4.6. Sensitivity analysis

In this section, we design sensitivity analysis to verify the
effect of different hyperparameter combinations on the perfor-
mance of the proposed LoyalDE. We employ GCN as the vanilla
GNN model and conduct experiments on the Cora datasets with
three different loyal proportions of the training set (i.e., 0.0, 0.5,
1.0).

First, to investigate the sensitivity of the loyal node discovery
phase, we fix wmin and wmax to the settings corresponding to the
best results, and tune K between 2 and 10. The test accuracy
on the Cora dataset with different loyal proportion are shown
in Fig. 4. Experiments reveal that although the performance of
LoyalDE fluctuates with the variation of soft label diffusion times
K , it still tends to be stable between 82.0%∼85.0%, demonstrating
that LoyalDE is insensitive to the value of K and has strong
robustness.

Then, to investigate the sensitivity of the loyal node emphasis
phase, we fix the soft label diffusion times K to the settings
corresponding to the best results and tune wmin between 0.2
and 0.5, and wmax between 0.7 and 1.0. The results of different
loyal proportions on the Cora dataset are shown in Fig. 5. The
experimental results demonstrate that LoyalDE is insensitive to
changes in wmin and wmax. The performance variation of LoyalDE
is stable within 3.0% despite varying the combinations of values
of wmin and wmax, demonstrating that our proposed FT-Score can
effectively measure the labeled node loyalty, and the proposed
annealing mechanism can robustly adjust the training weights of
all labeled nodes. At the same time, it also reveals that the loyal
node emphasis phase can greatly promote GNNs to learn to a
certain extent according to the loyalty of labeled nodes and keep
the performance at a fairly high level.

In conclusion, the proposed training strategy LoyalDE is insen-
sitive to all these hyperparameters and holistically robust.
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Fig. 6. Effectiveness analysis of loyal node discovery.

.7. Analysis of loyal node discovery

In this section, we utilize experiments to evaluate the effec-
iveness of the loyal node discovery phase. As mentioned earlier,
n the loyal node discovery phase, we train an adaptive scaler
o obtain personalized scaling temperature t for each node v ,
i i
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Table 6
The average FT-Score of the original/expanded training sets of Cora
and CoraFull datasets.
Dataset Avg. FT-Score (ori.) Avg. FT-Score (exp.)

Cora 1.77 3.22
CoraFull 2.28 3.10

which will enhance the confidence of loyal nodes, while weaken-
ing the confidence of disloyal nodes. Finally, the scaled soft label
will be used to expand the training set.

We use GCN as the vanilla GNN model and conduct experi-
ments on the Cora dataset with a 0.0 loyal proportion. At each
training epoch of the adaptive scaler before the convergence,
we use the adaptive scaler to calculate the personalized scaling
temperature and expand the training set, and report the average
FT-Score of the expanded training set in Fig. 6(a). Meanwhile, the
training loss of the adaptive scaler is also presented in Fig. 6(b). As
observed, the average FT-Score of the original training set is 1.77.
If we simply use the soft label without adaptive scaling to expand
the training set, the FT-Score will only increase to 2.09. This is
because the original training set contains many disloyal nodes.
Therefore, the confidence in vanilla GNN is high for many disloyal
nodes. In contrast, our proposed adaptive scaler encourages the
confidence of loyal nodes and weakens the confidence of disloyal
nodes. After the training converges, the average FT-Score of the
expanded training set gradually increases to 3.22. Experimental
results demonstrate that the proposed loyal node discovery phase
can effectively discover potential loyal nodes and improve the
quality of supervision information.

Furthermore, we compare the training set average FT-Score
improvements brought by the loyal node discovery phase for the
Cora and CoraFull datasets with 0.0 loyal proportion. Specifically,
the average FT-Score of the original training set Vlabeled is denoted
as Avg.FT − Score(ori), and the average FT-Score of the expanded
training set V∗

labeled is denoted as Avg.FT − Score(exp). The exper-
imental results are shown in Table 6. As observed, for the Cora
dataset (which has 7 classes), the loyal node discovery phase im-
proves the average FT-Score of the training set from 1.77 to 3.22
(almost doubled). In contrast, for the CoraFull dataset (which has
70 classes), the loyal node discovery phase improves the average
FT-Score of the training set from 2.28 to 3.10 (slightly improved).
Since a higher average FT-Score improvement indicates that the
loyal node discovery phase contributes more loyal nodes to the
training set, we argue that it is more challenging to discover loyal
nodes in graphs with more classes.
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Fig. 7. Comparison of HS values of vanilla GCN and loyalty-aware GCN on
disloyal test nodes.

4.8. Analysis of loyal node emphasis

As mentioned earlier, the loyalty node emphasis phase aims
o train a loyalty-aware GNN, which focuses on receiving high-
uality supervision from loyal nodes to obtain well-learned node
epresentations. In this section, we investigate the difference
etween the loyalty-aware GNN and the vanilla GNN in handling
isloyal test nodes.
Since disloyal test nodes have poor local homophily, their

redicted soft label should be different from their neighbors if
he GNN is well-trained to distinguish these nodes. Therefore, for
ach disloyal test node, we compute the average of the predicted
oft label similarity between it and each of its neighbors with
ifferent labels. We denote this as the heterophily similarity (HS).
ormally, HS of node vi is computed as follows:

S(vi) =
1

|Ni|

∑
j∈Ni

1(Y i ̸= Y j)
Ŷ iŶ j

∥Ŷ i∥ ∥Ŷ j∥
, (12)

where Y i is the ground-truth of node vi, Ŷ i is the predicted soft
label of node vi, and 1(·) is the identity function. Notably, different
GNN models will output different predicted soft labels, leading
to different HS values for the same central node. Furthermore, a
lower HS value indicates that the soft label of the central node
can be distinguished from the soft label of its neighbors with
different classes. In other words, the GNN model which has lower
HS values is well-learned.

We use GCN as the vanilla GNN model and conduct experi-
ments on the Cora dataset with a 0.0 loyal proportion. Specifically,
we randomly select five nodes from the FT-Score bottom half of
the test node set (i.e., disloyal test nodes). Then, we report the HS
values of these nodes every 20 epochs during the training process
of the vanilla GNN and the loyalty-aware GNN, respectively. The
experimental results are shown in Fig. 7. As observed, for disloyal
test nodes, loyalty-aware GNN always achieves lower HS values
than vanilla GNN, which demonstrates that loyalty-aware can
effectively distinguish disloyal test nodes from their neighbors
with different labels.

4.9. Generalization

As graph supervision loyalty is a general problem in graph
machine learning, it is natural to consider transferring LoyalDE to
the graph classification task with slight modifications. We provide
a detailed explanation and algorithm for the transferred LoyalDE
in Appendix B.

We conduct experiments on three benchmark graph classifi-
cation datasets, including PROTEINS, ENZYMES (Borgwardt et al.,
2005), and MUTAG (Debnath et al., 1991). All these datasets
originate from the biochemical field. Each dataset contains mul-
tiple graphs with graph labels. Table 7 shows the statistics of
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Table 7
Statistics of the three public benchmark datasets for graph classification. ‘∼’
denotes the average number.
Dataset #Graphs #Nodes #Edges #Features #Classes

PROTEINS 1113 ∼39.1 ∼145.6 3 2
ENZYMES 600 ∼32.6 ∼124.3 3 6
MUTAG 188 ∼17.9 ∼39.6 7 2

Table 8
Experimental results of graph classification on the PROTEINS, ENZYMES, and
MUTAG datasets about test accuracy (%).
Dataset PROTEINS ENZYMES MUTAG

GCN 69.7 27.5 80.2
GCN (LoyalDE) 70.6(+0.9%) 32.1(+4.6%) 85.5(+5.3%)

GAT 69.9 24.1 82.9
GAT (LoyalDE) 70.4(+0.5%) 25.0(+0.9%) 89.5(+6.6%)

GraphSAGE 71.3 24.5 77.6
GraphSAGE (LoyalDE) 71.7(+0.4%) 26.3+(1.8%) 81.6(+4.0%)

the above datasets. For all datasets, we employ one-layer GCN,
GAT, and GraphSAGE as our GNN model, connected with three
fully connected layers, all the hidden layer dimensions are set
to 64, and we adopt mean pooling as our READOUT function.
Moreover, for all datasets, the training, validation, and test set are
randomly sampled according to the ratio of 0.2: 0.4: 0.4. The other
experimental settings are the same as the node classification task
settings presented in Section 4.3.

The experimental results are presented in Table 8. We also
provide the detailed settings corresponding to each result in
Appendix A. It can be found that the transferred LoyalDE training
strategy consistently improves the performance of GCN on the
graph classification tasks. It is worth noting that LoyalDE has
a significant improvement on the MUTAG dataset (up to 6.6%).
This further demonstrates that the graph supervision loyalty is a
generality problem and the LoyalDE training strategy can signifi-
cantly improve the performance of GNNs in multiple downstream
tasks.

4.10. Node loyalty distribution of typical graphs

In this section, we briefly explore the statistical characteristics
of node loyalty of typical graphs, aiming to answer this question:
for a typical graph, do most nodes tend to be loyal?

We conduct experiments on the Cora, CiteSeer, PubMed, Cora-
Full, and OGB-Arxiv datasets. Specifically, for each dataset, we
divide the FT-Score of all nodes into 1000 sub-intervals at equal
intervals and count the number of nodes in each sub-interval. The
experimental results are shown in Fig. 8. The x-axis represents
FT-Score, and the y-axis represents the number of nodes in each
sub-interval. Experimental results demonstrate that for a typical
graph, the FT-Score (loyalty) of most nodes is at a low value, and
as FT-Score (loyalty) increases, the number of nodes decreases
significantly. In other words, most nodes tend to be disloyal.

5. Conclusion

In this paper, we investigate the graph supervision loyalty
problem. To the best of our knowledge, we are the first to define
the graph supervision loyalty problem and demonstrate its effect
on the performance of GNNs. To this end, we devise a novel node
loyalty measure FT-Score, which considers both the topology
and feature similarity of a node. Moreover, we propose a novel
model-agnostic hot-plugging training strategy LoyalDE, which
can discover and emphasize potential nodes with high loyalty
during model training to improve the performance of GNNs. The
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Fig. 8. FT-Score distribution of five datasets under α = 0.5.
Table 9
The average FT-Score of the training set on the Cora and CiteSeer datasets.
Dataset Cora CiteSeer

Loyal proportion 0.0 0.5 1.0 0.0 0.5 1.0

Avg. FT-Score 1.77 3.23 5.07 1.27 2.46 3.06

experimental results on the semi-supervised node classification
task demonstrate that LoyalDE significantly improves the perfor-
mance of GNNs and outperforms several state-of-the-art training
strategies for enhancing GNNs’ performance. Furthermore, we
transfer the LoyalDE to the graph classification task and verify its
generalization.
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ppendix A. Details about datasets and experiments

For the node classification task, we split the Cora, CiteSeer,
ubMed, CoraFull, and OGB-Arxiv datasets according to the loyal
roportion of 0.0, 0.5, and 1.0. For the split data, the average FT-
core of the training set is shown in Tables 9, 10, 11. In addition,
e verified the effectiveness of LoyalDE on the three vanilla GNN
odels, including GCN, GAT, and GraphSAGE. The parameters
orresponding to the best performance are shown in Tables 12,
3, 14, 15, 16, 17, 18, 19, 20.
For the graph classification task, we split the PROTEINS, EN-

YMES, and MUTAG datasets according to the fixed train-valid-
est split ratio (0.2:0.4:0.4). We verified the effectiveness of the
ransferred LoyalDE on three vanilla GNN models, including GCN,
AT, and GraphSAGE. The parameters corresponding to the best
erformance are shown in Tables 21, 22, 23.
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Table 10
The average FT-Score of the training set on the PubMed and CoraFull datasets.
Dataset PubMed CoraFull

Loyal proportion 0.0 0.5 1.0 0.0 0.5 1.0

Avg. FT-Score 3.64 5.60 7.85 2.28 4.49 6.43

Table 11
The average FT-Score of the training set on the OGB-Arxiv dataset.
Dataset OGB-Arxiv

Loyal proportion 0.0 0.5 1.0

Avg. FT-Score 3.00 5.49 18.07

Table 12
Hyperparameter settings that obtain the best results of LoyalDE on the Cora and
CiteSeer datasets with GCN model.
Dataset Cora CiteSeer

Loyal proportion 0.0 0.5 1.0 0.0 0.5 1.0

K 7 7 8 10 7 8
wmin 0.20 0.25 0.25 0.25 0.35 0.25
wmax 0.80 0.85 0.85 0.90 1.00 0.80

Table 13
Hyperparameter settings that obtain the best results of LoyalDE on the PubMed
and CoraFull datasets with GCN model.
Dataset PubMed CoraFull

Loyal proportion 0.0 0.5 1.0 0.0 0.5 1.0

K 9 10 4 2 2 2
wmin 0.30 0.50 0.45 0.45 0.30 0.45
wmax 0.80 0.80 0.85 1.00 0.85 0.85

Table 14
Hyperparameter settings that obtain the best results of LoyalDE on
the OGB-Arxiv dataset with GCN model.
Dataset OGB-Arxiv

Loyal proportion 0.0 0.5 1.0

K 5 4 6
wmin 0.25 0.20 0.35
wmax 0.80 0.80 0.85

Table 15
Hyperparameter settings that obtain the best results of LoyalDE on the Cora and
CiteSeer datasets with GAT model.
Dataset Cora CiteSeer

Loyal proportion 0.0 0.5 1.0 0.0 0.5 1.0

K 5 2 2 2 10 2
wmin 0.30 0.25 0.30 0.25 0.30 0.35
wmax 0.85 1.00 0.90 0.90 0.85 0.80

Appendix B. Explanation and algorithm of transferred LoyalDE

For the graph classification task, since each training/test sam-
ple is an entire graph instead of a single node, there is no need
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Table 16
Hyperparameter settings that obtain the best results of LoyalDE on the PubMed
and CoraFull datasets with GAT model.
Dataset PubMed CoraFull

Loyal proportion 0.0 0.5 1.0 0.0 0.5 1.0

K 10 6 3 2 2 2
wmin 0.35 0.45 0.40 0.40 0.40 0.35
wmax 0.85 0.85 0.95 1.00 0.85 0.80

Table 17
Hyperparameter settings that obtain the best results of LoyalDE on
the OGB-Arxiv dataset with GAT model.
Dataset OGB-Arxiv

Loyal proportion 0.0 0.5 1.0

K 7 4 5
wmin 0.35 0.25 0.35
wmax 0.90 0.85 0.80

Table 18
Hyperparameter settings that obtain the best results of LoyalDE on the Cora and
CiteSeer datasets with GraphSAGE model.
Dataset Cora CiteSeer

Loyal proportion 0.0 0.5 1.0 0.0 0.5 1.0

K 10 3 10 10 10 3
wmin 0.25 0.30 0.20 0.30 0.25 0.20
wmax 1.00 1.00 0.85 0.85 0.85 0.90

Table 19
Hyperparameter settings that obtain the best results of LoyalDE on the PubMed
and CoraFull datasets with GraphSAGE model.
Dataset PubMed CoraFull

Loyal proportion 0.0 0.5 1.0 0.0 0.5 1.0

K 10 3 6 2 2 3
wmin 0.35 0.20 0.35 0.40 0.25 0.20
wmax 1.00 0.95 0.80 1.00 0.80 0.80

Table 20
Hyperparameter settings that obtain the best results of LoyalDE on
the OGB-Arxiv dataset with GraphSAGE model.
Dataset OGB-Arxiv

Loyal proportion 0.0 0.5 1.0

K 6 5 8
wmin 0.45 0.20 0.45
wmax 0.90 0.80 0.85

Table 21
Hyperparameter settings that obtain the best results of transferred LoyalDE on
the PROTEINS, ENZYMES, and MUTAG datasets with GCN model.
Dataset PROTEINS ENZYMES MUTAG

wmin 0.35 0.25 0.45
wmax 0.90 0.80 0.85

Table 22
Hyperparameter settings that obtain the best results of transferred LoyalDE on
the PROTEINS, ENZYMES and MUTAG datasets with GAT model.
Dataset PROTEINS ENZYMES MUTAG

wmin 0.25 0.30 0.25
wmax 0.90 0.80 0.80

to employ the loyal node discovery phase to expand the training
node set. However, we can still encourage GNNs to obtain high-
quality supervision from loyal nodes. Thus, we modified our loyal
node emphasis phase to adapt to the graph classification task.
Specifically, we compute the average FT-score of all nodes in an
729
Table 23
Hyperparameter settings that obtain the best results of transferred LoyalDE on
the PROTEINS, ENZYMES, and MUTAG datasets with GraphSAGE model.
Dataset PROTEINS ENZYMES MUTAG

wmin 0.45 0.20 0.35
wmax 0.85 0.95 0.80

entire graph as the graph’s loyalty. The average FT-Score of graph
G = (V, E,X) is denoted as F̃T (G), which is computed as follows:

F̃T (G) =
1

|V|

∑
i∈V

∑
j∈Ni

α
xixj

∥xi∥ ∥xj∥
+ (1 − α)

|Ni ∩ Nj|

|Ni ∪ Nj|
, (13)

here α is the trade-off parameter to perform linear weighting
n feature similarity and topology similarity. Then, the graphs
ith a higher average FT-score (higher average node loyalty) will
e given larger training weights. The modified training weight of
abeled graph Gi is computed as follows:

i = wmin +
1
2
(wmax − wmin)(1 − cos (

Rank(F̃T (Gi))
|Glabeled|

π )), (14)

here wmin and wmax are hyperparameters used to adjust the
ower and upper bounds of the training weights, Rank(F̃T (Gi)) ∈

1, |G∗

labeled|] is the average FT-Score non-decreasing rank of graph
i among labeled graph set Glabeled.
Finally, the objective function of GNNs for graph classification

s calculated as follows:

GC = −

∑
i∈Glabeled

wi

C∑
k=1

Y i,k log(Ŷ i,k), (15)

where C is the number of graph classes, Y is the ground-truth,
and Ŷ is the predicted soft label of GNNs.

The algorithm of transferred LoyalDE for the graph classifica-
tion task is presented in Algorithm 2.

Algorithm 2 Training GNNs with LoyalDE Strategy on the Graph
Classification Task.
Input: attributed graph set G, labeled graph set Glabeled, unlabeled

graph set Gunlabeled, graph label matrix Y , FT-Score trade-off
parameter α, the boundary of modified training weights wmin
and wmax.

1: Compute the average FT-Score for each labeled graph via Eq.
(13);

2: Obtain modified weight for each labeled graph according to
their average FT-Score rank via Eq. (14);

3: Train GNN model via optimizing Eq. (15);
4: Employ the GNN model to obtain the predicted graph label Ŷ ;
utput: predicted label Ŷ .
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