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Abstract

Integrating complementary strengths of raw data and logical
rules to improve the learning generalization has been recently
shown promising and effective, e.g., abductive learning is one
generic framework that can learn the perception model from
data and reason between rules simultaneously. However, the
performance would be seriously decreased when inaccurate
logical rules appear, which may be even worse than base-
lines using only raw data. Efforts on this issue are highly de-
sired while remain to be limited. This paper proposes a simple
and effective safe abductive learning method to alleviate the
harm caused by inaccurate rules. Unlike the existing meth-
ods which directly use all rules without correctness checks,
it utilizes them selectively by constructing a graphical model
with an adaptive reasoning process to prevent performance
hazards. Theoretically, we show that induction and abduction
are mutually beneficial, and can be rigorously justified from
a classical maximum likelihood estimation perspective. Ex-
periments on diverse tasks show that our method can tolerate
at least twice as many inaccurate rules as accurate ones and
achieve highly competitive performance while other methods
can’t. Moreover, the proposal can refine inaccurate rules and
works well in extended weakly supervised scenarios.

Introduction
Recently, in order to offer a better understanding of the
learning systems and improve the learning generalization,
complementary integration of raw data and symbolic rules
in a favorable way, has become an active branch and shown
to be promising (Raedt et al. 2020; Besold et al. 2021) .

Neural-symbolic learning (NeSy) (Garcez et al. 2019;
Sarker et al. 2021; Cunnington et al. 2022) focusing on inte-
grating logical reasoning into the neural networks, has been
studied for decades. Deep neural networks (LeCun, Ben-
gio, and Hinton 2015) serve as low-level perception mod-
els to translate raw inputs into symbolic concepts of practi-
cal meaning, while the knowledge base constrains both the
intermediate symbolic concepts and the final target using
logical rules. Algorithms include DeepProblog (Manhaeve
et al. 2018), NeurASP (Yang, Ishay, and Lee 2020), and LTN
(Badreddine et al. 2022), etc. Abductive learning (ABL)
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Figure 1: An example of the complementary integration of
perception and reasoning for the Tic-Tac-Toe task. The input
is a snapshot of an endgame, and the goal is to judge whether
”x” wins. Experts provide rules of victory (i.e., when ”x” has
one of 8 possible ways to create a ”three-in-a-row”).

(Zhou 2019) is one recent generic and effective framework
that bridges any kind of machine learning algorithms and
logical reasoning by using inconsistency minimization to
construct pseudo-labels of the intermediate symbolic con-
cepts. The coordination of these two modules makes use
of the powerful perception ability of learning models and
the logical reasoning ability of the knowledge base at the
same time, thus enhancing the interpretability and gener-
alization of machine learning models. The description of
these ideas using intermediate symbolic concepts as bridges
is briefly shown in Figure 1. The performance has been re-
ported that it achieves highly competitive performance to the
pure learning models. Algorithms include ABLSim(Huang
et al. 2021b), SS-ABL (Huang et al. 2020) and ABL-KG
(Huang et al. 2023), etc.

The positive results mentioned above, however, rely on
the fundamental assumption that the logical rules are con-
sistently accurate. Such an assumption is difficult to hold in
many practical applications because the experts may make
mistakes or machine-generated rules may be inaccurate. For
example, in the text sentiment analysis task, sentiment lex-
icons are often built automatically (Lu et al. 2011) which
would unavoidably contain inaccurate information. In addi-
tion, many works (Chen, Jia, and Xiang 2020; Sadeghian
et al. 2019) use deep learning techniques to mine rules from
large knowledge graphs, and the uncertainty of neural net-



Figure 2: The performance degradation of the NeSy-based
method (Badreddine et al. 2022) and the ABL-based method
(Huang et al. 2021b) as the ratio of inaccurate rules to accu-
rate rules increases on the Tic-Tac-Toe dataset.

works will introduce inaccurate rules, not to mention the
imperfectness of knowledge graphs themselves (Paulheim
2017; Huang et al. 2022, 2023; Liu et al. 2024). Faced with
these dilemmas, ABL or NeSy no longer works well and
may even be accompanied by severe performance degrada-
tion. That is, ABL or NeSy is even worse than a simple end-
to-end baseline model using only raw data, as illustrated in
Figure 2. Such phenomena undoubtedly go against the ex-
pectation and limit their effectiveness in various practical
tasks. However, to our best knowledge, the efforts in this
aspect remain to be limited.

In this paper, we focus on ABL and try to build a safe
ABL algorithm, that is to say, ABL using extra rules (some
may be inaccurate) will not be inferior to a simple end-to-
end model using raw data only. After the proposal of ABL,
the follow-up work mainly focuses on enhancing the qual-
ity of pseudo-label, e.g., ABLSim (Huang et al. 2021b) and
expanding the capacity of the knowledge base, e.g., GABL
(Cai et al. 2021) and there is little research on safe ABL yet.
There are also discussions in the field of machine learning
about safe weakly supervised learning (Guo et al. 2020; Li,
Guo, and Zhou 2021; Zhou, Jing, and Li 2024). Although
they adopt the same definition of safeness, they could not
be applied to our problem setting because they are purely
based on learning models and do not take rules into account.
Therefore, to alleviate the performance degradation caused
by inaccurate rules, new proposals are desired.

To this end, this paper presents a simple and effective
safe ABL framework Safe-ABL. Unlike the existing meth-
ods (Manhaeve et al. 2018; Badreddine et al. 2022; Yang,
Ishay, and Lee 2020; Huang et al. 2021b) which directly
use all rules without correctness checks, it uses them selec-
tively to prevent performance hazards. Specifically, we con-
struct a graphical model with an adaptive reasoning process
and we argue that the intermediate symbolic concepts can
be generated from the abduction process from logical rules

and the induction process from raw data. Our method tries
to minimize the discrepancy between the generated distribu-
tion from both the induction and abduction processes. The-
oretically, we show that induction and abduction are mutu-
ally beneficial, and can be rigorously justified from a clas-
sical maximum likelihood estimation perspective and thus
let the perception model and rules rectify each other. Ex-
periments on diverse tasks show that, unlike existing meth-
ods that tend to cause severe performance degradation, our
new method could tolerate at least twice as many inaccurate
rules as accurate ones and achieve highly competitive perfor-
mance. Moreover, our proposal is able to refine rule quality
and can work well in extended weakly supervised scenarios
such as the semi-supervised scenario.

Brief Introduction to ABL and NeSy
Abductive learning (Zhou 2019) enables the joint optimiza-
tion of machine learning and logical reasoning by using in-
consistency minimization. It focuses on how to deal with the
intermediate symbolic concepts that serve as pseudo-labels
for learning and variables for abduction. The pseudo-label
can help update the machine learning model, and the abduc-
tion searches for the most suitable revised pseudo-label to
minimize the inconsistency between raw data and the knowl-
edge base. ABL has many variants. Cai et al. (2021) extends
the ABL framework to exploit the logical domain knowl-
edge base represented by groundings. Huang et al. (2021b)
uses a similarity-based consistency metric to select the fi-
nal pseudo-label from all possible abduction results which
makes the optimization of the ABL framework faster and
more stable. Huang et al. (2020) solved the theft judicial
sentencing problem using the ABL framework in a semi-
supervised setting. All of these variants assume that the
knowledge base is strictly accurate, which is not the case
in real applications. To solve the performance degeneration
caused by inaccurate rules, new approaches are desired.

Neural-symbolic learning (Besold et al. 2021; Raedt et al.
2020) is concerned with designing algorithms to bridge per-
ception and reasoning. Many Methods (Yang, Lee, and Park
2022; Xu et al. 2018; Fischer et al. 2019; Huang et al. 2021a)
treat logical rules as constraints, which serve as effective
regularization for training networks. Xu et al. (2018) designs
a loss function forcing the output of networks to conform
more closely to logic constraints. Other methods (Yang, Lee,
and Park 2022; Fischer et al. 2019) follow similar lines
of thought to deal with different types of logic constraints.
These methods weaken the role of logical systems and thus
may lose the strong power of logical reasoning. Moreover,
many methods (Badreddine et al. 2022; Manhaeve et al.
2018) have focused on how neural networks can blend into
existing tools for logical reasoning. Badreddine et al. (2022)
extends fuzzy logic with neural predicate into a fully differ-
entiable logical language called Real Logic. DeepProbLog
(Manhaeve et al. 2018) is a probabilistic logic program-
ming language that similarly incorporates deep learning us-
ing neural predicates. The goal of these methods is to build
complete logical systems using a differentiable way. How-
ever, they all ignore the impact of rules for machine learning
leading to the collapse of model learning when faced with



inaccurate rules.
There are two other typical paradigms for integrating

machine learning and logical reasoning. The Probabilistic
Logic Program (PLP) aims to expand FOL to accommo-
date probabilistic groundings, allowing for probabilistic in-
ference. Statistical Relational Learning (SRL) aims to create
a probabilistic graphical model based on domain knowledge
expressed in FOL, sharing a similar motivation to NeSy that
external domain knowledge is utilized to establish an inter-
pretable neural structure. Different from all these paradigms,
ABL can jointly optimize machine learning and logical rea-
soning through inconsistency minimization.

The Proposed Safe-ABL Framework
To alleviate the performance degradation caused by inaccu-
rate rules, we propose a simple and effective ABL frame-
work Safe-ABL. Unlike the existing methods which directly
use all rules, we give them weights to represent the probabil-
ities that each rule participates in abduction. Our main idea is
that errors in the perception model and rules can be rectified
mutually. We implement this idea by constructing a graph-
ical model with an adaptive reasoning process of interme-
diate symbolic concepts and then minimize the discrepancy
between the generated distribution from the induction and
abduction processes. Theoretical results show that our opti-
mization can be rigorously justified from a classical maxi-
mum likelihood estimation perspective. Figure 3 illustrates
the Safe-ABL framework. In this section, we first give the
Safe-ABL framework with a graphical model and its analy-
sis, and then the running time complexity of our proposal is
accelerated for more practical applications.

Notations and Problem Setting
Considering standard supervised learning, we define an in-
put space X and an output space Y of size K. A distribution
D is defined on space X × Y . We sample a training dataset
D = {(x1,y1), (x2,y2), ..., (xn,yn)} from this distribu-
tion. In addition, we are given a discrete symbol space Z .
The symbol space can be seen as cartesian product of a se-
ries of feature space Z =

∏s
i=1 Zi. Intermediate symbol

z = (z1, z2, ..., zs) from Z has exact meaning which hu-
man can understand. For example, the corresponding sym-
bol of one Tic-Tac-Toe endgame picture is a 3 × 3 matrix
(i.e., s = 9), the element of which represents ’x’, ’o’, or
blank. A knowledge base KB which represents a set of log-
ical rules is provided by experts. As discussed previously,
rules from this knowledge base may be inaccurate. A fil-
ter function g : KB → {0, 1} which can judge whether
the rule is accurate, is needed. Our goal is to learn a model
h : X → Y . Thanks to the knowledge base KB provided by
experts, we can first learn a perception model f : X → Z ,
then the intermediate symbol z is fed into KB to reason to
the final target y. Moreover, to refine the knowledge base for
its better use, we should also learn the filter function g.

To better understand our method, we first introduce the
principle of inductive reasoning and abductive reasoning.
Inductive reasoning or induction is the primary task of ma-
chine learning and can infer general knowledge from spe-

cific raw data. In our paper, perception is a way of induction.
Abduction or abductive reasoning (Josephson and Joseph-
son 1996; Shelley 2012) is a basic form of logical inference
different from induction and deduction. Considering a real
scene. One morning, you go outside and the ground is wet,
and you guess it must have rained last night. The way of
your think is abduction which is to identify causes that are
the most promising explanations for current observations.
We call all the possible explanations as abduction results A.
Formally, A := {z ∈ Z : z ∪ KB ⊨ y}, symbol ⊨ means
logical implication. For example in Tic-Tac-Toe game, If we
observe that ”x” wins, and we know the winning rules, we
can abduce all possible endgame states.

Framework Formulation with Graphical Model
In order to model the impact made by inaccurate rules, we
construct a graphical model to describe the reasoning pro-
cess of intermediate symbolic concepts which is an effec-
tive way. Figure 4 demonstrates our graphical model. We
argue that each rule in the knowledge base guides the ab-
duction of intermediate symbolic concepts together with the
label. Each directed edge pointed from the knowledge base
represents the direction of the abduction. In addition, a ran-
dom factor ϵ is introduced which is to randomly select a cer-
tain z from abduction results A. To be specific, we can give
meaning to ϵ such as the random index of the list of abduc-
tion results. Then given a specific instance x, the percep-
tion model will induce the intermediate symbolic concept z.
The directed edge pointed from x represents the direction
of the induction. Take the example of a graphical model in
the Tic-Tac-Toe game, when we have the winning rules (i.e.,
KB) and know ’x’ wins (i.e., y), we can abduce all possi-
ble endgame states (i.e., A). The random factor ϵ will decide
which endgame state will be finally chosen. When given the
snapshot of this board (i.e., x), we can induce the endgame
state (i.e., z) by the perception model.

However, having all rules point to z is dangerous be-
cause rules may be inaccurate. To conduct safe abduction,
our key idea is to extend the graphical model by giving
weights for the edges between rules and z. Firstly, we clas-
sify rules into two parts: expert-convinced rules KBt and
rules that may be inaccurate KBw, where the latter ones
require careful exploitation and refinement. Obviously, we
have KBt ∩ KBw = ∅ and KBt ∪ KBw = KB. Then,
for rules in KBw, we set weights for its edge pointing to
z. Formally, we set a parameter ωi ∈ [0, 1] for each rule
ri ∈ KBw. We write all the ωi in the unitive form ω.

These parameters represent the probabilities that each rule
participates in abduction if it does not contradict z. Here we
assume that these probabilities are invariant no matter what
z is. Generally speaking, we want accurate rules to have a
higher probability of participating in abduction, and inaccu-
rate rules to have a lower probability. Such an observation
is realistic and help refine the rule quality. Before training,
since we don’t know the correctness of each rule, we set
w

(0)
i = 0.5, i = 1, 2..., |KBw|. The superscript represents

the training rounds. According to the graphical model, we
can define the abduction probability Qω(z|y,KB) of each
intermediate symbolic concept z. This abduction probability



Figure 3: Illustration of the Safe-ABL framework. Green rules are expert-convinced rules, and the blue ones may be inaccurate.
The dashed arrow represents the path of the backpropagation update.

Figure 4: Graphical model of the reasoning process. Dashed
edges mean the abduction process may be inaccurate. We set
parameters to check them, indicating the probability of their
accuracy. The green node means expert-convinced rules.

is the conditional probability of z given target y and knowl-
edge base KB. We denote Qω(z|y) := Qω(z|y,KB).

Here we assume the random factor is sampled from a uni-
form distribution. This is reasonable due to the lack of prior
knowledge of the task structure. So we can calculate the ab-
duction probability Qω(z|y) for each z. This probability is
equal to at least one rule that does not contradict z partici-
pating in abduction. Mathematically speaking,

Qω(z|y)∝

1−
∏

ri∈KBw

(1− I (ri ∪ z ∪ y ⊭⊥)wi) z ∈ At,

0 z /∈ At.

(1)

Here, I is the indicator function and At := {z ∈ Z :

z∪KBt ⊨ y}. We can calculate the final value of this prob-
ability by normalization.

Optimization for Safe Abduction
In this section, we formalize our target to not only help to
learn the perception model but to refine the rule quality.

Considering the edge from x to z is an induction process
in the graphical model, we can use a perception model to
estimate the probability of each z. We use a neural network
that can map input x into a distribution Pθ(z|x). Now we
have two distributions depicting intermediate symbolic con-
cepts from perception and reasoning modules. Both distribu-
tions are characterizations of the intermediate symbolic con-
cepts which should be as consistent as possible intuitively, so
we need to minimize their discrepancy. Based on this idea,
we design a loss function L and our target is to minimize it,
which can be formalized as follows:

θ∗, ω∗ = argmin
θ,ω

L(θ, ω)

= argmin
θ,ω

− 1

n

n∑
i=1

log(
∑
z∈At

Pθ(z|xi)Qω(z|yi))

s.t. 0 ≤ ωj ≤ 1, j = 1, 2, ..., |KBw|

(2)

Intuitively, if we have a well-initialized perception model,
pulling in these two distributions helps to distinguish the in-
accurate rules in the knowledge base, and in turn, when the
knowledge base is good enough, it can promote the conver-
gence of the perception model to the global optimal. Since
all operations are differentiable, we can solve it by gradient
descent in each training step.

θ(k+1) = θ(k) − η1 · ∇θL

ω(k+1) = Clamp
(
ω(k) − η2 · ∇ωL, 0, 1

) (3)

Clamp(·, 0, 1) limits the value of ω between [0, 1]. η1 and
η2 are the learning rates.



We further analyze our optimization objective from the
theoretical perspective.
Theorem 0.1. Assume that P(y|KB,ω) and P(z|KB,ω)
are both uniform distributions. Our optimization objective
(2) is equivalent to maximum likelihood estimation, i.e.,

θ∗, ω∗ = argmax
θ,ω

n∏
i=1

P(yi|xi,KB, θ, ω) (4)

The assumption of this theorem is reasonable because the
prior distributions of y and z are independent of the knowl-
edge base and the parameters in the knowledge base. This
theorem provides a clear statistical guarantee for our opti-
mization objective. It suggests that by leveraging the raw
data, the disambiguation process between the perception
model and inaccurate rules can be facilitated, leading to their
mutual promotion. The proof is provided in Appendix.

After training, we get the convergence parameters for
each rule in KBw. We set a threshold δ ∈ [0, 1] to distin-
guish which rule is accurate. Formally, if ωi ≥ δ, we treat
the i’th rule as the accurate one while ωi < δ opposite. This
means the filter function g(ri) = I(wi ≥ δ). In order to be
consistent with the initial parameters of the training, we fix
δ = 0.5. In some other cases, rules may inherently be fuzzy,
and our algorithm can quantify this fuzziness. Therefore, we
have attained our aim of refining the quality of the rules.

Running Time Acceleration
In this section, we try to make the abduction results At

smaller based on the confidence of the neural network out-
put, thereby reducing the training cost. Since we should
compute Q(z|x) for all the possible z, it is intractable if the
cardinality of At is large enough. The confidence of the neu-
ral network output helps to make At smaller.

For each symbol space Zk, the neural network can output
the probability of each symbol representing model’s confi-
dence. So, it is a good way to rule out symbols with low
confidence. Formally, we select a subset Ãt of At.

Ãt = {z = (z1, z2, ..., zs)|z ∈ At ∧NN(zi) > σ} (5)

NN(zi) means the predicted probability of the neural
network for the feature zi. The σ is the hyperparameter that
selects with high confidence and we set σ = 0.99 in all our
experiments. Since we reduce the size of At, we need to nor-
malize Qω(z|x) again. We denote the new value as Q̃ω(z|x).
So our goal becomes

θ∗, ω∗ = argmin
θ,ω

L(θ, ω)

= argmin
θ,ω

− 1

n

n∑
i=1

log(
∑
z∈Ãt

Pθ(z|xi)Q̃ω(z|yi))

s.t. 0 ≤ ωj ≤ 1, j = 1, 2, ..., |KBw|

(6)

Experiments
In this section, we present experimental comparison results
of our proposed method on different tasks, including MNIST

addition (Manhaeve et al. 2018), Tic-Tac-Toe game, and le-
gal dispute focus identification. The purpose of the experi-
ments is to answer the following four questions.
Q1: Whether our method is safe with inaccurate rules?
Q2: Is our method able to improve the quality of rules?
Q3: Can our acceleration technique successfully work?
Q4: Can our method work well in extended weakly su-
pervised scenarios?

The first two tasks are used to answer the first three ques-
tions. The legal dispute focus identification task is to answer
the fourth question, which contains real data scenarios such
as multi-label and semi-supervised data. To ensure the fair-
ness of our experiments, all methods share the same knowl-
edge base and a pre-trained perception model. All experi-
ments are repeated five times with Nvidia Tesla V100 GPU.

MNIST Addition
This task was first introduced by DeepProblog (Manhaeve
et al. 2018) which contains two subtasks, Single-digit and
Multi-digit. The input of the first subtask is a pair of MNIST
images (LeCun et al. 1998), and the output is the sum of the
individual digits. The input of the second subtask is a list of
four MNIST images that make two tens digits in pairs and
the output is their sum.

The original rule in the knowledge base is the addition op-
eration. In our environment, the knowledge base contained
inaccurate rules. For the single-digit subtask, the knowledge
base contains four rules, namely addition, subtraction, mul-
tiplication, and division. For more complex multi-digit sub-
tasks, the knowledge base contains two rules: addition and
multiplication. These rules partially match the final result
(for example, 2+2 = 4 and 2×2 = 4), but they do not fully
match the requirement of the task and are therefore inaccu-
rate, making this task difficult to solve.

We compare our approach with the end-to-end baseline,
existing state-of-the-art neural-symbolic approaches, and
abductive learning approaches. NeSy methods include Logic
Tensor Network (LTN) (Badreddine et al. 2022), Deep-
Problog (Manhaeve et al. 2018). ABL methods include the
original abductive learning(ABL) (Dai et al. 2019) and ABL
with similarity (ABLsim) (Huang et al. 2021b), a faster and
more effective variant of ABL. We choose LeNet-5 (LeCun
et al. 1998) as the perception model for all the methods and
we initialize it with a subset of labeled samples. For these
two subtasks, the initialized perception model performance
is 10.4% and 20.3%, respectively. The reason we adopt the
different initial models is due to the different difficulty levels
of these two tasks.

To answer Q1, we demonstrate comparative performance
via end-to-end classification accuracy. Due to the inaccurate
rules provided by the knowledge base, none of the exist-
ing methods can be tested except the baseline method. For
fair comparison, we assume that all existing methods have
the accurate knowledge base during the testing phase. This
compromise can also verify the superiority of our method
for improving the knowledge base. As shown in Table 1, the
performance of the current method is much lower than the
baseline due to inaccurate rules. The main reason is that the
predictions of existing methods all heavily depend on the



Method Single-digit Multi-digit

Baseline 96.78 ± 0.21 60.46 ± 2.67
LTN 79.01 ± 0.41 53.43 ± 2.62
DeepProbLog 21.81 ± 7.12 48.27 ± 0.52
ABL 20.82 ± 0.94 16.66 ± 0.85
ABLSim 86.40 ± 9.72 57.09 ± 0.55
Safe-ABL(Ours) 99.04 ± 0.11 98.06 ± 0.14

Table 1: Classification accuracies (%mean ± std) for
MNIST Addition task of different methods.

Figure 5: Curve results for MNIST Addition. The top three
are for Single-digit and the bottom three are for Multi-digit.

correctness of the rules and rules for this task are inherently
conflicting which can easily mislead the perception model.
In contrast, our method guarantees high performance even
if the knowledge base contains inaccurate rules. Therefore,
our method behaves much more robustly to inaccurate rules
which means our method is safer.

To answer Q2, we demonstrate the variation curve of the
weight parameter of the rules in Figure 5. It can be ob-
served that with the deepening of training, the weight of
accurate rules gradually increases, while the weight of inac-
curate rules gradually decreases. Therefore, we can success-
fully locate the inaccurate rules and keep the accurate ones,
and finally achieve the purpose of refining the rule quality.

To answer Q3, we record the average size of the accel-
erated abduction results Ã for each iteration and the time
taken for each training iteration. As shown in Figure 5, the
average size of Ã is gradually decreasing due to our accel-
eration technique, resulting in a decrease in the time spent
on each training iteration. Therefore, our self-acceleration
technique can alleviate the problem of high abduction con-
sumption while maintaining high performance.

Tic-Tac-Toe Game
The Tic-Tac-Toe game is a famous game around the world
for two players who take turns marking the spaces in a 3×3
grid with ‘x’ or ‘o’. The Tic-Tac-Toe game is first introduced

Figure 6: Classification accuracy(%) of different methods
on the Tic-Tac-Toe varying the number of inaccurate rules.
Shaded regions indicate standard deviation.

by UCI and Kaggle 1. The target of this task is to judge
whether ‘x’ wins given the endgame state. The original task
is easy and no knowledge base is introduced. Here we trans-
form it into an image binary classification task. We use a
pre-trained LeNet-5 (LeCun et al. 1998) as the perception
model for all the methods.

Then we introduce the knowledge base. The expert-
convinced rules in the knowledge base are that ‘x’ play first
and ‘x’ takes at least three steps. Each uncertain rule is a
triplet of positions representing victory. For example, we
number the 3×3 grids in row order and an uncertain rule
triplet [0,4,8] (i.e., main diagonal) means if ‘x’ exists in
these three positions simultaneously then ‘x’ wins. Out of
the rules list, only 8 rules can be strictly accurate, while
many other rules are found to be inaccurate because a sig-
nificant number of samples are unable to obey them.

To answer Q1, we adjust the number of inaccurate rules
from 0 to 60 to compare the performance degradation of dif-
ferent methods. Inaccurate rules are randomly generated and
mixed in the uncertain rules list. Due to the increasing num-
ber of rules, some algorithms with high costs such as Deep-
Problog (Manhaeve et al. 2018) cannot be applied to this
task, so LTN (Badreddine et al. 2022) is choosen as the typi-
cal NeSy method. Results are shown in Figure 6. When vary-
ing the number of inaccurate rules, the performance of LTN
and ABLSim (Huang et al. 2021b) decrease significantly and
below the baseline. Nevertheless, our method maintains high
accuracy all the time. This phenomenon indicates that our
method is much safer than other methods.

To answer Q2, we view the refinement of the knowledge
base as a binary classification task that judges the inaccu-
rate rules. Due to the imbalance in the number of accurate
and inaccurate rules, we employ a threshold-free metric: the

1https://www.kaggle.com/datasets/aungpyaeap/tictactoe-
endgame-dataset-uci



Figure 7: AUROC curve and Time curve of the Tic-Tac-Toe.
The legend represents the number of inaccurate rules.

area under the receiver operating characteristic curve (AU-
ROC). On the right side of the Figure 7, the AUROC curve
shows the number of erroneous rules that were successfully
located. The results show that our method is able to distin-
guish between accurate and inaccurate rules, and is stable to
different numbers of inaccurate rules.

To answer Q3, we show the time spent training for each
iteration on the left side of Figure 7. We observe that the
training time starts out small, quickly increases, and even-
tually decreases. The reason why the time cost is small at
first is because we take the initial trained model and there
will be more high-confidence samples. However, these high-
confidence samples may be misclassified and the model will
try to accurate them, thus choosing a larger Ã during train-
ing. Finally, as the model becomes more confident, a smaller
Ã will be chosen, so training becomes faster and faster.

Legal Dispute Focus Identification
In this section, we introduce a complex symbolic reasoning
task: Dispute Focus Identification in the legal domain. The
dispute focus, which is crucial to legal judgment and dis-
pute resolution, delineates the primary bone of contention
between the plaintiff and defendant. The task takes a Chi-
nese pleading sentence as its input and outputs the type of
dispute focus. For instance, divorce litigation may involve a
contention over child custody, thus the pleading sentences
will include the child support dispute focus. This task com-
prises 1000 labeled samples and 2000 unlabeled samples,
constituting as a semi-supervised learning task. Each plead-
ing sentence may have multiple dispute focuses. Therefore,
the task is a multi-label task. For example, a divorce plead-
ing sentence could contend child support and alimony si-
multaneously. We have followed privacy and data protection
consent requirements during the data collection process, em-
ploying anonymization techniques for personal names.

The field of jurisprudence offers a vast repertoire of statu-
tory rules that are sourced from the letter of the law. We
gather 166 rules to constitute our knowledge base in this
task. Due to the lack of expertise in this domain, we can-
not ensure the accuracy of these rules. Moreover, many of
them are inherently ambiguous. Here is an example of a
logical rule in the knowledge base: alimony dispute(x) ↔
adopter dispute(x). While this rule holds valid in most cases,

Method Micro-F1 Macro-F1

Baseline 69.66 ± 0.83 64.44 ± 1.60
Pseudo-Label 70.17 ± 0.80 63.58 ± 1.39
Tri-training 67.84 ± 1.26 58.01 ± 1.90
SS-ABL 70.48 ± 0.71 64.18 ± 0.65
Safe-ABL(Ours) 70.72 ± 0.42 66.14 ± 1.32

Table 2: Micro-F1 score (%) and Macro-F1 score (%) on the
Dispute Focus Identification task.

there are always exceptional circumstances that do not con-
form to the precept, rendering it inaccurate. Therefore, meth-
ods that can cope with inaccurate rules are urgently needed.

Existing NeSy methods have little extension to weakly
supervised scenarios and thus are not directly applicable
to this task. SS-ABL(Huang et al. 2020) provides a uni-
fied ABL framework for semi-supervised scenarios and thus
can be applied to new scenarios as our comparison method.
Safe-ABL is compared with baseline, SS-ABL, and two
semi-supervised methods, namely, pseudo-labeling meth-
ods (Lee et al. 2013) and Tri-training method (Zhou and Li
2005). Baseline methods use only labeled data. All meth-
ods use the same pre-trained BERT model (Devlin et al.
2019) as the backbone architecture. We use the Micro-F1
score and the Macro-F1 score as our performance metrics.
As shown in Table 2, our method achieves the best perfor-
mance compared to other methods. More importantly, unlike
other semi-supervised methods, which lead to performance
degradation, our method does not suffer from this. SS-ABL
achieves better performance than the baseline but suffers
from inaccurate rules and underperforms our new method.
The above results show that when the knowledge base is im-
precise or has inaccurate rules, our method is effective and
has a promising prospect for realistic tasks.

Conclusion
In this paper, we investigate an important issue in the com-
plementary integration of raw data and logical rules, namely
that the performance of existing ABL and NeSy algorithms
suffers severely when inaccurate rules exist in the knowl-
edge base. To this end, we propose a new framework safe
ABL based on ABL. The effectiveness of the new algorithm
has been supported and verified both theoretically and em-
pirically. In theory, we show that our optimization proves to
be equivalent to classical maximum likelihood estimation,
thus allowing perception models and rules to rectify each
other. Empirical studies show that, unlike the existing ABL
and NeSy methods, which suffer performance degradation,
our method does not encounter this situation and is obvi-
ously more robust. Furthermore, our method works well in
extended weakly supervised scenarios.

There may be several possible studies worth exploring
in the future. For example, it is worth extending larger and
more complex knowledge bases which inevitably contain in-
accurate rules. Moreover, we will consider the use of rules
when dealing with large language models in the future.
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