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Abstract

We present a universal† theoretical framework for understanding long-context
language modeling based on a bipartite mutual information scaling law that we
rigorously verify in natural language. We demonstrate that bipartite mutual infor-
mation captures multi-token interactions distinct from and scaling independently
of conventional two-point mutual information, and show that this provides a more
complete characterization of the dependencies needed for accurately modeling long
sequences. Leveraging this scaling law, we formulate the Long-context Language
Modeling (L2M) condition, which lower bounds the necessary scaling of a model’s
history state—the latent variables responsible for storing past information—for
effective long-context modeling. We validate the framework and its predictions on
transformer and state-space models. Our work provides a principled foundation
to understand long-context modeling and to design more efficient architectures
with stronger long-context capabilities, with potential applications beyond natural
language.

1 Introduction

Large language models (LLMs) have revolutionized natural language processing, achieving remark-
able capabilities across a wide range of tasks [1–4]. Recent advances in large language models,
including ChatGPT [1, 5], Claude, Gemini [6, 7], Grok, LLaMA [4, 8], DeepSeek [9, 10], and Qwen
[11, 12] have achieved breakthroughs across diverse tasks, including code generation, mathematical
problem solving, text summarization, and creative writing [13–16]. These models have become
increasingly powerful and versatile, pushing the boundaries of what’s possible in natural language
processing and marking significant steps toward artificial general intelligence [17–19].

In pushing these advances further, the ability to handle long contexts has become increasingly crucial.
This ability is the key to document-level understanding, multi-turn dialogue, and complex reasoning.
Models like GPT-o1/o3, Claude Opus, Gemini 2.5 pro, and DeepSeek-R1 often generate extensive
chains of thought, spanning tens of thousands of tokens to solve complex problems [20, 21]. However,
processing long contexts remains a significant challenge. Despite their success and expressiveness,
transformer architectures suffer from an intrinsic quadratic computational cost in sequence length,
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Figure 1: (a) The bipartite mutual information between two text segments scales as a power law
(sub-volume law) with sequence length L. (b) In autoregressive models, conditional distributions are
parameterized through the history state z, the latent variables that store past information. Examples
of the history state include the recurrent states in state-space models or recurrent neural networks,
and the key-value pairs in transformers. (c) The maximum bipartite mutual information a model can
express scales with the dimensionality of its history state, dim(z). To model long contexts effectively,
dim(z) must grow at least as fast as the power-law scaling of the true bipartite mutual information.

creating challenges for long sequence generation. Recent advances like DeepSeek have improved
per-token efficiency [9], yet the fundamental quadratic cost persists.

Although various architectures have been proposed to address the quadratic scaling [22–31], these
approaches still struggle with truly long sequences in practice. A fundamental gap persists in our
theoretical understanding of what is necessary for capturing multi-token long-range dependencies
in natural language. Despite efforts to characterize these dependencies through various statistical
measures [32–35] a theory that can guide practical architecture design remains lacking.

In this work, we address the challenges of understanding long-context language modeling through
the following contributions (Fig. 1).

1. We present a universal theoretical framework for autoregressive long-context language
modeling based on bipartite mutual information.

2. We demonstrate a bipartite mutual information scaling law in natural language and provide
reliable empirical validations of power-law scaling across diverse natural language datasets
using state-of-the-art LLMs.

3. We derive the L2M condition from this scaling law, lower bounding the necessary scaling of
a model’s history state dimension for effective long-context modeling.

4. We validate our framework and its predictions across transformer and state-space model
(SSM) architectures on both synthetic and natural language datasets of varying lengths.

Our theoretical framework offers crucial insights into understanding an LLM’s capability to model
long sequences based on its architectural design. By identifying the minimum required growth rate
of the history state, our work provides concrete guidance for designing efficient architectures that
can effectively handle long contexts, avoiding the quadratic cost of transformers or the capacity
limitations of fixed-state models, paving the way for future AI systems.

2 Related Works

Mutual Information Estimation and Application in Machine Learning

Mutual information estimation and optimization have been extensively studied in machine learning,
with approaches including variational bounds [36], neural estimators [37], nearest-neighbor methods
[38, 39], and various upper bounds [40]. It has found wide application in areas such as feature
selection [41], representation learning [42], disentanglement [43], and generative modeling [44].

Statistical Properties of Natural Language

Natural language exhibits characteristic statistical scaling behaviors across different levels of analysis.
Zipf’s law [45] describes how word frequencies decay with their rank, following a power-law
distribution. Heaps’ law [45] characterizes vocabulary growth, showing that the number of unique
words scales sublinearly with text length. Hilberg’s conjecture and its relaxed version posit specific
scaling laws for entropy and bipartite mutual information in natural language, respectively [46].
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Neural Scaling Laws

Power-law relationships between model performance, architecture, and computational requirements
have been first empirically observed in neural networks [47–49], with theoretical understanding still
being developed [50, 51], including recent information-theoretic approach [52]. These observations
have guided the development of larger models at fixed context lengths, whereas our work examines
a distinct but complementary question: what determines whether model architectures can maintain
performance as context length increases?

Universal Prediction and Markov Modeling

Recent studies on transformers as universal predictors [53, 54] show that they can, in principle, model
arbitrary variable-order Markov processes, establishing their theoretical universality in prediction. Our
analysis focuses instead on the information-theoretic scaling that governs how much past information
must be stored to reproduce the mutual-information growth observed in natural language.

Architectures for Efficient Long-Context Modeling

Various approaches have been proposed for processing long sequences. Architectural innovations
targeting quadratic complexity include sparse attention [55, 26, 25, 56], recurrent mechanisms [57–
59], and alternative formulations [22, 60, 23, 27–30, 61–63, 31]. Efficient attention implementations
like Flash Attention [64–66], Lightning Attention [67], and Paged Attention [68] have improved
per-token computational efficiency despite maintaining the underlying complexity scaling.

Long-Form Reasoning and Context Utilization

Chain-of-thought prompting [20] and scratchpad methods [69] demonstrate the importance of ex-
tended context for complex reasoning tasks, emphasizing the urgent need for effective long-range
dependency modeling.

Information Theory and Physics-Inspired Approaches

Recent work has demonstrated how information-theoretic principles and physics-inspired approaches
can guide machine learning [70–72], leading to novel architectures [73–80], training methods [81–83],
and broad applications [84–87, 82, 88].

3 Preliminaries

Mutual Information

Mutual information I(X;Y ) quantifies the statistical dependence between random variables X and
Y , defined as I(X;Y ) = DKL(pXY ||pX ⊗ pY ), where DKL(·||·) is the Kullback–Leibler (KL)
divergence, and pXY is the joint distribution of X and Y . For discrete random variables, mutual
information permits equivalent formulations as

I(X;Y ) = H(X) +H(Y )−H(XY ) = H(X)−H(X|Y ) = H(Y )−H(Y |X), (1)

where H(·) is the (Shannon) entropy and H(·|·) is the conditional entropy. This definition natu-
rally extends to collections of random variables: I(X1:m;Y1:n), with Xi:j denoting the sequence
(Xi, . . . , Xj). For notational convenience, we will use boldface notation X := Xi:j when the
indices are clear from context. Similarly, we will drop the index of a single variable X := Xi when
convenient.

Autoregressive Neural Networks

Modern LLMs predominantly employ autoregressive neural architectures. An autoregres-
sive neural network models a sequence of conditional probability distributions over tokens
{q(wi|w1:i−1, wBOS)}Li=1, where wBOS is the beginning-of-sequence token. Throughout this pa-
per, we use q to denote model-generated probability distributions (and sometimes the model itself)
and p to denote the true underlying distributions. Upper case letters denote random variables, and
lower case letters denote specific values or realizations of these random variables. These conditional
distributions jointly model the probability for a sequence of tokens given a prefix as

q(wℓ:L|w1:ℓ−1, wBOS) =

L∏
i=ℓ

q(wi|w1:i−1, wBOS). (2)
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When ℓ = 1, this reduces to the distribution of unconditional generation q(w1:L|wBOS). During
inference, tokens are sampled sequentially from these conditional distributions to generate text or
respond to prompts.

For a complete list of notation and conventions used throughout this paper, we refer the reader to
Appx. A.
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Figure 2: (a) Illustration of bipartite and two-point mutual information. The bipartite mutual
information measures statistical dependence between two adjacent segments within a text block of
length L, whereas the two-point mutual information measures the dependence between two tokens
separated by a distance d. (b) Estimates of bipartite mutual information using LLaMA 3.1 405B
model [89] on PG19 dataset [90] of pre-1919 books. (c) Estimates of two-point mutual information
on PG19 dataset. See Appx. B.I, B.II, and B.VI for additional results.

4 Mutual Information Scaling Laws

4.1 Bipartite Mutual Information as Predictive Information

While classical scaling laws in natural language, such as Zipf’s and Heaps’ laws, primarily ad-
dress token-level statistics, a deeper understanding of language modeling necessitates analyzing
dependencies between entire text segments. A central challenge in modeling language effectively
is to characterize how information is carried over from an existing block of text, X , to inform
the generation of a subsequent block, Y . The bipartite mutual information between such adjacent
blocks directly quantifies this inter-segment information transfer, emerging as a particularly revealing
measure.

Definition 4.1 (Bipartite Mutual Information [Fig. 2(a)]). For a consecutive sequence of tokens
(random variables) W1:L of length L, consider a bipartition of the tokens: X1:ℓ := W1:ℓ and
Y1:L−ℓ :=Wℓ+1:L. The bipartite mutual information is the mutual information between the two parts
IBP
ℓ;L := I(X1:ℓ;Y1:L−ℓ).

The role of bipartite mutual information in quantifying this predictive relationship is formally
illuminated by decomposing the entropy of the subsequent block Y :

H(Y ) = H(Y |X) + I(X;Y ) = H(Y |X) + IBP. (3)

This decomposition shows that the total information in Y (its entropy H(Y )) consists of two
distinct components: new information unique to Y given X (the conditional entropy H(Y |X)),
and information that Y shares with X (the bipartite mutual information IBP). Consequently, IBP

precisely measures the amount of information from the preceding block X that is predictive of the
next block Y , and therefore, bipartite mutual information is also referred to as predictive information
[91].

Despite its crucial role in quantifying predictive information, this form of mutual information in
language has remained relatively underexplored. This research gap is primarily due to two factors: the
absence of a comprehensive theory of natural language that would permit a direct calculation, and the
substantial challenges in empirically measuring entropy and mutual information for high-dimensional
distributions from samples.

Existing literature offers differing perspectives on its scaling properties. On one hand, analogies
drawing from critical physical systems [92–97]—often based on two-point mutual information
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scaling (discussed later)—suggest that bipartite mutual information should scale logarithmically
with sequence length. On the other hand, research in computational linguistics has proposed that
it follows power-law growth [98], a behavior often referred to as the sub-volume law (these terms
are used interchangeably in this paper). Previous empirical efforts to measure such scaling have
been constrained by methodological biases and the curse of dimensionality [46, 98, 99]. Although
existing evidence tends to favor sub-volume law growth, these limitations have prevented a definitive
characterization. In Sec. 4.3, we address these challenges by leveraging state-of-the-art LLMs as
density estimators, establishing clear power-law scaling for bipartite mutual information across
diverse datasets.

4.2 Two-point Mutual Information

Before presenting our main results concerning bipartite mutual information scaling, it is instructive
to discuss two-point mutual information. This measure has conventionally been used to assess
long-range dependencies in natural language, and its scaling properties are relatively well understood.
Definition 4.2 (Two-point Mutual Information [Fig. 2(a)]). The two-point mutual information
measures the mutual information between two tokens (random variables) X and Y separated by a
distance d: ITP

d = I(X;Y ).

Specifically, two-point mutual information has been observed to follow a power-law decay, ITP
d ∼

d−α [92–95]. This characteristic decay has prompted arguments that natural language shares structural
properties with critical physical systems, which exhibit similar two-point correlation behavior [96, 97].
However, we contend that such analogies, while offering certain insights, can be misleading when
assessing the full complexity of multi-token dependencies crucial for language modeling. The
limitations of two-point mutual information in this regard, and why it provides an incomplete
characterization for this task, will be detailed in Sec. 4.4 and Appx. B.VIII. Our present discussion of
two-point mutual information serves primarily to contrast it with the bipartite measure that is central
to our work.

4.3 Empirical Verification of Mutual Information Scaling Laws

Bipartite Mutual Information. Measuring bipartite mutual information presents significant chal-
lenges without access to the underlying probability distribution p. Traditional estimation methods face
severe limitations in our setting: K-nearest neighbor estimators [39] and neural estimators like MINE
[37] and InfoNCE [100] struggle with the high dimensionality of long text sequences, with errors
that increase rapidly as sequence length grows. Additionally, neural estimators require substantial
training on large amounts of data to learn representations of natural language distributions, especially
for long sequences. Fortunately, recent advances in LLMs allow us to circumvent training our own
density estimators by offering high-quality approximations q to these distributions (see Appx. B.V for
additional discussions). As autoregressive models, LLMs enable efficient computation of conditional
probabilities (Sec. 3) and their associated cross-entropies (negative log-likelihoods):

H(pY |X , qY |X) := −EpXY
log q(Y |X), (4)

where the expectation is taken over samples from the true underlying distribution pXY . The cross-
entropy provides an upper bound to the true entropy:

H(pY |X , qY |X) = DKL(pY |X ||qY |X) +Hp(Y |X) ≥ Hp(Y |X), (5)

where the conditional cross-entropy and KL divergence implicitly average over pX , and Hp (or Hq)
denotes the entropy computed with respect to distribution p (or q).

Using these properties, we can construct a direct estimator for bipartite mutual information:

IBP,direct
ℓ;L = EpXY

[log q(Y |X)− log q(Y )] = Ip(X;Y ) + ε(p, q), (6)

where Ip(X;Y ) denotes mutual information with respect to p, and ε(p, q) = DKL(pY ||qY ) −
DKL(pY |X ||qY |X). While this estimator no longer provides a bound, it preserves the key property
that ε(p, q) → 0 as q → p.

We note that this estimation method faces a specific challenge with modern LLMs: they model
q(wi|w1:i−1, wBOS) rather than q(wi|w1:i−1), where wBOS denotes the BOS token. When sampling
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from the dataset, we can ensure X starts at sentence beginnings, making q(Y |X, wBOS) ≡ q(Y |X).
However, Y may start mid-sentence, creating a mismatch where q(Y ) ̸= q(Y |wBOS). This
introduces errors in estimating H(pY , qY ). We address this using n-gram corrections for the first
two tokens, which are the primary source of this bias (see Appx. B.IV).

To circumvent issues with estimating q(Y ), we also employ the vCLUB estimator [40]:

IBP,vCLUB
ℓ;L = EpXY

log q(Y |X)− EpX⊗pY
log q(Y |X), (7)

where the second term can be calculated by shuffling the second halves of samples in the dataset.
Analysis in [40] shows that vCLUB provides an upper bound on the true bipartite mutual information
when q closely approximates p. Even when q deviates moderately from p, though the upper bound
property may not hold, vCLUB continues to provide reliable estimates of the true bipartite mutual
information.

Our empirical analysis in Fig. 2(b) focuses on equal-length partitions of X and Y (ℓ = L/2), where
the bipartite mutual information tends to maximize for fixed L’s. Nevertheless, the same analysis
can be carried out using other partitions where similar results can be obtained (with the results in
Appx. B.II). Using both the bias-corrected direct estimator [Eq.(6)] and vCLUB estimator [Eq. (7)],
we measure scaling on the PG19 dataset* [90] (a collection of books before 1919), employing
the LLaMA 3.1 405B model [89] as density estimator q. All measurements robustly demonstrate
a clear power-law scaling that extends across thousands of tokens. Additional measurements on
WIKIPEDIA [101] and using additional LLMs, along with varying ℓ/L ratios, can be found in
Appx. B.I and B.II. We note that both estimators likely underestimate the true exponent β (see
Appx. B.III for discussions).

Two-point Mutual Information. For completeness, we also measure two-point mutual information
scaling on the same datasets, confirming the expected power-law decay [Fig. 2 (c)]. Detailed
methodologies for these measurements are provided in Appx. B.VI and B.VII.

4.4 Failures of Two-point Mutual Information

As previously noted, while two-point mutual information is easier to measure and more frequently
studied in existing literature, it often fails to adequately capture the long-range multi-token dependen-
cies crucial for natural language modeling. When modeling language, our primary concern is the
accurate prediction of future tokens given a preceding context, i.e., q(wℓ:L|w1:ℓ−1, wBOS). Effective
modeling of this conditional distribution necessitates a clear understanding of the multi-token de-
pendencies between the context w1:ℓ−1 and the subsequent tokens wℓ:L. It is important to recognize
that this multi-token dependency cannot always be accurately represented by a simple aggregation of
pairwise (two-point) interactions; such an approach can be insufficient or even misleading in certain
contexts. The following examples illustrate these potential limitations, and we provide more formal
derivations in Appx. B.VIII.

Consider a simple distribution where all tokens must be identical: p(x1, x2, . . . , xL) = 1(x1 = x2 =
· · · = xL)/M , where 1(·) is the indicator function that evaluates to 1 when the condition is satisfied
and 0 otherwise, and M is the vocabulary size. This distribution permits a Markov chain construction,
as p(x1) = 1/M and p(xi|x1:i−1) = 1(xi = xi−1), thus possessing a simple token-to-token
dependency structure. Despite this inherent simplicity, the two-point mutual information suggests a
misleadingly strong “long-range” dependency: it maintains a large, constant value of ITP

d = logM
regardless of the distance d, significantly larger than the decaying two-point mutual information
typically observed in natural languages. In contrast, bipartite mutual information correctly reflects
this simple dependency structure, with IBP

ℓ;L = logM remaining constant for any choice of ℓ and L.
This indicates that any two segments share exactly the same amount of information (logM ), which
is no more than the information shared between just two adjacent tokens, accurately capturing the
limited nature of the dependency.

For a more realistic setting, we refer to Appx. C for a discussion of two families of multivariate
Gaussian distributions of varying lengths (details of their construction are in Appx C.II). Notably,
both families exhibit identical power-law decay in their two-point mutual information when measured
between variables at maximum separation. However, their bipartite mutual information scaling differs
dramatically: one scales as Lβ , akin to natural language, while the other scales as logL, similar to

*We avoid the BOOKS3 dataset due to copyright infringement concerns.
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that observed in critical physical systems. This disparity further underscores that two-point mutual
information alone may be insufficient to distinguish between systems with fundamentally different
long-range correlational structures.

5 Long-Context Language Modeling (L2M) Condition

Having established bipartite mutual information as a crucial tool for measuring long-range dependen-
cies, we analyze how a model’s capacity to handle long contexts fundamentally depends on its ability
to store past information, using bipartite mutual information scaling as our theoretical framework.
Intuitively, to model natural language effectively, a model must be able to capture all dependencies
between past and future tokens. Since these dependencies (measured by bipartite mutual information)
grow with sequence length, the model’s state capacity for storing past information (the history state)
must necessarily grow as well. We formalize this intuition through the L2M condition and explore its
implications in detail throughout this section.

5.1 Theoretical Derivations

To analyze how models handle long-range dependencies, we first formalize the notion of history
state.

Definition 5.1. Consider a sequence of tokens w1:L. Denote x1:ℓ := w1:ℓ and y1:L−ℓ := wℓ+1:L.
Autoregressive neural networks parameterize conditional probabilities by first encoding the input
tokens x1:ℓ−1 into a set of latent intermediate variables zℓ = f(x1:ℓ−1) before outputting the
conditional probabilities as q(y1:L−ℓ|x1:ℓ) := q(y1:L−ℓ|xℓ, zℓ).* We define the history state as
the smallest set of such latent intermediate variables that fully characterizes the model’s output
conditional probability. [Fig. 1(b)].

As illuminating examples, the history state corresponds to the recurrent state in RNNs and SSMs after
processing token wℓ−1, and to the key-value pairs up to token wℓ−1 for transformers (see Appx. D).
Generally, the history state zℓ is the smallest hidden state responsible for caching all historical
information.

The following theorem shows that this history state upper bounds a model’s capacity to capture
bipartite mutual information:

Theorem 5.2. The bipartite mutual information that a model can capture is bounded by the size of
its history state:

IBP,q
L/2;L ≤ C · dim(zL/2) + log(M) (8)

where C is some constant and M denotes the vocabulary size.

Proof. This theorem admits multiple independent proofs under different mild and practical assump-
tions. See Appx. E for details.

We now use this bound to analyze when architectures can maintain performance as sequence length
increases. Consider a series of natural language datasets {W1:L}∞L=1 of different lengths, which can
be thought of as truncations of an ideal infinite-length dataset.

Definition 5.3. A model q is MI-capable if the maximum bipartite mutual information it can express
satisfies max

θ
IBP,qθ
L/2;L ≥ IBP

L/2;L for any sequence length L, where the maximum is taken over all

model parameters θ.

Since a model’s ability to capture mutual information is bounded by its history state dimension, we
immediately obtain†:

*We separate xℓ from zℓ to accurately reflect its distinct role as the current input token in autoregressive
models, though including it in zℓ would not affect the main results of this paper.

†See Appx. A for conventions on asymptotic notations.
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Theorem 5.4 (L2M Condition for Single Models). For a model to be MI-capable across all
sequence lengths, its history states zq

L/2 must satisfy dim(zq
L/2) ≿ IBP

L/2;L ∼ Lβ .

Proof. We prove by contrapositive. By Thm. 5.2, if dim(zL/2) ≺ IBP
L/2;L, then max

θ
IBP,qθ
L/2;L ≺ IBP

L/2;L,

implying there exists some L where max
θ

IBP,qθ
L/2;L < IBP

L/2;L, violating MI-capability.

For some architectures, a single fixed-size model may not satisfy this condition across all sequence
lengths. In such cases, we can extend our framework to families of models where model size grows
with sequence length. Consider a series of models {qL}∞L=1 of the same architecture, where model
size may increase with L.

Definition 5.5. A series of models {qL}∞L=1 is MI-capable if the maximum bipartite mutual informa-
tion each model can express satisfies max

θL

I
BP,qL,θL

L/2;L ≥ IBP
L/2;L for its corresponding sequence length

L, where the maximum is taken over all parameters θL of model qL.

Theorem 5.6 (L2M Condition for Model Series). For a series of models {qL}∞L=1 to be MI-
capable, the history states zqL

L/2 of each model must satisfy: dim(zqL
L/2) ≿ IBP

L/2;L ∼ Lβ .

Note that an MI-capable single model trivially induces an MI-capable series when applied to all
sequence lengths, though the converse is not true.

5.2 Implications to Common LLM Architectures

We can now apply our framework to analyze whether different architectures satisfy the L2M condition
and thus can capture long-range dependencies as sequence length grows.

In transformer-based models (excluding sparse attention and linear attention variants), the history
state consists of stored key-value pairs for all previous tokens. Even with fixed model size, these
key-value pairs grow linearly with sequence length: dim(zq

L/2) ∼ L ≿ Lβ . This means a single
transformer model naturally satisfies the L2M (single model) condition across all sequence lengths,
notwithstanding the quadratic computational cost.

In contrast, SSMs, RNNs, and linear attention models, despite being celebrated for their “infinite”
context length and linear complexity, cannot satisfy the L2M condition with a single fixed-size
model. Their history state dimension remains constant regardless of sequence length, and our theory
demonstrates that this constant-size state cannot capture the growing mutual information. However,
these architectures can achieve MI-capability (model-series) through a series of models {qL}∞L=1
where model size, and thus history state dimension, increases with sequence length. This requirement
effectively offsets their computational efficiency advantage when modeling long sequences.*

For other architectures, such as sparse attention models and log-linear models, we can similarly
analyze their history state scaling to determine whether they satisfy the L2M condition as single
models or require a series of growing models. Crucially, any architecture must exhibit power-law
growth in its history state dimension with sequence length in order to truly satisfy the single-model
L2M condition.

We note that the L2M condition addresses a model’s capacity to capture long-range dependencies, not
its overall language modeling capability. It is a necessary but not sufficient condition: architectures
that fail to satisfy it will have inherent limitations at longer sequences, while satisfying it does not
guarantee effective language modeling. As discussed in Sec. 2, the L2M condition is also distinct
from neural scaling laws, which typically study how model performance scales with model size,
dataset size, and compute budget at a fixed sequence length.

*And a new model must be trained for each sequence length, which can be prohibitively expensive.
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(a) (b) (c)

Figure 3: Evaluation of KL-divergence across model architectures trained on synthetic data that
satisifes the bipartite mutual information scaling. (a, b) Average KL-divergence per token for models
trained on different sequence lengths. (c) Average KL-divergence per token as a function of the ratio
between bipartite mutual information and Mamba recurrent state sizes.
(a) (b) (c)

Figure 4: Position-wise conditional negative log likelihood (NLL) evaluation for models trained on
8192-token sequences on the PG19 dataset [90].

6 Empirical Verification

Sub-volume-law Gaussian Test. We first validate our theory using a synthetic dataset comprising a
family of multivariate Gaussian distributions (see Appx. C for details). This distribution family closely
mimics the scaling of both bipartite and two-point mutual information observed in natural language,
while crucially allowing for the efficient calculation of conditional probabilities and KL divergences—
calculations that would be intractable with real-world natural language datasets. Furthermore, the
synthetic data enables an isolated assessment of a model’s ability to handle long sequences, without
interference from its capacity to understand the semantic meanings of natural language.

In Fig. 3, we present the average per-token KL divergence (defined in Appx. F.IV) for GPT2, Mamba,
and Mamba2 models, serving as representative transformer and SSM architectures. Panels (a) and (b)
show that GPT2 maintains consistent KL divergence across different sequence lengths. In contrast,
smaller Mamba and Mamba2 models exhibit increasing difficulty with longer contexts, necessitating
substantially larger model sizes to achieve comparable performance at a sequence length of 4096.
Panel (c) offers direct confirmation of our theoretical framework: it plots KL divergence against
the ratio of bipartite mutual information to the recurrent state size for Mamba models of varying
configurations. For this, we varied sequence lengths from 64 to 16,384 and model sizes from 50M to
1.4B parameters. The KL divergence values from these diverse configurations remarkably collapse
onto a single curve, demonstrating that model performance depends only on the ratio IBP/ dim(z).
This finding precisely confirms our theory that for effective long-context modeling, a model’s history
state size must scale at least as fast as the bipartite mutual information present in the data.

These findings have important implications for modeling very long sequences. Extrapolating from
the measured scaling in Fig. 2 (which likely underestimates the true exponent), the bipartite mutual
information for a sequence of one million tokens could exceed 60,000 nats. Our results in Fig. 3(c)
suggest that maintaining low KL divergence at such bipartite mutual information levels would require
recurrent state dimensions approaching one million.

PG19 Test. We then extend our analysis to the PG19 dataset [90], a high-quality collection of
pre-1919 books exhibiting long contextual dependencies.

In Fig. 4, we show the position-wise conditional negative log likelihood (NLL) of models trained on
the PG19 dataset [90] with 8192-token sequences, where calculating KL-divergence is not feasible.
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Note that, unlike conditional KL divergence, conditional NLL naturally decreases with token position
(see Appx. F for details). Two key patterns emerge from this experiment: First, Mamba models
typically outperform GPT2 models of comparable size at early token positions, but this advantage
diminishes and eventually reverses at later positions. Most notably, Mamba’s NLL tends to plateau
beyond certain positions unless the model size is increased, while GPT2’s NLL continues to improve.
Second, the performance gap between Mamba and GPT2 narrows with increasing model size. Both
observations align with our theoretical predictions: since Mamba’s history state size remains fixed
regardless of sequence position, its performance inevitably degrades beyond a certain token position
unless model size increases. As model size grows, the history state size also increases, eventually
becoming sufficient to capture the mutual information present in 8192-token sequences.

We note that Mamba’s linear computational complexity can make larger Mamba models practically
more efficient than smaller transformers. Our results should not be interpreted as suggesting Mamba’s
architectural inferiority. Rather, they demonstrate how different architectures handle long sequences
differently, and that a model’s capacity for capturing long-range dependencies aligns with our
theoretical L2M framework, regardless of the architecture.

Additional experimental results can be found in Appx. G.

7 Discussion

The L2M condition establishes a fundamental relationship between the information structure of data
and architectural requirements. This relationship manifests differently across architectures: transform-
ers with linearly growing key-value caches naturally satisfy the condition as single models (given our
measured sublinear mutual information scaling with β < 1), though at quadratic computational cost,
while SSMs and similar fixed-state architectures require model size to scale with sequence length to
achieve comparable mutual information capability.

Interestingly, transformers appear to over-provision their history state relative to the measured mutual
information scaling: their linear growth exceeds the sublinear (Lβ with β < 1) scaling we observe.
This observation provides a clear goal for future architecture design. Although it remains unclear
whether the over-provisioning is necessary for other aspects of language modeling beyond pure
information storage, the gap between the linear growth of transformers and the Lβ requirement
suggests a concrete target: architectures that precisely match the required sublinear scaling could
potentially achieve substantially improved efficiency while maintaining the capacity to capture
long-range dependencies.

Our framework applies to autoregressive language models, which encompass the vast majority of
widely-used LLMs. While diffusion-based language models represent an alternative generative
paradigm, they typically still operate autoregressively at a higher level of granularity, making our
framework applicable in practice. Extending our framework to hybrid architectures that combine
different mechanisms represents an important research direction that could unify our understanding
of how diverse architectural choices affect long-context capabilities. Applying our framework to
other sequential domains, such as biological sequences like proteins or DNA, or computer code, also
presents a particularly promising direction, as different mutual information scaling behaviors in these
domains could provide a principled explanation for the observed differences in model requirements
across domains.

Additional discussions on limitations and broader impacts can be found in Appx. H and I.

8 Conclusion

We establish a bipartite mutual information scaling law that characterizes long-range dependencies
in natural language and introduce the L2M condition, which lower bounds the necessary scaling of
a model’s history state for effective long-context modeling. By identifying the minimum required
growth rate of the history state, our work provides a principled foundation for understanding how
different architectures handle long contexts. This framework establishes concrete, information-
theoretical, and data-driven targets that could guide the design of architectures balancing compu-
tational efficiency with the capacity to capture long-range dependencies in natural language and
potentially beyond.
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A Notations and Conventions

Basic notations

• Random variables: Uppercase letters (e.g., X , Y , W ) denote random variables.
• Realizations: Lowercase letters (e.g., x, y, w) denote specific values or realizations of

random variables.
• Sequences: Xi:j denotes the sequence (Xi, Xi+1, . . . , Xj).
• Bold notation: X := Xi:j when indices are clear from context.
• Single variable shorthand: X := Xi when the index is clear from context.
• Logarithms: While the choice of base does not affect the scaling laws (only the multiplicative

constants), all logarithms are natural logarithms (base e) unless otherwise specified.

Information-theoretic quantities

• H(·): Shannon entropy.
• H(·|·): Conditional (Shannon) entropy.
• I(·; ·): (Shannon) mutual information.
• DKL(·||·): Kullback–Leibler divergence.
• Hp(·): Entropy computed with respect to distribution p.
• Hq(·): Entropy computed with respect to distribution q.
• H(p, q): Cross-entropy between distributions p and q.

Asymptotic notations

• f(n) ∼ g(n): f and g have the same asymptotic growth rate, i.e., f(n) = Θ(g(n)).
• f(n) ≻ g(n): f grows strictly faster than g asymptotically, i.e., f(n) = ω(g(n)).
• f(n) ≿ g(n): f grows at least as fast as g. asymptotically, i.e., f(n) = Ω(g(n)).
• f(n) ≺ g(n): f grows strictly slower than g asymptotically, i.e., f(n) = o(g(n)).
• f(n) ≾ g(n): f grows at most as fast as g asymptotically, i.e., f(n) = O(g(n)).

Distributions and expectations

• p: True underlying probability distribution (of natural language).
• q: Model-generated probability distribution (sometimes refers to the model itself).
• Ep[·]: Expectation with respect to distribution p.
• pX ⊗ pY : Product distribution of marginals pX and pY .

Model-specific notations

• wBOS: Beginning-of-sequence token.
• M : Vocabulary size.
• L: Sequence length.
• ℓ: Position of sequence split for bipartite mutual information.
• dim(z): Dimensionality of the history state z.
• θ: Model parameters.

Special notations

• IBP: Bipartite mutual information.
• ITP: Two-point mutual information.
• 1(·): Indicator function (equals 1 when condition is true, 0 otherwise).

The notations are used consistently throughout the main text and appendices unless otherwise specified
in local contexts.
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B Additional Details on Mutual Information Scalings

B.I Bipartite Mutual Information Scaling with Additional LLMs on Additional Datasets

In the main text, we use the LLaMA 3.1 405B model as the density estimator and measured the bipar-
tite mutual information scaling on PG19 dataset. In this section, we provide additional estimations
of the bipartite mutual information scaling using the DeepSeek V3 Base model and on WIKIPEDIA
dataset. We note that because we are merely measuring the conditional probabilities of the input
tokens without interactions with the agent, we believe the non-instruction-finetuned model better
suits our tasks.

Figure B.1: Bipartite mutual information estimation using (left) LLaMA 3.1 405B on the WIKIPEDIA
dataset and (right) Deepseek V3 Base model on the PG19 dataset. All direct measurements include
the bias correction described in Appx. B.IV.

In Fig. B.1, we report the results on WIKIPEDIA dataset using LLaMA 3.1 405B model as the density
estimator and on PG19 dataset using Deepseek V3 Base model as the density estimator. We find that
in both cases, clear sub-volume growth behavior is observed. We note that the measured exponent
should be taken with a grain of salt and likely underestimates the true mutual information scaling due
to reasons explained in Appx. B.III.

B.II Bipartite Mutual Information Scaling Under Various Ratios of ℓ/L

In the main text, we focused on the bipartite mutual information with equal splits. However, the
bipartite mutual information scaling is not limited to equal biparitition. In this section, we provide
additional results for various ratios of ℓ/L.

In Fig. B.2, we provide estimation of the bipartite mutual information scaling for ℓ/L = 3 and
ℓ/L = 4. All results show clear power-law relations, and are consistent with Fig. 2 in the main text.
These results can be used to support the L2M condition with similar arguments as in the main text.

B.III Why The Estimated Exponent β Is Likely An Underestimation?

In the main text, we mentioned that our measured exponent β using LLMs likely underestimates the
true β. Here, we discuss the reasons.

For the direct estimator,

IBP,direct
ℓ;L = H(pY , qY )−H(pY |X , qY |X), (B.1)

both terms (without the minus sign) overestimates the true (conditional) entropy, but for different
extent and at different scales.

At small L, the first term suffers from the bias from the BOS token as discussed in Appx. B.IV. The
second term, despite also an overestimation, does not suffer from the BOS token issue. Therefore, at
small L, the direct estimator tends to overestimate the true entropy.

At large L, the bias from the BOS token is less severe. However, modeling p(Y |X) requires the
model to correctly capture all the dependencies between X and Y , making it significantly harder than
modeling p(Y ) alone. Therefore, q(Y |X) is likely a worse estimation of the true distribution than
q(Y ), resulting in more overestimation in the second term, and an underestimation of the bipartite
mutual information.

19



Figure B.2: Bipartite mutual information estimation using different ratios of ℓ/L. All results suggest
the existence of power-law scaling, with various fitted exponents.

This means that the direct estimator tends to overestimate the true bipartite mutual information at
small L and underestimate it at large L, resulting in an underestimation of the fitted exponent.

The vCLUB estimator, as pointed out in [40], is an upper bound to the true mutual information if
q is close to p, but fails to maintain the property when the KL-divergence between them increases.
Therefore, it is likely that this estimator also overestimates the true bipartite mutual information at
small L and underestimates it at large L, resulting in a similar underestimation of the fitted exponent
as our direct estimator. As our fitted exponent for the vCLUB estimator is smaller than that of
the direct estimator, we conclude that the vCLUB estimator has a larger bias in this case, and it is
reasonable to believe that the true exponent is even larger.

B.IV Direct Estimation of Bipartite Mutual Information Using LLMs

In the main text, our direct estimator for the bipartite mutual information is

IBP,direct
ℓ;L = EpXY

[log q(Y |X)− log q(Y )] = H(pY , qY )−H(pY |X , qY |X) = Ip(X;Y )+ε(p, q).
(B.2)

where as usual, X := X1:ℓ := W1:ℓ and Y := Y1:L−ℓ := Wℓ+1:L with W1:L being a sequence
of tokens. However, as discussed in the main text, the H(pY , qY ) term suffers from an additional
bias—we cannot guarantee that Y starts at the beginning of a sentence, but LLMs model distributions
conditioned on BOS token. To mitigate this issue, we use n-gram calculations to correct the entropy
of the first two tokens as explained below.

We first rewrite the (marginal) cross entropy as

H(pY , qY ) = −Ep[log q(Y )] = −
L−ℓ∑
i=1

Ep[log q(Yi|Y1:i−1)], (B.3)

where as usual, the expectation over the conditional variable is omitted but implied in the cross
entropy calculation.

In modern LLMs, we can only compute q(yi|y1:i−1, wBOS) ̸= q(yi|y1:i−1), resulting in an additional
error in the bipartite mutual information estimation. In practice, this difference becomes less
pronounced for larger i, because it matters less if the sequence starts at the beginning of a sequence
or not if there are many y1:i−1 prior tokens to conditional on. Therefore, we focusing on reducing the
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bias for small i. In addition, if i is small, we can iterate over the dataset and construct a histogram for
the i-gram distribution p(y1:i).

We denote the count for each i-tuple of tokens with ny1:i
and the total number of samples with N .

Then, the entropy of the distribution can be estimated naively as

Ĥnaïve(Y1:i) = −
∑
y1:i

ny1:i

N
log

ny1:i

N
= logN − 1

N

∑
y1:i

ny1:i
log ny1:i

, (B.4)

where the summation runs over all possible combination of tokens y1:i := (y1, y2, . . . yi).

However, this estimation is severely biased and underestimates the true entropy, due to the concavity
of logarithm function. In [102], a bias-corrected estimator is proposed by replacing the logarithm
function with a new function

ĤG(Y1:i) = logN − 1

N

∑
y1:i

ny1:i
G(ny1:i

), (B.5)

where

G(n) = ψ(n) +
(−1)n

2

(
ψ

(
n+ 1

2

)
− ψ

(n
2

))
, (B.6)

with ψ(·) the digamma function. We note that Ref. [102] was not able to obtain the closed form
expression for G(·), which we derived with the help of Wolfram Mathematica [103].

Figure B.3: Effect of bias correction method in the direct estimator. The bias only affects the
estimation at small sequence lengths, and all methods converge at large sequence lengths.

This bias-corrected estimator still underestimates the true entropy, but much less compared to the
original naïve estimator. In the main text, we estimate the (marginal) cross entropy with 2-gram
correction in the following way. Breaking up the cross entropy as

H(pY , qY ) = −
L−ℓ∑
i=3

Ep[log q(Yi|Y1:i−1)] +H(pY1Y2
, qY1Y2

). (B.7)

For the first term, we use LLM generated q(yi|y1:i−1, wBOS) as approximation. For the sec-
ond term, we mitigate the bias from LLM estimation by combining it with Eq. (B.5) as
H(pY1Y2

, qY1Y2|wBOS
)/5 + 4ĤG

p (Y1Y2)/5. In Fig. B.3, we also present the result without this
correction and show that this bias correction mostly affects the estimation at small lengths L, and
does not alter the general scaling behavior. In addition, since the result from this bias-corrected direct
estimator agrees with the vCLUB [40] estimator, we believe this correction is reasonable.

B.V Additional Discussion on Mutual Information Estimation Methods

In the main text, we briefly discussed the limitations of traditional mutual information estimation
methods for our high-dimensional, long-sequence setting. Here we provide additional technical
details on why these methods are challenging to apply to our settings.

Neural Estimators: MINE and InfoNCE. Neural estimators like MINE [37] and InfoNCE [100]
train deep neural networks as critics to estimate mutual information. Both methods can fundamentally
be viewed as training unnormalized density estimators or density ratio estimators.

21



MINE uses the Donsker–Varadhan representation of KL divergence [104] and trains a critic Tθ(x, y)
to maximize:

Ep(x,y)[Tθ(x, y)]− logEp(x)p(y)[e
Tθ(x,y)] (B.8)

The optimal critic approximates the log density ratio log p(x,y)
p(x)p(y) . However, this objective suffers

from high variance and numerical instability when mutual information is large, which is especially
challenging given the high-dimensional nature of long sequences we analyze.

InfoNCE uses noise-contrastive estimation with multiple negative samples:

I(X;Y ) ≥ E

[
log

ef(xi,yi)

1
K

∑K
j=1 e

f(xi,yj)

]
(B.9)

where the expectation is over K independent samples from the joint distribution. The bound is upper
bounded by logK, which means for our setting where mutual information can be on the order of
thousands, this would require prohibitively large batch sizes to obtain accurate estimates.

Both methods require training critics from scratch to learn representations of natural language
distributions, which could require datasets and computational resources comparable to training LLMs
themselves.

Other variational bounds [36] face similar challenges.

K-Nearest Neighbor Estimators. K-nearest neighbor (K-NN) estimators [39] estimate mutual
information based on distances between samples in joint and marginal spaces. While asymptotically
unbiased and training-free, they also face challenges for text.

Text consists of discrete tokens that must be embedded into continuous spaces for K-NN estimation.
Modern token embeddings have dimensions in the thousands, and for sequences of thousands of
tokens, the combined dimensionality can make K-NN estimation impractical as the number of samples
required for reliable K-NN estimates grows exponentially with dimension.

Connection to Our LLM-Based Approach. Our approach leverages pre-trained LLMs as den-
sity estimators, providing q(y|x) directly through conditional probabilities and approximating q(y)
efficiently. This avoids training critics from scratch and the curse of dimensionality from distance-
based estimation. We believe this is well-suited for our use case of analyzing long natural language
sequences.

B.VI Estimation of Two-Point Mutual Information

In the main text, we included the results for two-point mutual information for completeness. In this
section, we explain how the results are obtained.

Two-point mutual information estimation is more straightforward compared to bipartite mutual
information, requiring only 1- and 2-gram statistics without LLM approximations. We estimate this
quantity using entropy calculations for individual tokens and token pairs separated by distance d.
Following [102], we employ their bias-reduced entropy estimator:

ĤG(X) = ĤG(Y ) = logN − 1

N

M∑
m=1

nmG(nm), (B.10)

where N is the total number of tokens, M is the vocabulary size, nm is the number of tokens whose
token ID equals m, and G(·) is defined as

G(n) = ψ(n) +
(−1)n

2

(
ψ

(
n+ 1

2

)
− ψ

(n
2

))
(B.11)

with ψ(·) the digamma function.

The entropy of pairs of tokens is estimated analogously, with the summation running over all ordered
pairs of tokens (mi,mj), resulting in the total number of terms quadratic in the vocabulary size. The
mutual information is then estimated as

ÎTP
d (X;Y ) = ĤG(X) + ĤG(Y )− ĤG(XY ). (B.12)
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We note that this mutual information estimator exhibits systematic bias. The entropy estimator has
a negative bias that increases (in absolute value) with dimension of the sample space |Ω|. Since
|ΩX | = |ΩY | = M where as |ΩXY | = M2, the bias in Ĥ(XY ) exceeds that in Ĥ(X) = Ĥ(Y ),
leading to a positive bias in Îd. This bias becomes particularly problematic at large distances d, where
H(XY ) ≈ H(X) +H(Y ) and Id approaches zero. To mitigate this issue, we perform additional
bias correction by fitting the systematic bias from the data (see Appx. B.VII for details).

Figure B.4: Two-point mutual information scaling on PG19 and WIKIPEDIA datasets.

We apply this methodology to measure two-point mutual information on both the PG19 dataset and
WIKIPEDIA, confirming power-law decay in both cases [Fig. B.4].

B.VII Bias Correction for Two-point Mutual Information

As discussed previously, the estimation of two-point mutual information can be calculated directly
using the n-gram approximation [Eq. (B.5)], and compute the two-point mutual information as

ÎTP
d (X;Y ) = ĤG(X) + ĤG(Y )− ĤG(XY ). (B.13)

As discussed in Appx. B.IV, this entropy estimator has a negative bias, whose magnitude depends on
the ratio |Ω|/N , with |Ω| the size of the corresponding sample space. Since the sample space for the
joint distribution is larger, it has a larger negative bias, resulting in a positive bias in Î . When d is
small, this bias is relatively small compared to the mutual information itself. However, as d becomes
larger, X and Y become less correlated, and H(XY ) → H(X) +H(Y ). In this case, the estimator
can be dominated by this bias, and fitting for the power-law exponent becomes impossible.

To mitigate this issue, we propose a bias-corrected estimator.

ÎTP,corrected
d (X;Y ) = ĤG(X) + ĤG(Y )− ĤG(XY )− C, (B.14)

where C is an unknown positive constant that does not depend on the distance d, which accounts for
the bias of the original estimator.

To obtain this bias correction term and fit the power-law exponent, we minimize the following loss
function ∑

d

(log (ÎTP
d − C)− (logA− α log d))2, (B.15)

which is just ÎTP
d = Ad−α + C fitted in log-log space. Then, we take the fitted C as the systematic

bias and α as the fitted power-law exponent.

In Fig. B.5, we compare the corrected and uncorrected two-point mutual information as a function of
d (only the corrected version is shown in the main text). Without the bias correction, the data appear
to have larger long-range dependencies, but after the bias correction, all points lie on a straight line
in a log-log plot. The bias correction constant is much smaller than the entropies involved in the
calculation, even the smallest two-token entropy measured is 12.5, at least two orders of magnitude
larger than the fitted bias correction. In addition, the fact that a single variable added to the fitting
function can fit the data so well suggests the bias correction is reasonable and highly effective.

We note that on WIKIPEDIA, we were only able to measure the two-point mutual information up to
d = 256, due to limited long-context length data in WIKIPEDIA.
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Figure B.5: Effect of bias correction for two-point mutual information. The bias causes a plateau at
large distances.

B.VIII Failures of Two-point Mutual Information

In this section, we further demonstrate the relation between two-point and bipartite mutual information,
and why two-point mutual information cannot properly capture the full multi-token dependencies
needed for modeling natural language.

In existing literature, the scaling of two-point mutual information has been used to demonstrate the
existence of long-range dependencies in natural language. In particular, it is believed that short-
range dependencies are characterized by an exponential decay in two-point mutual information,
as seen typically in finite-state Markov chains, and the existence of power-law decay in two-point
mutual information in natural language indicates non-trivial long-range dependencies. Although this
perspective is correct if one defines the existence of long-range dependence as as the existence of
non-exponential-decay two-point mutual information, this definition does not properly account for
the mutual information between token pairs when other tokens are present. This can be made more
clear by considering the following decomposition of bipartite mutual information.

For a sequence of tokens W1:L with X1:ℓ = W1:ℓ and Y1:L−ℓ = Wℓ+1:L, the bipartite mutual
information reads

IBP
ℓ;L = I(X1:ℓ;Y1:L−ℓ). (B.16)

Standard information theory allows mutual information to be decomposed as

I(XZ;Y ) = I(X;Y ) + I(Z;Y |X), (B.17)

where I(Z;Y |X) is the conditional mutual information between Z and Y given X . Using this
relation repeatedly, the bipartite mutual information can be decomposed as

IBP
ℓ;L = I(X1:ℓ;Y1:L−ℓ)

= I(X1;Y1) + I(X2;Y1|X1) + I(X1;Y2|Y1) + I(X2;Y2|X1Y1) + · · ·

=

ℓ∑
i=1

L−ℓ∑
j=1

I(Xi;Yj |X1:i−1Y1:j−1)

̸=
ℓ∑

i=1

L−ℓ∑
j=1

I(Xi;Yj) =

ℓ∑
i=1

L−ℓ∑
j=1

ITP
j−i+ℓ.

(B.18)

In fact, it is in general not even clear whether the conditional mutual information
I(Xi;Yj |X1:i−1Y1:j−1) is greater or less than the marginal mutual information I(Xi;Yj). Therefore,
as demonstrated here, when considering dependencies between blocks of text, a simple aggregation
of the two-point mutual information gives a very incomplete picture. Due to this reason, weakly cor-
related systems, such as the example mentioned in Sec. 4.4 could exhibit seeming strong long-range
two-point dependencies, and systems with very different bipartite mutual information, could share
very similar two-point information scaling, as we will show later in Appx. C.
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C Multivariate Gaussian Distributions

In the main text, we considered two families of multivariate Gaussian distributions of different
sequence lengths to demonstrate the distinction between bipartite and two-point mutual information
scalings. In particular, one is designed to mimic natural language, both in terms of the sub-volume law
growth of the bipartite mutual information and the power-law decay of two-point mutual information.
This family of distributions is also used to empirically verify our theory on L2M condition for different
LLM architectures. The other is designed to have the same two-point mutual information scaling, but
very different bipartite mutual information scaling, showcasing that one can have distributions with
the same two-point mutual information scaling, but drastically different bipartite mutual information
scalings.

C.I Mutual Information Scalings

(a) (b)

Figure C.6: Bipartite and two-point mutual information of the two families of Gaussian distributions.

Before showing the construction details, we first present both the bipartite and two-point mutual
information scalings of the two families of Gaussian distributions. As shown in Fig. C.6, they have
drastically different bipartite mutual information scaling—one has a power-law relation and the
other logarithmic—but their antipodal two-point mutual information scaling is identical. This further
demonstrates that two-point mutual information alone gives incomplete information of the multi-
token long-range dependencies present in sequence data, and the simple aggregation of two-point
mutual information does not tell the full picture of the bipartite mutual information. In fact, one can
construct distributions with the same power-law decay in two-point mutual information, but has a
constant bipartite mutual information scaling as well.

C.II Construction

Let’s start by considering the family of distributions with sub-volume law growth. The distributions
are constructed in a hierarchical manner.

We start at the first layer, with four independent standard Gaussian random variables
(X1, X2, X3, X4). Then, define the change-of-coordinate matrix

M =

 γ γ γ ρ
−γ γ −γ ρ
−γ −γ γ ρ
γ −γ −γ ρ

, (C.19)

where we choose γ =
√
5/4 and ρ = 1/4. The output of the first layer is defined as

Y = MX, (C.20)

where the random variables are now correlated. It is easy to verify that this operation only changes
the off-diagonal elements in the covariance matrix, and leaves the diagonal elements unaffected.
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For the second layer and up, we first stack three independently sampled copies from the previous
layer and attach additional independent standard Gaussian random variables as the fourth elements as

X =


Y1,1 Y1,2 Y1,3 W1

Y2,1 Y2,2 Y2,3 W2

Y3,1 Y3,2 Y3,3 W3

...
...

...
...

, (C.21)

where Yi,j refers to the ith output from previous layer of the jth copy, and Wi refers to the ith newly
sampled standard Gaussian random variable.

Note that at this point, all rows are independent from each other; therefore we apply the change of
coordinate matrix M at each row to correlate them. The matrix is then flattened to obtain Z

Z = (Z1,1, Z1,2, Z1,3, Z1,4, Z2,1, Z2,2, Z2,3, Z2,4, Z3,1, Z3,2, Z3,3, Z3,4, · · · ), (C.22)

where the subscripts denote the variables’ original position in the matrix. Before outputting from this
layer, we perform an addition operation to each pair of random variables (Zi,4, Zi+1,1), by applying
a coordinate transformation that modifies their correlations as

corr(Zi,4, Zi+1,1) →
2

5
(corr(Zi,3, Zi,4) + corr(Zi+1,1, Zi+1,2)) +

1

5
. (C.23)

This operation may seem arbitrary, but it is crucial to introduce correlations that give a linear ordering
of the random variables. Without this operation, the distribution simply forms a tree structure.

Now, we can truncate the construction at different layers l and form a family of distributions with
different sequence lengths L = 4l. In Fig. C.6 of the main text, we consider up to 8 layers, and in
Fig. 3 and 4, we consider l = 4, 5 and, 6.

The second family of distributions is constructed analogously. The only difference is that we replace
Eq. (C.21) with a single copy of Y and three independent copies of W as

X =


Y1 W1,1 W1,2 W1,3

Y2 W2,1 W2,2 W2,3

Y3 W3,1 W3,2 W3,3

...
...

...
...

, (C.24)

C.III Properties

These two series of distributions have many nice properties, in addition to their bipartite and two-
point mutual information scalings. In addition, these constructions directly defines the multi-variate
probability distribution due to their Gaussian nature. This allows for exact calculations of conditional
probability distributions for training LLMs, as well as direct computation of the bipartite and two-
point mutual information without LLM approximations.

D Model State for Storing Past Information

In Definition 5.1 in the main text, we give a concrete definition of “model state for storing past
information” as history state, and claim that it is the past key-value pairs for transformers and recurrent
state for SSMs and RNNs. Here, we explain them in more detail.

D.I Transformers

In transformers, only the attention block mixes information among different tokens, therefore we
only need to analyze the behavior of the attention block. We will be assuming the existence of the
causal mask, as our theory mainly applied to autoregressive LLMs. Denoting the input and output of
the attention layer as x and y (notice they are no longer two parts of a sequence), the self-attention
mechanism is defined as

y = softmax((Wqx)(Wkx)
T )Wvx, (D.25)
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where Wq , Wk and Wv are the weight matrices. For simplicity, we drop the usual
√
hdim normaliza-

tion and the output weight matrix, as they are irrelevant to our discussion.

Separating the calculation for each token, the mechanism can be rewritten as

yi =

∑i
j=1 e

(Wqxi)(Wkxj)Wvxj∑i
j′=1 e

(Wqxi)(Wkxj′ )
=
e(Wqxi)(Wkxi)Wvxi +

∑i−1
j=1 e

(Wqxi)kjvj

e(Wqxi)(Wkxi) +
∑i−1

j′=1 e
(Wqxi)kj′

, (D.26)

where kj =Wkxj and vj =Wvxj are keys and values which we sum over past tokens. Clearly, the
attention output only depends on the current token xi and the past key-value pairs k1:i−1 and v1:i−1.
This arguments extends to all yk with k ≥ i, where all yk’s dependency on x1:i−1 is via k1:i−1 and
v1:i−1. Therefore, key-value pairs form the history state, and their size grows linearly with input
sequence length. We note that Eq. (D.26) also describes how key-value caching works.

D.II State Space Models and RNNs

State space models (SSMs) and RNNs, on the other hand, are easier to analyze. These models in
general all have some recurrent state with a fixed size, and some mechanism to update the state when
a new token is observed. The output depends only on the previous recurrent state, and the current
token. They can in general be written in the following way.

hi = f(hi−1, xi),

yi = g(hi−1, xi),
(D.27)

for some update function f and output function g. It is obvious that the history state is exactly this
recurrent state (or the collection of recurrent states of different layers), which does not grow with the
input sequence.

We note that this discussion also applies to linear attention models, whose key-value pairs can be
merged into a recurrent state with fixed size, due to the replacement of softmax function. Test time
training (TTT) models can also be included in this discussion. They can be viewed as RNNs with
inner model parameters as recurrent state, and test time training process as update function.

D.III Other Architectures

For other models, such as sparse transformers or some compression-based models, the analysis has to
be performed separately. Nevertheless, the L2M framework is general: after identifying the history
state, one can always compare its scaling with the bipartite mutual information scaling to see whether
the model is capable of capturing the long-range dependencies in the data.

E Proofs of Theorem 5.2

We provide three proofs of Theorem 5.2 under different assumptions, demonstrating the universality
and robustness of the result. Importantly, all three sets of assumptions are extremely mild and
directly reflect realistic conditions in modern neural networks, whether through the discrete nature
of floating-point arithmetic, empirically observed geometric properties of neural representations, or
basic continuity requirements.

E.I Proof Under Discreteness Assumption

The discreteness assumption is already quite reasonable in practice. Modern neural networks
use floating-point representations, which are inherently discrete with finite precision. Moreover,
neural networks have been shown to retain strong performance even under aggressive quantization,
demonstrating that discrete representations with limited precision are sufficient to capture the essential
information. This discreteness assumption thus provides a natural and practical starting point for our
proof.
Theorem E.1 (Theorem 5.2, Discrete Version). Assume the history state zℓ takes discrete values.
Then a model’s capacity to capture bipartite mutual information is bounded by the size of its history
state as

IBP,q
ℓ;L ≤ C · dim(zℓ) + log(M) (E.28)

where C is some constant and M denotes the vocabulary size.
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Proof. By the data processing inequality: Iq(X1:ℓ;Y1:L−ℓ) ≤ Iq(ZℓXℓ;Y1:L−ℓ). This is upper
bounded by the entropy: Hq(ZℓXℓ), which is further upper bounded by Hq(Zℓ) + Hq(Xℓ) ≤
C · dim(zℓ) + log(M), where the last inequality follows from the bound on entropies of discrete
variables.

E.II Proof Under Almost Orthogonal Directions (AOD) Assumption

The discreteness assumption can be relaxed if we instead assume the following observed fact about
neural networks: neural networks store distinct information in almost orthogonal directions (AODs)
of the hidden state [105–107].
Theorem E.2 (Theorem 5.2, AOD Version). Assume neural networks store distinct information in
almost orthogonal directions (AODs) of the hidden state. Then a model’s capacity to capture bipartite
mutual information is bounded as

IBP,q
ℓ;L ≤ C · dim(zℓ) + log(M) (E.29)

where C is some constant and M denotes the vocabulary size.

Proof. An autoregressive neural network’s dependency on past tokens is through the intermediate
variable zℓ = f(x1:ℓ−1) such that q(y|x) := q(y|xℓ, zℓ). This can be viewed as the process
X → (Zℓ, Xℓ) → Y . According to the data processing inequality,

Iq(X1:ℓ;Y1:L−ℓ) ≤ Iq(Zℓ, Xℓ;Y1:L−ℓ) ≤ Hq(Zℓ, Xℓ) ≤ Hq(Zℓ) +Hq(Xℓ), (E.30)

where we use H to denote a generalized notion of entropy which measures the amount of information
that can be stored in Zℓ. We only care about the scaling of H, so its exact definition is irrelevant to
our discussion.

Under the AOD assumption, neural networks store distinct information in almost orthogonal directions
of the hidden state. Therefore, H should scale at most logarithmically with respect to the number
of AODs as the state size increases. According to the Kabatjanskii–Levenstein bound [108, 109],
given an error tolerance ε, the number of AODs is upper bounded by exp(f(ε) · dim(zℓ)) for some
function f that depends purely on the error threshold. Therefore, the generalized entropy scales
as Hq(Zℓ) ≾ log exp(f(ε) · dim(zℓ)) ∼ dim(zℓ). Since Hq(Xℓ) ≤ log(M) where M is the
vocabulary size, we conclude

IBP,q
ℓ;L ≤ C · dim(zℓ) + log(M). (E.31)

E.III Proof Under Lipschitz Continuity Assumption

The theorem can also be proved assuming only certain Lipschitz continuity conditions on the neural
network.
Theorem E.3 (Theorem 5.2, Lipschitz Version). Assume the history state mapping f : x1:ℓ−1 7→ zℓ
satisfies

∥∥f(x1:ℓ−1)− f(x′1:ℓ−1)
∥∥
2
≤ Kf1(x1:ℓ−1 ̸= x′1:ℓ−1) and the neural network is entropy-

Lipschitz, satisfying |Hq(Y |zℓ)−Hq(Y |z′
ℓ)| ≤ KH∥zℓ − z′

ℓ∥2. Then a model’s capacity to cap-
ture bipartite mutual information is bounded as

IBP,q
ℓ;L ≤ C · dim(zℓ) + log(M) (E.32)

where C is some constant and M denotes the vocabulary size.

Proof. We start with the data processing inequality and rewrite the bound as

Iq(X1:ℓ;Y1:L−ℓ) ≤ Iq(Zℓ, Xℓ;Y1:L−ℓ)

= Iq(Zℓ;Y1:L−ℓ) + Iq(Xℓ;Y1:L−ℓ|Zℓ)

≤ Iq(Zℓ;Y1:L−ℓ) + log(M),

(E.33)

where the last inequality uses Iq(Xℓ;Y1:L−ℓ|Zℓ) ≤ Hq(Xℓ) ≤ log(M), with M being the vocabu-
lary size.
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The history state is a function of the input tokens zℓ = f(x1:ℓ−1), with x1:ℓ−1 ∈ {1, 2, . . . ,M}ℓ−1.
Under our assumption on f , zℓ lives in a d-dimensional ball of radius Kf , where d = dim(zℓ).

Consider a quantization Q(zℓ) that maps each zℓ to the nearest point in an ε-covering of this ball.
Then

Iq(Zℓ;Y ) = Iq(Q(Zℓ);Y ) +Hq(Y |Q(Zℓ))−Hq(Y |Zℓ). (E.34)

By the entropy-Lipschitz assumption,Hq(Y |Q(Zℓ))−Hq(Y |Zℓ) ≤ KHε. Since Q(Zℓ) is discrete
and takes at most (2Kf/ε)

d values (by a covering number argument), we have Iq(Q(Zℓ);Y ) ≤
Hq(Q(Zℓ)) ≤ d log(2Kf/ε).

Therefore, Iq(Zℓ;Y ) ≤ d log(2Kf/ε) + KHε ≤ C · d for some constant C (by choosing ε
appropriately). This concludes

IBP,q
ℓ;L ≤ C · d+ log(M) = C · dim(zℓ) + log(M). (E.35)

E.IV Discussion

We believe this theorem is more universal and can be proved in additional ways, such as by connecting
it to channel capacity and potentially showing IBP,q

ℓ;L ≤ d log(1 + SNR) + log(M). We also believe
the theorem can be established with more relaxed assumptions, similar to how information dimension
is proved to be the upper bound of lossless compression of continuous random variables [110].
However, additional proofs are beyond the scope of this work, and the three proofs provided should
already be applicable in any practical settings.

F Additional Details on Experimental Setup

In this section, we provide detailed information about our experimental setup, including dataset
construction, model configurations, training procedures, and evaluation metrics.

F.I Synthetic Gaussian Distribution Dataset

For experiments on the multivariate Gaussian distribution, we use the sub-volume Gaussian distribu-
tions described in Appx. C, which exhibits power-law bipartite mutual information scaling with an
exponent of 0.79. To fully stress the LLMs, we stack 64 copies of the distribution and group the 64
Gaussian variables at each position to form a single token. More specifically, an example sample
looks like

W = (W1,W2, . . . ,WL)

:= ((Z1,1, Z1,2, . . . , Z1,64), (Z2,1, Z2,2, . . . , Z2,64), . . . , (ZL,1, ZL,2, . . . , ZL,64)),
(F.36)

where the two subscripts (i, j) refer to the ith random variable from the jth copy. In this way, the
bipartite mutual information matches better with natural language, not only in scaling, but also in
magnitude (multiplicative constant). We additionally prepend an all-zero token W0 to each sample to
mimic the effect of the BOS token.

In order to process continuous random variables, we replace the embedding layers of GPT2 and
Mamba(2) models with two-layer MLPs. For output, since all the conditional distributions are also
Gaussian, we use a different two-layer MLP to output the 64 conditional means µqZi,j |Z0:i−1,j

and
standard deviations σqZi,j |Z0:i−1,j

.

As discussed in Appx. C.III, due to the analytical construction, the Gaussian distribution permits
efficient calculation of conditional probabilities. Therefore, instead of simply training the neural
networks with negative log likelihood on samples alone, we use the average conditional KL-divergence
estimated as
DKL(p||qθ) =

EpZ

 1

L

L∑
i=1

1

64

64∑
j=1

(
log

σqZi,j |Z0:i−1,j

σpZi,j |Z0:i−1,j

+
σ2
pZi,j |Z0:i−1,j

+ (µqZi,j |Z0:i−1,j
− µpZi,j |Z0:i−1,j

)2

2σ2
qZi,j |Z0:i−1,j

− 1

2

)
(F.37)
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to reduce sampling variance.

F.II Natural Language Dataset (PG19)

For the PG19 dataset, we train on standard average negative log likelihood. We first split the dataset
into samples with a length of approximately 1.2 times the target length, ensuring each sample starts
at the beginning of a sentence. We then train the models for 5 epochs (approximately 450k iterations)
with a batch size of 16,384 tokens. To maintain consistency across different models, we always use
the same tokenizer from GPT-Neo-X [111].

F.III Training Configuration

For the Gaussian distribution training, during each iteration, we use a batch size of 4 (4 times sequence
length number of tokens) with freshly generated samples, meaning we never reuse any sample. We
therefore have effectively a single epoch, thanks to the “infinite” dataset size. We train all neural
networks using the AdamW optimizer and a cosine decay scheduler with warmup. We use a peak
learning rate of 5× 10−5, a weight decay of 0.01, 2000 warmup steps, and 500,000 training steps in
total. The results reported are at the end of training.

For the PG19 dataset experiments, we use similar hyperparameters: AdamW optimizer with a cosine
decay scheduler with warmup, peak learning rate of 5× 10−5, weight decay of 0.01, 2000 warmup
steps, and 500,000 steps in total. The results reported are at the end of training using a separate
evaluation dataset containing 10,000 samples.

F.IV Evaluation Metrics

In this paper, we report results on the position-wise conditional KL-divergence

DKL,i = DKL(pWi|W1:i−1
||qWi|W1:i−1

) = Ep [log p(Wi|W1:i−1)− log q(Wi|W1:i−1)] , (F.38)

average KL-divergence

Davg
KL =

1

L

L∑
i=1

DKL,i, (F.39)

and position-wise conditional NLL

NLLi = −Ep [log q(Wi|W1:i−1)] . (F.40)

One can also define an average NLL as

NLLavg =
1

L

L∑
i=1

NLLi, (F.41)

which we use in Appx. G.

F.IV.1 Understanding the Behavior of KL-divergence and NLL

It is important to understand how KL-divergence and NLL behave differently as token position
increases. Using the relationship between cross-entropy and KL-divergence from Eq. (5), we can
decompose the conditional NLL as

NLLi = DKL,i +Hp(Wi|W1:i−1), (F.42)

where Hp(Wi|W1:i−1) = −Ep[log p(Wi|W1:i−1)] is the conditional entropy of the true distribution
at position i.

This decomposition reveals why KL-divergence and NLL exhibit opposite trends with token position.
As token position increases, the conditional entropy Hp(Wi|W1:i−1) typically decreases because
more context is available, making the next token more predictable. In natural language, this reflects
that with more preceding text, there is less uncertainty about what comes next. Meanwhile, the
conditional KL-divergence DKL,i often increases with position, because learning all long-range
dependencies becomes more challenging, resulting in worse model estimations compared to the true
conditional distribution.
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For models with sufficient capacity relative to sequence length, the decrease in conditional entropy
dominates, causing NLL to decrease with position despite increasing KL-divergence. However,
for models with insufficient capacity (such as fixed-state models at long sequence lengths), the
KL-divergence can increase rapidly enough that NLL plateaus or even increases at later positions.
This behavior is precisely what we observe in our experiments with Mamba models in Fig. 4, where
Mamba’s NLL plateaus at later positions while transformers’ NLL continues to improve.

The same reasoning applies to average quantities: NLLavg typically decreases with sequence length
L as the average conditional entropy decreases, while Davg

KL may increase if the model’s capacity
becomes insufficient relative to the growing sequence length.

When reporting conditional NLL, we smooth the curves using a small window around nearby tokens
to reduce noise in the results.

F.V Model Configurations

In Tables F.1 and F.2, we include the model configurations and sequence lengths for all experiments
performed in this paper.

Table F.1: Models and configurations for synthetic dataset experiments.

Model num_hidden_layers hidden_size seq_len
GPT2 12 768 256,1024,4096
GPT2-medium 24 1024 256,1024,4096
GPT2-large 36 1280 256,1024,4096
Mamba-50m 12 512 64,256,1024,4096,16384
Mamba-70m 24 512 64,256,1024,4096,16384
Mamba-130m 24 768 64,256,1024,4096,16384
Mamba-370m 48 1024 64,256,1024,4096
Mamba-790m 48 1536 64,256,1024,4096
Mamba-1.4b 48 2048 64,256,1024,4096
Mamba2-130m 24 768 256,1024,4096
Mamba2-370m 48 1024 256,1024,4096
Mamba2-790m 48 1536 256,1024,4096

Table F.2: Models and configurations for PG19 experiments.

Model num_hidden_layers hidden_size seq_len
GPT2 12 768 4096,8192
GPT2-medium 24 1024 4096,8192
GPT2-large 36 1280 4096,8192
Mamba-130m 24 768 4096,8192
Mamba-370m 48 1024 4096,8192
Mamba-790m 48 1536 4096,8192

F.VI Computational Resources and Implementation Details

Our experiments are performed primarily on H100 GPUs, with varying VRAM sizes between 80GB
and 96GB. Some experiments use A100 GPUs with 80GB VRAM instead. We use the vLLM library
[68] when running inference to estimate the mutual information scaling. For both LLaMA 3.1 405B
and DeepSeek V3, we run the FP8 version using 8 H100 GPUs (with 96GB VRAM each). The model
weights and configurations are downloaded from HuggingFace [112].

When training GPT and Mamba(2) models on the Gaussian distribution, we use our custom library
developed in PyTorch [113]. When training GPT and Mamba models on the PG19 dataset, we use
the trainer from the HuggingFace transformers library. All models are initialized from scratch,
with model configurations taken from HuggingFace. All training experiments are performed on
individual H100 and A100 GPUs with FP32 precision to avoid possible training failures. Although
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training with FP16 would make the experiments run faster, it should not affect the actual results. We
note that for Mamba2, we use the official implementation instead of the HuggingFace version. For
the GPT2 experiments on PG19, we re-implement the attention mechanism with FlexAttention [114]
to save memory, as the official FlashAttention [64–66] does not support FP32 precision.

F.VII Code Availability

The code for reproducing our mutual information estimation and the PG19 results is available at
https://github.com/LSquaredM/mutual_info_scaling_law.

G Additional Experimental Results

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure G.7: Evaluation of KL-divergence across model architectures trained on sub-volume Gaussian
distributions. (a, b) Average KL-divergence per token for models trained on different sequence
lengths [same as Fig. 3 (a, b)]. (c, d) Position-wise conditional KL-divergence for models trained on
sequence length 256. (e, f) Position-wise conditional KL-divergence for models trained on sequence
length 1024. (g, h) Position-wise conditional KL-divergence for models trained on sequence length
4096 [same as Fig. 3 (c, d)]. Lower values indicate better performance.

In this section, we show additional experimental results. In Fig. G.7, we include positional-wise
conditional KL-divergences of models trained on sub-volume Gaussian distributions with sequence
length 256 (c, d), 1024 (e, f), and 4096 (g, h). As clearly demonstrated in the figure, for short
sequence lengths, Mamba maintains similar performances to GPT2; Mamba models of different
sizes also appear to have a smaller performance gap. However, as we go to longer sequence lengths,
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smaller Mamba models starts to fail, while GPT2 always maintain relatively stable performances,
consistent with our theory.

Figure G.8: Negative log likelihood (NLL) across model architectures trained on sub-volume Gaussian
distributions (a, b) Average NLL per token for models trained on different sequence lengths. (c, d)
Position-wise conditional NLL for models trained on sequence length 4096. Lower values indicate
better performance.

In Fig. G.8, we show the negative log likelihood (NLL) of models trained on sub-volume Gaussian
distributions. We note that, because NLL combines the KL-divergence with the intrinsic entropy of
the underlying distribution (the average and position-wise conditional of which decays as sequence
lengths), the differences between model performances are less visible. It’s worth noting that, since
Gaussian random variables are continuous, NLL values can differ by an arbitrary additive constant
by rescaling the distribution. Therefore, the exact values of conditional NLL do not carry intrinsic
meaning, though relative comparisons (which is exactly the same as the KL-divergence) between
models remain valid.

In Fig. G.9, we show the position-wise conditional negative log likelihood (NLL) of models trained
on the PG19 dataset [90] with 4096-token sequences. The results here is consistent with the 8192-
token-sequence results in the main text.

H Limitations

Our theoretical framework specifically examines models’ capacity to capture long-range dependencies
through the lens of bipartite mutual information and does not address other aspects of language
modeling, such as reasoning capabilities or world knowledge. The L2M condition establishes
necessary but not sufficient conditions for effective long-context modeling. Understanding how this
theoretical capacity translates to actual downstream task performance remains an important open
question. The relationship likely depends on additional factors including optimization dynamics,
architectural inductive biases, and task-specific requirements. Systematic evaluation across diverse
long-context benchmarks represents a crucial next step to clarify these relationships and identify any
gaps between theoretical capability and practical performance.

While our empirical validation on synthetic Gaussian distributions with controlled mutual information
scaling provides clean verification of the theoretical predictions, it may not capture all complexities
present in natural language. Our theory focuses on autoregressive language models, which remains
broadly applicable as even diffusion-based approaches typically employ autoregressive generation
for extended sequences in practice. Nonetheless, exploring whether similar information-theoretic
principles govern fundamentally different generative paradigms or multimodal models represents an
interesting direction for future work.
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Figure G.9: Position-wise conditional negative log likelihood (NLL) evaluation for models trained on
4096-token sequences on the PG19 dataset [90].

The methodology we employ, using LLMs as density estimators for mutual information measurement,
represents a practical approach given the severe challenges of high-dimensional estimation in long
sequences. Alternative methods like K-NN and neural estimators face fundamental difficulties with
dimensionality and sequence length. While our approach yields consistent power-law behavior across
different models and estimators, both methods likely underestimate the true exponent, and developing
more accurate estimation techniques remains an important challenge.

Our evaluations rely primarily on open-source models; further verification using state-of-the-art
closed-source models would provide additional validation.

I Broader Impact

This work advances our theoretical understanding of how language models process long-range
dependencies, with implications for the design and deployment of more efficient LLM architec-
tures. By establishing the L2M condition, we provide a principled framework for evaluating an
architecture’s fundamental capacity for long-context modeling. This could lead to more efficient
models that maintain effectiveness while reducing computational resources, potentially decreasing
the environmental footprint of training and inference. Our findings may influence the development
of specialized architectures for tasks requiring long-context understanding, such as legal document
analysis, scientific research, and complex reasoning.

However, improved long-context modeling could also amplify existing challenges in LLMs, including
the propagation of bias over longer contexts and enhanced capabilities for generating persuasive
misinformation. Research applying the L2M framework should consider these ethical dimensions,
particularly how improvements in long-range dependency modeling might affect model safety,
fairness, and the verifiability of model outputs.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes] .

Justification: All claims are supported by either theoretical or experimental results.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes] .

Justification: The limitations are discussed in Appx. H.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes] .
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Justification: All the proofs are included in either the main text or in Appendix, together
with the necessary assumptions.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes] .

Justification: All the experimental details are described in the appendix, with main code
provided at https://github.com/LSquaredM/mutual_info_scaling_law.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes] .

Justification: The main code is available at https://github.com/LSquaredM/mutual_
info_scaling_law.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes] .

Justification: All the details are described in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No] .

Justification: For the measurement of mutual information scaling, the error bar is too small
to see on the figure, so we omit it when drawing the figures. For the experimental results, it
is too costly to train multiple neural networks for each setup. Nevertheless, our experimental
results are very clean and consistent with our theory predictions.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes] .
Justification: All the compute resources used are described in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes] .
Justification: Everything conforms with the Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes] .
Justification: The broader impact is discussed in Appx. I.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA] .
Justification: Not applicable.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes] .
Justification: We cite all the datasets and models used in the paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes] .
Justification: The main code used in the paper is posted at https://github.com/
LSquaredM/mutual_info_scaling_law. The synthetic dataset generation process is
fully described in the appendix.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA] .
Justification: Not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA] .
Justification: Not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA] .
Justification: Not applicable.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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