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ABSTRACT
Self-supervised recommendation (SSR) has achieved great success

in mining the potential interacted behaviors for collaborative fil-

tering in recent years. As a major branch, Contrastive Learning

(CL) based SSR conquers data sparsity in Web platforms by con-

trasting the embedding between raw data and augmented data.

However, existing CL-based SSR methods mostly focus on contrast-

ing in a batch-wise way, failing to exploit potential regularity in the

feature-wise dimension, leading to redundant solutions during the

representation learning process of users (items) fromWebsites. Fur-

thermore, the joint benefits of utilizing both Batch-wise CL (BCL)

and Feature-wise CL (FCL) for recommendations remain underex-

plored. To address these issues, we investigate the relationship of

objectives between BCL and FCL. Our study suggests a cooperative

benefit of employing both methods, as evidenced from theoretical

and experimental perspectives. Based on these insights, we pro-

pose a dual CL method for recommendation, referred to as RecDCL.

RecDCL first eliminates redundant solutions on user-item positive

pairs in a feature-wise manner. It then optimizes the uniform distri-

butions within users and items using a polynomial kernel from an

FCL perspective. Finally, it generates contrastive embedding on out-

put vectors in a batch-wise objective. We conduct experiments on

four widely-used benchmarks and an industrial dataset. The results

consistently demonstrate that the proposed RecDCL outperforms

the state-of-the-art GNNs-based and SSL-based models (with up to

a 5.65% improvement in terms of Recall@20), thereby confirming

the effectiveness of the joint-wise objective. All source codes used

in this paper are publicly available
1
.
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Relevance to the Web and to the track. Recommendation sys-

tems are prevalent in online Web platforms (e.g., e-commerce rec-

ommendation, music or video recommendation), aiming to mine

the potential interactions. This work focuses on exploring embed-

ding information and eliminating redundant solutions for users and

1
https://anonymous.4open.science/r/RecDCL-FC33/

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Submission to WWW ’24, May 13–17, 2024, Singapore
© 2023 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $XX.00

https://doi.org/XXXXXXX.XXXXXXX

items in online platforms- - -the representation methods of the Web

data that have been previously caused- - -by designing RecDCL, a

dual contrastive learning method to facilitate the development of

Web recommendation systems with experiments on Beauty, Food,

Game, Yelp, and online payment data. RecDCL directly corresponds

to the topics of "recommender systems" in the CFP of User Modeling
and Recommendation track.

1 INTRODUCTION

Negative pair

Raw embedding

Optimization with FCL

Optimization with BCL

Optimization with BCL+FCL

Figure 1: The motivating example that shows the effect for
a negative pair in BCL, FCL, and BCL+FCL, where the light-
shaded symbols indicate potentially possible solutions. In
this example, BCL (top right) tends to align the negative pair on
a straight line, i.e., even distribution in a circle; FCL (bottom left)
mostly encourages the two representations to be orthogonal; BCL+FCL
(bottom right) drives the two samples to saturate on either the 𝑥 axis
or the 𝑦 axis. Note that using either BCL alone or FCL alone will result
in infinite potential solutions. In contrast, combining BCL and FCL
yields only four possible solutions: {(0, 1), (0,−1)}, {(0,−1), (0, 1)},
{(1, 0), (−1, 0)} and {(−1, 0), (1, 0)}, which cancels the redundant
solutions but never misses an optimal solution, and thus is intuitively
a more reasonable regularization compared with BCL alone or FCL
alone. High-dimensional cases are analogous.

Contrastive learning (CL) [18] is known as a major branch of

self-supervised learning. The fundamental idea behind CL is to ar-

tificially augment more supervised instances and conduct a pretext

task with augmented data, addressing the issue of data sparsity. In

recent years, CL-based collaborative filtering (CF) has been pro-

posed and achieved great success to mine interacted records from

Web systems for recommendation [22, 33, 37, 42, 43, 49].
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In general, CL-based collaborative filtering methods focus on

batch-wise objective functions. Batch-wise objectives aim to maxi-

mize the similarity of embedding between positive pairs (diagonal)

while minimizing that of negative pairs (off-diagonal). A typical

kind of batch-wise based CF methods apply BPR loss [28] to pre-

dict the users’ preferences on multiple interacted Web platforms

(e.g., e-commerce, music, video), such as graph neural networks

(GNNs)-based models (e.g., PinSAGE [40], LightGCN [14], and

ApeGNN [46]) and self-supervised learning (SSL)-based models

(e.g., SGL [37] and SimGCL [42]). In particular, these methods usu-

ally require both the user-item interacted pairs and the negative

counterparts generated by negative sampling. However, since the

negative sampling scheme may mistakenly treat “positive but unob-

served” pairs as negative pairs, there exist critical limitations in the

performance of these methods. Moreover, some recent batch-wise

CL (BCL) recommendation methods (e.g., BUIR [22], CLRec [49],

and DirectAU [33]) point out that more robust improvements can

be obtained without negative sampling for Web recommendation

systems. However, these BCL methods may lead to trivial
constant solutions since they fail to leverage embedding in-
formation of users and items fromWeb platforms, which is
illustrated in Figure 1.

Table 1: Critical comparison between BCL methods, FCL
methods, and RecDCL.

Models Embedding Information Sample Information Redundant Solution Distribution

BCL % ! ! Even

FCL ! % % Orthogonal

RecDCL ! ! % Even

To address this issue, we investigate CL-based methods in vari-

ous domains and conclude their critical differences in Table 1. The

objective functions of CL usually fall into two categories: batch-

wise objectives and feature-wise objectives. As for the feature-wise

objectives, existing works have attracted full attention in the com-

puter vision (CV) domain. In particular, feature-wise CL methods

such as Barlow Twins [44] and VICREG [1] have been devoted to

investigating the importance of embedding vectors and proposing

novel feature-wise objective functions. These methods maximize

the variability of the embeddings by decorrelating the components

in the feature-wise dimension, which can avoid collapse [35] and

yield the desired performance. However, as shown in Figure 1,
these FCL methods ignore important information provided
in batch-wise objectives and lead to orthogonal distribution.
In light of this, a meaningful question then arises: Is there an effective
optimization objective between batch-wise CL and feature-wise CL
for self-supervised recommendations? Regarding this, CL4CTR [34]

proposes feature alignment and field uniformity and masks feature

and dimension information to address the "long tail" distribution

of feature frequencies for CTR prediction. However, previous
studies [34, 35] only explored the connection between BCL
and FCL, there has been a lack of a native interpretation to
connect them and little effort has been made to understand
the effect of combining them.

To answer the above question, we investigate a native connection

of the objective between the batch-wise CL and the feature-wise CL

(Figure 1 and Observation 3.1) and present a perspective to show

a cooperative benefit by using them both (Observation 3.2) from

the perspective of theory and experiment. Based on these analyses,

we propose a dual CL method, referred to as RecDCL. RecDCL

joints feature-wise objectives and batch-wise objectives for self-

supervised recommendations. On one hand, RecDCL optimizes

the feature-wise CL objective (FCL) by eliminating redundancy

between users and items. Especially, FCL captures the distribution

of user-item positive pairs by measuring a cross-correlation ma-

trix and optimizes user (items) distribution via polynomial kernel.

On the other hand, as a batch-wise dimension, we design basic

BCL and advanced BCL to enhance the robustness of the repre-

sentations, which the latter combines historical embedding with

current embeddings and generates contrastive views via online

and target networks. Extensive experiments validate that RecDCL

outperforms the state-of-the-art GNN-based and SSL-based models

(by up to 5.34% on Beauty), showing the effectiveness of jointly

optimizing the feature-wise and batch-wise objectives.

The main contributions of this work are as follows:

• We theoretically reveal a native connection of the objective be-

tween feature-wise CL and batch-wise CL, and demonstrate a

cooperative benefit by using them both from theoretical and

experimental perspectives.

• Based on the above analysis, we propose a dual CL method

named RecDCL with joint training objectives in feature-wise

and batch-wise ways to learn informative representations.

• We conduct extensive experiments on four public datasets and

one industrial dataset to show the effectiveness of the pro-

posed RecDCL. Compared to multiple state-of-the-art methods,

RecDCL achieves significant performance improvements up to

5.34% in terms of NDCG@20 on Beauty dataset and 5.65% in

terms of Recall@20 on the Yelp dataset.

2 PRELIMINARIES
This section briefly introduces three closely related technologies:

batch-wise collaborative filtering, batch-wise contrastive learning,

and feature-wise contrastive learning.

2.1 Batch-wise Collaborative Filtering
Let U, I and R of a user-item bipartite graph G be the user set,

item set and interactions between users and items. A collaborative

filtering method aims to rank all items and predict the possible

items that the user will interact with next. A popular architecture

for collaborative filtering is GCN. Given the initial embedding e𝑢
and e𝑖 for user 𝑢 and item 𝑖 , GCN aims to iteratively perform neigh-

borhood aggregation and update node representation on G. In each

iteration, a user node 𝑢 aggregates the neighbors’ representation

of the (𝑙 − 1)-th layer, with which e(𝑙−1)𝑢 is updated into e(𝑙 )𝑢 . The

same update rule applies to an item node 𝑖 . After the 𝐿-layer it-

eration, the final ranking score between 𝑢 and 𝑖 is calculated via

the inner product of their representations, i.e., 𝑦𝑢,𝑖 = e(𝐿)𝑢 e(𝐿)
𝑖

. The

optimization objective is to push 𝑦𝑢,𝑖 closer to the ground truth

𝑦𝑢𝑖 in a point-wise manner. As a representative implementation,

pairwise Bayesian Personalized Ranking (BPR) [28] enforces the

predicted score of positive interaction is higher than its negative

2
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counterpart as follows:

L =
∑︁

(𝑢,𝑖, 𝑗 ) ∈O
− log𝜎 (𝑦𝑢,𝑖 − 𝑦𝑢,𝑗 ), (1)

where O is the training data, (𝑢, 𝑖) is the observed interaction, (𝑢, 𝑗)
is the unobserved interaction, and 𝜎 is sigmoid function.

2.2 Batch-wise Contrastive Learning (BCL)
Due to the marginal improvements in existing BPR loss, a self-

supervised learning paradigm has achieved great success in com-

puter vision and natural language understanding [4, 7, 12]. Some

recent studies often focus on contrastive learning dominant in the

SSL-based paradigm, typically InfoNCE Loss in SGL [37], which

mainly relies on the idea of applying graph augmentations on graph

structure. Suppose that there are two augmented views of nodes,

the views of the same node are regarded as the positive pairs, i.e.,

𝑧
′
𝑢 , 𝑧

′′
𝑢 , and the views of any different nodes as the negative pairs,

i.e., 𝑧
′
𝑢 , 𝑧

′′
𝑣 (𝑢, 𝑣 ∈ U, 𝑢 ≠ 𝑣). InfoNCE Loss that aims to maximize

the consistency of different views of the same node and minimize

that of the views among different nodes are as follows:

L =
∑︁
𝑢∈U

− log

exp(𝑠 (𝑧′𝑢 , 𝑧
′′
𝑢 )/𝜏)∑

𝑣∈U exp(𝑠 (𝑧′𝑢 , 𝑧
′′
𝑣 )/𝜏)

, (2)

in which 𝑠 (·) means the similarity between two representation

vectors. Afterwards, Cosine Contrastive Loss in BUIR [22] and

SelfCF [50], Alignment and Uniformity Loss in DirectAU [33])

bring more significant recommendation performance improve-

ments. Among them, it should be particularly pointed out that

the nowadays CL-based models (e.g., BUIR and DirectAU) perform

top-𝐾 recommendation tasks without negative sampling, which en-

forces faster convergence and better recommendation performance.

2.3 Feature-wise Contrastive Learning (FCL)
Recent studies (e.g., Barlow Twins [44] and VICREG [1]) in con-

trastive representation learning emphasize the importance of rep-

resentations in feature-wise objectives. Given two batches of per-

turbed views, Barlow Twins first feeds these inputs into an en-

coder and produces batches of representations Z and Ẑ, respec-
tively. Then, it optimizes an innovative loss function by building a

cross-correlation matrix C between Z and Ẑ as follows

L =
∑︁
𝑚

(1 − C𝑚𝑚)2 + 𝜆
∑︁
𝑚

∑︁
𝑛≠𝑚

(C𝑚𝑛)2 . (3)

The first term, also called the invariance term, aims to make the

diagonal values be close to 1 and keep the embedding invariant

even if applying distortions. On the other hand, the redundancy re-

duction term is defined to make the off-diagonal elements be closed

0 and decorrelate each dimension representation of the embedding.

In our work, we will explore contrastive representation learning

via these two items for collaborative filtering.

3 UNDERSTANDING BCL AND FCL
Since BCL and FCL serve as the cornerstones of this paper, a more

in-depth discussion about them may be warranted before diving

into methodological details. To this end, we first review existing

perspectives and then present our interpretation. We reveal a native

connection between the two CL principles (Observation 3.1) and

discover that combining BCL and FCL intuitively forms a better

regularization which can benefit from high embedding dimensions

(Observation 3.2).

3.1 Existing Perspectives
Many BCL objectives follow a basic form known as InfoNCE [26].

The core idea of InfoNCE is to estimate model parameters by con-

trasting the embedding between raw samples and some randomly

augmented samples, which can be approximately viewed to max-

imize the mutual information estimation between the two input

signals. Towards a more intuitive interpretation, Wang et al. [35]

show that BCL actually optimizes two quantifiable metrics of rep-

resentation quality: alignment of features from positive pairs, and

uniformity of the induced distribution of the (normalized) features

on the hypersphere. The alignment and uniformity principle pro-

vides a nice perspective to understand BCL, which has motivated

many follow-up works [6, 9, 27, 34, 38].

To achieve the desired performance, BCL usually requires some

careful implementation designs such as large batch sizes [4] and

memory banks [12]. To avoid these implementation details, Zbontar

et al. [44] develops the first FCL method named Barlow Twins (BT),

which trains the model via minimizing the redundancy between

the components of representation instead of directly optimizing the

geometry of embedding distribution. Kalantidis et al. [19] indicate

that BT can be seen as a more modern, simpler way to optimize deep

canonical correlation analysis. Tsai et al. [32] relate Barlow Twins

to the Hilbert-Schmidt independence criterion, which suggests

a possibility to bridge the two major families of self-supervised

learning philosophies: non-contrastive and contrastive approaches.

BCL and FCL can be regarded as two dimensions of contrastive

learning. Some recent works have been devoted to revealing the

underlying connection between them. Towards the generalization

ability of CL, Huang et al. [17] develop a mathematical analysis

framework to prove that BCL and FCL enjoy some common advan-

tages. Zhang et al. [47] propose a negative-free contrastive learning

method that combines BCL and FCL, but they fail to clarify the

insight for doing so. Following the principle of maximum entropy

in information theory, Liu et al. [25] propose a maximum entropy

coding loss, which provides a unified perspective to understand

BCL and FCL objectives.

Summary. The explanation for BCL alone [11, 26, 35] or FCL alone
[19, 32, 44] has been well established. In addition, the connection

between BCL and FCL has also been explored from the general-

ization view [17] and the maximum entropy coding theory [25].

However, there still lacks a native interpretation to connect them

without introducing extra knowledge. Furthermore, the efforts to

understand the effect of combining BCL and FCL are almost missing.

We try to answer these two questions next.

3.2 Our Interpretation
This part aims to approach two questions: what is the relation-

ship between BCL and FCL (Cf. Observation 3.1), and why does

combining them work (Cf. Observation 3.2).

Intuitively, BCL and FCL share the same mechanism, i.e., draw-

ing positive pairs close while pushing negative pairs away. The

3
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difference lies in the objects that make up their pairs. The con-

sidered objects are samples for BCL while features for FCL. This

difference seems to endow the two CL objectives with different

effects when optimizing a model. Interestingly, they actually lead

the model to optimize in similar directions under some conditions.

Formally, we conclude our observation as follows with theoretical

analyses provided in A.1.

Observation 3.1. If the two embedding matrices are standard-
ized (i.e., they have mean zero and standard deviation one), then the
objectives of BCL and FCL can be approximately transformed to each
other2.

Observation 3.1 shows that there exists an inherent connection

between BCL and FCL. A follow-up question would be whether it is
necessary to use them both? We provide a perspective below to par-

tially answer this question. The key of our perspective is to consider

the role that negative pairs play in the two objectives. For BCL, it

has been known that pushing the negative pairs away actually ap-

proximately encourages the samples to be evenly distributed in the

embedding space, which together with the positive pair constraint

implicitly enlarges the classification margin [35]. For FCL, the rea-

son for pushing negative pairs away in the feature-wise space may

be not obvious. Although some explanations have been made from

the information theory [1, 21, 25, 44], a more intuitive explanation

can help to understand how this regularization contributes to final

embedding. Therefore, we provide an illustrative example to inter-

pret the effect of BCL, FCL, and BCL+FCL in Figure 1, with main

observations concluded in Observation 3.2.

Observation 3.2. For normalized sample embedding, pushing
negative pairs away has different influences on embedding learning
between BCL and FCL. For BCL, it encourages samples to be evenly
distributed in the embedding space. For FCL, it tends to drive the
representations of samples to be orthogonal. This difference is mainly
due to that BCL encourages the inner product of negative pairs (in the
batch dimension) to be as small as possible; but FCL only enforces the
inner product of negative pairs (in the feature dimension) to be close
to zero, which implicitly encourages the representations of samples (in
the batch dimension) to be orthogonal. If we combine BCL and FCL,
pushing negative pairs away will not only encourage sample repre-
sentations to be evenly distributed in the embedding space but also
help eliminate redundant solutions (Cf. Figure 1)3. This regularity can
benefit embedding learning as the embedding dimension increases4.

3.3 Recommendation Intuition
To validate the effectiveness of regularity in Section 3.2, we conduct

an ablation study to see whether combining BCL and FCL results

in a more desirable embedding distribution. Specifically, we com-

pare the average entropy of the embeddings among FCL, BCL, and

BCL+FCL on the Yelp dataset. Let x denote the embedding of a

sample. We select the top-𝐾 (1024 and 2048) absolute values of x
via two approaches and normalize them into a K-dimensional prob-

ability distribution. The first one is we sort the embedding values

2
The theoretical analysis for Observation 3.1 is provided in Appendix A.1.

3
The theoretical and experimental analysis for Observation 3.2 is provided in Appendix

A.2.

4
Empirical evidence will be provided in Section 3.3.

in a descending way for each sample and obtain the top-𝐾 values,

called each-sample. The second one is we calculate the mean values

in each dimension for all samples, sort the values and obtain the

top-𝐾 indices, and extract the top-𝐾 values for each sample, called

mean-sample. Based on the above step, the entropy of each sample

can be calculated and we average it throughout all samples. The

results are shown in Table 2 and Table 3 (lower average entropy

indicates sharper embedding distribution).

Table 2: The result of each-sample method.

each-sample FCL BCL BCL+FCL

top-1024 ↓ 6.4713 5.7578 5.6576

top-2048 ↓ 6.6666 5.9306 5.8246

Table 3: The result of the mean-sample method.

mean-sample FCL BCL BCL+FCL

top-1024 ↓ 6.1386 5.3328 5.1815

top-2048 ↓ 6.6666 5.9306 5.8246

We can observe that BCL+FCL achieves the smallest average en-

tropy, which demonstrates the embedding distribution of BCL+FCL

is sharper (Cf. the bottom right of Figure 1). Note that no contra-

diction arises between Observation 3.1 and Observation 3.2. The

former reveals the connection between BCL and FCL through some

theoretical approximations and assumptions, while the latter states

that pushing negative pairs away in BCL and FCL can have comple-

mentary benefits. These consequences afford insights into a dual

CL design which motivates our RecDCL.

4 THE RECDCL METHOD
Motivated by the analyses in Section 3, we develop a dual CL frame-

work for recommendation, referred to as RecDCL. RecDCL is mainly

characterized by two recommendation-fitted CL objectives: a Rec-

FCL objective (Section 4.1) for driving the representations to be

orthogonal, and a Rec-BCL objective (Section 4.2) for enhancing

the robustness of the representations. Throughout this section, we

use E𝑈 ∈ R𝐵×𝐹 (E𝐼 ∈ R𝐵×𝐹 ) to denote the user (item) embedding

matrix, and E𝑚,:
𝑈

and E:,𝑛
𝑈

to respectively denote the𝑚-th row and

the 𝑛-th column of E𝑈 , where 𝐵 stands for the number of samples

in a batch and 𝐹 represents the embedding dimension.

4.1 FCL Objective for Recommendation

Eliminate redundancy between users and items. To explore

the alignment in an FCL way, we propose to extend the Barlow

Twins objective function, namely UIBT, for self-supervised recom-

mendations. More specially, we build a cross-correlation matrix

computed from user and item embedding, and make it close to the

identity matrix via invariance term and variance term as shown in

Figure 2. Formally, the cross-correlation matrix between E𝑈 and E𝐼
can be computed as follows:

C𝑚𝑛 =
(E:,𝑚
𝑈

)⊤E:,𝑛
𝐼

∥E:,𝑚
𝑈

∥∥E:,𝑛
𝐼
∥
, (4)

where 1 ≤ 𝑚,𝑛 ≤ 𝐹 denote the feature-wise indices of the embed-

ding matrices. C is a square matrix that has the same dimensions
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Figure 2: The overall framework of RecDCL. In this framework, (a) denotes the cross-correlation matrix to an identity matrix between

users and items in FCL; (b) and (c) stand for the distribution uniformity within users and items in FCL; (d) denotes the random distribution

on user-item positive pairs in BCL; (e) demonstrates the final distribution on users and items produced by a dual CL.

as the encoder’s output. Note that we define the invariance term

and redundancy reduction term with a factor 1/𝐹 that scales the

criterion as a function of the dimension:

L𝑈 𝐼𝐵𝑇 =
1

𝐹

∑︁
𝑚

(1 − C𝑚𝑚)2︸             ︷︷             ︸
invariance

+𝛾
𝐹

∑︁
𝑚

∑︁
𝑚≠𝑛

C𝑚𝑛
2

︸           ︷︷           ︸
redundancy reduction

. (5)

In Eq.5, the invariance term aims to make the diagonal elements

of the matrix C equal to 1 and meet the vector invariance to the

distorted samples. Besides, the redundancy reduction term aims

to make the off-diagonal elements of the matrix C equal to 0 and

reduce the redundancy within the output representation.

Eliminate redundancy within users and items. In addition, to

further enhance the embedding diversity between different features.

We propose a feature-wise uniformity optimization via a polynomial

kernel, namely UUII. The polynomial kernel is the natural feature-

wise way to present samples on the hypersphere. Considering the

possible distribution gap between users and items, we calculate

uniformity separately within the user embedding and the item

embedding. The joint objective can be formulated as

L𝑈𝑈 𝐼𝐼 =
1

2

log

∑︁
𝑚≠𝑛

(𝑎(E:,𝑚
𝑈

)⊤E:,𝑛
𝑈
+𝑐)𝑒 + 1

2

log

∑︁
𝑚≠𝑛

(𝑎(E:,𝑚
𝐼

)⊤E:,𝑛
𝐼
+𝑐)𝑒 ,

(6)

where 𝑎, 𝑐 and 𝑒 are parameters of the polynomial kernel and set to

1, 1𝑒−7 and 4 by default, respectively. Note that feature-wise unifor-
mity loss is only calculated via representations of in-batch samples

since in-batch instances are more consistent with the actual user

and item data distribution. As a result, the user/item distribution

will be uniform, as shown in Figure 2. In addition, the exposure

bias can be reduced by incorporating user/item distribution, which

is illustrated in CLRec [49].

4.2 BCL Objective for Recommendation
Indeed, the proposed BCL objective and the proposed FCL objective

(UIBT and UUII) are designed and evaluated for recommendations.

Basic BCL. To validate the generality, we propose a baseline

that solely combines the basic BCL (DirectAU) and FCL (only

off-diagonal elements) methods. We directly design a summing

loss function called DCL and conduct experiments on four public

datasets. The summing loss function is described as:

L𝐷𝐶𝐿 = L𝐷𝑖𝑟𝑒𝑐𝑡𝐴𝑈 + 𝜆L𝐹𝐶𝐿 (7)

Advanced BCL. As analyzed in Section 3.2, combining the two

dimensions FCL and BCL can intuitively benefit model learning. It

motivates us to further improve optimization via a BCL objective.

Generally, data augmentation can be achieved via a series of mean-

ingful perturbations in many scenarios such as computer vision

and neural language processing. However, positive user-item pairs

in CF need to be preserved for representation invariance and are

difficult to distort for data augmentation. To avoid this issue and

achieve the same effect, as shown in Figure 2, we conduct data

augmentation on output representation and generate contrastive

but related views for representation learning, namely BCL. Owing

to the simple design and effectiveness of LightGCN, we adopt it as

the graph encoder 𝑓𝜃 to conduct node aggregation and propagation.

After generating embedding of each layer and stacking multi-layer

representations, we use historical embeddings [2, 8, 50] to perform

augmentation on output embedding.

For the objective function, a trivial choice would be directly ap-

plying the original InfoNCE introduced in Eq. 2. A recent work

[45] indicates that InfoNCE can be understood under a more gen-

eral framework. It provides a perspective to unify InfoNCE with

another popular SSL method SimSiam, which implicitly performs

CL through the stop-gradient and asymmetric trick. We empirically

find that this implicit CL design achieves better performance and

choose it as our implementation.

Suppose E𝑈 (E𝐼 ) is the current embedding generate by the en-

coder 𝑓𝜃 and E(ℎ)
𝑈

(E(ℎ)
𝐼

) is the historical embedding. The perturbed

representation Ê𝑈 is calculated by combining E(ℎ)
𝑈

and E(ℎ)
𝑈

:

Ê𝑈 = 𝜏E(ℎ)
𝑈

+ (1 − 𝜏)E𝑈 , Ê𝐼 = 𝜏E
(ℎ)
𝐼

+ (1 − 𝜏)E𝐼 , (8)

where 𝜏 is a hyper-parameter that controls the embedding informa-

tion preservation ratio from a prior training iteration. Note that we

perform representation distortion on the historical embedding from

prior training iterations in the target network instead of perturbing
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the input commonly [22] or the current node embedding [41, 42]

directly as used in previous CL-based recommendation methods.

Besides, online and target networks share the same graph en-

coder 𝑓𝜃 in this component, which can reduce the additional mem-

ory and computation cost. Therefore, the optimization of batch-wise

output augmentation can be formulated as follows:

L𝐵𝐶𝐿 =
1

2

𝑆 (ℎ(E𝑈 ), 𝑠𝑔(Ê𝐼 )) +
1

2

𝑆 (𝑠𝑔(Ê𝑈 ), ℎ(E𝐼 )), (9)

where ℎ(·) is a multi-layer perceptron network; 𝑠𝑔(·) is the stop-
gradient operation; and 𝑆 (·, ·) denotes the cosine distance.

4.3 Objective and Training
In a word, the main goal of RecDCL is to design an FCL objective

and an advanced BCL objective that capture embedding importance

and maximize the benefits from a dual CL to encourage embedding

learning, as shown in Figure 2. In practice, we jointly optimize these

three objectives with trade-off hyperparameters 𝛼 and 𝛽 as follows:

L = L𝑈 𝐼𝐵𝑇 + 𝛼L𝑈𝑈 𝐼𝐼 + 𝛽L𝐵𝐶𝐿 . (10)

Finally, we calculate the ranking score function by using the inner

product between user and item representations.

Training Algorithm. Let |U|, |I | and |E | denote the number of

user nodes, item nodes, and edges in a user-item bipartite graph G,

respectively. 𝐵 and 𝐹 stand for the batch size and the feature size.

𝑠 represents the number of epochs and 𝐿 is the number of GCN

layers. The training process is shown in Algorithm 1 and the time

complexity is analyzed in Appendix C.2.

Algorithm 1: The training process of the RecDCL.
Input: 𝑓𝜃 : graph encoder, 𝐿: number of layer.

Output: encoder parameters 𝜃 .

Data: G: user-item bipartite graph,U: user set, I: item set,

R: positive pairs
for each mini-batch with positive pairs (𝑢, 𝑖) ∈ R do

Initialize e(0)𝑢 , e(0)
𝑖

, ∀𝑢 ∈ U,∀𝑖 ∈ I;
Generate e𝑢 and e𝑖 via encoder 𝑓𝜃 (𝑢, 𝐿) and 𝑓𝜃 (𝑖, 𝐿);
Normalize e𝑢 : e𝑢 = e𝑢 /||e𝑢 ||;
Normalize e𝑖 : e𝑖 = e𝑖 /||e𝑖 ||;
Calculate UIBT loss by Eq. 5;

Calculate UUII loss by Eq. 6;

Calculate AUG loss by Eq. 9;

Calculate total loss by Eq. 10.

5 EXPERIMENTS
In this section, we conduct extensive experiments on four public

datasets and one industrial dataset in real-world application to

validate the effectiveness of RecDCL. We introduce the overall

performance and study the influence of each design of RecDCL. We

also describe experimental settings, analyze the efficiency, and give

detailed hyper-parameter sensitivity analysis in Appendix C.

5.1 Overall Performance
In Table 4, we show the overall top-20 performance of all the base-

lines and our RecDCL. Specifically, we highlight the best result in

bold and the second best result in underline, calculate the relative

improvement (%Improv.) for our methods, and show the 𝑝-value in

t-test experiments on each dataset. We give detailed observations

based on these experimental results.

Comparison with MF-based models. From Table 4, we can

observe that SSL-based models except BUIR on Game, particularly

our RecDCL, can obtain superior results on most conditions. This

demonstrates that SSL-basedmodels have remarkable advantages in

the problem of extremely sparsity data. More specifically, BPR-MF

outperforms VAE-based models and GNNs-based models on Beauty

and Food datasets, while the performance of NeuMF is the poorest

on all datasets. This indicates that the VAE-based models and GNNs-

based models can better capture the interactions between users and

items via variational autoencoders and graph neural networks.

Comparison with VAE-based models. Compared to GNNs-

based models, VAE-based models obtain inferior results on Beauty

and Game even though they are effective on Yelp. In contrast, our

RecDCL as well as contrastive learning-based DirectAU are robust

and achieve significantly better on all four datasets. This suggests

that SSL-based models represented by our RecDCL can address the

sample distribution of users and items in user-item interaction well.

Comparison with GNNs-based models. As shown in Table 4,

SSL-based models (CLRec and our RecDCL) are higher than GNNs-

based models in terms of Recall@20 and NDCG@20 on all four

datasets, while BUIR performs well on Beauty and Food datasets. Es-

pecially, our proposed RecDCL exceeds the state-of-the-art GNNs-

based model LightGCN by 17.06%, 17.87%, 6.46%, and 37.49% in

terms of Recall@20 on all four datasets respectively, which verifies

the effectiveness of constructing SSL-based loss function instead

of BPR loss with negative sampling. Moreover, this advantage also

answers the question mentioned in Section 1 that CF-based recom-

mendation models without negative sampling can still be effective.

Comparison with SSL-based models. Particularly, in Table 4,

we show existing batch-wise CL objectives based BUIR, CLRec, and

DirectAU in SSL-based recommendation outperforms the state-of-

the-art GNNs-based methods in CF, although only using positive

user-item pairs to construct contrastive learning loss function. Par-

ticularly, our proposed RecDCL consistently derives promising

results on all four datasets and improves by 1.33%-5.20% and 3.35%-

5.34% in terms of Recall@20, and NDCG@20, which verifies the

effectiveness of incorporating the feature-wise objectives for self-

supervised recommendation in RecDCL. It also meets the viewpoint

in Section 1 that feature-wise CL is worth considering and the the-

oretical analysis in Section 3 about the effective combination of

feature-wise objectives and batch-wise objectives for SSR.

5.2 Study of RecDCL
To investigate the reasons for RecDCL’s effectiveness, we perform

comprehensive ablation experiments to study the necessity of each

component in RecDCL. Considering the limited space, we only

show the analysis on representative datasets (Beauty and Yelp).

The result analysis on Food and Game datasets is represented in

Table 10 of Appendix C.5.

Effect of feature-wise objective UIBT. As discussed in Section

4, UIBT achieves approximate results compared to the base encoder
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Table 4: Overall top-20 performance (% is omitted) comparison with representative models on four datasets (R and N are the
abbreviations for Recall and NDCG).

Models

Dataset Beauty Food Game Yelp

Metrics R@20 N@20 R@20 N@20 R@20 N@20 R@20 N@20

Base Pop 3.25 1.31 5.74 3.40 2.82 1.06 1.58 0.96

MF-based

BPR-MF 14.12 6.62 27.02 21.04 18.16 8.33 6.92 4.29

NeuMF 7.66 3.46 15.28 8.79 10.36 4.28 6.01 3.63

VAE-based

Mult-VAE 11.37 5.46 24.89 20.77 15.50 7.18 9.51 5.84

RecVAE 12.76 6.37 26.69 22.29 17.65 8.38 10.70 6.69

GNNs-based

NGCF 13.27 6.28 26.84 20.96 18.04 8.31 7.29 4.45

LightGCN 13.48 6.25 24.56 16.77 19.20 8.91 8.43 5.23

SSL-based

BUIR 14.60 7.29 28.26 22.19 15.04 6.73 8.08 4.97

CLRec 15.17 7.56 27.64 20.65 20.12 9.60 10.95 6.89

DirectAU 15.43 7.49 28.57 22.41 20.14 9.55 10.97 6.92

DCL 15.59 7.54 28.63 22.52 20.20 9.58 10.99 6.96
%Improv. 1.04% 0.67% 0.21% 0.49% 0.30% 0.31% 0.18% 0.58%

RecDCL 15.78 7.89 28.95 23.27 20.44 9.87 11.59 7.28
%Improv. 2.27% 5.34% 1.33% 3.84% 1.49% 3.35% 5.65% 5.20%

p-value 0.004115 0.000478 0.002255 0.000017 0.264695 0.029848 0.001402 0.006503

1
Note that we tune embedding size from 32 to 2048 and report the best results for all baselines and our method RecDCL. Generally, the embedding size is set by default to 64.

2
Indeed, RecDCL is the very first work to explore the effectiveness of FCL for recommendations. We have looked and found that there are no appropriate baselines for FCL. To

comprehensively compare, we conduct the experiments in ablation studies, that is UIBT for FCL.

model LightGCN in feature-wise objectives. Table 5 shows the

comparison between LightGCN and the components of UIBT on

Beauty and Yelp. We can find that (1) only "w/ UIBT" is better than

LightGCN on Beauty in terms of Recall@20 and NDCG@20/ (2)

To validate the effectiveness of UIBT, we compare results between

"w/ UUII" and "w/ UIBT & UUII". From Table 5, we find that the

latter value is not just higher than LightGCN, and higher than "w/

UUII" on Beauty and Yelp. (3) Similarly, the comparison between "w/

BCL" and "w/ UIBT & BCL" also shows this ascending trend on two

datasets, which again demonstrates the importance of interactions

between users and items either in FCL or BCL.

Table 5: Performance comparison of different designs of
RecDCL on Beauty and Yelp.

Method

Beauty Yelp

R@20 N@20 R@20 N@20

LightGCN 13.48 6.25 8.43 5.28

w/ UIBT 14.78 7.47 9.92 6.18

w/ UUII 1.01 0.50 0.06 0.03

w/ BCL 14.90 7.51 10.08 6.36

w/ UIBT & UUII 14.88 7.43 11.00 6.85

w/ UIBT & BCL 15.64 7.63 10.73 6.78

w/ UUII & BCL 15.16 7.59 7.65 4.66

RecDCL 15.78 7.89 11.59 7.28

%Improv. 17.06% 26.24% 37.49% 37.88%

Effect of feature-wise objective UUII. As shown in Table 5, (1)

Compared to "w/ UIBT" and "w/ BCL", the performance of only

feature-wise UUII, namely "w/ UUII", is extremely poor on Beauty

and Yelp. This finding is similar to DirectAU which only optimizes

uniformity, which just goes to show the importance of optimizing

uniformity. (2) Compared to "w/ UIBT" and "w/ UIBT & UUII", the

performance of "w/ UIBT & UUII" consistently outperforms "w/

UIBT" on Beauty and Yelp datasets. This shows the importance of

sample distribution within users and items for recommendation.

Besides, addressing feature-wise interaction distribution and user

(item) data distribution is vital for performance improvements. (3)

The comparison between "w/ BCL" and "w/ UUII & BCL" shows the

performance improvement given by "w/ UUII". (4) In fact, the UUII

component simulates the real distribution among users (items) and

meets the essential characteristic of contrastive learning. In com-

bination with the above analysis, the UIBT maximizes the similar

representation while minimizing the dissimilar embedding between

users and items of in-batch, and the UUII nomial minimizes the

similarity among users (items) in a feature-wise way.

Effect of batch-wise augmentation BCL. From Table 5, we have

some observations: (1) we first conduct experiments solely on batch-

wise augmentation and find that it is better than base LightGCN on

the Beauty dataset, which shows the benefits of data augmentation

that reinforces the interaction between users and items. (2) To

further study the influence of output augmentation, we compare "w/

UUII" and "w/ UUII & BCL", which demonstrates the effectiveness

of BCL. Note that the performance of "w/ UUII & BCL" is better

than "w/ BCL" even if the performance of only "w/ UUII" is poor,

which again shows the importance of combining interactions with

user (item) distribution. (3) Meanwhile, the comparison between

"w/ UIBT" and "w/ UIBT & BCL" also shows the effectiveness of

BCL on these two datasets.
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5.3 Industrial Results
To further study the effectiveness of our method, we employ

RecDCL on an industrial dataset, which is collected from an online

payment platform. We first extract links between users and retail-

ers from user payment behavior logs in a month, December 2022.

Then, we define users who conduct more than 3 payments as core

users and subsample the users from the core user set. The general

statistics of this dataset are summarized in Table 6.

Table 6: Statistics of payment dataset.

Dataset # Users # Retailers # Inter Density Sparsity

Payment 83,810 23,318 797,828 0.0408% 99.96%

Table 7: Performance of RecDCL on payment platform data.

Method BPR-MF Mult-VAE LightGCN DirectAU RecDCL %Improv.

Recall@20 35.27 31.87 33.48 31.34 36.47 3.40%

NDCG@20 16.61 15.19 15.08 14.07 17.86 7.53%

We conducted an offline experiment on a worker equipped with

NVIDIA-A100 GPU, and 40GB memory. Following the experimental

setting in Section 5, the users’ behaviors are also split into train-

ing/validation/test sets with a ratio of 0.8/0.1/0.1. The main task

focuses on retrieving top-𝑁 business from the item pool and then

recommending them to users. To evaluate the task, we introduce Re-

call@20 and NDCG@20 as metrics, which are carefully considered

in the real industrial platform.

Notice that although the baseline of this platform is BPR-MF, we

also conduct experiments on LightGCN and DirectAU to further

compare our method with others. As shown in Table 4, the overall

effectiveness of DirectAU is better on the private dataset than on

the public datasets. Regarding this, we speculate that the reason

behind this is the long-tail effect of this task is more serious, and

DirectAU has a uniform loss, which may be a little bad in the case of

such a serious long-tail effect. Table 7 demonstrates that our method

performs significantly compared with other baselines in terms of

two metrics Recall@20 and NDCG@20, improving by 3.40% and

7.53% respectively.

6 RELATEDWORK
6.1 Collaborative Filtering
Collaborative filtering plays a vital role in modern recommenda-

tion systems [30]. The key idea of CF is that similar users tend

to have similar preferences on items. To address the issue of data

sparsity in CF, Matrix Factorization (MF) decomposes the original

user-item interacted matrix to the low-dimensional matrix with

user (item) latent features. NeuMF [15] based on a deep neural

network is proposed to learn rich information and compress latent

features. Furthermore, based on the viewpoint that the modeling

capacity of linear factor models often is limited, Liang et al. [23]

introduce the generative model - variational autoencoders (VAEs)

with multinomial likelihood into collaborative filtering tasks and

propose Mult-VAE, which shows excellent performance for top-𝑁

recommendationsmainly owing towell modeling user-item implicit

feedback data. Afterward, RecVAE [31] improves several aspects of

the Mult-VAE, mainly including a novel encoder, novel approach

to setting hyperparameter, and new training strategy, and then

performs well.

With the development of graph neural networks (GNNs), GNNs-

based CF models are widely studied and proposed. The observed

user-item interaction matrix can be built as a bipartite graph, and

GNNs-based models [3, 14, 36] aggregate information from neigh-

bors and capture high-order connection information on graph-

structure data. Take LightGCN [14] as an example, it simplifies

the GNN architecture by removing nonlinear activation as well

as feature transformation based on NGCF [36]. Such methods do

produce relatively ideal results, however, there still remains a tricky

challenge when we are faced with extremely sparse data.

6.2 Contrastive Learning for Recommendation
Recently, self-supervised learning for recommendation has at-

tracted increasing attention and a number of SSL-based CF [22,

24, 33, 37, 39, 49, 50] has achieved competitive results. According

to the learning objective and negative sampling strategy, we divide

existing SSL-based CF into two categories: (1) With sampling:
the state-of-the-art model SimGCL [42] perturbed the current rep-

resentation of each node via random and different noise-based data

augmentation. (2) Without sampling: inspired by MoCo [13],

BUIR [22] proposes an asymmetric structure to learn user and item

representation solely on user-item positive pairs. SelfCF [50] inher-

its the Siamese network structure of SimSiam’s architecture [5] and

optimizes Cosine Similarity loss on output augmentation obtained

in in-batch positive-only data. CLRec [49] adopts InfoNCE loss to

tackle exposure bias for recommendation. DirectAU [33] focuses

on the desired properties of representations from the alignment

and uniformity metrics and optimizes these two properties via a

new loss function in CF. However, none of these works considered

CL-based recommendations from the perspective of feature-wise,

resulting in limited performance. Barlow Twins [44] is the first to

investigate the feature-wise objective in CV domains. Motivated

by Barlow Twins, we study the feasibility of feature-wise objec-

tives and design a dual CL with BCL and FCL objectives. Due to

the prominent results on SSL-based models without sampling, we

follow this design principle to optimize the learning objective.

7 CONCLUSION
In this work, we theoretically reveal the connection of the objective

between BCL and FCL and show a cooperative benefit by using

them both, which motivates us to develop a dual CL called RecDCL

that jointly optimizes BCL and FCL training objectives to learn

informative representations for recommendation. Then we investi-

gate the two desired properties of representation — alignment and

uniformity — in FCL objectives for CF, and perform data augmen-

tation on output vectors for robustness in BCL objective. Extensive

experiments on four public datasets and an industrial dataset show

the superiority of our proposal considering the FCL objectives. We

hope RecDCL could attract the CF community’s attention to the

learning paradigm toward FCL perspective representation prop-

erties. In the future, we will investigate other CL-based training

objectives that also favor feature-wise perspectives to improve ef-

fectiveness and efficiency.
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A MORE DETAILED EXPLANATION
A.1 Connection Between BCL and FCL
The part provides the theoretical analyses on Observation 3.1 in

the main text, which is restated as follows for convenience.

Observation A.1. If the two embedding matrices are standard-
ized (i.e., they have mean zero and standard deviation one), then the
objectives of BCL and FCL can be approximately transformed to each
other.

Our main idea is to transform both BCL and FCL objectives

into matrix forms and then connect them through the algebraic

properties of matrices.

Formally, let Z ∈ R𝑁×𝐷
and Ẑ ∈ R𝑁×𝐷

denote the embedding

matrices of raw samples and the corresponding augmented samples

in a batch, respectively. The BCL objective can be formulated as:

−
𝑁∑︁
𝑖=1

log

©«
exp

(
z⊤
𝑖
ẑ𝑖
)∑𝑁

𝑗=1 exp

(
z⊤
𝑖
ẑ𝑗
) ª®®¬ =

𝑁∑︁
𝑖=1

−z⊤𝑖 ẑ𝑖︸︷︷︸
draw close

+ log
𝑁∑︁
𝑗=1

exp

(
z⊤𝑖 ẑ𝑗

)
︸                 ︷︷                 ︸

push away

.

(11)

Here, we assume that z⊤
𝑖
ẑ𝑗 ∈ [0, 1] for any 1 ≤ 𝑖, 𝑗 ≤ 𝑁 , as the

negative terms contribute little to the log-sum-exponential function.

With this assumption, let us consider a surrogate of R.H.S. in Eq. 11:

𝑁∑︁
𝑖=1

(1 − z⊤𝑖 ẑ𝑖 )
2︸        ︷︷        ︸

draw close

+
∑︁
𝑗≠𝑖

(z⊤𝑖 ẑ𝑗 )
2

︸       ︷︷       ︸
push away

,

(12)

where the push-away term is a reasonable approximation to the

counterpart in Eq. 11 since both the sum-square function and the

log-sum-exponential function relatively enhance larger terms while

weakening smaller terms for non-negative values. With this surro-

gate, we can transform the BCL objective into a matrix form:

𝑁∑︁
𝑖=1

(1 − z⊤𝑖 ẑ𝑖 )
2 +

𝑁∑︁
𝑖=1

∑︁
𝑗≠𝑖

(z⊤𝑖 ẑ𝑗 )
2 (BCL objective surrogate)

=∥I − ZẐ⊤∥2𝐹 = 𝑁 + Tr(ẐZ⊤ZẐ⊤) − Tr(ẐZ⊤) − Tr(ZẐ⊤) .
(13)

On the other hand, with the condition that both Z and Ẑ are stan-

dardized, setting the redundancy reduction weight 𝜆 = 1 in the FCL

objective yields

𝐷∑︁
𝑖=1

(1 −𝐶𝑖𝑖 )2 +
𝐷∑︁
𝑖=1

∑︁
𝑗≠𝑖

(𝐶𝑖 𝑗 )2 (FCL objective)

=∥I − Z⊤Ẑ∥2𝐹 = 𝐷 + Tr(Ẑ⊤ZZ⊤Ẑ) − Tr(Ẑ⊤Z) − Tr(Z⊤Ẑ) .

(14)

Comparing Eq. 13 and Eq. 14, we find that they differ by only a

constant |𝑁 − 𝐷 | if Z⊤Ẑ = Ẑ⊤Z and ZẐ⊤ = ẐZ⊤5
, i.e.,

Tr(ẐZ⊤ZẐ⊤) − Tr(ẐZ⊤) − Tr(ZẐ⊤)

=Tr(ẐZ⊤ZẐ⊤) −
𝑁∑︁
𝑖=1

𝜆𝑖 (Ẑ⊤Z) −
𝑁∑︁
𝑖=1

𝜆𝑖 (Z⊤Ẑ)

=Tr(Ẑ⊤ZZ⊤Ẑ) −
𝐷∑︁
𝑖=1

𝜆𝑖 (Ẑ⊤Z) −
𝐷∑︁
𝑖=1

𝜆𝑖 (Z⊤Ẑ)

=Tr(Ẑ⊤ZZ⊤Ẑ) − Tr(Ẑ⊤Z) − Tr(Z⊤Ẑ),

(15)

where 𝜆𝑖 stands for the 𝑖-th eigenvalue, and the equation from the

second row to the third row holds because Ẑ⊤Z,Z⊤Ẑ, Ẑ⊤Z andZ⊤Ẑ
share exactly the same non-zero eigenvalues [16]. Note that the

conditions Z⊤Ẑ = Ẑ⊤Z and ZẐ⊤ = ẐZ⊤
can be satisfied if Z ≈ Ẑ,

which is mild requirement since the objective of CL naturally leads

to Z ≈ Ẑ. Eq. 15 reveals that, under the assumed conditions, the

objectives of BCL and FCL can be approximately transformed to

each other.

A.2 Joint BCL and FCL
Observation A.2. For normalized sample embedding, pushing

negative pairs away has different influences to embedding learning
between BCL and FCL. For BCL, it encourages samples to be evenly
distributed in the embedding space. For FCL, it tends to drive the
representations of samples to be orthogonal. This difference is mainly
due to that BCL encourages the inner product of negative pairs (in the
batch dimension) to be as small as possible; but FCL only enforces the
inner product of negative pairs (in the feature dimension) to be close
to zero, which implicitly encourages the representations of samples (in
the batch dimension) to be orthogonal. If we combine BCL and FCL,
pushing negative pairs away will not only encourage sample repre-
sentations to be evenly distributed in the embedding space but also
help eliminate redundant solutions (Cf. Figure 1). This regularity can
benefit embedding learning as the embedding dimension increases6.

The key to our interpretation for Observation 3.2 is to consider

the quality of the solution sets resulting from the push-away objec-

tives (for negative pairs) in BCL and FCL: using only BCL or only

FCL would lead to a large number of redundant solutions while

combining BCL and FCL would effectively reduce this redundancy

and never miss an optimal solution. We start with the special case

of one negative pair (the example shown in Figure 1), followed by

a general case of an arbitrary number of negative samples.

Theory-wise. Suppose that z1 ∈ R𝐷 and z2 ∈ R𝐷 are repre-

sentations of a negative pair residing on a hyper-sphere surface

S𝐷−1 ≜ {z ∈ R𝐷 | | |z| |2 = 1}. Then the push-away objective in

BCL and FCL can be respectively formulated as

min

z1,z2∈S𝐷−1
exp(zT

1
z2)︸      ︷︷      ︸

push-away in BCL

≜ min

z1,z2∈S𝐷−1
zT
1
z2, (16)

and

5
These two conditions imply that Tr(ẐZ⊤ZẐ⊤ ) = Tr(Ẑ⊤ZZ⊤Ẑ) , and all Ẑ⊤Z, Z⊤Ẑ,
Ẑ⊤Z and Z⊤Ẑ can be similarly diagonalized.

6
Empirical evidence will be provided in Section C.6.

11



1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Submission to WWW ’24, May 13–17, 2024, Singapore Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

min

z1,z2∈S𝐷−1

𝐷∑︁
𝑖=1

∑︁
𝑗≠𝑖

(𝐶𝑖 𝑗 )2︸          ︷︷          ︸
push-away in FCL

≜ min

z1,z2∈S𝐷−1
| |off-diag(z1z⊤1 + z2z⊤2 ) | |

2

𝐹 ,

(17)

where off-diag(·) denotes a projection operator which preserves

the off-diagonal elements of a matrix. It can be verified that the

optimal solution to (16) and (17) is given by

Z★
B
= {(z1, z2) | z1, z2 ∈ S𝐷−1, z1 = −z2} (18)

and

Z★
F
= {(z1, z2) | z1, z2 ∈ S𝐷−1, off-diag(z1z⊤1 + z2z⊤2 ) = 0}, (19)

respectively. In general, a solution in Z★
B
(cf. the top right of

Figure 1) does not admit a solution in Z★
F
(cf. the bottom left of

Figure 1). However, if z1 is a one-hot vector and z2 = −z1 (cf.

the bottom right of Figure 1), substituting them into (16) and (17)

respectively yields the optimal value -1 and 0, implying that they

exactly fall into the joint solution set Z★
B
∩ Z★

F
≠ ∅. The above

analysis explains the derivation of Figure 1 in our paper.

Regarding "implicitly encourages the representations of samples

(in the batch dimension) to be orthogonal", let us first consider a

special case where the normalized embeddingmatricesZ, Ẑ ∈ R𝐵×𝐹
and the feature dimension 𝐵 equals the batch dimension 𝐹 . In this

case, the FCL objectivewhich optimizeZ⊤Ẑ to approach the identity

matrix I indeed encourages the representations of samples to be

orthogonal (i.e., ZẐ⊤ ≈ I) since ZẐ⊤ = I ⇐⇒ Z⊤Ẑ = I. For the
case 𝐵 > 𝐹 , FCL actually encourages feature embeddings to fall

into 𝐹 clusters which are orthogonal to each other. For the case

𝐵 < 𝐹 , FCL encourages feature embeddings to be orthogonal in a

subspace.

Furthermore, for the general case where 𝑁 negative samples con-

stitute a representation matrix Z ∈ R𝑁×𝐷
, the push-away objective

in BCL and FCL can be respectively formulated as

𝑓B (Z) ≜ 1⊤off-diag(ZZ⊤)1 and 𝑓F (Z) ≜ | |off-diag(Z⊤Z) | |2𝐹 , (20)

where 1 ∈ R𝑁 denotes a all-one vector. It is easy to verify that

𝑓B and 𝑓F are respectively invariant under the right rotation and

the left rotation, i.e.,

𝑓B (ZRB) = 𝑓B (Z) and 𝑓F (RFZ) = 𝑓F (Z), (21)

where RB ∈ R𝐷×𝐷
and RF ∈ R𝑁×𝑁

denote any rotation matri-

ces. FCL inherently tends to make each feature dimension orthog-

onal to each other. However, this does not necessarily imply that

the samples are positioned on the axes. These rotation-invariances

induce redundancy when using BCL only or FCL only. Positioning

the samples on the axes represents merely one specific instance

of many redundant solutions. In contrast, combing BCL and FCL

eliminates this redundancy since 𝑓B+F (Z) ≜ 𝑓B (Z) + 𝑓F (Z) is neither
left-rotation invariant nor right-rotation invariant in general. On

the other hand, one can construct an optimal solution to 𝑓B+F that

also admits the optimality of both 𝑓B and 𝑓F, so using 𝑓B+F never

miss the optimal solution.

In summary, combining the push-away objectives in BCL and

FCL would reduce redundant solutions but never miss an optimal

solution, thus qualifying as a more reasonable regularization. These

analyses support our claims in Observation 3.2.

Experiment-wise. Remarkably, in the theoretical part, we con-

sider the case where the vanilla BCL and FCL are directly combined

by means of addition for easy of analysis. In practice, RecDCL in-

corporates more advanced BCL and FCL techniques in a soft way.

This creates a slight discrepancy between theory and experience:

the gap in average entropy between RecDCL and BCL is not very

obvious. Nevertheless, they are consistent in trend.

B MORE DETAILED DISCUSSION
As for the relation and differences between batch-wise and feature-

wise CL, we will perform more detailed discussion.

Relation. As formulated in Eq. 3, the objective function of Barlow

Twins essentially plays a role similar to the contrastive term in

existing objective functions for self-supervised learning, such as

the representative InfoNCE in SGL [37]. In this regard, we have

analyzed it theoretically in A.1.

Differences. Compared to batch-wise CL methods, there exist

certain advantages in our method or other batch-wise CL methods

due to important conceptual differences between batch-wise and

feature-wise CL. Through a detailed analysis, the main differences

between batch-wise and feature-wise CL focus on two aspects.

• FCLmethods represented by Barlow Twins strongly benefit from

pretty high-dimensional embeddings, which still is acceptable al-

though a rather high computational cost.

• BCL, intriguingly, the batch-wise objective maximizes the vari-

ability of the embedding vectors via maximizing the pairwise dis-

tance between all interacted user-item pairs, while feature-wise

CL methods do this by decorrelating each component of these

embedding vectors. Thus, to provide better performance of rec-

ommendation, we develop RecDCL by combining the strengths of

feature-wise and batch-wise objectives which can maximize the

benefits of CL.

• FCL+BCL (CL4CTR) focus is on addressing the "long tail" distri-

bution of feature frequencies by directly learning accurate feature

representations through BCL and FCL. RecDCL focuses on com-

bining the FCL objective and BCL objective whose effectiveness

to reduce redundant solutions but never miss an optimal solution,

making it a more reasonable regularization technique.

C MORE DETAILED EXPERIMENTS
C.1 Experimental Settings

Baselines. We compare various representative baselines including

pop model, MF-based models (BPR-MF and NeuMF), VAE-based

models (Mult-VAE and RecVAE), GNNs-based models (NGCF and

LightGCN), and SSL-based models (BUIR, CLRec, and DirectAU).

The detailed description is presented as follows:

• Pop recommends the most popular items to each user.
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• BPR-MF [29] optimizes MF with Bayesian personalized ranking

(BPR) loss by sampling negatives of interactions between users

and items.

• NeuMF [15] utilizes a multi-layer perceptron to model users and

items based on implicit feedbacks.

• Mult-VAE [23] is a typical item-based CF method based on varia-

tional autoencoders (VAEs) to maximum entropy discrimination.

• RecVAE [31] is also based on VAEs and improves the performance

of Mult-VAE [23] by reconstructing user representations.

• NGCF [36] proposes a message-passing framework and performs

graph convolution for collaborative filtering in first-order and

high-order propagation way.

• LightGCN [14] is the state-of-the-art GNNs-based model, which

removes the activation function and feature transformation of

NGCF to simplify the design of graph convolution for recom-

mendation.

• BUIR [22] is the first work that only uses user-item positive pair

without any negative sampling in contrastive learning for col-

laborative filtering. Inspired by SimSiam [5], BUIR trains online

encoder and target encoder for one-class collaborative filtering.

• CLRec [49] addresses exposure bias via InfoNCE loss for recom-

mendation.

• DirectAU [33] focuses on the representation of users and items

obtained from representation learning. It considers the alignment

of user-item positive pairs to minimize the distance of positive

pairs and calculates the uniform metric between users and items

to maximize the distance between dissimilar users.

Datasets. We adopt four widely public datasets with different

scales and one real-world dataset, in which the specific information

of them are described in Table 8 and Table 6, respectively.

Table 8: Statistics of datasets.

Dataset Beauty Food Game Yelp

#Users 22,364 127,279 37,419 31,669

#Items 12,102 40,995 14,079 38,049

#Inter 198,502 1,141,946 343,481 1,561,406

Avg/user 8.88 8.97 9.18 49.31

Avg/item 16.4 27.86 24.4 41.04

Density 0.0733% 0.0219% 0.0652% 0.1296%

Sparsity 99.93% 99.98% 99.93% 99.87%

• Beauty
7
is one of the types collected from Amazon and includes

product review data. We use the interactions and setting follow-

ing the previous work [33].

7
https://jmcauley.ucsd.edu/data/amazon/links.html

• Food
8
is also one of the series of grocery and gourmet food

of Amazon that has more than 120K users and 40K items in a

large-scale user-item interaction graph.

• Game
9
is an amazon-video-games review dataset that is released

in 2018.

• Yelp
10

includes interaction between users and stores (e.g., restau-

rants, bars and so on) in business domains. We use the Yelp2018

dataset and follow the default split setting of DirectAU [33].

Evaluation Metrics. We use widely adopted two evaluation

metrics Recall@K and Normalized Discounted Cumulative Gain

(NDCG@K) to evaluate top-K recommendation performance. Here,

we conduct evaluated experiments for the value of𝐾 in the range of

{10, 20, 50}, and report the results of 𝐾 = 20 for simplicity. We split

the interactions of each user into training/validation/test sets with

a ratio of 0.8/0.1/0.1 following the previous work. In the evaluation

process, we select all items except the training items for each user

to calculate the evaluation metrics and report the average value of

all test users’ results as the final result. To validate the significant

improvement of our method, we repeat our method and the sub-

optimal method 5 times with different random seeds and calculate

the t-test value shown in Table 4 that are less than 0.05.

We use two wide metrics to conduct top-K experiments for

RecDCL. The description of evaluated metrics can be described as

follows:

• Recall demonstrates the ratio of recommendation items to test

items. The calculation process is described as:

𝑅𝑒𝑐𝑎𝑙𝑙@20 =
|𝑅(𝑢) | ∩ |𝑇 (𝑢) |

|𝑇 (𝑢) | , (22)

where |𝑅(𝑢) | and |𝑇 (𝑢) | are the recommendation and test item

set for user 𝑢, respectively.

• NDCG indicates the importance of higher-ranked true positives.

The NDCG@K is calculated by Eq. 23

𝑁𝐷𝐶𝐺@𝐾 =
𝐷𝐶𝐺@𝐾

𝐼𝐷𝐶𝐺@𝐾
, (23)

where IDCG@K denotes the ideal cumulative gain. The DCG@K

can be calculated as:

𝐷𝐶𝐺@𝐾 =
1

|U|
∑︁
𝑢 ∈ U

𝐾∑︁
𝑘=1

2
(𝑟𝑒𝑙𝑘,𝑢 ) − 1

𝑙𝑜𝑔2 (2 + 𝑘)
, (24)

where 𝑟𝑒𝑙𝑘,𝑢 is 1 if 𝑘-th item 𝑘 is positive for user 𝑢 else it is 0.

ImplementationDetails. For fair comparison, we use the RecBole

[48] framework to implement all experiments. Specifically, we ini-

tialize the parameters by Xavier initialization [10] and use the Adam

optimizer [20] with a learning rate of 0.001 for all methods. The

training batch size is set to 256 on Beauty and 1024 on Food, Game,

and Yelp datasets. Considering the trade-off between memory cost

and performance improvement, the embedding size is tuned among

{32, 64, 128, 256, 512, 1024 and 2048}. In RecDCL, the default encoder

is a 2-layer LightGCN that propagates the interactions between

8
https://nijianmo.github.io/amazon/index.html

9
https://nijianmo.github.io/amazon/index.html

10
https://www.yelp.com/dataset
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users and items. The weight 𝛾 of LUIBT, coefficient 𝛼 of LUUII and

the coefficient 𝛽 of LAUG are tuned in the range of {0.005, 0.01, 0.05,

0.1}, {0.2, 0.5, 1, 2, 5, 10} and {1, 5, 10, 20}, respectively. We tuned the

momentum value 𝜏 of L𝐴𝑈𝐺 within {0.1, 0.3, 0.5, 0.7, 0.9}. For all

baselines, the setting of specific hyper-parameters refers to their

respective original work.

C.2 Algorithm and Complexity

Time Complexity. We analyze how the feature-wise or batch-

wise objectives impact the complexity of CL-based recommendation

methods with LightGCN as the based encoder. The time complexity

of RecDCL training mainly includes the following parts:

• Encoding. The time complexity of the graph convolution module

in the based encoder is 𝑂 (2|E |𝑠𝐿𝐹 | E |
𝐵
).

• Evaluating CL loss. For feature-wise alignment, we use only

user-item positive pair, thus the complexity is linear to
| E |
𝐵
, i.e.,

𝑂 (𝑠𝐹 | E |
𝐵

| E |
𝐵
). As defined in Eq. 6, we calculate feature-wise uni-

formity for users and items. The complexity of user side and item

side are both 𝑂 (𝑠𝐹 | E |
𝐵

| E |
𝐵
) during whole training phase. Within

a batch, the complexity of output augmentation is 𝑂 (𝑠𝐹 ).
Therefore, the total complexity of RecDCL is linear to the feature

size 𝐹 , i.e., 𝑂 ( (2𝑠𝐿𝐵+3)𝐹 | E | | E |
𝐵𝐵

).

C.3 Implementation Note

Running Environment. We implement RecDCL on PyTorch

1.9.1+cu111 and Python 3.9.7. All experiments on the Food dataset

are conducted on Ubuntu with NVIDIA-A100 GPU, other exper-

iments on the other three datasets are performed on a worker

equipped with GeForce-RTX-3090.

Projector in Figure 2. Especially, the components of Projector in

Figure 2 for feature-wise objectives are shown in Figure 3.

MLP BatchNorm ReLU MLP BatchNorm

Figure 3: The components of Projector.

Detailed Functions We list the detailed implementation process

of each objective function in Algorithm 2.

C.4 Efficiency Analyses
RecDCL explores the influence of representation size from low

dimension 32 to high dimension 2048 in feature-wise objectives.

Therefore, we compare the training efficiency of RecDCL with the

two methods that are most related to RecDCL, i.e., representative

LightCCN and the state-of-the-art DirectAU. Considering space

constraints and simplicity, here, we only present the largest dataset

Food by Table 9. As we can see, Table 9 shows the reported results of

memory consume (Memory), training time per epoch (Time/epoch),

total epochs (#Epochs) and final performance (NDCG@20) when

embedding size is setting as 2048. To fairly compare, we set the

Algorithm 2: The training process of the RecDCL.
Input: 𝐵: batch_size, 𝑑 : dimension size, 𝑒: exponent, 𝛾 :

coefficient of L𝑈 𝐼𝐵𝑇 , 𝛼 : coefficient of L𝑈𝑈 𝐼𝐼 , 𝛽 :
coefficient of L𝐴𝑈𝐺 , ℎ: multi-layer perceptron, 𝑠𝑔:

stop-gradient network, 𝑆 : cosine similarity, 𝜏 : value.

Output: encoder parameters 𝜃 .

Data: e𝑢 : user embedding, e𝑖 : item embedding

/* Calculate feature-wise alignment loss */

Function UIBT(e𝑢 , e𝑖):
𝐶 =𝑚𝑚(e𝑢 .𝑇 , e𝑖 ).𝑑𝑖𝑣 (𝐵)
L
align

= 𝑑𝑖𝑎𝑔(𝐶) .𝑎𝑑𝑑_(−1).𝑝𝑜𝑤_(2).𝑠𝑢𝑚().𝑑𝑖𝑣 (𝑑) + 𝛾 ∗
𝑜 𝑓 𝑓 _𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 (𝐶).𝑝𝑜𝑤_(2).𝑠𝑢𝑚().𝑑𝑖𝑣 (𝑑)
return L

align

/* Calculate feature-wise uniformity loss */

Function UUII(e𝑖):
L𝑢𝑛𝑖 =𝑚𝑚(e𝑖 .𝑇 , e𝑖 ) .𝑎𝑑𝑑_(𝑐).𝑝𝑜𝑤_(𝑒) .𝑚𝑒𝑎𝑛().𝑙𝑜𝑔()
return L𝑢𝑛𝑖

/* Calculate batch-wise augmentation loss */

Function BCL(e𝑢 ,e𝑖):
ê𝑖 = 𝜏e

(𝑙−1)
𝑖

+ (1 − 𝜏)e(𝑙 )
𝑖

L𝑎𝑢𝑔 = 𝑆 (ℎ(e𝑢 ), 𝑠𝑔(ê𝑖 ))
return L𝑎𝑢𝑔

for each mini-batch with positive pairs (𝑢, 𝑖) do
LUIBT = 𝑈 𝐼𝐵𝑇 (e𝑢 , e𝑖 )
LUUII = 𝑈𝑈 𝐼𝐼 (e𝑢 )/2 +𝑈𝑈 𝐼𝐼 (e𝑖 )/2
LBCL = 𝐵𝐶𝐿(e𝑢 , e𝑖 )/2 + 𝐵𝐶𝐿(e𝑖 , e𝑢 )/2
L = L𝑈 𝐼𝐵𝑇 + 𝛼 ∗ L𝑈𝑈 𝐼𝐼 + 𝛽 ∗ L𝐵𝐶𝐿

training batch size as 1024 and implement representative methods

under the same framework RecBole.

The statistic results in Table 9 show that LightGCN is the slowest

in terms of the training time per epoch, which is due to the fact

that it performs multi-hop neighborhood aggregation and linear

propagation and optimizes objective by time-consuming BPR loss.

By contrast, our RecDCL consumes the least amount of time per

epoch, but more total training time due to more epochs required

than LightGCN and DirectAU. Surprisingly, these two methods take

roughly the same amount of space, which indicates the advantage

of RecDCL over LightGCN. In fact, DirectAU is indeed the most

efficient of the two indicators, i.e., training time per epoch and total

epochs, but it consumes a little more memory than LightGCN and

our RecDCL.

Though RecDCL requires more training epochs, it consistently

brings performance improvements to RecDCL. However, possibly

due to that RecDCL uses a comprehensive loss function leading to

a more intricate "optimization path". In contrast, the performance

of LightGCN and DirectAU plateaus quickly but keep unchanged

after that. Thus, we believe the performance benefits and running

costs in practice are indeed justified and acceptable.
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Table 9: Efficiency comparison of largest dataset Food (h:
hour, m: minute, s: second).

Model Memory Time/epoch #Epochs NDCG@20

LightGCN 20,391MB 487s 57 16.77

DirectAU 26,533MB 426s 43 22.41

RecDCL 21,853MB 318s 253 23.27

C.5 Study of RecDCL on Food and Game
Similarly, to verify the effectiveness of each component, we show

the statistical results of the ablation study on two datasets, Food

and Game, as presented in Table 10. From this table, we can find

that removing either or both of the three components in RecGCL

leads to decreasing performance, while the five variants (except

"w/ UUII") can do better than the baseline LightGCN in general. It

demonstrates that the dual CL design of RecDCL will benefit the

performance in graph collaborative filtering. Besides, feature-wise

CL and batch-wise CL complement each other and improve the

performance in different aspects.

Table 10: Performance comparison of different designs of
RecDCL on Food and Game.

Method

Food Game

R@20 N@20 R@20 N@20

LightGCN 24.56 16.77 19.20 8.91

w/ UIBT 23.30 16.70 18.12 8.62

w/ UUII 4.84 3.15 1.96 0.63

w/ BCL 28.01 23.01 20.25 9.85

w/ UIBT & UUII 26.57 20.55 18.18 8.80

w/ UIBT & BCL 28.69 23.12 20.39 9.85

w/ UUII & BCL 26.53 20.51 19.32 9.21

RecDCL 28.95 23.27 20.44 9.87

%Improv. 17.87% 38.76% 6.46% 10.77%

C.6 Hyper-parameter Sensitivity of RecDCL on
Beauty and Yelp

Effect of embedding size 𝐹 . Generally, the embedding size is

set as 64 by default in most CF methods [14, 33]. To validate the

impact of feature-wise objectives, we run all methods with different

embedding sizes from 32 to 2048 on four datasets and show the

best results of each dimension on Beauty and Yelp in Figure 4. We

have the following observations:

(1) as embedding size increases, RecVAE and our RecDCL con-

tinue to grow, while the performance of other models in terms of

Recall@20 first improves, and then holds the line even degrades,

even though we provided these methods with exactly the same

experimental settings. For larger F ( > 2048), the results of RecDCL

still increase, while LightGCN degrades the performance and Direc-

tAU causes the out-of-memory problem. In this sense, instead of an

unsuitable comparison, the above phenomenon may also be under-

stood as a property of RecDCL, i.e., it can benefit from increasing

embedding size but the baseline methods failed. In fact, the above

setting has been used in literature. For example, in [44], although

a promising self-supervised method BarlowTwins only surpasses

the baselines at a large embedding size, it has received extensive

attention and inspired many follow-up works.

(2) Though RecVAE has the same trend, RecDCL exceeds RecVAE

on these two datasets and has an improvement of up to 23.67%

on Beauty. This again demonstrates that RecDCL can capture the

information of high-dimensional representation well.

(3) Indeed, LightGCN enjoying the joint advantages of high-order

neighborhood information and low-rank MF should be expected to

achieve better performance than BPR-MF, which is actually con-

sistent with our experimental observation when the embedding

size F is not large (e.g., 32 and 64 on Beauty). Furthermore, these

experimental results for small embedding sizes are also in agree-

ment with that reported in the literature [33]. However, since this

paper focuses more on the FCL objective whose effectiveness in

empowering CF necessitates a larger embedding size, we regard

the embedding dimension as a tunable hyperparameter. In this

situation, LightGCN does not benefit much from the increase in

embedding size despite our best efforts in parameter tuning. As

a result, it lags behind BPR-MF at large embedding sizes on two

(out of four) datasets (Beauty and Food). On the other hand, by

searching throughout the hyperparameter space of embedding size,

NGCF showcases slight advantages over LightGCN on the Food

dataset. However, on the other three benchmarks, the performance

of NGCF is only comparable to or inferior to that of LightGCN.
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Figure 4: Recall@20 results of different embedding sizes of
representative baselines and RecDCL on Beauty and Yelp.

Effect of coefficient 𝛼 of UUII. Similarly, we analyze the impact

of coefficient 𝛼 in the range of {0.2, 0.5, 1, 2} of UUIInomial within

users and items on the Beauty and Yelp dataset in Figure 5. (a) and

in Figure 5. (b), respectively. Obviously, the small value, i.e., 0.2,

will promote the model performance on the Beauty dataset, but the

trend is just the opposite on Yelp. Obviously, the best value of 𝛼 is

0.2 on Beauty and 2 on Yelp, which indicates that different datasets

have different optimal situations.

Effect of coefficient 𝛽 of BCL. As verified in Section 4, batch-wise
output augmentation plays a critical role in SSL-based recommen-

dation. Consequently, it is necessary for us to show the model

performance𝑤.𝑟 .𝑡 . 𝛽 in Figure 6. According to this figure, we can

observe that: (1) after adding batch-wise augmentation, the whole
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Figure 5: Influence of different 𝛼 of UUII on Beauty and Yelp.

performance is better than only "with UIBT & UUII". (2) Increasing

the value of 𝛽 , e.g., 20, will keep consistent or lead to poor perfor-

mance. (3) 𝛽 is consistent on different datasets, which is setting as

5 on Beauty and Yelp.
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Figure 6: Influence of different 𝛽 of BCL on Beauty and Yelp.

Effect of coefficient 𝛾 of UIBT. We explore the sensitivity of

RecDCL to the coefficient 𝛾 of UIBT, which trades off the desider-

ata of invariance term and informativeness of the representations.

Figure 7 shows that the influence of UIBT’s coefficient 𝛾 in range

of {0.005, 0.01, 0.05, 0.1} in terms of Recall@20 and NDCG@20 on

Beauty and Yelp. Obviously, We can find that our RecDCL is not

very sensitive to this hyperparameter. Besides, UIBT’s coefficient

varies on different datasets. More specially, the optimal coefficient

is 0.01 on Beauty dataset in Figure 7. (a) while the best 𝛾 is 0.1 on

the Yelp dataset in Figure 7. (b).
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Figure 7: Influence of different 𝛾 of UIBT on Beauty and Yelp
datasets.

Effect of 𝜏 of BCL. We study the effect of 𝜏 in rang of {0.1, 0.3, 0.5,

0.7, 0.9} of batch-wise output augmentation and report the results

in Figure 8. We find that: (1) 𝜏 is sensitive to Beauty. For example,

the 𝜏 set as 0.7 performs better than other values. (2) In contrast,

fixing 𝜏 to three values will rarely affect performance on the Yelp

dataset. In a nutshell, we suggest tuning 𝜏 in the range of 0.1 ∼ 1.0

carefully.
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Figure 8: Influence of different 𝜏 of BCL on Beauty and Yelp.

C.7 Hyper-parameter Sensitivity of RecDCL on
Food and Game

Effect of embedding size 𝐹 . Considering that feature-wise objec-
tives are a key point of our method, embedding size 𝐹 is a critical

hyper-parameter that affects the performance. Thus, it is essen-

tial to show the changing trends of embedding size 𝐹 from 32

to 2048 on the remaining two datasets Food and Game in Fig-

ure 9. As we expected, the performance of almost all methods

increases with 𝐹 , which also verifies that the larger 𝐹 value can

indeed provide richer representation information and feature-wise

CL method can achieve ideal performance while embedding size is

high-dimensional. Among them, the most significant improvement

is our RecDCL. More specifically, when 𝐹 is 32, our method lags

behind other methods (especially on Food), but our method is the

best when d is 2048, improving by 110.34% on Food and 36.67% on

Game.
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Figure 9: The experimental results of different embedding
sizes of baselines and our RecDCL on Food and Game.

Effect of coefficient 𝛾 of UIBT. As described in Figure 10, we test

the effect of 𝛾 in UIBT on the performance of RecDCL on Food and

Game in terms of Recall@20 and NDCG@20, in which 𝛾 is in the

range of {0.005, 0.01, 0.05, 0.1} like the other two datasets Beauty and

Yelp. Although Recall@20 and NDCG@20 on both datasets Food

and Game basically show a trend of rising first and then falling,
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the magnitude of the change is not particularly obvious, which

indicates that it is not very sensitive to the parameter 𝛾 . Moreover,

we can find optimal 𝛾 for different datasets. Specifically, the optimal

𝛾 is 0.05 on Food and 0.01 on Game, respectively.
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Figure 10: Influence of different 𝛾 of UIBT on Food and Game
datasets.

Effect of coefficient 𝛼 of UUII. To more comprehensively in-

vestigate the influence of 𝛼 on the effectiveness of RecDCL, we

further vary 𝛼 in {0.2, 0.5, 1, 2} on Food and Game two datasets, and

statistical results are displayed in Figure 11. (a) and in Figure 11.

(b), respectively. Obviously, we can see that the performance of

the two datasets shows opposite trends. Specifically, increasing 𝛼

generally improves the performance on Food while leading to poor

performance on Game. Therefore, the optimal performance on Food

is obtained when 𝛼 is 1, while the best value of 𝛼 on Game is 0.2.
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Figure 11: Influence of different 𝛼 of UUII on Food and Game.

Effect of 𝜏 of BCL. Similarly, we also consider varying 𝜏 in the

range of 0.1 to 0.9 in steps of 0.2 and then illustrate the changing

curves of Recall@20 and NDCG@20 on Food and Game in Fig-

ure 12. From Figure 12.(a) and Figure 12.(b), we can observe that: (1)

Compared with hyperparameters 𝛾 and 𝛼 , 𝜏 of BCL is relatively sen-

sitive on two datasets. Thus, we believe that it is necessary for us to

carefully tune 𝜏 in the range of 0.1 ∼ 0.9 carefully. (2) The changing

trends in the two datasets are basically the same. Especially, setting

𝜏 to 0.1, 0.5, 0.7, or 0.9 will rarely affect the performance of RecDCL.

Besides, the 𝜏 is 0.3 and performs better than other values.

Effect of coefficient 𝛽 of BCL. As analyzed in the previous

body text, batch-wise output augmentation is essential for SSL-

based recommendation. Thus, it is also necessary to test the effect

of coefficient 𝛽 on the performance of RecDCL. Illustratively, we

present the results 𝑤.𝑟 .𝑡 . different 𝛽 in the range of 0 to 20 in
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Figure 12: Influence of different 𝜏 of BCL on Food and Game.

variable steps in Figure 13. According to Figure 13a and Figure 13b,

we can observe that: (1) Compared with only "with UIBT & UUII"

(i.e., 𝛽 = 0), batch-wise augmentation (i.e., 𝛽 > 𝑙0) improve the

whole performance by 8.64%, 9.43% on Food and 12.64%, 17.02%

on Game in terms of Recall@20 and NDCG@20, respectively. (2)

Unlike Beauty and Yelp two datasets, larger values first lead to better

performance on Food and Game and then decrease in general. (3)

The impact of 𝛽 on RecDCL is consistent on different datasets,

which is both set as 10 on Food and Game datasets.
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Figure 13: Influence of different 𝛽 of BCL on Food and Game.

C.8 Detailed Hyper-parameter on Four Datasets
We list the respective hyper-parameter on each dataset with the

best performance in Table 11.

Table 11: Best hyperparameter setting.

Dataset Emb size 𝛾 𝛼 𝜏 𝛽

Beauty 2048 0.01 0.2 0.1 5

Food 2048 0.05 1 0.3 10

Game 2048 0.01 0.2 0.3 10

Yelp 2048 0.1 2 0.5 1

17


	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Batch-wise Collaborative Filtering
	2.2 Batch-wise Contrastive Learning (BCL)
	2.3 Feature-wise Contrastive Learning (FCL)

	3 Understanding BCL and FCL
	3.1 Existing Perspectives
	3.2 Our Interpretation
	3.3 Recommendation Intuition

	4 The RecDCL Method
	4.1 FCL Objective for Recommendation
	4.2 BCL Objective for Recommendation
	4.3 Objective and Training

	5 Experiments
	5.1 Overall Performance
	5.2 Study of RecDCL
	5.3 Industrial Results

	6 Related Work
	6.1 Collaborative Filtering
	6.2 Contrastive Learning for Recommendation

	7 Conclusion
	References
	A More Detailed Explanation
	A.1 Connection Between BCL and FCL
	A.2 Joint BCL and FCL

	B More Detailed Discussion
	C More Detailed Experiments
	C.1 Experimental Settings
	C.2 Algorithm and Complexity
	C.3 Implementation Note
	C.4 Efficiency Analyses
	C.5 Study of RecDCL on Food and Game
	C.6 Hyper-parameter Sensitivity of RecDCL on Beauty and Yelp
	C.7 Hyper-parameter Sensitivity of RecDCL on Food and Game
	C.8 Detailed Hyper-parameter on Four Datasets


