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Abstract— Diffusion policies have recently achieved impres-
sive results in robotic manipulation tasks. However, their rigid
reliance on demonstration data makes it difficult to adapt
behavior to evolving user preferences or dynamic deployment
environments. We propose FDPP (Fine-tuning Diffusion Policy
with Human Preference), a simple yet effective method that
leverages human preference labels to train a reward function,
which is then used to fine-tune pre-trained diffusion policies
via reinforcement learning. This approach allows robots to
align with new task constraints or personalized objectives
while retaining core task competence. We further incorporate
Kullback–Leibler (KL) regularization during fine-tuning to
prevent overfitting and preserve the original policy distribution.
Experiments on diverse robotic tasks demonstrate that FDPP
successfully reshapes policy behavior in alignment with human
intent without sacrificing task success.

I. INTRODUCTION

Imitation learning from human demonstrations is a pow-
erful method for training robots to perform a wide range
of manipulation tasks, such as grasping [1], [2], [3], dex-
terous manipulation [4], [5], and legged locomotion [6].
Recently, the rapid advancement of generative models has
highlighted their remarkable ability to synthesize complex,
high-dimensional distributions, offering new opportunities
for enhancing policy learning [3]. Among these, diffusion
models, a type of generative model that gradually transform
random noise into a data sample, have been applied in
imitation learning for robotics. These models, referred to as
diffusion policies, have achieved state-of-the-art performance
by leveraging the powerful generative modeling capabili-
ties [3], [7].

However, diffusion policies share common challenges with
general imitation learning methods. For example, training
a robust diffusion policy [3] for a particular task typically
requires 100 to 200 human-collected demonstrations, making
the process both time-consuming and sample-inefficient.
Additionally, these policies are task-specific, necessitating a
new set of demonstrations for each task. The environmen-
tal setup during demonstration must also closely resemble
the deployment environment in terms of viewpoint, object
appearance, and action space [7]. Nevertheless, during real-
world deployment, it is common to encounter additional con-
straints (e.g., avoiding undesired regions during movement)
or preferences (e.g., aligning blocks rather than unstable
stacking during a block stacking task) that differ from the
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Fig. 1: Fine-tune Diffusion Policy with Human Preference. Given a
pre-trained diffusion policy, FDPP collects trajectory roll-outs and queries
human feedback to label pairs of randomly sampled image observations
based on human preferences or task specifications. Using these labels, a
reward function is trained through preference-based reward learning, which
is then used to fine-tune the diffusion policy via reinforcement learning.

pre-collected demonstrations. This mismatch between the
policy’s learned behavior and the task requirements creates
a significant challenge. Therefore, effectively adapting a pre-
trained diffusion policy to new environments is essential for
successful real-world deployment.

Motivated by this challenging problem, we propose fine-
tuning the diffusion policy using online reinforcement learn-
ing (RL) to better align with human preferences and task
specifications. We introduce Fine-tuning Diffusion Policy
with Human Preference (FDPP), a straightforward yet
effective algorithm that learns reward functions through
preference-based learning with human labels. The pre-trained
policy is then fine-tuned using the learned reward function
via RL. An overview of these steps is illustrated in Fig. 1. We
evaluate FDPP on a variety of robotic tasks with differing
preferences and find that it effectively adapts the behavioral
distribution of the pre-trained diffusion policy to align with
human preferences, without compromising performance on
the original task.

In summary, we make the following contributions:
• We propose FDPP, a method that fine-tune the pre-

trained diffusion policy to align with human preference.
• We investigate how incorporating Kullback–Leibler

(KL) regularization into diffusion policy fine-tuning
can effectively prevent over-fitting to the reward while
preserving the original performance of the pre-trained
diffusion policy on the original tasks.

We conduct empirical evaluations of FDPP across various



robotic tasks and preferences, highlighting these contribu-
tions in Sec. V.

II. RELATED WORK

A. Diffusion Policy

Diffusion policy, initially introduced by Chi et al. [3],
represents a significant advancement in imitation learn-
ing by leveraging generative models, specifically diffusion
models [8], [9], [10], to replicate complex behaviors from
demonstrations. This approach takes in the most recent
observations, either the low-dimensional state representations
or high-dimensional images, and outputs a sequence of future
actions over a prediction horizon. It has achieved state-of-the-
art results in various robotic tasks [11], [12]. Building on this,
Ze et al. [7] developed the 3D diffusion policy, which incor-
porates 3D visual representations (such as 3D point clouds)
to enhance generalizability and effectiveness compared to
the original diffusion policy. However, despite their success,
both diffusion policies and their variants share limitations
typical of traditional imitation learning, such as the need for
large amounts of task-specific demonstrations and sensitivity
to environmental changes between training and deployment.
Compared to this line of works, we integrate RL fine-tuning
to expand the applicability of diffusion policies in practical
scenarios, where robustness and adaptability are essential.

B. Preference-based Reward Learning

In the past, demonstrations have been the preferred method
for reward learning. A popular paradigm is inverse rein-
forcement learning (IRL) [13], where a reward function is
extracted to capture why specific behaviors may be desirable
from the demonstration. Recently, there is a growing trend
toward using preference-based learning [14], [15], [16], [17],
[18], [19], [20], [21]. In the proposed approach, humans
are asked to compare two (or more) trajectories (or states)
and provide labels, allowing the model to infer a mapping
from these ranked trajectories to a scalar reward. In general,
human preferences and rankings of robot trajectories are
easier for people to provide than kinesthetic teaching or
detailed feedback [21], [22]. We leverage these approaches
to derive a reward function aligned with human preferences.

C. RL-based Fine-tuning of Diffusion Models

There are multiple strategies for fine-tuning diffusion
models. Fan and Lee [23] are the first to introduce the idea of
fine-tuning pre-trained diffusion models by combining policy
gradients with generative adversarial networks (GANs) [24].
In their approach, policy gradient updates are guided by
reward signals from the discriminator of GAN to refine
the diffusion model. They demonstrate that this fine-tuning
method enables the model to generate realistic samples with
fewer diffusion steps, particularly when using denoising
diffusion probabilistic models (DDPMs) [8] sampling in
simpler domains. More recently, Black et al. [25] and Fan
et al. [26] have proposed fine-tuning text-to-image diffusion
models using RL. Both studies treat the fine-tuning process

as a multi-step decision-making problem and show that RL-
based fine-tuning can surpass supervised fine-tuning methods
that rely on reward-weighted loss [27]. Fan et al. further
provide a detailed analysis of KL-regularization for both su-
pervised and RL-based fine-tuning, supported by theoretical
justifications. In contrast to previous work, which primarily
focuses on text-to-image diffusion models, our approach
extends the application to diffusion policies in the context
of robotic tasks.

Ren et al. introduce DPPO in a concurrent study [28]
focusing on fine-tuning a diffusion policy using the policy
gradient method to enhance training stability and policy
robustness. The reward for fine-tuning remains tied to the
original task objective. In contrast, our method fine-tunes the
policy using a new reward derived from human preferences,
which may differ from the original task objective. This ne-
cessitates the use of KL regularization to prevent over-fitting
and preserve the original performance of diffusion policy.
Furthermore, we demonstrate how to use a preference-based
reward model with contrastive labels to obtain this reward
function from human preference, effectively aligning the
policy with user expectations.

III. PRELIMINARIES

In this section, we present a concise overview of the RL
problem formulation (Sec. III-A) and the diffusion policy
framework (Sec. III-B).

A. Markov Decision Process and Reinforcement Learning

A Markov Decision Process (MDP) defined by the tuple
M = (S,A, r, p, ρ0), where S ∈ RS represents the state
space, A ∈ RA is the action space, r : S × A 7→ R is
the reward function, p : S × A × S 7→ [0,∞) defines the
probability density of the next state st+1 ∈ S, given the
current state st ∈ S and action at ∈ A. The initial state
distribution is denoted by ρ0. At each time step t, the robot
agent observes the state st, selects an action at, receives
a reward r (st,at), and transitions to the next state st+1

following the transition probability p (st+1|st,at).
With a given policy πθ (a|s), parameterized by θ, and

the initial state s0 ∼ ρ0, the robot agent generates a
trajectory, which is a sequence of state-action pairs, ξ =
{(s0,a0) , (s1,a1) , . . . , (sT ,aT )}. The objective of rein-
forcement learning (RL) is to maximize the expected cu-
mulative reward over trajectories sampled from the policy
ξ ∼ p (ξ|πθ):

JRL (πθ) = Eξ

[
T∑
t=0

r (st,at)

]
. (1)

There are various methods to train the policy in RL, with
one popular approach being policy gradient algorithms [29],
such as REINFORCE [30]. These methods update the policy
parameters θ in the direction of the objective gradient:

∇θJRL (πθ) = Eξ

[
T∑
t=0

∇θ log πθ (at|st)Qπθ (st,at)

]
,

(2)



where Qπθ is the state-action value function (also known as
the Q-function) estimator [31].

B. Diffusion Model and Diffusion Policy

Denoising diffusion probabilistic models (DDPM) [8], [9]
are used to model the distribution of a dataset of samples,
x0, conditioned on some context c, represented as x0 ∼
p
(
x0|c

)
, where x0 ∈ Rn. This conditional distribution

is learned by modeling the reverse denoising process of
a Markovian forward process q

(
xk|xk−1

)
, which progres-

sively adds Gaussian noise to the data samples over time.
The reverse process p

(
xk−1|xk, c

)
is designed to recover

the original, noise-free sample x0 from an initial Gaussian
noise xK ∼ N (0, I) through K iterations of denoising.
This process generates a series of intermediate samples with
progressively less noise, denoted as {xK ,xK−1, . . . ,x0}.
Specifically, the reverse process is defined as

p
(
xk−1|xk, c

)
= N

(
xk−1;µθ

(
xk, c, k

)
, σ2
kI
)
, (3)

where µθ is a neural network parameterized by θ that predicts
the added noise at each iteration, and σk represents the step-
dependent variance governed by a variance schedule.

The noise predictor µθ is trained with the following
objective:

LDM (θ) = E(x0,c,xk,k)∥µ̄
(
x0, k

)
− µθ

(
xk, c, k

)
∥2, (4)

where µ̄ is the posterior mean of the forward process.
The diffusion policy (DP) models visuomotor robot poli-

cies using DDPMs, incorporating two key modifications: 1)
The predicted data sample represents an action sequence At

of length Ta, defined as the action execution horizon; 2) The
latest Ts steps of state sequence St at the time step t is used
as the conditional context for the denoising process.

Given St, the conditional distribution of At is recovered
through K steps of reverse process, using a modified version
of Eq. 3:

p
(
Ak−1
t |Ak

t ,St
)
= N

(
Ak−1
t ;µθ

(
Ak
t ,St, k

)
, σ2
kI
)
. (5)

The noise predictor µθ is trained with a modified LDM,
defined as:

LDP (θ) = E(At,S,Ak
t ,k)

∥µ̄ (At, k)− µθ
(
Ak
t ,S, k

)
∥2, (6)

where A0
t is shorthand for At, representing the final action

sequence for execution.

IV. FINE-TUNING DIFFUSION POLICY WITH HUMAN
PREFERENCE

In this section, we describe our approach for online RL-
based fine-tuning of diffusion policy to align with human
preference. First, a reward function representing human pref-
erence is obtained through preference-based reward learning
(Sec. IV-A). Then, the reward model is used to fine-tune the
diffusion policy (Sec. IV-B) using RL. We also incorporate
KL regularization to stabilize fine-tuning, preventing over-
fitting to human preferences while preserving the model’s
ability to solve the original task (Sec. IV-C).

A. Preference-based Reward Learning

The reward function estimator r̂ψ can be seen as encapsu-
lating human judgments about various robot behaviors. This
follows a standard framework where a reward function is
trained to align with human preference labels [14], [32],
[33]. In this setup, a segment is defined as a sequence of
states σ = {s1, s2, . . . , sH}, where H ≥ 1. In our case, we
consider H = 1, meaning each segment consists of a single
state. For a pair of segments

(
σ0, σ1

)
, a human annotator

provides a feedback label y ∈ {−1, 0, 1}, indicating which
segment is preferred, where 0 means the segment σ0 is
preferred, 1 means the segment σ1 is preferred, and −1
means both segments are equally preferable.

Using the Bradley-Terry model [34], which assumes the
probability of preferring one segment over another is ex-
ponentially dependent on the sum of an underlying reward
function over the segment, the preference probability for a
pair of segments, given the parameterized reward estimator
r̂ψ , can be expressed as

pψ[σ
1 ≻ σ0] =

exp
(∑H

h=1 r̂ψ
(
σ1

))
∑
i∈{0,1} exp

(∑H
h=1 r̂ψ (σi)

) , (7)

where σi ≻ σj denotes segment σi being preferred over σj .
In our case, Eq. 7 simplifies to

pψ[s
1 ≻ s0] =

exp
(
r̂ψ

(
s1
))∑

i∈{0,1} exp (r̂ψ (si))
. (8)

Given a dataset of preference labels D = {
(
σ0
i , σ

1
i , yi

)
},

the reward function r̂ψ can be optimized by minimizing the
following loss:

LRWD (ψ) =− E(σ0,σ1,y)

[
1{y =

(
σ0 ≻ σ1

)
} log pψ[σ0 ≻ σ1]

+ 1{y =
(
σ1 ≻ σ0

)
} log pψ[σ1 ≻ σ0]

]
,

(9)
where 1{·} equals to 1 if the statement inside is true, and
equals to 0 otherwise.

In the setting of diffusion policy, at any time step t, we
generate an action sequence At = {at,at+1, . . . ,at+Ta−1}
using the diffusion policy conditioned on the state sequence
St = {st−Ts+1, st−Ts+2, . . . , st}. Consequently, we can
express the reward as a function of the state-action sequence
pair (St,At) by

rψ (St,At) =

Ta∑
j=1

r̂ψ (st+j) , (10)

where each future state st+j is obtained by rolling out
the action sequence At starting from the current state st.
Specifically, the state st+j is sampled according to the
transition probability st+j ∼ p (st+j | st+j−1,at+j−1).

B. RL-based Fine-tuning

Assume a pre-trained diffusion policy pθ
(
A0:K
t |St

)
is

given. We can fine-tune this diffusion policy with the afore-
mentioned reward function rψ (St,At) by maximizing the



Fig. 2: Environments for Evaluation. To evaluate the effectiveness of FDPP, We choose two long-horizon manipulation tasks including (left) a 2D
pushing task PUSH-T [35], [3] and (right) a 3D pick-and-place task STACKING from MIMICGEN [36].

denoising diffusion RL objective:

JDDRL (θ) = E(St,At) [rψ (St,At)] , (11)

where St is obtained from roll-outs starting with an initial
state sequence with padding S0 = {s0, . . . , s0}, where
s0 ∼ ρ0 follows the initial state distribution. The action
sequence At is sampled through the pre-trained diffusion
policy At ∼ pθ

(
A0:K
t |St

)
. Note that we only keep the final

action sequence At = A0
t .

As introduced in [25] and [26], we can represent the
denoising process of DDPMs as a multi-step MDP, where
the log-likelihood can be obtained via Monte-Carlo sampling.
Specifically, we define the diffusion policy MDP MDP as

s̃τ ≜
(
St, k,A

k
t

)
, (12)

ãτ ≜ Ak−1
t , (13)

π (ãτ |s̃τ ) ≜ pθ
(
Ak−1
t |Ak

t ,St
)
, (14)

ρ0 (s̃0) ≜ (p (St) , δK ,N (0, I)) , (15)

p (s̃τ+1|s̃τ , ãτ ) ≜
(
δSt , δk−1, δAk−1

t

)
, (16)

r (s̃τ , ãτ ) ≜

{
rψ (At,St) if τ = 0

0 otherwise
. (17)

Here, δy represents the Dirac delta distribution, which has
non-zero density only at y. The trajectories in the diffusion
policy MDP MDP consist of K time steps, after which the
state transition probability p leads to a termination state. It
is important to note that τ refers to the time step in MDP, k
refers to the denoising step in DDPM, and t refers to the time
step in the original environment where the diffusion policy
is applied.

Since the cumulative reward of each trajectory ξ̃ in MDP
is equal to the final step reward rψ (At,St), maximizing
JDDRL(θ) in Eq. 11 is equivalent to maximizing JRL(π) in
Eq. 1. Therefore, we can take the gradients with respect to
the pre-trained diffusion policy parameters following Eq. 2:

∇θJDDRL = Eξ̃

[
K∑
τ=0

∇θ log πθ (ãτ |s̃τ )Qπθ (s̃τ , ãτ )

]
,

= E

[
rψ (At,St)

K∑
k=1

∇θ log pθ
(
Ak−1
t |Ak

t ,St
)]
,

(18)
where the expectation is taken over denoising trajectories
generated by the current parameters θ.

C. KL Regularization

Fine-tuning a pre-trained diffusion policy solely using
the preference-based reward model derived from human

feedback risks over-fitting to the reward and forgetting the
original task objective learned by the initial policy [26]. A
common approach to mitigate this issue is to incorporate
KL regularization [19], [26], [37]. Specifically, we compute
the KL divergence between the fine-tuned and pre-trained
models for the final action sequence as a regularization term,
i.e., C = DKL [pθ (At|St) ∥ppre (At|St)]. Since obtaining a
closed-form expression for pθ (At|St) is challenging, we
instead introduce an upper bound for this KL term into the
objective function, following Lemma 4.2 in [26]:

ESt

[
C
]
≤ ESt

[
K∑
k=1

EAk
t

(
C
)]

, (19)

where C = DKL

[
pθ

(
Ak−1
t |Ak

t ,St
) ∥∥∥ppre

(
Ak−1
t |Ak

t ,St
) ]

.
Therefore, we include the upper bound into Eq. 11 to get
the new KL regularized objective function:

JDDRL (θ) = ESt

[
EAt

(
rψ (St,At)

)
+ α

K∑
k=1

EAk
t

(
C
)]

,

(20)
where α ≥ 0 is the weight of the KL term. Similarly, the
new gradient is

∇θJDDRL = E

[
rψ (At,St)

K∑
k=1

∇θ log pθ
(
Ak−1
t |Ak

t ,St
)

+ α

K∑
k=1

∇θDKL

[
pθ

(
Ak−1
t |Ak

t ,St
) ∥∥∥ppre

(
Ak−1
t |Ak

t ,St
) ]]

.

(21)

D. Implementation Details

We apply Proximal Policy Optimization (PPO) [38] for the
policy gradient update in the RL-based fine-tuning, which
is more robust than the vanilla policy gradient methods.
Diffusion policies are typically trained with stochastic sam-
pler (e.g., DDPMs) with large sampling steps K. During
fine-tuning, we use the Denoising Diffusion Implicit Model
(DDIM) [39] to reduce the number of sampling steps. One
can change the deterministic level of DDIM through η, which
controls the amount of noise injected into the sampling pro-
cess, with 0 being fully deterministic and 1 being equivalent
to the DDPM sampler. In practice, we set η = 1 with
KDDIM = 50 to improve the fine-tuning efficiency.

V. EXPERIMENTAL EVALUATION

The purpose of our experiments is to evaluate the effec-
tiveness of FDPP for fine-tuning diffusion policies to align
with a variety of user-specified objectives. We focus on the
following questions:



(a) Additional Constraints (b) Roll-out Trajectories

(c) Reward Distribution (d) Sample Frequency

Fig. 3: Preference-based Reward Model. Incorporating the additional
constraints on the end-effector’s location (Top-Left), where the red box
represents the undesirable region, we perform roll-outs of the diffusion
policy to gather trajectory samples (Top-Right). A reward model is then
trained as described in Sec. IV-A, assigning varying values to different end-
effector locations (Bottom-Left). Locations outside the sample distribution
result in reward values remaining near zero (Bottom-Right).

TABLE I: Preference Alignment. FDPP successfully adjusts the pre-
trained diffusion policy to match human preferences for the desired feature.
We present both the average feature over the entire trajectory and the feature
at the terminal state.

Average Terminal State

Pre-trained Fine-tuned Pre-trained Fine-tuned

PUSH-T [%] 0 100 – –
STACK-DIST [cm] 6.28 3.17 3.91 0.94
STACK-ALIGN [◦] 36.73 26.16 32.97 21.20

1) Can FDPP align the pre-trained diffusion policy with
human preference? (Sec. V-B)

2) Does fine-tuning affect the performance of the original
policy? (Sec. V-C)

3) How does KL regularization help preserve original task
objective during fine-tuning? (Sec. V-D)

A. Setup

We choose two long-horizon manipulation tasks to eval-
uate FDPP as shown in Fig. 2. For each environment, we
train a CNN-based diffusion policy following [3] with pre-
collected human demonstrations as the pre-trained policy.

1) PUSH-T: This environment is adapted from IBC [35],
where the task is to push a T-shaped block (gray) to a des-
ignated target location (green) using a circular end-effector
(blue). The action space consists of the 2D planar position of
the end-effector, while the observation space is 96×96 RGB
image captured from a top-down view of the workspace.

We introduce an additional constraint for fine-tuning,
ensuring that the end-effector does not enter an undesirable
area located in the bottom-right of the workspace, depicted
as the red box in Fig. 3(a).

PUSH-T STACK-DIST STACK-ALIGN

Fig. 4: Change of Behaviors. FDPP can effectively shift the behavior
distribution of the pre-trained diffusion policy (Top) to align with additional
constraints or human preferences (Bottom).

TABLE II: Effect of Fine-tuning on Policy Performance. The impact of
FDPP on the performance of the fine-tuned policy varies depending on
the specific preferences being incorporated. The average roll-out length of
STACK is reported as box-lifted-length / total-trajectory-length.

Success Rate Average Roll-out Length

Pre-trained Fine-tuned Pre-trained Fine-tuned

PUSH-T 98% 90% 58.20 120.20
STACK-DIST 88% 92% 36.20/121.80 37.32/131.28

STACK-ALIGN 88% 96% 36.20/121.80 45.52/118.16

2) STACK: This environment is adapted from MIMIC-
GEN [36], which is a large-scale robotic manipulation bench-
mark for imitation learning and offline RL. We choose the
block stacking task where the robot is required to pick up
the red block and stack it onto the green block. The action
space consists of the target joint angles of the 7-DoF Panda
robot, while the observation space is the low dimensional
state representation of the environment.

We introduce two additional preferences: 1) STACK-DIST,
which prefers minimizing the horizontal displacement be-
tween the centers of the red and green blocks; and 2) STACK-
ALIGN, which encourages reducing the misalignment angle
between the red and green blocks.

For each environment, we obtain a diffusion policy fol-
lowing [3] as the pre-trained policy with the same training
dataset and hyper-parameters.

B. Preference Alignment

For fine-tuning, we first train the preference-based reward
model as described in Sec. IV-A. Figure 3 presents the
resulting reward model for PUSH-T. The training samples
are generated by rolling out the pre-trained policy in the
simulation, as depicted in Fig. 3(b) (showing the first 40
steps of each trajectory for the end-effector). A human
annotator provides preference labels on randomly sampled
state pairs (see Fig. 3(d) for sample frequency at the end-
effector location). Each reward model is trained with 1024
state pairs. The final reward model (Fig. 3(c)) effectively
penalizes the area enclosed by the red box (undesirable



Pre-trained α = 0.5 α = 0.2 α = 0.1 α = 0.05 α = 0.02 α = 0.01 α = 0.0

Fig. 5: Effect of KL Regularization on Policy Behavior. A large KL regularization weight results in minimal deviation from the pre-trained policy.
Reducing the KL weight allows the fine-tuned policy to better align with the reward model.

(a) Success Rate vs. α (b) Average Roll-out Length vs. α

Fig. 6: Effect of KL Regularization on Policy Performance. A small KL
weight leads to a significant decline in policy performance. Increasing the
KL weight helps the fine-tuned policy’s performance become more similar
to that of the pre-trained policy. Dashed line represents the pre-trained policy
performance.

region) and encourages the end-effector to move to the
other side. Locations outside the sample distribution result
in reward values that remain near zero. The reward model
training for STACK follows a similar approach. However,
instead of labeling pairs of end-effector locations, we label
pairs based on horizontal displacement for STACK-DIST
and pairs based on orientation angle differences for STACK-
ALIGN.

Figure 4 shows the qualitative results of the fine-tuning
process. Utilizing the preference-based reward, we can either
completely alter the behavior distribution of the pre-trained
policy in PUSH-T, achieve a smaller block displacement
in STACK-DIST, or reduce block misalignment in STACK-
ALIGN.

Table I quantitatively measures the alignment between the
fine-tuned policy and human preference. For PUSH-T, it
shows the percentage of trajectories entering the undesirable
area. For STACK-DIST/STACK-ALIGN, it lists the average
and final distances/orientation misalignment between blocks.
We conclude that FDPP successfully adjusts the pre-trained
diffusion policy to match human preferences for the desired
feature.

C. Fine-tuned Policy Performance

Table II presents the success rate and average roll-out
length for both pre-trained and fine-tuned policies across
each environment. In PUSH-T, success is defined as achiev-
ing 90% coverage of the gray T-shaped block on the green
target. In STACK, success is determined by the red block
being successfully stacked on the green block. Each envi-
ronment has a maximum of 200 steps.

We observe that the fine-tuned policy’s performance varies
based on the specific preferences incorporated. In PUSH-T,

performance slightly decreases, with a longer average roll-
out length, as the end-effector must take an alternate route
to avoid the undesirable area. However, in STACK-DIST and
STACK-ALIGN, fine-tuning enhances the success rate and
reduces the average roll-out length. This improvement occurs
because the human preferences are well-aligned with the task
objectives, allowing fine-tuning with these rewards to boost
policy performance.

D. KL Regularization

To prevent over-fitting, we introduce the KL regularizer
(see Sec. IV-C). Figure 5 shows the effect of KL regulariza-
tion on policy fine-tuning in PUSH-T. A large KL regulariza-
tion weight results in minimal deviation from the pre-trained
policy, while reducing the KL weight allows the fine-tuned
policy to better align with the reward model. However, as
illustrated in Fig. 6, a small KL weight can cause a signif-
icant decrease in policy performance because reinforcement
learning tends to over-fit to the reward function, forgetting
the original task objective of the pre-trained policy. This
highlights the importance of KL divergence, as the original
objective is not included in the reward function used for
fine-tuning. In STACK-DIST and STACK-ALIGN, the impact
of the KL weight on policy performance is more complex.
Therefore, choosing an appropriate KL weight is essential to
balance preference alignment and policy performance.

VI. CONCLUSION

We presented FDPP, a framework for adapting pre-
trained diffusion policies to new human preferences through
preference-guided reward learning and reinforcement learn-
ing fine-tuning. FDPP addresses a key limitation of exist-
ing imitation-based methods—the inability to generalize to
evolving or personalized task specifications—by introducing
a human-in-the-loop fine-tuning pipeline. Our empirical re-
sults demonstrate that FDPP effectively shifts the behavioral
distribution of the policy to better match user intent, while
KL regularization plays a critical role in maintaining the
original task performance.

Looking ahead, we plan to extend FDPP in three direc-
tions: (1) leveraging vision-language models to automatically
infer preferences from natural language descriptions, (2)
validating FDPP on longer-horizon, real-world robotic tasks,
and (3) developing automated strategies for tuning reward
and regularization weights to further streamline the fine-
tuning process.
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