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Abstract

The reasoning abilities of Large Language
Models (LLMs) remain a topic of debate and
are critically tested in sequential decision-
making problems. ReAct, a recently popu-
lar method, has gained popularity for claiming
to enhance LLM reasoning abilities while di-
rectly prompting them by “interleaving reason-
ing trace with action execution" in text-based
planning domains such as AlfWorld and Web-
Shop. However, given the different compo-
nents of ReAct-style prompting, it remains un-
clear what the source of improvement in LLM
performance is. In this paper, we critically
examine the claims of ReAct-style prompt-
ing for sequential decision-making problems.
By introducing systematic variations to the in-
put prompt, we perform a sensitivity analysis
along the original claims of ReAct. Contrary
to these claims and common use cases that uti-
lize ReAct-style prompting, we find that the
performance is minimally influenced by the
interleaved reasoning trace or by the content
of these generated reasoning traces. Instead,
the performance of LLMs is primarily driven
by the unreasonably high degree of similar-
ity between input example tasks and queries,
implicitly forcing the prompt designer to pro-
vide instance-specific examples, which signifi-
cantly increases the cognitive burden on the
human. Our empirical results, in the same
suite of domains as ReAct, show that the per-
ceived reasoning abilities of LLMs stem from
the exemplar-query similarity and approximate
retrieval rather than any inherent reasoning abil-
1ties.

1 Introduction

Large Language Models (LLMs) have seen rapid
advancements specifically in Natural Language
Processing and Understanding (NLP & NLU).
LLMs have unparalleled capabilities in text gen-
eration, summarization, translation, and question
answering to name a few. (Bubeck et al., 2023).

Motivated by these capabilities of LLMs, there
has also been a rush to look for other emergent
abilities—especially for reasoning and planning. A
popular way to improve LLM performance on rea-
soning/planning tasks has been in-context prompt-
ing or prompt engineering (Sahoo et al., 2024) to
include instructions (Giray, 2023), syntax struc-
ture (Marvin et al., 2023), criticism and plan guid-
ance with verification (Kambhampati et al., 2024),
etc. Among these approaches, ReAct (Yao et al.,
2022b), presented at ICLR 2023, stands out which
claims to improve LLM planning abilities through
the use of reasoning traces interleaved with action
execution given as plan guidance. Although their
original study includes multiple domain tasks such
as question answering in HotPotQA and FEVER
datasets (Yang et al., 2018; Thorne et al., 2018), in
this paper we are particularly interested in planning
tasks. where ReAct claims superior performance.

In our initial experiments with ReAct for plan-
ning, we found that the system is overly dependent
on a high degree of syntactic similarity between the
example prompt and the query, and is extremely
brittle to minor perturbations to the input prompt.
For example, when provided with an explicit set of
examples of pick-and-place-object task and asked
to plan for a pick-and-place-two-objects task, it
should be trivial to generalize the solution of the
examples to the queried task. Unfortunately, even
such a minor variation to the original ReAct agent
setup disrupts its performance.

Given the seemingly widespread adoption of Re-
Act methodology (as of this writing, it has 1,862 ci-
tations), the brittleness we witnessed calls for a sys-
tematic study of the factors contributing to the per-
formance of ReAct-based LLM Agents. Moreover,
recent studies have highlighted similar case stud-
ies on the original Chain-of-Thought idea (Stechly
et al., 2024a; Sprague et al., 2024). Based on the
claims of (Yao et al., 2022b), we isolate three possi-
ble reasons for the claimed performance of ReAct



framework: 1) the utility of interleaving reasoning
trace during action execution, 2) the utility of pro-
viding plan guidance, and, 3) the significance of
example prompt provided to the the LLM.

The brittleness of ReAct becomes apparent when
considering the variability in prompt designs. De-
pending on the domain and task, prompt design-
ers may provide abstract guidance, task-specific
instructions within the same domain, analogical ex-
amples, or global reasoning traces. ReAct’s inabil-
ity to robustly adapt to such variations underscores
its limitations in handling diverse input prompts,
thereby necessitating a closer examination of its de-
sign and implementation. In this work, we system-
atically evaluate the brittleness of ReAct by study-
ing which potential factors contribute to its perfor-
mance. This analysis is conducted by investigating
the following research questions : RQ1: Does the
agent performance depend on interleaving reason-
ing trace with action execution? RQ2: How does
the nature of the reasoning trace or guidance in-
formation affect the performance of LLM Agents?
RQ3: How does the similarity between the exam-
ple (problem, solution)and the query (problem, ? ),
which are present in the prompt, affect LLM Agent
performance?

We conduct extensive experiments on the
AlfWorld and WebShop domain using various
LLM Models, including GPT-3.5-turbo, GPT-3.5-
instruct, GPT-4-0314(0ld Variant), GPT-4-0613
(Latest Variant), GPT-40, Claude-Opus and Llama
3.1-8b. Through our comprehensive empirical
study, we answer each of the research questions
above. (RQ1) We find that LLLM performance in-
fact improves when the reasoning trace is not in-
terleaved with action execution. (RQ2) Moreover,
providing weaker guidance or placebo-guidance
(where the text provides no information about the
task) has comparable performance to strong rea-
soning trace-based guidance. Answers to RQ1 and
RQ2 suggest that the source of ReAct LLM agent
performance is not the interleaving aspect or the
content of the reasoning trace. Finally, in (RQ3),
we see that variations to the example prompt such
that it belongs to different task within the same
domain, or has a different goal or plan attributes
than the queried problem; causes the performance
of ReAct-LLM Agent to plummet.

Our findings highlight that the benefits of ReAct-
style prompting are present when prompt engineers
can curate highly instance-specific examples. This
may not scale for domains with a large number of

problem instance classes, and it places an undue
burden on prompt engineers to provide instance
specific examples. Finally, our experiments call
into question claims of enhanced “emergent rea-
soning" of LLMs with prompt engineering efforts;
corroborating contemporary research (Verma et al.,
2024; Valmeekam et al., 2024; Stechly et al., 2024b;
Ullman, 2023; Schaeffer et al., 2023; McCoy et al.,
2023; Stechly et al., 2024a; Sprague et al., 2024)
questioning reasoning abilities of LLMs.

2 Related Work

Large Language Models have been shown to be
successful in a plethora of natural language tasks
(Kocon et al., 2023; Gilardi et al., 2023; Zhu et al.,
2023; Bubeck et al., 2023; Bhattacharjee et al.,
2024). However, there are two schools of thought
when it comes to utilizing off-the-shelf LLMs for
planning and reasoning tasks. Works such as Chain
of Thought, ReAct, and others that followed (Wei
et al., 2022; Yao et al., 2023; Long, 2023; Yao et al.,
2024; Besta et al., 2024; Fu et al., 2024; Aksitov
et al., 2023), have argued about the reasoning abili-
ties of LLMs by proposing prompting methods. On
the other hand, (Valmeekam et al., 2024; Stechly
et al., 2024b) have refuted these claims by show-
ing the inability of LLMs to solve deterministic
planning and classical reasoning problems.

In particular, for investigating the use of LLMs
in solving decision making problems, AlfWorld
(Shridhar et al., 2020) is a popular domain that
was originally proposed for training text-based Re-
inforcement Learning agents. Lately, works such
as ReAct, Reflexion, and their other variants (Yao
et al., 2022b; Shinn et al., 2023) have argued on the
prowess of LLMs’ reasoning abilities on AlfWorld.
Furthermore, there have been several extensions
to ReAct that boost their generalization abilities
across more domains including multi-modal do-
mains (Yang et al., 2023; Castrejon et al., 2024),
autonomous vehicles (Cui et al., 2024), table ques-
tion answering (Zhang et al., 2023), etc. While the
effectiveness of ReAct is celebrated across different
areas, these works only depend on anthropomor-
phization of LLMs (Min et al., 2022; Peng et al.,
2024) for using ReAct based prompting with no
justification on the source of improvement in per-
formance. This motivates our work in investigating
the components of ReAct with respect to sequential
decision-making problems and analyzing the role
each component plays.



ReAct

Interact with a household to solve a task. Here are two examples.

<EXAMPLE of same task

You are in the middle of a room ...

as QUERY>

Act 1:

Obs 1: OK.
Act 2: First, I need to find a
countertop (1), toilet (1), sin 1 (
I can check one by one, startin h cabinet 1.

Obs 2: OK.

Act 3: go to cabinet 1.
Act 6:

Obs 6: OK.

Now I find a spraybottle (2),

<EXAMPLE 2 of same task as QUERY>

<QUERY>
\\Siif is the task. You are in the middle of the room ...

<Task Description> Your task is to :

ybottle. A spraybottle is more
1-2), garbagecan (1).

Obs 3: On the cabinet 1, you can see cloth 1, a soapboar 1, a soapbottle 1.

next I need to to take it.

| ~

put some spraybottle on toilet.

To solve the task, I need to find and take a spraybottle, then put it on toilet.

likely to appear in cabinet (1-4),

Interleaved Think tag
@ Reasoning Trace / Guidance
[ Example Task / Query Task

Your task is to put some soapbottle in toilet. /

Figure 1: An example of ReAct in AlfWorld. We highlight the main components of ReAct, i.e., Interleaved
reasoning and acting, the reasoning trace / plan guidance and the example and query task.

3 Preliminaries

3.1 Domains

AlfWorld: (Shridhar et al., 2020) is a synthetic text-
based game built on top of a STRIPS-style PDDL
domain description (Fikes and Nilsson, 1971). Re-
Act (Yao et al., 2022b) defines six tasks (or problem
classes) within this domain namely - Put, Clean,
Heat, Cool, Examine, and PutTwo. Each problem
class consists of several problem instances, such
as put a spraybottle on toilet (see Fig. 1 is an ex-
ample instance of Put class. Since AlfWorld is
a partially observable environment, each of these
problem instances can be solved by navigating and
interacting with the environment simulator via text
actions. For example, this task can be solved by the
following actions- go to cabinet 2, take spraybottle
2 from cabinet 2, go to toilet 1, put spraybottle 2
in/on toilet 1.

WebShop: (Yao et al., 2022a) is an online
shopping website environment with 1.18M real-
world products and 12K human instructions. The
agent is provided with an initial human instruc-
tion (for example, “I am looking for a nightstand
with drawers. It should have a nickel finish, and
priced lower than $140"). The agent’s task is to
crawl the shopping environment using actions such
as search ‘nightstand drawers’, choose
‘white buttons’, back to search, etc. For
this work, we randomly sample 500 test instruc-
tions from the environment and evaluate the suc-
cess rate of the agent’s task completion.

3.2 ReAct

ReAct (Yao et al., 2022b) claims to increase LLM’s
performance on text-based planning tasks such as
AlfWorld and WebShop primarily by augmenting

the original action space of the agent with a think
action. The think action tag provided by ReAct is
claimed to comprise of Reasoning + Action trace
that is provided in the solution for the example
problems (exemplars) as part of the prompt. During
execution, the LLM is expected to generate a think
action tag for the queried problem instance that is
semantically similar to the one provided for the
examples in the prompt.

Location of THINK tag In ReAct, the integra-
tion of the think tag within actions serves to expand
the action space. This allows the language model
(LLM) agent to execute a think action, prompting
an ‘OK’ response. Through analysis of example
prompts in ReAct experiments, we identify vari-
ous instances of the think action. Typically, it
appears after stating the problem instance, reiterat-
ing the task, and providing problem-specific guid-
ance. However, the authors offer no structured
guidelines for its implementation, placement, or
guidance. This observation aligns with feedback
from the paper’s reviewers (OpenReview, 2024)
citing inconsistencies in the prompting format.

Content of THINK tag In ReAct, the think
action consistently provides the decision-making
agent with success-oriented guidance for task
completion. For instance, upon encountering a
spraybottle, the prompt might include: think:
Now I find a spraybottle (2). Next, I need
to take it. This guidance exposes forthcoming
actions and sub-tasks for the agent.

Few shot EXAMPLEs In the AlfWorld domain
(wihch is a PDDL domain), ReAct authors (Yao
et al., 2022b) classify six problem classes or tasks:
Put, Clean, Heat, Cool, Examine, PutTwo.
Despite representing different tasks, they share the
same environment dynamics and action space, al-



lowing for very similar execution trace. For in-
stance, a Heat task might involve Putting an item
into a microwave. In ReAct experiments, authors
provide two example problem-solution pairs (re-
ferred to as exemplars in our work) before querying
the LLM agent with a problem instance. Authors
force ReAct agent to use examples and queries
belonging to the same problem class without moti-
vating this design decision. However, the queried
problem may differ in objects or locations from the
exemplars.

4 Critically Evaluating ReAct Prompting

The subsequent sub-sections explore the design of
exemplar prompt variations to investigate our re-
search questions concerning the claims of ReAct.
Each variation modifies the base ReAct prompt,
and we use the AlfWorld domain as the running
example for discussing these variations (see Ap-
pendix for WebShop prompts).

4.1 RQ1 : Interleaving thinking with acting

Does the agent performance depend on interleav-
ing reasoning trace with action execution?

To answer this research question, we propose col-
lating the guidance information contained within
the multiple think tags present in the examples of
the input prompt into a single think tag appended af-
ter the example problem is specified. This approach
can be interpreted as Chain-of-Thought (Kojima
et al., 2022; Wei et al., 2022), where guidance in-
formation is generated before action execution.

Variation 1: Exemplar-based CoT AlfWorld is
a partially observable environment where an agent
can only observe objects after reaching that loca-
tion. Hence, we remove specific location and object
identifiers to modify the think actions that are orig-
inally interleaved with other actions in the environ-
ment (see RQ1 a in Figure 2). Finally, we append
all the think actions together at the beginning of
the example problem. Intuition: Problem-specific
guidance for a sequential decision-making agent
can be given step-by-step (as in ReAct) or all at
once. Note, that this variation is possible since Alf-
World is not a dynamically changing environment
in which case providing information on the task
will not be possible.

Variation 2: Anonymized Exemplar-CoT We
take one step further and modify the think tag to
remove references to specific locations and objects,
making it more general (see RQ1 b in Figure 2).

Similarly, in WebShop we anonymize specific item
options as desired options. Intuition: Exem-
plars can be made more general by providing ab-
stract guidance and exploiting LLMs ability to iden-
tify necessary semantic entity relations.

4.2 RQ2: Plan Guidance following think tag

How does the nature of the reasoning trace affect
the performance of LLM?

ReAct claims to use reasoning trace as the guid-
ance information following the think tag. For in-
stance, in ReAct (Yao et al., 2022b), thoughts are
to (1) decompose the goal (2) track sub-goal com-
pletion (3) determine the next sub-goal and (4) rea-
son via common-sense where to find and object
and what to do with it. It is, however, unclear
what is the motivation to use these as the reasoning
trace. The potential anthropomorphization of large
language models (LLMs) may suggest that their
thought processes are similar to the abstract plans
humans make, and that they must be prompted in
the same manner. However, it is unclear why this
assumption should hold true.

Variation 1: Failure We note that none of the
examples used in ReAct prompting for any task
consist of invalid actions. We inject two invalid
actions in the execution trace : the first that at-
tempts to execute the action pertinent to the task
(such as put spraybottle 2 in/on toilet) when not
possible and, second, executes some other invalid
action. We include the expected simulator response,
Nothing happens., when invalid actions are taken.
Intuition: Reasoning trace can be about what to
do such as future subgoals, or what not to do such
as mistakes in hindsight. This should be weaker
guidance than in base ReAct as the exemplars do
not point out what to do next.

Variation 2: Failure + Explanation We place
think actions after invalid actions injected in Fail-
ure Variation which consist of explanations for the
failure (see RQ2 b in Figure 2). Intuition: We can
augment mistakes with explanations to avoid simi-
lar failures. This is a stronger guidance signal than
Failure, however, the exemplars still not provide
information on what to do next.

Variation 3: Guidance Ordering LL.Ms are
known to be susceptible to minor syntactic pertur-
bations to inputs. We test whether it is true for
guidance information given as prompt as well (see
RQ2 c in Figure 2). We identify chain of sub-tasks
in a reasoning trace S; — S2 - - - .S, and reverse it
tobe S, = Sp_1---51. Intuition: LLM agent



<EXAMPLE 1>

l (RQ1 a) Exemplar-CoT }

You are in the middle of a room ... <Task Description>
Your task is to : put some spraybottle on toilet.

Act 1: think :

sinkbasin (1-2), garbagecan (1).

Obs 1: OK.
Act 2: go to cabinet 1.

To solve the task, I need to find and take a spraybottle, then put it on toilet. First, I need to
find a spraybottle. A spraybottle is more likely to appear in cabinet (1-4), countertop (1), toilet (1),
I can check one by one, starting with cabinet 1.

¥ew Once I find a spraybottle +23, next I need to to take it.

¥ew Once I take a spraybottle (2), next I need to put it in/on toilet (1).

Obs 2: On the cabinet 1, you can see cloth 1, a soapboar 1, a soapbottle 1.

<EXAMPLE 1>

i(RQl b) Anonymized Exemplar-CoT i

You are in the middle of a room ... <Task Description>
Your task is to : put some spraybottle on toilet.

Act 1: think : To solve the task, I need to find and

spraybettre the object.

1y beiler

take a—spraybettte the object, then put it on +eidet the desired location.
3 A—spraybottte The object is more likely to appear in esbimet—i+—4~ terteop
2 ke ,

1 ,
—siridbasin—(3—2) g

starting with eakimet—3+ the first ation.
New Once I find a—spraybettie{?)> the obj

Obs 1: OK.
Act 2: go to cabinet 1.

=ar—+—+ one of the different locations.

, next I need to take it.
New Once I take a—spraybettre—{2)> the object, next I need to put it in/on #ei*et—{3+ the desired location.

Obs 2: On the cabinet 1, you can see cloth 1, a soapboar 1, a soapbottle 1.

First, I need to find a

I can check one by one,

(RQ2 a) Failure

Act 3: open cabinet 2

Obs 3: You open the cabinet 2. The cabinet 2 is open.
In it, you see a candle 1, and a spraybottle 2.
) ~ £ E

Aet—4+ h fieg ORI}

N I 5 o
Act 4: put spraybott
Obs 4:

444444# (RQ2 b) Failure + Explanation FAAA*

L

2 in/on toilet.

g happens.

Act 3: open cabinet 2

Obs 3: You open the cabinet 2. The cabinet 2 is open.
In it, you see a candle 1, and a spraybottle 2.

Aet—4+ think Now—F—Fine reaybottt

3 —Freed—teo—take—itr
Act 4: put
Obs 4:

Act 5:

spraybottle 2 in/on toilet.

s because I do not

(RQ2 c) Ordering

open cabinet 2
Obs 3: You open the cabinet 2. The cabinet 2 is open.

In it, you see a candle 1, and a spraybottle 2.
Aet—4+ think——Hey z

PR S A te o iy

T oeiog el
—Fir spr +

—F—reed fee—+E—

Act 4: think :
spraybottle 2. Now I find

Next, need to t

(RQ2 d) Placebo Guidance

Act 3: open cabinet 2
Obs 3: You open the cabinet 2. The cabinet 2 is open.
In it, you see a candle 1, and a spraybottle 2.
Aet—4+ thimk——New—F—Find spraybettt

N —F
Act 4: think :
this problem ste

Figure 2: Example of prompt variations considered for RQ1 and RQ2.

should be invariant to the syntax of reasoning trace
if the semantic information is preserved. This does
not change the reasoning trace from the perspective
of information content.

Variation 4: Placebo Guidance It is unclear to
what extent LLM agent uses the supposed helpful
thoughts for the decision making task. In this vari-
ation we replace think tag guidance with a placebo
thought that does not contain any task relevant in-
formation (see RQ2 c in Figure 2), but has been
widely used as prompt engineering trick (Kojima
et al., 2022). Intuition: According to claims of
ReAct, we expect the performance to get worse
when the guidance does not have any information
useful for task success.

4.3 RQ3: EXAMPLEs - QUERY Similarity

How does the similarity between the prompt ex-
amples and the query problem affect LLM perfor-

mance?

RQ3 investigates the role of example similarity
to the query in LLM agent’s performance. Estab-
lishing problem similarity can be challenging, es-
pecially where minor variations to the problem can
have varied interpretations (such as an analogy to a
different task altogether). Our work explores this
challenge in a systematic way. During example
prompt construction, prompt designers may use
synonyms to refer to objects (Domain), come up
with examples where the agent task is the same as
query but the goals are different (Instance), or pro-
vide optimal solutions as the examples (Optimal)
preventing LL.M to obtain information regarding
exploration strategy. Furthermore, given that the
domain has the same underlying action dynamics
and that the tasks reuse several actions, prompt
designers may choose to provide query specific ex-
ample prompts (as in base ReAct), provide one of



a different task and one of the same task (One), pro-
vide both examples to be of a different task (Both),
or take an exhaustive approach and provide one
example of all tasks (A11).

Variation 1: Synonyms - Domain For this vari-
ation, we replace the object and location names
in the example prompts with their synonyms. For
example, spraybottle — aerosolbottle, eabinet —
cupboard, and, mieroweave — oven. We make 36
such changes to object and location names across
all the examples.! Intuition: Exemplar guidance
maybe specified with alternate synonymous object
and location names. Reasoning agents should be
invariant to variable name substitution for closed
world dynamics such as PDDL-based AlfWorld.

Variation 2: Problem Level - Instance We
inject instance-level changes to the examples pro-
vided in the prompts. We change the goal loca-
tion in exemplar problem to ensure that it does not
match with any of the goal locations in query prob-
lem. We also add repetitive yet futile actions in
the exemplar execution trace which does not effect
the solution. Intuition: Ensuring a different goal
location in exemplar from the queried problem is
a natural use-case. Moreover, exemplars may con-
tain arbitrary exploration strategies such as action
repetition (Sharma et al., 2017).

Variation 3: Problem Level - Both, One, All
Recall that the environment dynamics for all the
tasks are the same. In fact, several tasks subsume
the use of our tasks such as Heat requires the agent
to Put an food in the microwave. In general, all
the tasks share a large portion of actions (such as
exploring cabinets and locations, picking objects
etc.). Motivated by how tight relationship of these
tasks we come up with three variations. First, One,
uses one exemplar of an arbitrarily picked task and
the other exemplar of the same task as the query.
Second, Both, uses both exemplars from an arbi-
trarily picked task. Finally, All, uses a total of
six exemplars (this is the only variation where we
provide more than the standard two examples as
in ReAct) corresponding to each task under con-
sideration. Remember, this includes the query task
which is always present at the end in the input
prompt. Intuition: With a very similar action
execution trace (such as exploration, picking and
placing objects) across tasks, and shared dynamics,
LLM agent should be minimally affected by the

'The object names / location are unchanged for the prob-
lem query and subsequent interaction with the simulator.

Table 1: Average Success % of LLM for RQ1 and RQ2
on six AlfWorld tasks.

Model / Prompt Act | ReAct ‘ RQ1 RQ2
[ CoT Anon. CoT | Placebo Order Failure E:
GPT-3.5-Turbo 343 | 27.6  46.6 41 30 28.3 433 41.6
GPT-3.5-Instruct 44 50.7  61.9 50.7 41 425 47 44.7
GPT-4-0314 (Old) - 233 433 333 36.6 30 50 36.6
GPT-4-0613 (Latest) | 70.0 | 26.7 = 40.0 26.6 36.6 30 60 36.6
Claude-Opus 433 | 56.6 50 46.6 30 50 533 30

Table 2: Average Success % of LLM for RQ1 and RQ2
on WebShop tasks.

Model / Prompt Act | ReAct | RQI1 RQ2
| CoT _Anon. CoT | Placebo Failure E

GPT-3.5-Turbo L12] 1.04 220 1.88 1.52 3.48 348
GPT-3.5-Instruct | 7.24 | 7.16  7.52 6.12 7.40 7.20 7.24

GPT-4-0613 (Latest) | 8 4 8 8 6 8 8
GPT-4o 464 | 224 | 468 4.52 4.08 4.68 4.68

Claude-Opus 4 4 | 4 4 4
LLAMA-3.1-8B | 144 | 316 328 3.92 2.04 2.16

use of exemplars of a different task.

Variation 4: Exploration Strategy - Optimal
As noted before, ReAct does not explain the choice
of exemplars used. An important ingredient to the
exemplars is the exploration strategy used. In this
variation we provide exemplars which serendipi-
tously take the optimal actions (as if the environ-
ment were fully observable) and therefore the ex-
ample plan is the shortest possible. Intuition: Ex-
ploration strategy exposed in exemplars (that too
for the same problem task) should not impact Re-
Act’s performance if the LLM agent is reasoning
instead of retrieval (or pattern matching).

5 Results

While the original ReAct experiments were car-
ried out on PaLLM (currently decommissioned), we
reproduce their results with newer set of models.
We use GPT-3.5-Turbo, GPT-3.5-Instruct, GPT-4,
GPT-40, and Claude-Opus, which are all newer
models than those benchmarked in ReAct (Yao
et al., 2022b). Note, that despite using newer mod-
els, our results shed doubts on the reproducibility
and consistency across models of the original pa-
per’s results. As noted, we use the setup in (Yao
et al., 2022b) for all our experiments. In AlfWorld,
GPT3.5-(Turbo, Instruct) results are on 134 in-
stances across six tasks, GPT-4/Claude-Opus on
60 instances (10 for each task) due to cost consid-
erations. In WebShop, GPT3.5(Turbo, Instruct),
GPT-40, and LLAMA-3.1-8B results are on 500
samples, while GPT-4/Claude-Opus are on 50 in-
stances due to cost considerations.

5.1 Utility of Interleaving THINK tags (RQ1)

From Table 1(RQ1) note that the exemplar CoT
and the anonymized exemplar CoT performs signif-



icantly better than base ReAct for all GPT-X family
of models. Moreover, the performance dips slightly
for Claude-Opus along these variations. This re-
futes ReAct’s first claim on the importance of in-
terleaving reasoning trace generation with action
execution. Even in the case of the Claude where
there is a slight dip in performance, the models
seems to be performing at reasonably high success
rate which questions the importance of interleaved
reasoning and action execution. We omit LLAMA-
3.1-8B and GPT-40 (See B.4) for AlfWorld as they
achieve zero performance over baselines and all
the variations. From Table 2, we find a similar pat-
tern: CoT and Anon. CoT variants perform closely
or better than the baseline ReAct. A surprising
result consistent in both the domains is the perfor-
mance of Act baseline (where think tags are absent
and actions are generated directly). Act baseline is
weaker only for two models GPT-3.5-Instruct,
Claude-0pus for both the domains, which further
questions the utility of using ReAct prompting.

5.2 Utility of THINK tag Content (RQ2)

Recall that reasoning trace guidance pertains to the
prospective actions or behaviors an agent should
execute (foresight guidance). This type of guid-
ance is more informative compared to other vari-
ations, such as hindsight guidance, which focuses
on past errors without providing future solution
steps, and placebo guidance, which is entirely un-
related to the task. ReAct claims that reasoning
trace is crucial for LLM agent performance, which
would predict a decline in performance with hind-
sight guidance and a collapse with placebo guid-
ance. Therefore, a practitioner would expect all
the rows to be a dark shade of red. In contrast,
our findings in Table 1 indicate that hindsight guid-
ance (Failure, Explanation) actually improves
the performance of the GPT family of models.
The Claude-Opus model’s performance remains
stable with hindsight (Failure) guidance and de-
clines with placebo guidance. This refutes ReAct’s
claim that task-specific reasoning trace is the source
of LLM performance. Our argument that LLM
agent’s performance is only slightly affected by the
reasoning trace explains the indifference to order-
ing perturbation as well. If the LLM is not utilizing
the reasoning trace for decision making, change in
ordering would not affect the agent’s performance.
Our arguments hold for the WebShop domain as
well, where all of the variants perform closely or

Table 3: Average Success % of LLM for RQ3 on six
AlfWorld tasks. OC: Out of context limit

RQ3
Domain Instance Optimal All
30 20.1 32 283

Model / Prompt Act | ReAct

One Both

GPT-3.5-Turbo 343 | 276

GPT-3.5-Instruct 44 50.7 425 395 ocC
GPT-4-0314 (Old) - 233 233 50 233 16.6
GPT-4-0613 (Latest) | 70.0 | 26.7 20.0 533 23.3 | 20
Claude-Opus 43.3 | 56.6 50 46.6 43.3 50 60

better than the baseline ReAct.?

5.3 Utility of Example-Query Similarity(RQ3)

Intuitively, the similarity of Domain examples is
closest with base ReAct, followed by Instance
and Optimal variations. Finally, A11 contains an
overload of information followed by One and Both
which has the same action space but uses different
tasks as exemplars. Recall that AlfWorld being a
PDDL domain has a shared environment dynamics
across all tasks with upto 80% of actions shared
across execution traces. While ReAct does not in-
vestigate impact of varied exemplars, given the pop-
ular usage, one expects LLMs to be robust to such
changes especially in a common-sense household
domain. Table 3 shows the severe brittleness of
ReAct based LLM agent to even minor variations
(such as Domain, Instance). Specifically, perfor-
mance of GPT-3.5-Turbo and GPT-4 plummnts for
Domain. Claude-Opus which was more robust in
RQI1, RQ?2, is also impacted severely by Domain,
Instance variations. Furthermore, when we do
not expose the exploration strategy and only pro-
vide Optimal exemplars, the performance of LLM
agents further drops (except in GPT4).
Overloading the LLMs with more exemplars A11
does not impact its performance. We posit, this is
because the query-task exemplar is still part of the
large input prompt. Among the two exemplars, as
provided in ReAct, when one of them is of a differ-
ent task (One) then the performance significantly
reduces for LLMs. When both of the exemplars are
of a different task then the performance collapses
to single digit success rates for all the models. This
is a key result of this work highlighting the severe
dependence of LLMs on the similarity of the exem-
plars to the query task. Through sensitivity analysis
using our RQ3 variations we could find parts of
the input (the task similarity of the exemplar with
query) which is the source of ReAct performance.
Essentially, the LLM is mimicking / performing
In all our experiments, we note that LLMs replicate the
exact steps as shown for the examples in the prompts. Hence,

they do not output what ReAct claims as think tags if those
tags are not present in the original prompt.



approximate retrieval from the context presented
to it. Moreover, our results corroborate the line
of research that questions the inability of LLMs
to reason or plan (Verma et al., 2024; Valmeekam
et al., 2024; Stechly et al., 2024b; Ullman, 2023;
Schaeffer et al., 2023; McCoy et al., 2023; Stechly
et al., 2024a; Sprague et al., 2024).

The reported success-rate from the ReAct pa-
per (Yao et al., 2022b) on the WebShop domain
is 40%. Due to the absence of the exact queries
used in the paper, we randomly sampled queries
from the WebShop dataset comprising 12K records.
This approach possibly resulted in the decoupling
of any relationship between the exemplars and the
queries. Referring to Table 2, it is evident that the
performance of the WebShop ReAct agent signifi-
cantly declined, reaching single digit percentages
(as well as other variants). This mirrors the trends
observed in the Both variant of the Alfworld in
Table 3, further supporting our arguments. We per-
form some additional experiments and error analy-
sis to support our RQ3 arguments and are presented
in Appendix Section C.

5.4 Discussion

Pitfalls of ReAct-Style Prompting:  Recall, that
ReAct claims an improved performance for text-
based planning domains, namely - AlfWorld and
WebShop, where the presence of a think tag acts
as guidance for the LLM to generate the next set
of actions during the LLM-environment interac-
tion. Through our sensitivity analysis, we dissect
each component of ReAct-style prompting in a
critical effort to understand the factor that leads
to the observed success rates in these domains.
With variations on the placement (RQ1) and con-
tent (RQ?2) of the think tag, we eliminate it as the
primary cause of any improvement. Furthermore,
slight variations in exemplar tasks (RQ3) lead to
a stark decline in success rate, clearly indicating
the dependence of performance on the highly cu-
rated instance-specific examples by domain experts.
While some works on In-Context Learning point
out the impact of well-curated examples (Min et al.,
2022; Peng et al., 2024), our work specifically high-
lights exemplar-query similarity as the cause of Re-
Act’s performance and rejects contemporary belief
that the heavy-lifting of LLM reasoning & planning
is done through the think tag.

Relevance of ReAct to newer LLMs: ReAct
uses the Act baseline in their work to showcase

improvements due to the presence of the proposed
think tag. For AlfWorld, ReAct reports 45% suc-
cess rate for Act baseline and 71% success rate for
ReAct prompting using the PaLM model. For Web-
Shop, ReAct reports 30.1% success rate for Act
baseline and 40% success rate for ReAct prompt-
ing on PaLM. However, we note from our results on
both domains that the Act baseline performs much
better than ReAct for several LLMs, which ques-
tions on the compatibility of ReAct to newer-age
LLMs. ReAct performs worse with newer mod-
els as compared to the results they report on the
currently decommissioned PaLLM. This observation
also questions the contemporary belief that such
prompting strategies are generalizable throughout
different LLM families, including newer models.

We re-iterate our key result, given any LLM
model, the success rates plummet with our RQ3
variations showing a consistent pattern of depen-
dence on the provided examples irrespective of the
LLM. Moreover, the performance of all the LLMs
remain quite high (if not better) when we vary the
location and content of the think tags. This high-
lights the need for higher rigor in agentic LLM
experimentation and in-depth evaluation seeking
source of improvements.

6 Conclusion

ReAct based prompt engineering methods have
been claimed to improve planning abilities of Large
Language Models. In this study, we critically ex-
amine ReAct along three dimensions, informed by
its claims and our hypotheses regarding its perfor-
mance sources. Contrary to ReAct’s claims, our
findings reveal that its performance is neither due
to interleaving reasoning trace and guidance in-
formation generation with action execution, nor
due to the specific nature of the guidance informa-
tion. Instead, we identify that the true source of
LLM performance in sequential decision-making
tasks, such as AlfWorld, is the high degree of simi-
larity between exemplar problems (few-shot) and
the query task. Our findings caution against an
uncritical adoption of ReAct-style frameworks for
their putative abilities to enhance performance in
domains requiring planning. To conclude, we be-
lieve that these results will be helpful for practition-
ers and future works, particularly when designing
prompts for decision-making problems, and benefit
from avoiding putting any efforts into constructing
non-trivial problem-specific reasoning traces.



Limitations

In this section, we aim to highlight some of the lim-
itations of the sensitivity analysis done in this work
on the popular ReAct-style prompting method. 1)
We deliberately confined the scope of our experi-
ments to be deep along two domains considered as
common-sense planning domains by the contem-
porary research community. 2) Moreover, while
restricting our discussion to sequential decision
making problems (AlfWorld and WebShop), we ad-
mit that prompting solutions to reasoning problems
other than ReAct must be re-evaluated with similar
scrutiny but are beyond the scope of this work. 3)
We do not aim to benchmark or analyze any sin-
gle LLM’s reasoning abilities on decision-making
tasks, but rather intend to understand the robust-
ness/brittleness of various LLLMs with respect to
different components in the ReAct-style prompt-
ing method for these tasks. Since we do not draw
any insights on the performance of different LLMs
in this work, we tried establishing baseline ReAct
results for each of these models and analyzed the
gain or drop in performance across our different
prompt variations. While these can be seen as a po-
tential limitations, we believe that our examination
of ReAct can be easily translated to other domains
and prompt strategies of interest by the consumer
of this research.
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A Resources Used

In this work we leverage OpenAl API and Claude
API for prompting the Language Models. We use
gpt-4-0613 for GPT4, gpt-3.5-turbo-0125,
gpt-3.5-turbo-instruct,
claude-3-opus-20240229,
claude-3-sonnet-20240229 and
claude-3-haiku-20240307 for AlfWorld in
April-May 2024. Results using GPT-4-0613 (for
both AlfWorld and WebShop) and all the results
on Webshop were completed in Sep 2024. As an
estimate, for AlfWorld, ReAct and corresponding
experiments use approximately 14M input tokens
(due to repeated prompting after each action
execution) and 150K output tokens for 134
problem instances as used by ReAct.

B Additional Considerations

B.1 Fine-grained performance on each task
on AlfWorld

Figures 3, 4 and 5 shows a radar chart highlighting
the failure cases of various LLMs with different
ReAct based prompting variations for RQ1, RQ2
and RQ3 respectively on AlfWorld domain. Note
that GPT-4 in the figures refer to GPT-4-0314 (Old
Variant).

B.2 Failure Rates

We report failure rates in the radar chart as in Figs.
3, 4, 5 and 6 instead of success rates. We at-
tempted to visualize the severe brittleness given
by the larger area of the shaded region. Since,
for various of our RQ variations the LLLMs perfor-
mance was very low, we decided to report failure
rate given as (100 - Success Rate %) instead.

B.3 Performance of Claude-Haiku

We skip on mentioning the performance of Claude-
Haiku, since it was not able to generate syntacti-
cally correct actions for any of the instances. We
found that following our instruction to generate spe-
cific actions as in the exemplar was difficult. We
improved the prompt to have specific instructions
for generating actions (See D.3 ) but it did not yield
any improvements for Claude-Haiku. However,
the instruction did help with Claude-Sonnet and
Claude-Opus. We find that Claude-Sonnet follows
a similar pattern as GPT-3.5-Instruct as presented
in our results, and decided to focus ourselves on
the strongest/largest Claude model (Claude-Opus)
for our evaluation.
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B.4 Performance of GPT-40 and LLAMA-3.1
in AlfWorld

In our experiments, we found that GPT-40 obtained
zero success-rate across all variations (including
Act and ReAct and our proposed variations). Upon
closer inspection, we found that GPT-40 requires
significant effort in instruction tuning for AlfWorld,
specifically, it would start emitting justifications
for why a previously taken action was unsuccessful
rather than generate syntactically accepted think
tags and environment actions. Even for action gen-
eration, GPT-40 would pre-pend the actions with
justifications, thereby expecting the users to write
specific parsers. While stronger parsers maybe pos-
sible to implement, we hold GPT-40 to the same
expectations as other models (which do not get the
benefit of stronger parsers) and report our findings
on a consistent evaluation.

LLAMA-3.1-8B obtains zero success-rate across
all variations in Alfworld as well. We observe
that the LLAMA model would generate incorrect
actions and would repeat those actions exhausting
the iteration budget.

B.5 Why is GPT-01 missing in our evaluation
bed?

We take up a large set of large langauge models
in our evaluation and perform extensive evalua-
tions for each of those. This is already in con-
trast with the baseline ReAct work which only
showcased results on a single PaLM model. Our
variations are agnostic to the underlying language
model and code-base implements the standard
text-in-text-out interface. However, ReAct-
based agents are costly to evaluate. As of this sub-
mission, GPT-o1 incurs higher input/output token
costs and also charges for generated thought tokens
and would require a substantially larger budget to
investigate than we can support.

B.6 Extension to other Models

We are in the process of experimenting with GPT-
40 and Google Gemini models, APIs for which
were released in May 2024 which does not allow
enough time for thorough and verified evaluation
before the conference submission. For complete-
ness, however, we will experiment with these APIs
as they become accessible and append our results.

B.7 Main Results on Exemplar CoT variant

While this work does not investigates effective-
ness of exemplar Chain of Thought as presented in
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Figure 3: The radar chart shows the failure rates of various LLMs with different ReAct-based prompt settings
for RQ1 (Base React, Global, Anonymized) across six Alfworld tasks (hexagon vertices). Higher values / Larger
shaded region indicate worse performance.
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Figure 4: The radar chart shows the failure rates of various LLMs with different ReAct-based prompt settings for
RQ2 (Base React, Magic, Failure, Failure+Explanation, Ordering) across six Alfworld tasks (hexagon vertices).
Higher values / Larger shaded region indicate worse performance.

RQI1, we do however test the main results of the  the standard two examplars for prompting the LLM.
work with Exemplar CoT to identify whether our ~ Depending on the variation we change the content
findings hold true there as well. That is, we test  of the exemplar. Full prompts can be found in the
RQ3-Both, RQ3-One. For GPT-3.5-Turbowe find  attached supplementary code.

that the average performance drops from 46.6%

(RQ3-Exemplar CoT) as in Table 1 t0 28.3% inOne  C.1 Running the experiments

and 10.4% in Both variation cases, and remains at

40.3% for ALl variation In our experiments, according to the variation style
we take the exemplar prompts and use the same
C Experiment Design exemplar prompts across the instances of the query

task. Other than RQ3-Both, One we use the ex-

Each of the variations proposed along RQ1, RQ2  emplar of the same task as the query as done in
and RQ3 modifies the few-shot examples only. ReAct (and still find brittleness of ReAct). For RQ3
Remaining aspects such as the query problem - Both, One we use exactly two exemplars but
or the interaction with the simulator is directly  of a different task than query. Finally, RQ3-A11l
inherited from the ReAct code-base (Yao et al., is the only variation that provides six exemplars
2022b) at publicly available at https://github. (instead of two) and we force the exemplar of the
com/ysymyth/ReAct. Our code can be found in  query-task to be appended at the end in the prompt.
the attached supplementary material. This was the best performing prompting strategy
Except A11 RQ3 variation, all other settings use ~ (on GPT-3.5-Turbo) amongst when the query-task
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Figure 5: The radar chart shows the failure rates of various LLMs with different ReAct-based prompt settings for
RQ3 (Base React, Domain, Instance, All, Both, One) across six Alfworld tasks (hexagon vertices). Higher values /

Larger shaded region indicate worse performance.
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Figure 6: The radar chart shows the failure rates of GPT-
3.5-Turbo with our RQ3 variants on ReAct across six
Alfworld tasks. Higher values / Larger shaded region
indicate worse performance.

exemplar was placed at the beginning, at position
4 (middle) and at the end.

C.2 Hyperparameters

We use temperature = 7 = 0 for all of the GPT
and Claude models and set max-tokens 100
which is borrowed from ReAct’s hyperparameters.
Rest of the parameters are kept to be default as
specified in the respective model’s API documenta-
tion.

C.3 Additional Experiments and Error
Analysis

Unrolling and Subtask Similarity We perform
additional experiments where the query task is
to essentially repeat the task in the exemplar
(Unrolling). For instance, in AlIfWorld, the ex-
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emplar is Put and the query is PutTwo to put two
objects at given location. In this case, the LLM
has to unroll the given advice and repeat exem-
plar task execution to solve the query. The success
rate of GPT-3.5-Instruct (the best performing GPT
model in our experiments) drops down from 52%
to 9%. Similarly, we experiment with a Subtask
Similarity variation where the exemplar task sub-
sumes execution of the query task. For instance,
the Heat task requires the agent to pick and place
object in the microwave (which is an instantiation
of Put task). One would expect that Heat is a good
exemplar for Put, however, the performance of
GPT-3.5-instruct model goes from 18% to 0% in
this case. These results further underscore the brit-
tleness and the need for instance-specific exemplars
in ReAct.

Thought operationalization ability of LLMs
Given the free form nature of thought generation
and arbitrary nature of thought (about subtask,
common-sense next steps etc.), checking whether
the generated thoughts are in-fact reasonable is a
challenging problem. For completeness, we find
that 40% of the times after generation of a think tag,
subsequent environment action taken by the LLM
was invalid (for GPT-3.5-instruct) in AlfWorld. It
is much higher ( 80% for GPT-3.5-Turbo, 90%
for Claude-Haiku) for weaker LLM models. This
further highlights the inability of LL.Ms to opera-
tionalize its generated thought as also seen in (Roy
et al., 2024). From manual inspection we find that
the typical thoughts would enlist all possible loca-
tions as next locations to visit for most of the tasks.
As demonstrated in Section 5.2, the performance
of LLMs actually decreases when provided with
foresight guidance, as seen with the base ReAct



model. A detailed investigation into the validity of
the generated reasoning traces is beyond the scope
of this work and is suggested as future research.

D Example Prompts

The full list of curated variations can be found in
the supplementary materials. However, for com-
pleteness we reference the prompt used for base
ReAct (as in (Yao et al., 2022b)) and our variations
along RQ1, RQ2 and RQ3 for the Put task.

D.1 Synonym Substitution mapping for
Domain

We make the following substitutions to the object
names / locations in the exemplar prompt in the
Domain variation. Note that these substitutions are
done only to the exemplar, and the query problem
and subsequent interaction with the AlfWorld sim-
ulator uses the original vocabulary mapping.

spraybottle -> aerosolbottle

cabinet -> cupboard

countertop -> worktop

sinkbasin -> sinkbowl

toilet -> lavatory

toiletpaperhanger -> toiletpaperholder
towelholder -> towelrack

microwave -> oven
shelf -> rack

drawer -> deskdrawer
stoveburner -> hob
diningtable -> table
garbagecan -> trashbin

fridge -> refrigerator
peppershaker -> pepperpot
room -> livingroom

bread -> breadloaf

pan -> fryingpan

pot -> saucepan

book -> notebook

creditcard -> amexcard

mirror -> lookingglass

dresser -> chestofdrawers

sofa -> couch

cellphone -> mobilephone
coffeemachine -> coffeemaker
knife -> kitchenknife

spatula -> turner

soapbottle -> liquidsoapdispenser

saltshaker -> saltpot
statue -> sculpture

vase -> flowerpot
dishsponge -> spongewipe
desklamp -> tablelamp
sidetable -> nightstand

D.2 For All, Both, One

All: We take the exemplar prompt for each task and
concatenate it together.

Both : We use the following mapping generated
arbitrarily, to replace the exemplar prompt for the
query task.

VARIATION_MAPPING = {
'put':'examine',
'clean':'cool',
"heat': 'put',
"cool': 'puttwo',
'examine':'clean’,
"puttwo': 'heat'

One : We use the first example from the above
mapping, and the second example from the same
task as the query.

D.3 Building the input prompt

We inherit ReAct’s way of stiching together the ex-
emplars and the query using the following prompt
template as :

Interact with a household to solve a
task. Here are two examples.’ + egl + eg?2
+ INSTRUCTION + Here is the task. (TASK)’

In the case of GPT models INSTRUCTION is an
empty string. Claude Models gave 0% success rate
(regardless of the model size, i.e. Haiku, Sonnet
and Opus) with the original ReAct prompt design.
We identified that Claude required an explicit in-
struction to generate only the actions for the simula-
tor. We added a task independent INSTRUCTION
prompt as :

INSTRUCTION = " Only provide the one
action at a time. Be concise, and do
not provide any extra information. Always
start with the action. For example, ’pick
up apple’ is correct, but ’I want to pick
up the apple’ is not."

Interestingly, =~ GPT-3-Turbo  performance
dropped to 1% (averaged across 6 independent
runs over 134 examples) with the inclusion of
this INSTRUCTION tag. This further highlights
how brittle prompt engineering is, and cautions



us against misplacing our trust with ReAct in
enhancing reasoning abilities of LLMs.

Note that, we did experiment with both prompt
variations (with our explicit instruction and with-
out) for Claude models and picked the best-
performing variant (which had the instructions) for
our reported results.

D4 ROQI

Prompt 1: rql-anon-exemplar

You are in the middle of a room. Looking quickly around you, you
see a cabinet 4, a cabinet 3, a cabinet 2, a cabinet 1, a coffeemachine
1, a countertop 1, a diningtable 3, a diningtable 2, a diningtable 1,
adrawer 1, a fridge 1, a garbagecan 1, a microwave 1, a sidetable
1, a sinkbasin 1, a stoveburner 4, a stoveburner 3, a stoveburner 2, a
stoveburner 1, and a toaster 1.

Your task is to: find some apple and put it in sidetable.

> think: To solve the task, I need to find and take the object, then put
it on the desired location. First I need to find the object. The object
is more likely to appear in one of the different locations. I can check
one by one, starting with the first location. Once I find the object,
next I need to take it. Once I take the object, next I need to put it
in/on the desired location.

OK.

> go to fridge 1

The fridge 1 is closed.

> open fridge 1

You open the fridge 1. The fridge 1 is open. In it, you see a lettuce 2,
amug 2, a potato 2, and a tomato 1.

> go to diningtable 1

On the diningtable 1, you see nothing.

> go to diningtable 2

On the diningtable 2, you see a pineapple 1.

> go to diningtable 3

On the diningtable 3, you see a bowl 2, a bowl 1, a bread 2, and a
bread 1.

> go to sidetable 1

On the sidetable 1, you see a cup 1, a lettuce 1, a peppershaker 3, a
potato 1, and a saltshaker 1.

> go to countertop 1

On the countertop 1, you see a butterknife 1, a dishsponge 1, and a
soapbottle 1.

> go to sinkbasin 1

On the sinkbasin 1, you see a cup 2, aegg 1, amug 1, and a potato 3.
> go to garbagecan 1

On the garbagecan 1, you see a apple 3, and a egg 3.

> take apple 3 from garbagecan 1

You pick up the apple 3 from the garbagecan 1.

> go to sidetable 1

On the sidetable 1, you see a cup 1, a lettuce 1, a peppershaker 3, a
potato 1, and a saltshaker 1.

> put apple 3 in/on sidetable 1

You put the apple 3 in/on the sidetable 1.
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Prompt 2: rql-exemplar

You are in the middle of a room. Looking quickly around you, you
see a cabinet 4, a cabinet 3, a cabinet 2, a cabinet 1, a coffeemachine
1, a countertop 1, a diningtable 3, a diningtable 2, a diningtable 1,
a drawer 1, a fridge 1, a garbagecan 1, a microwave 1, a sidetable
1, a sinkbasin 1, a stoveburner 4, a stoveburner 3, a stoveburner 2, a
stoveburner 1, and a toaster 1.

Your task is to: find some apple and put it in sidetable.

> think: To solve the task, I need to find and take an apple, then put it
in sidetable. First I need to find an apple. An apple is more likely to
appear in fridges (1), diningtables (1-3), sidetables (1), countertops
(1), sinkbasins (1), garbagecan (1). I can check one by one, starting
with fridge 1. Once I find an apple, next I need to take it. Once I
find an apple, next I need to put it in/on sidetable.

> go to fridge 1

The fridge 1 is closed.

> open fridge 1

You open the fridge 1. The fridge 1 is open. In it, you see a lettuce 2,
amug 2, a potato 2, and a tomato 1.

> go to diningtable 1

On the diningtable 1, you see nothing.

> go to diningtable 2

On the diningtable 2, you see a pineapple 1.

> go to diningtable 3

On the diningtable 3, you see a bowl 2, a bowl 1, a bread 2, and a
bread 1.

> go to sidetable 1

On the sidetable 1, you see a cup 1, a lettuce 1, a peppershaker 3, a
potato 1, and a saltshaker 1.

> go to countertop 1

On the countertop 1, you see a butterknife 1, a dishsponge 1, and a
soapbottle 1.

> go to sinkbasin 1

On the sinkbasin 1, you see a cup 2, aegg 1, amug 1, and a potato 3.
> go to garbagecan 1

On the garbagecan 1, you see a apple 3, and a egg 3.

> take apple 3 from garbagecan 1

You pick up the apple 3 from the garbagecan 1.

> go to sidetable 1

On the sidetable 1, you see a cup 1, a lettuce 1, a peppershaker 3, a
potato 1, and a saltshaker 1.

> put apple 3 in/on sidetable 1

You put the apple 3 in/on the sidetable 1.




Prompt 3: base-react

You are in the middle of a room. Looking quickly around you, you
see a cabinet 4, a cabinet 3, a cabinet 2, a cabinet 1, a coffeemachine
1, a countertop 1, a diningtable 3, a diningtable 2, a diningtable 1,
adrawer 1, a fridge 1, a garbagecan 1, a microwave 1, a sidetable
1, a sinkbasin 1, a stoveburner 4, a stoveburner 3, a stoveburner 2, a
stoveburner 1, and a toaster 1.

Your task is to: find some apple and put it in sidetable.

> think: First I need to find an apple. An apple is more likely to
appear in fridges (1), diningtables (1-3), sidetables (1), countertops
(1), sinkbasins (1), garbagecan (1). I can check one by one, starting
with fridge 1.

OK.

> go to fridge 1

The fridge 1 is closed.

> open fridge 1

You open the fridge 1. The fridge 1 is open. In it, you see a lettuce 2,
amug 2, a potato 2, and a tomato 1.

> go to diningtable 1

On the diningtable 1, you see nothing.

> go to diningtable 2

On the diningtable 2, you see a pineapple 1.

> go to diningtable 3

On the diningtable 3, you see a bowl 2, a bowl 1, a bread 2, and a
bread 1.

> go to sidetable 1

On the sidetable 1, you see a cup 1, a lettuce 1, a peppershaker 3, a
potato 1, and a saltshaker 1.

> go to countertop 1

On the countertop 1, you see a butterknife 1, a dishsponge 1, and a
soapbottle 1.

> go to sinkbasin 1

On the sinkbasin 1, you see a cup 2, aegg 1, amug 1, and a potato 3.
> go to garbagecan 1

On the garbagecan 1, you see a apple 3, and a egg 3.

> take apple 3 from garbagecan 1

You pick up the apple 3 from the garbagecan 1.

> think: Now I find a apple (3). Next, I need to put it in/on sidetable
1.

OK.

> go to sidetable 1

On the sidetable 1, you see a cup 1, a lettuce 1, a peppershaker 3, a
potato 1, and a saltshaker 1.

> put apple 3 in/on sidetable 1

You put the apple 3 in/on the sidetable 1.
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D.5 RQ2

Prompt 4: rq2-Explanation

You are in the middle of a room. Looking quickly around you, you
see a cabinet 4, a cabinet 3, a cabinet 2, a cabinet 1, a coffeemachine
1, a countertop 1, a diningtable 3, a diningtable 2, a diningtable 1,
a drawer 1, a fridge 1, a garbagecan 1, a microwave 1, a sidetable
1, a sinkbasin 1, a stoveburner 4, a stoveburner 3, a stoveburner 2, a
stoveburner 1, and a toaster 1.

Your task is to: find some apple and put it in sidetable.

> go to fridge |

The fridge 1 is closed.

> close cabinet 2.

Nothing Happens.

> think: Nothing happens because you are not at cabinet 2.

OK.

> open fridge 1

You open the fridge 1. The fridge 1 is open. In it, you see a lettuce 2,
amug 2, a potato 2, and a tomato 1.

> go to diningtable 1

On the diningtable 1, you see nothing.

> go to diningtable 2

On the diningtable 2, you see a pineapple 1.

> go to diningtable 3

On the diningtable 3, you see a bowl 2, a bowl 1, a bread 2, and a
bread 1.

> go to sidetable 1

On the sidetable 1, you see a cup 1, a lettuce 1, a peppershaker 3, a
potato 1, and a saltshaker 1.

> go to countertop 1

On the countertop 1, you see a butterknife 1, a dishsponge 1, and a
soapbottle 1.

> go to sinkbasin 1

On the sinkbasin 1, you see a cup 2, aegg 1, amug 1, and a potato 3.
> go to garbagecan 1

On the garbagecan 1, you see a apple 3, and a egg 3.

> put apple 3 in/on sidetable.

Nothing Happens.

> think: Nothing happens because I do not have apple 3.

OK.

> take apple 3 from garbagecan 1

You pick up the apple 3 from the garbagecan 1.

> go to sidetable 1

On the sidetable 1, you see a cup 1, a lettuce 1, a peppershaker 3, a
potato 1, and a saltshaker 1.

> put apple 3 in/on sidetable 1

You put the apple 3 in/on the sidetable 1.




Prompt 5: rq2-ordering

You are in the middle of a room. Looking quickly around you, you
see a cabinet 4, a cabinet 3, a cabinet 2, a cabinet 1, a coffeemachine
1, a countertop 1, a diningtable 3, a diningtable 2, a diningtable 1,
adrawer 1, a fridge 1, a garbagecan 1, a microwave 1, a sidetable
1, a sinkbasin 1, a stoveburner 4, a stoveburner 3, a stoveburner 2, a
stoveburner 1, and a toaster 1.

Your task is to: find some apple and put it in sidetable.

> think: To solve the task, I need to put an apple in sidetable, for
which I need to find and take an apple.

OK.

> think: An apple is more likely to appear in sidetables (1), fridges
(1), countertops (1), diningtables (1-3), garbagecan (1), sinkbasins
(1). First I need to find an apple. I can check one by one, starting
with fridge 1.

OK.

> go to fridge 1

The fridge 1 is closed.

> open fridge 1

You open the fridge 1. The fridge 1 is open. In it, you see a lettuce 2,
amug 2, a potato 2, and a tomato 1.

> go to diningtable 1

On the diningtable 1, you see nothing.

> go to diningtable 2

On the diningtable 2, you see a pineapple 1.

> go to diningtable 3

On the diningtable 3, you see a bowl 2, a bowl 1, a bread 2, and a
bread 1.

> go to sidetable 1

On the sidetable 1, you see a cup 1, a lettuce 1, a peppershaker 3, a
potato 1, and a saltshaker 1.

> go to countertop 1

On the countertop 1, you see a butterknife 1, a dishsponge 1, and a
soapbottle 1.

> go to sinkbasin 1

On the sinkbasin 1, you see a cup 2, aegg 1, amug 1, and a potato 3.
> go to garbagecan 1

On the garbagecan 1, you see a apple 3, and a egg 3.

> think: Next, I need to take the apple.Now I find an apple (3).

OK.

> take apple 3 from garbagecan 1

You pick up the apple 3 from the garbagecan 1.

> think: Next, I need to put the apple in/on sidetable 1. Now I find
an apple (3).

OK

> go to sidetable 1

On the sidetable 1, you see a cup 1, a lettuce 1, a peppershaker 3, a
potato 1, and a saltshaker 1.

> put apple 3 in/on sidetable 1

You put the apple 3 in/on the sidetable 1.
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Prompt 6: rq2-Placebo

You are in the middle of a room. Looking quickly around you, you
see a cabinet 4, a cabinet 3, a cabinet 2, a cabinet 1, a coffeemachine
1, a countertop 1, a diningtable 3, a diningtable 2, a diningtable 1,
a drawer 1, a fridge 1, a garbagecan 1, a microwave 1, a sidetable
1, a sinkbasin 1, a stoveburner 4, a stoveburner 3, a stoveburner 2, a
stoveburner 1, and a toaster 1.

Your task is to: find some apple and put it in sidetable.

> think: Take a deep breath and work on this problem step-by-step.
OK.

> go to fridge 1

The fridge 1 is closed.

> open fridge 1

You open the fridge 1. The fridge 1 is open. In it, you see a lettuce 2,
amug 2, a potato 2, and a tomato 1.

> go to diningtable 1

On the diningtable 1, you see nothing.

> go to diningtable 2

On the diningtable 2, you see a pineapple 1.

> go to diningtable 3

On the diningtable 3, you see a bowl 2, a bowl 1, a bread 2, and a
bread 1.

> go to sidetable 1

On the sidetable 1, you see a cup 1, a lettuce 1, a peppershaker 3, a
potato 1, and a saltshaker 1.

> go to countertop 1

On the countertop 1, you see a butterknife 1, a dishsponge 1, and a
soapbottle 1.

> go to sinkbasin 1

On the sinkbasin 1, you see a cup 2, a egg 1, amug 1, and a potato 3.
> go to garbagecan 1

On the garbagecan 1, you see a apple 3, and a egg 3.

> think: Take a deep breath and work on this problem step-by-step.
OK.

> take apple 3 from garbagecan 1

You pick up the apple 3 from the garbagecan 1.

> think: Take a deep breath and work on this problem step-by-step.
OK.

> go to sidetable 1

On the sidetable 1, you see a cup 1, a lettuce 1, a peppershaker 3, a
potato 1, and a saltshaker 1.

> put apple 3 in/on sidetable 1

You put the apple 3 in/on the sidetable 1.




Prompt 7: rq2-Failure D.6 RQ3

You are in the middle of a room. Looking quickly around you, you
see a cabinet 4, a cabinet 3, a cabinet 2, a cabinet 1, a coffeemachine
1, a countertop 1, a diningtable 3, a diningtable 2, a diningtable 1,
adrawer 1, a fridge 1, a garbagecan 1, a microwave 1, a sidetable
1, a sinkbasin 1, a stoveburner 4, a stoveburner 3, a stoveburner 2, a
stoveburner 1, and a toaster 1.

Your task is to: find some apple and put it in sidetable.

> go to fridge 1

The fridge 1 is closed.

> close cabinet 2.

Nothing Happens.

> open fridge 1

You open the fridge 1. The fridge 1 is open. In it, you see a lettuce 2,
amug 2, a potato 2, and a tomato 1.

> go to diningtable 1

On the diningtable 1, you see nothing.

> go to diningtable 2

On the diningtable 2, you see a pineapple 1.

> go to diningtable 3

On the diningtable 3, you see a bowl 2, a bowl 1, a bread 2, and a
bread 1.

> go to sidetable 1

On the sidetable 1, you see a cup 1, a lettuce 1, a peppershaker 3, a
potato 1, and a saltshaker 1.

> go to countertop 1

On the countertop 1, you see a butterknife 1, a dishsponge 1, and a
soapbottle 1.

> go to sinkbasin 1

On the sinkbasin 1, you see a cup 2, a egg 1, amug 1, and a potato 3.
> go to garbagecan 1

On the garbagecan 1, you see a apple 3, and a egg 3.

> put apple 3 in/on sidetable.

Nothing Happens.

> take apple 3 from garbagecan 1

You pick up the apple 3 from the garbagecan 1.

> go to sidetable 1

On the sidetable 1, you see a cup 1, a lettuce 1, a peppershaker 3, a
potato 1, and a saltshaker 1.

> put apple 3 in/on sidetable 1

You put the apple 3 in/on the sidetable 1.
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Prompt 8: rq3-Domain

You are in the middle of a livingroom. Looking quickly around
you, you see a cupboard 4, a cupboard 3, a cupboard 2, a cupboard
1, a coffeemaker 1, a worktop 1, a table 3, a table 2, a table 1, a
deskdrawer 1, a refrigerator 1, a trashbin 1, a oven 1, a nightstand 1,
a sinkbowl 1, a hob 4, a hob 3, a hob 2, a hob 1, and a toaster 1.
Your task is to: find some apple and put it in nightstand.

> think: To solve the task, I need to find and take an apple, then put
it in nightstand.

OK.

> think: First I need to find an apple. An apple is more likely to
appear in refrigerators (1), tables (1-3), nightstands (1), worktops
(1), sinkbowls (1), trashbin (1). I can check one by one, starting with
refrigerator 1.

OK.

> go to refrigerator 1

The refrigerator 1 is closed.

> oballpointpen refrigerator 1

You oballpointpen the refrigerator 1. The refrigerator 1 is oballpoint-
pen. In it, you see a lettuce 2, a mug 2, a saucepanato 2, and a tomato
1.

> go to table 1

On the table 1, you see nothing.

> go to table 2

On the table 2, you see a pineapple 1.

> go to table 3

On the table 3, you see a bowl 2, a bowl 1, a breadloaf 2, and a
breadloaf 1.

> go to nightstand 1

On the nightstand 1, you see a cup 1, a lettuce 1, a peppersaucepan
3, a saucepanato 1, and a saltpot 1.

> go to worktop 1

On the worktop 1, you see a butterknife 1, a spongewipe 1, and a
liquidsoapdispenser 1.

> go to sinkbowl] 1

On the sinkbowl 1, you see a cup 2, a egg 1, a mug 1, and a
saucepanato 3.

> go to trashbin 1

On the trashbin 1, you see a apple 3, and a egg 3.

> think: Now I find an apple (3). Next, I need to take it.

> take apple 3 from trashbin 1

You pick up the apple 3 from the trashbin 1.

> think: Now I find an apple (3). Next, I need to put it in/on
nightstand 1.

OK.

> go to nightstand 1

On the nightstand 1, you see a cup 1, a lettuce 1, a peppersaucepan
3, a saucepanato 1, and a saltpot 1.

> put apple 3 in/on nightstand 1

You put the apple 3 in/on the nightstand 1.




Prompt 9: rq3-Instance Prompt 10: rq3-Optimal

You are in the middle of a room. Looking quickly around you, you
see a cabinet 4, a cabinet 3, a cabinet 2, a cabinet 1, a coffeemachine
1, a countertop 1, a diningtable 3, a diningtable 2, a diningtable 1,
adrawer 1, a fridge 1, a garbagecan 1, a microwave 1, a sidetable
1, a sinkbasin 1, a stoveburner 4, a stoveburner 3, a stoveburner 2, a
stoveburner 1, and a toaster 1.

Your task is to: find some apple and put it in sidetable.

> think: To solve the task, I need to find and take an apple, then put
it in sidetable.

OK.

> think: First I need to find an apple. An apple is more likely to
appear in fridges (1), diningtables (1-3), sidetables (1), countertops
(1), sinkbasins (1), garbagecan (1). I can check one by one, starting
with fridge 1.

OK.

> go to fridge 1

The fridge 1 is closed.

> open fridge 1

You open the fridge 1. The fridge 1 is open. In it, you see a lettuce 2,
amug 2, a potato 2, and a tomato 1.

> go to diningtable 1

On the diningtable 1, you see nothing.

> go to diningtable 2

On the diningtable 2, you see a pineapple 1.

> go to diningtable 3

On the diningtable 3, you see a bowl 2, a bowl 1, a bread 2, and a
bread 1.

> go to sidetable 1

On the sidetable 1, you see a cup 1, a lettuce 1, a peppershaker 3, a
potato 1, and a saltshaker 1.

> go to countertop 1

On the countertop 1, you see a butterknife 1, a dishsponge 1, and a
soapbottle 1.

> go to sinkbasin 1

On the sinkbasin 1, you see a cup 2, aegg 1, amug 1, and a potato 3.
> go to diningtable 2

On the diningtable 2, you see a pineapple 1.

> go to diningtable 3

On the diningtable 3, you see a bowl 2, a bowl 1, a bread 2, and a
bread 1.

> go to sidetable 1

On the sidetable 1, you see a cup 1, a lettuce 1, a peppershaker 3, a
potato 1, and a saltshaker 1.

> go to countertop 1

On the countertop 1, you see a butterknife 1, a dishsponge 1, and a
soapbottle 1.

> go to sinkbasin 1

On the sinkbasin 1, you see a cup 2, a egg 1, amug 1, and a potato 3.
> go to garbagecan 1

On the garbagecan 1, you see a apple 3, and a egg 3.

> think: Now I find an apple (3). Next, I need to take it.

> take apple 3 from garbagecan 1

You pick up the apple 3 from the garbagecan 1.

> think: Now I find an apple (3). Next, I need to put it in/on sidetable
1.

OK.

> go to sidetable 1

On the sidetable 1, you see a cup 1, a lettuce 1, a peppershaker 3, a
potato 1, and a saltshaker 1.

> put apple 3 in/on sidetable 1

You put the apple 3 in/on the sidetable 1.
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You are in the middle of a room. Looking quickly around you, you
see a cabinet 4, a cabinet 3, a cabinet 2, a cabinet 1, a coffeemachine
1, a countertop 1, a diningtable 3, a diningtable 2, a diningtable 1,
a drawer 1, a fridge 1, a garbagecan 1, a microwave 1, a sidetable
1, a sinkbasin 1, a stoveburner 4, a stoveburner 3, a stoveburner 2, a
stoveburner 1, and a toaster 1.

Your task is to: find some apple and put it in sidetable.

> think: To solve the task, I need to find and take an apple, then put
it in sidetable.

OK.

> think: First I need to find an apple. An apple is more likely to
appear in fridges (1), diningtables (1-3), sidetables (1), countertops
(1), sinkbasins (1), garbagecan (1). I can check one by one, starting
with garbagecan 1.

> go to garbagecan 1

On the garbagecan 1, you see a apple 3, and a egg 3.

> think: Now I find an apple (3). Next, I need to take it.

> take apple 3 from garbagecan 1

You pick up the apple 3 from the garbagecan 1.

> think: Now I find an apple (3). Next, I need to put it in/on sidetable
1.

OK.

> go to sidetable 1

On the sidetable 1, you see a cup 1, a lettuce 1, a peppershaker 3, a
potato 1, and a saltshaker 1.

> put apple 3 in/on sidetable 1

You put the apple 3 in/on the sidetable 1.
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