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ABSTRACT

Due to the difficulty of acquiring extensive real-world data, robot simulation has
become crucial for parallel training and sim-to-real transfer, highlighting the im-
portance of scalable simulated robotic tasks. Foundation models have demon-
strated impressive capacities in autonomously generating feasible robotic tasks.
However, this new paradigm underscores the challenge of adequately evaluating
these autonomously generated tasks. To address this, we propose a comprehensive
evaluation framework tailored to generative simulations. Our framework segments
evaluation into three core aspects: quality, diversity, and generalization. For
single-task quality, we evaluate the realism of the generated task and the complete-
ness of the generated trajectories using large language models and vision-language
models. In terms of diversity, we measure both task and data diversity through
text similarity of task descriptions and world model loss trained on collected task
trajectories. For task-level generalization, we assess the zero-shot generalization
ability on unseen tasks of a policy trained with multiple generated tasks. Exper-
iments conducted on three representative task generation pipelines demonstrate
that the results from our framework are highly consistent with human evaluations,
confirming the feasibility and validity of our approach. The findings reveal that
while metrics of quality and diversity can be achieved through certain methods, no
single approach excels across all metrics, suggesting a need for greater focus on
balancing these different metrics. Additionally, our analysis further highlights the
common challenge of low generalization capability faced by current works. Our
anonymous website: https://sites.google.com/view/evaltasks.

1 INTRODUCTION

Embodied artificial intelligence (EAI) is crucial to enable intelligent agents to understand and inter-
act with the physical world. However, creating such agents with physical forms and universal func-
tionalities necessitates extensive data, which is prohibitively expensive to acquire manually (Dasari
et al., 2020; Srivastava et al., 2021; Mu et al., 2021). Although multiple attempts have been made
toward massive real-world data collection (Brohan et al., 2023b;a), training in simulated environ-
ments still plays a key role in various robotic tasks (Wang et al., 2023a; Huang et al., 2021; Lin et al.,
2021; Yuan et al., 2024; Yu et al., 2020). Consequently, the acquisition of a substantial number of
robotic tasks in simulation, which heavily rely on foundation models, is of significant importance.

Foundation models (OpenAI, 2023; Team et al., 2023; Zhang et al., 2023a) have exhibited remark-
able proficiency in various robotics-related tasks, including coding (Rozière et al., 2023), 3D gen-
eration(Deitke et al., 2022; 2023), scene comprehension (Mohiuddin et al., 2024), planning (Huang
et al., 2023b; 2024), and reward formulation (Ma et al., 2023). Notably, recent works have demon-
strated the potential of leveraging such capabilities of foundation models to generate robotic tasks in
simulation (Wang et al., 2023b; 2024; Katara et al., 2023; Yang et al., 2024; Hua et al., 2024). In gen-
erative simulation, foundation models such as large language models and vision-language models
are prompted to output necessary task information (e.g., code, language descriptions), an appropri-
ate scene, and successful trajectories for novel tasks at scale. However, despite these advancements,
concerns have been raised regarding aspects such as the quality and reality of the generated tasks
and whether the generated data can boost policy performance (Hua et al., 2024). Therefore, there
is an urgent need for a comprehensive evaluation framework for generative simulation pipelines,
which has so far been absent.
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Figure 1: We propose three main aspects for evaluating generative simulations: Quality, Diver-
sity, and Generalization. Quality encompasses two components: the alignment of the task scene
with the real world, and the completion score, which assesses if the robot’s trajectory solves the
task. Diversity is divided into two components as well: text-based diversity of task descriptions,
and dynamics-based diversity among trajectory data. Generalization involves assessing the data’s
generalization ability using a representative imitation learning model.

However, evaluating the generated tasks faces challenges similar to those encountered in assessing
images (Salimans et al., 2016; Heusel et al., 2017) and texts (Wang et al., 2018), i.e., it is hard to
quantify the realism of the generated tasks, thus hindering traditional evaluation mechanisms such
as success rate from reflecting the quality and value of the generated tasks and data. In this paper,
we propose a novel evaluation framework (see Fig 1) tailored to generative simulation pipelines.
Our framework is concerned with three key perspectives: (1) the quality of single-task generation,
which typically involves the alignment score of generated task scenarios with the real world and the
completeness of generated task trajectories; (2) the task and data diversity concerned with generated
tasks as well as generated trajectories; (3) the task-level generalization ability of a policy trained on
a bunch of generated tasks.

Specifically, in terms of single-task quality, we leverage vision-language models to understand
scene/trajectory images and output the scene alignment scores and task completion rates, which
have been measured by human subjective judgment or hard-coded functions in previous works. Be-
sides thorough single-task evaluation, we also incorporate multi-task evaluation on diversity and
generalization, which are not extensively investigated in prior studies. For diversity, we first mea-
sure task diversity by examining the text similarity between the language descriptions of generated
tasks. We then train a world model with trajectory data collected from these tasks and evaluate
trajectory diversity based on the model’s prediction loss. For generalization, we train an imitation
learning policy based on a variety of generated tasks and measure its efficacy on unseen tasks to
gauge its task-level generalization capability.

In our experiments, we study 3 notable projects, namely, GenSim (Wang et al., 2024), RoboGen
(Wang et al., 2023b), and BBSEA (Yang et al., 2024), in the hope of establishing a reference for
subsequent research towards this direction. By comparing our evaluations with those from humans,
we find that our evaluations reach consistent conclusions with the human experts on the vast ma-
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jority of tasks. According to our evaluation results, RoboGen’s tasks exhibit the highest single-task
quality while also holding an advantageous position in the textual task diversity of task descriptions.
In terms of trajectory diversity, both GenSim and BBSEA have demonstrated superior results. Al-
though currently none of the pipelines possess sufficiently excellent generalization capabilities, the
tasks from GenSim still show a certain degree of potential in the direction of generalization. These
findings indicate that although specific methods can achieve satisfactory quality and diversity met-
rics, none consistently outperform across all criteria, emphasizing the need for intensified efforts to
balance these metrics effectively. Furthermore, our study also emphasizes the prevalent issue of low
generalization capability encountered by current methodologies.

The main contributions of our work can be summarized as follows:

• We propose a novel framework to evaluate generative robotic simulation methods, providing re-
searchers with tools to assess and improve their future works in this area.

• We develop an autonomous pipeline that quantitatively assesses the quality of an individual task
using foundation models, which have previously been performed by human efforts.

• We introduce metrics for diversity and generalization of generated tasks and data to evaluate the
value of multiple generated tasks and the extensive data derived from them.

2 RELATED WORKS

2.1 FOUNDATION MODELS

In our article, we utilize large language models such as GPT-4 (OpenAI, 2023), released by OpenAI,
which have had a profound impact on the field of natural language processing. Previous work has
applied these large language models to the domain of robotics, specifically in policy learning (Driess
et al., 2023; Huang et al., 2023c) and motion planning (Huang et al., 2022). Researchers have also
explored using language models to generate code and rewards (Huang et al., 2023c; Wang et al.,
2023b), aiding solvers in learning policies from tasks. Furthermore, vision-language models and
multimodal foundational models have demonstrated remarkable potential (Zhang et al., 2023a; Team
et al., 2023; Xu et al., 2023). Model GPT-4-vision (Zhang et al., 2023a) have exhibited capabilities
in spatial understanding and basic assessment, making the automatic evaluation of tasks feasible. In
prior work, vision-language models have been employed in the robotic task generation pipeline to
verify the quality of the generated tasks (Wang et al., 2023b; 2024).

2.2 GENERATIVE ROBOTICS TASKS AND DATASETS IN EMBODIED AI

In recent research, foundational models have demonstrated remarkable capabilities (OpenAI, 2023;
Zhang et al., 2023a; Team et al., 2023), leading to the emergence of autonomously generated robotic
tasks in the field of robotics. Typically, such generative models utilize large language models to
create a basic framework for generating tasks, which involves submitting the required 3D models
through text-to-3D model (Li et al., 2023b) conversion, text-to-image (Mid) and image-to-3D mod-
els (Liu et al., 2023) processes, or searching and generating the necessary three-dimensional models
in extensive 3D model repositories like Objaverse (Deitke et al., 2022; 2023). These models are
then assembled into tasks within simulators, and methods such as reinforcement learning or trajec-
tory optimization are employed to learn the trajectories needed to solve the tasks. Researchers have
also explored tasks in other directions; for instance, the creators of Robogen have expanded task
types to include soft materials and humanoid robots (Wang et al., 2023b), while the developers of
Gensim have opted to deploy tasks on real robots, completing the generated tasks in the real world
(Wang et al., 2024). Therefore, when evaluating the quality of generated tasks, it is also necessary
to consider the diverse directions of exploration being pursued by different researchers.

2.3 BENCHMARKS ON MESHES AND LARGE LANGUAGE MODEL

Recent work has bridged gaps in the evaluation of three-dimensional models and large language
models. For instance, T3Bench (He et al., 2023) introduced the use of multiple foundational mod-
els to establish an evaluation system for metrics such as the quality and alignment of 3D models.
The methods used in this work to assess the quality and alignment of 3D models have inspired our
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approach to evaluating the alignment of task scenarios in robotic tasks. Additionally, in the eval-
uation of large language models (Zhang et al., 2023b; Huang et al., 2023a), previous studies have
discussed assessing various metrics across multiple scenarios to identify potential issues of hallu-
cination and errors within models. These evaluation standards provide a valuable perspective for
assessing robotic tasks, aiding in a more appropriate evaluation of such tasks.

2.4 EVALUATION OF TASK DIVERSITY

Learning a range of skills is crucial for building generalist robot agents that can autonomously oper-
ate in a complex environment. Therefore, we expect task generation to produce tasks with varying
goals, dynamics, and environment setups such that collectively learning these tasks promotes gener-
alization, robustness (Tobin et al., 2017), and even unseen skills (Eysenbach et al., 2018). However,
evaluating such diversity of generated tasks remain unclear. RoboGen (Wang et al., 2023b) proposed
to compare the Self-BLEU score and Embedding Similarity (Zhu et al., 2018) of the descriptions
generated alongside the tasks. While such language-based diversity metrics consider high-level se-
mantic information, they are strongly coupled with the language models used, which are known to
be subject to alignment issues. In this work. we propose to evaluate task diversity as the coverage of
skill or dynamics space, where high diversity facilitates better transfer or generalization to a held-out
set of tasks. Recent model-based skill learning methods (Hafner et al., 2023; Hansen et al., 2024)
are capable of learning highly complex dynamics and task information on a wide range of tasks. We
leverage them for diversity evaluation.

3 METHOD

3.1 INTRODUCTION TO GENERATIVE SIMULATION

Generative simulation represents a field of studies that utilize foundation models, particularly gener-
ative models pre-trained on internet-scale data, to acquire massive tasks and data in robot simulation.
In generative simulation, large language models are first prompted to provide the basic framework
for a novel task, such as the task description, assets, task code, etc. The task is then loaded into the
simulation to construct a scene. We further query foundation models to provide objectives for task
solutions, e.g. goals for planning or rewards for RL. Through RL training or motion planning, the
pipeline will produce trajectory data for the previously generated task. To summarize, the perfor-
mance of a generative simulation pipeline is fundamentally determined by key aspects such as the
basic task framework, solution objectives, and the specific implementations of solution generation.

3.2 OVERVIEW

We divide our evaluation work into three parts, as visualized in Fig 2. In the first part (Sec 3.3), we
assess the quality of a single generated task through foundational models, especially large language
models and vision-language models, and statistical methods. In the second part (Sec 3.4), we re-
spectively measure the diversity of generated task descriptions and trajectory data with a language
model and a world model. In the third part (Sec 3.5), we evaluate the generalization capability of an
imitation learning policy distilled from a large number of generated tasks.

3.3 SINGLE-TASK QUALITY

In this section, we introduce how we evaluate single-task quality. We consider two metrics: scene
alignment score which measures the realism of the generated task and task completeness score which
measures whether the generated task is successfully solved to collect data.

Scene alignment score. We utilize two different pipelines to evaluate scene alignment score. Re-
garding ”the realism of generated tasks”, it includes whether the scene is aligned with the text, as
well as the “semantics” of real scenarios. Due to possible deficiencies in visual recognition from
foundation models (Tong et al., 2024b), one of our methods uses visual models, e.g., BLIP2 (Li et al.,
2023a), to generate textual descriptions of rendered scene images, followed by large language mod-
els (LLMs) such as GPT-4 (OpenAI, 2023) to assess the consistency between the textual descriptions
and the task descriptions. The other directly employs multi-modal LLMs like GPT-4V (Zhang et al.,
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Figure 2: Overview of our evaluation framework. In our method, the evaluation is divided into three
parts. We initially employ LLM and VLM to evaluate scene alignment and task completion for
generated tasks. These tasks are subsequently categorized into groups for assessment on two fronts:
task diversity, gauged by the textual similarity of task descriptions, and data diversity, measured by
prediction errors from a world model. Finally, we assess the generalization capability of a policy
trained on generated data.

2023a) and LLaVA (Liu et al., 2024) to evaluate the consistency between the task descriptions and
the scene images. For complex scenes, we used multi-view images for evaluation.

Task completion score. We use foundation models, particularly vision-language models (VLMs),
to assess the completion score of a generated task trajectory. Previously, this assessment was con-
ducted using hard-coded functions, which demonstrated only limited capability in measuring task
completion for specific tasks. Specifically, our approach begins with generating a video of the
robot’s trajectory as we execute the task solution. From the video, we extract 8 images and provide
them, along with the task description, to a VLM. We then obtain an evaluation of the task completion
status from the VLM.

To reduce possible inherent biases and instability within foundation models, we conduct multiple
scoring iterations and take the mean scores when evaluating on both metrics.

3.4 TASK AND DATA DIVERSITY

The generated tasks are expected to be diverse so that training on these tasks grants agents a range
of skills and the ability to operate in various situations. However, a concrete definition of diversity
is hard: in what sense are tasks distinct or similar? In this work, we are concerned with diversity
from the following perspectives: (1) task diversity, a high-level diversity as identified by LLMs; and
(2) trajectory diversity, a low-level diversity in terms of the dynamics of the collected data.

Text-based task diversity. Since LLMs generate tasks including the task descriptions and possibly
scene configurations and goals, they are supposed to have an internal understanding of diversity at
a high level. For example, “stack-blocks-tower” differs from “align-balls” semantically in terms of
the action (verb) and the object of interest. Therefore, the similarity between embeddings of task
descriptions can be considered as the similarity between tasks. Specifically, following (Zhu et al.,
2018), we compute the diversity of a task set with text embeddings {ei}Ni=1 as:

div = − 1

N

∑
i

log(
1

N − 1

∑
i ̸=j

eTi ej), (1)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

where N is the number of tasks and i ̸= j removes self-similarity. A higher value indicates lower
similarity and hence higher diversity.

Dynamics-based trajectory diversity. Though straightforward, task description diversity itself
does not sufficiently characterize the actual learning experience of tasks, e.g., different interaction
dynamics will take place when training on different generated tasks. Ideally, a diverse set of tasks
should cover a large space of dynamics to promote the agent’s robustness under different scenarios.
Therefore, we propose to evaluate such diversity through prediction error of dynamics models. Dy-
namics prediction error has been associated with novelty and widely adopted to promote exploration
(Pathak et al., 2017; Burda et al., 2018). A high dynamics prediction error indicates unfamiliar (and
thus novel) dynamics being experienced. We leverage a latent dynamics model pθ(ot+1|ot, at) fol-
lowing DreamerV3 (Hafner et al., 2024), where ot and at are the observation and action at time
step t. The model is trained on trajectories collected from the generated tasks and then evaluated to
compute the prediction errors. As will be discussed in Section 4.2, this approach helps us to identify
tasks that render notably similar dynamics and are therefore not diverse.

3.5 TASK GENERALIZATION

Generalization can be an ambiguous yet vital metric for evaluating the capabilities of generalist robot
agents. In this paper, we define generalization as the capability to solve tasks within the same distri-
bution, specifically whether an agent trained on the generated tasks can address similar scenarios and
objectives albeit with varying initial states and minor low-level variations. To quantitatively exam-
ine this capability, we first train an imitation learning policy with trajectories collected by either the
oracle policies or policies learned from the generation pipeline. The trained policy is subsequently
evaluated with new task scenarios including varied object instances, appearance, and initial poses.
The policy uses the state-of-the-art algorithm called Diffusion Policy (Chi et al., 2023) as the back-
bone and takes as input RGB observations, and the proprioceptions. Although BAKU(Haldar et al.,
2024) meets our needs, choosing the more widely known diffusion policy method for our evaluation
is reasonable. A typical indicator of low generalization is when the trained policy performs well on
the training data, confirming correct algorithm implementation, yet struggles to adapt to the varied
tasks during evaluation.

4 EXPERIMENT

4.1 SINGLE TASK EVALUATION

Experimental setup. As mentioned in Section 3.3, our methodology utilizes vision-language mod-
els (VLMs) to generate scene captions, which are then compared against task descriptions using
large language models (LLMs). Additionally, we employ a multi-modal LLM (MLLM) to evalu-
ate the completeness of task trajectories. For captioning scene images, we deploy several VLMs,
including BLIP (“blip2-flan-t5-xl”), Cambrian (“Cambrian-8B”) (Tong et al., 2024a), and LLaVA
1.6 (“LLaVA-1.6-7B”) (Liu et al., 2024). The scene alignment score is measured using the GPT-
4 (“2024-02-15-preview” version from Microsoft Azure) model. For assessing task completion, the
MLLM models used include GPT-4V, Cambrian, and LLaVA.

4.1.1 HUMAN VERIFICATION

To validate the efficacy of our method, we gather human evaluations for ten tasks from the released
tasks of RoboGen and GenSim and examine the consistency of our results with human results. We
characterize their relationship by using the Pearson correlation coefficient to represent correlation
strength and the mean absolute error (MAE) to indicate numerical similarity. A higher Pearson
correlation coefficient signifies a stronger correlation, while a lower MAE reflects greater similarity.
Therefore, we calculate the ratio of the Pearson correlation coefficient to the MAE to assess the
relationship between our method and human evaluations; higher values indicate greater similarity.

In Figure 3 left, in terms of scene alignment score, the performance of architectures using GPT-4 and
other vision models like BLIP2 and LLaVA is shown to yield better results for RoboGen’s tasks, but
these models perform poorly on GenSim’s tasks, primarily due to their lack of knowledge regarding
top-view rendered images. In addition, Figure 3 right illustrates that for task completion score, GPT-
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Figure 3: Pearson correlation divided by mean absolute error of the different methods with human
evaluation in different datasets. In the bar chart, relatively high values indicate that the model’s re-
sults are more similar to human evaluations, while negative values indicate that the model’s output is
negatively correlated with human evaluations. We truncate the negative bars for better visualization.

4V exhibits relative performance compared to human evaluations, indicating a strong alignment
with human behavior in assessing task completion. In contrast, Cambrian and LLaVA 1.6 produce
results that do not correspond with human assessments. While both models have demonstrated an
understanding of images during the experiments, they fail to provide completion scores that align
with human evaluations based on the image results.

4.1.2 EVALUATION ON ROBOGEN, GENSIM, AND BBSEA
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Figure 4: Single task evaluation results. “-P” flag
refers to the published tasks of a certain method,
while “-G” flag refers to generated tasks by run-
ning released codes. The size of the data marker
represents the variance of the evaluation results
under the corresponding setting.

We summarize the evaluation results of both
metrics for single-task quality in Figure 4.
To be specific, among the methods, RoboGen
tasks demonstrate high task completion scores,
but their scene alignment scores are notably
low. This discrepancy arises because, although
RoboGen can generate assets relevant to the
current task, these assets often collide when
loaded into the scene, resulting in a cluttered
and difficult-to-recognize environment. In con-
trast, GenSim secures the highest scene align-
ment scores but underperforms in task comple-
tion. This shortfall is largely attributed to its
vision-language model lacking access to top-
view rendered data, which impairs its ability to
accurately recognize task completion. In addi-
tion, BBSEA achieves decent results on both
metrics (although not the best), and it has the
smallest variance in the outcomes.

Furthermore, we observe performance discrepancies between published and newly generated tasks
across all methods. While a predictable decline in performance for generated tasks can be attributed
to additional filtering prior to project release, improvements have been noted in GenSim’s scene
alignment and task completion for RoboGen and BBSEA. The underlying reason is the advance-
ments in the performance of foundation models, which have expanded the limits of task generation
quality, including reasonable solution objectives in RoboGen and BBSEA, and innovative long-
horizon task proposals in GenSim.

4.1.3 EXAMPLES FROM EVALUATION

As shown in Figure 5, in the snapshot of the ‘Open Laptop’ task, the laptop is correctly placed on the
table, and there are some objects such as a lamp and a pen placed on the desk. Then we can observe
from three trajectory images that the robotic arm has correctly located the laptop and opened it.
Therefore, this task gets an average score of ‘7.96’ (out of 10) for completion score and an average
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Open Laptop; Scene Alignment Score: 3.96/5; Completion Score: 7.96/10

Connect boxes with rope; Scene Alignment Score: 2.80/5; Completion Score: 6.00/10

Move the stick into green bin; Scene Alignment Score: 4.00/5; Completion Score: 2.40/10

Figure 5: Single-task evaluation examples on three different tasks from different generative simula-
tion pipelines. The first row displays a task that achieves high scores in both scene alignment and
task completion. The second row illustrates a task with low scene alignment, while the third row
presents a task with low task completion.

score of ‘3.96’ (out of 5) for scene alignment. In the snapshot of the ‘Connect boxes with rope’,
although we can abstract the red balls into a rope, there is also a gap between the scene and the real
world, which gets ‘2.80’ in scene alignment. But when the red balls are expanded into a line, our
pipeline can correctly figure out the task has been solved, thus receiving a ‘6.00’ completion score.
In the snapshot of the ‘Move the stick into the green bin’, the gripper has grasped the stick and put it
on the green bin rather than into the green bin, therefore our pipeline grades the task completion with
‘2.40’. But the scene receives ‘4.00’ because there are necessary objects, as well as some relevant
ones on the table in the scene.

4.2 TASK AND DATA DIVERSITY

In this section, we use the proposed evaluation protocols to examine whether a pipeline generates
diverse tasks and hence diverse data for learning. To have a better perspective for analysis and allow
practical training, we divide the tasks into groups according to skills, scene configuration, or objects
involved. The details for grouping can be found in Appendix A.3.

Task diversity. For text-based task diversity, we leverage different language models, including
“MiniLM-L6-v2” and “Mpnet-base-v2” from SentenceTransformers (Reimers & Gurevych, 2019;
2020), “LLama-3.1-70B” and “LLama-3.2-90B” (Touvron et al., 2023; Dubey et al., 2024), to gener-
ate text embeddings from task descriptions. The diversity is then measured by embedding similarity
between and among the template and generated tasks following Equation (1). We consider different
task groups as well as the whole task set for each method. The results are listed in Table 1, with
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Table 1: Results for text-based task description diversity. The evaluation considers various task
groups as well as the entire task set (All) for all three methods. Higher values indicate higher
diversity.

Method Task Group MiniLM-L6-v2 Mpnet-base-v2 LLama-3.1-70B LLama-3.2-90B

GenSim

Stacking 0.49 0.48 0.23 0.33
Placement 0.55 0.52 0.12 0.15

Piles 0.42 0.45 0.26 0.40
Assembling 0.53 0.44 0.20 0.29

All 0.75 0.70 0.25 0.34

RoboGen
Table-Top 0.88 0.71 0.22 0.26

Ground 0.78 0.65 0.24 0.24
All 0.84 0.69 0.25 0.28

BBSEA
Table-Top 1.22 1.06 0.24 0.26

Drawer 0.37 0.34 0.27 0.28
All 1.28 1.10 0.28 0.29

Table 2: Results for dynamics-based trajectory diversity. World model evaluation error is reported
with a different number of training episodes. For a diverse task group, the prediction error should
drop as the training episodes increase.

Method Task Group Eval error on 10 ep Eval error on 20 ep Eval error on 40 ep

GenSim

Stacking 115.0 67.2 24.5
Placement 245.0 177.6 29.5

Piles 68.3 47.6 14.5
Assembling 105.4 64.3 29.6

RoboGen Table-Top 16.2 10.9 6.4
Ground 45.8 28.6 14.5

BBSEA Drawer 402.4 287.0 69.6
Table-Top 561.6 296.6 87.9

higher values indicating higher diversity. Among the three methods, BBSEA shows the highest task
description diversity by our proposed metric (1). However, we observe that many drawer tasks share
remarkably similar descriptions, e.g., “open the drawer using handle”. Accordingly, the diversity
of table-top tasks is significantly higher than that of drawer tasks. Conversely, results in GenSim
indicate low task diversity because GenSim only deals with table-top pick-place tasks, narrowing its
task domain. In addition, despite the extensive task types and complicated scenes RoboGen can sup-
port, it acquires lower scores than BBSEA. We attribute this underperformance to some vague task
descriptions generated by RoboGen, which hinders the text similarity from reflecting task diversity.

Moreover, for all methods, we observe notable inconsistency between the language models from
which we obtain the embeddings, possibly due to the difference in training method and objective
that make the models attend to different components of the descriptions. This suggests that despite
simplicity, text evaluation does not consistently and reliably capture the diversity of generated tasks.

Trajectory diversity. In terms of dynamics-based trajectory diversity, we examine whether the
generated tasks provide trajectories with diverse dynamics coverage with a world model. Specifi-
cally, a total of 40 episodes is collected for each task in a group using the policy for each method.
We train a world model in DreamerV3 using 10, 20, and 40 episodes respectively, and evaluate all 40
episodes. Please refer to Appendix A for details. Intuitively, a task group with low diversity is likely
to exhibit comparably low prediction errors across various numbers of episodes, as a small dataset
is sufficient to capture the dynamics. Conversely, for a more diverse task group, the prediction error
of the world model should decrease as the volume of training data increases.

The results are shown in Table 2. For GenSim, the model evaluation error for group Piles (where the
objects of interest are piles of pellets) is significantly lower than others. This aligns with the fact that
all tasks in this group only involve pushing piles on the table to a specified location. On the other
hand, Placement, involves placing different types of objects in different manners, showing a much
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Table 3: Imitation learning performance on different projects. GenSim reports step-wise rewards
with 1.0 indicating success. RoboGen reports raw rewards which may have arbitrary scales, which
we convert to success rate for intuitive understanding.

Method GenSim RoboGen BBSEA

Task Group Stacking Placement Piles Assembling Table-Top Ground Table-Top Drawer

Reward/ Success Rate 0.15 0.32 0.2 0.08 0.0 0.0 0.00 0.00

model higher error when trained on a small number of trajectories. Regarding BBSEA, cases are
similar to those in GenSim. However, for RoboGen, both groups exhibit low model errors. This is
primarily due to RoboGen’s learning design: for each task, all trajectories start with the same initial
state. Therefore, the dynamics seen by the agent are similar and easy to learn by the world model.

4.3 GENERALIZATION

We train a Diffusion Policy for each task group using 40 trajectories, identical to the data for dy-
namics model training, and assess their performance on the same task group under variations such as
scene configurations, object colors, and initial robot states. As indicated in Table 3, GenSim demon-
strates reasonable generalization performance, despite the challenge posed by randomizing object
colors, which complicates the effectiveness of an RGB-based policy. Conversely, agents trained on
RoboGen and BBSEA tasks exhibit poor generalization. For RoboGen, the primary issue is that
the training trajectories all begin from the same initial state, and the RL solutions do not generate
high-quality data. In the case of BBSEA, the problem often lies in the repetition of similar tasks,
which restricts task-level generalization capabilities. Moreover, significant task variations can result
in out-of-distribution challenges that adversely affect agent performance.

5 CONCLUSION AND DISCUSSION

In this paper, we propose a novel evaluation framework for generative simulation, which includes
three fundamental metrics: quality, diversity and generalization. We evaluate three representative
generative simulation pipelines based on our proposed method. Results indicate that while various
pipelines excel in terms of quality and diversity, there remains significant potential for improvement
in their generalization capabilities. We hope that future work in generative simulation can make
advancements and improvements in these three areas, especially in terms of generalization.

Moreover, we identify and outline some common drawbacks and failure cases across current gener-
ative simulation pipelines as follows for instructions to encourage further exploration:

• Low-quality task descriptions: Although task proposal is not a bottleneck for generative simu-
lation in general, we still observe some vague and repeated task descriptions that fail to express
the details of the generated tasks. Such ambiguity may cause suboptimal results in the evaluation
of text-based task diversity, as well as harm the performance of a language-conditioned policy.

• Trajectory data with limited diversity: The task solution in some methods only considers lim-
ited task and scene variations, which will affect both the trajectory diversity and task-level gen-
eralization capability. Typical cases include insufficient intra-task randomization, relatively fixed
task domain, or identical semantics between different tasks, leading to very similar trajectories.
We advocate an appropriate dynamics model trained along with the task generation process to
inspect and improve the diversity regarding dynamics coverage in future works.

• Task-specific design data collection and imitation learning: We remark that, on designing the
task generation pipeline, generalization could be considered and improved in various ways, e.g.,
action space with good abstraction (control by end-effector poses, joint positions, or primitive
actions), data augmentation, and unified goal specification. For example, in GenSim, actions are
abstracted as high-level waypoints, and each task trajectory contains only a few such high-level
actions. This design benefits its generalization evaluation based on imitation learning. We aim to
devise a generally applicable protocol, with the diffusion policy not tuned or adopted specifically,
and advocate efficient domain-specific designs for better generalization performance.

10
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Bridson, Dario de Cesare, Tom Hudson, Piermaria Mendolicchio, Lexi Walker, Alex Morris,
Ivo Penchev, Matthew Mauger, Alexey Guseynov, Alison Reid, Seth Odoom, Lucia Loher, Vic-
tor Cotruta, Madhavi Yenugula, Dominik Grewe, Anastasia Petrushkina, Tom Duerig, Antonio
Sanchez, Steve Yadlowsky, Amy Shen, Amir Globerson, Adam Kurzrok, Lynette Webb, Sahil
Dua, Dong Li, Preethi Lahoti, Surya Bhupatiraju, Dan Hurt, Haroon Qureshi, Ananth Agarwal,
Tomer Shani, Matan Eyal, Anuj Khare, Shreyas Rammohan Belle, Lei Wang, Chetan Tekur, Mi-
hir Sanjay Kale, Jinliang Wei, Ruoxin Sang, Brennan Saeta, Tyler Liechty, Yi Sun, Yao Zhao,
Stephan Lee, Pandu Nayak, Doug Fritz, Manish Reddy Vuyyuru, John Aslanides, Nidhi Vyas,
Martin Wicke, Xiao Ma, Taylan Bilal, Evgenii Eltyshev, Daniel Balle, Nina Martin, Hardie
Cate, James Manyika, Keyvan Amiri, Yelin Kim, Xi Xiong, Kai Kang, Florian Luisier, Nilesh
Tripuraneni, David Madras, Mandy Guo, Austin Waters, Oliver Wang, Joshua Ainslie, Jason
Baldridge, Han Zhang, Garima Pruthi, Jakob Bauer, Feng Yang, Riham Mansour, Jason Gelman,
Yang Xu, George Polovets, Ji Liu, Honglong Cai, Warren Chen, XiangHai Sheng, Emily Xue,
Sherjil Ozair, Adams Yu, Christof Angermueller, Xiaowei Li, Weiren Wang, Julia Wiesinger, Em-
manouil Koukoumidis, Yuan Tian, Anand Iyer, Madhu Gurumurthy, Mark Goldenson, Parashar
Shah, MK Blake, Hongkun Yu, Anthony Urbanowicz, Jennimaria Palomaki, Chrisantha Fer-
nando, Kevin Brooks, Ken Durden, Harsh Mehta, Nikola Momchev, Elahe Rahimtoroghi, Maria
Georgaki, Amit Raul, Sebastian Ruder, Morgan Redshaw, Jinhyuk Lee, Komal Jalan, Dinghua Li,
Ginger Perng, Blake Hechtman, Parker Schuh, Milad Nasr, Mia Chen, Kieran Milan, Vladimir
Mikulik, Trevor Strohman, Juliana Franco, Tim Green, Demis Hassabis, Koray Kavukcuoglu,
Jeffrey Dean, and Oriol Vinyals. Gemini: A family of highly capable multimodal models, 2023.

Joshua Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and P. Abbeel. Domain
randomization for transferring deep neural networks from simulation to the real world. 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 23–30, 2017.
URL https://api.semanticscholar.org/CorpusID:2413610.

Shengbang Tong, Ellis Brown, Penghao Wu, Sanghyun Woo, Manoj Middepogu, Sai Charitha
Akula, Jihan Yang, Shusheng Yang, Adithya Iyer, Xichen Pan, Austin Wang, Rob Fergus, Yann
LeCun, and Saining Xie. Cambrian-1: A fully open, vision-centric exploration of multimodal
llms, 2024a. URL https://arxiv.org/abs/2406.16860.

17

https://api.semanticscholar.org/CorpusID:2413610
https://arxiv.org/abs/2406.16860


918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Shengbang Tong, Zhuang Liu, Yuexiang Zhai, Yi Ma, Yann LeCun, and Saining Xie. Eyes wide
shut? exploring the visual shortcomings of multimodal llms, 2024b. URL https://arxiv.
org/abs/2401.06209.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

Lirui Wang, Yiyang Ling, Zhecheng Yuan, Mohit Shridhar, Chen Bao, Yuzhe Qin, Bailin Wang,
Huazhe Xu, and Xiaolong Wang. Gensim: Generating robotic simulation tasks via large language
models, 2024.

Yufei Wang, Zhanyi Sun, Zackory Erickson, and David Held. One policy to dress them all: Learning
to dress people with diverse poses and garments, 2023a.

Yufei Wang, Zhou Xian, Feng Chen, Tsun-Hsuan Wang, Yian Wang, Zackory Erickson, David Held,
and Chuang Gan. Robogen: Towards unleashing infinite data for automated robot learning via
generative simulation, 2023b.

Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao
Dong. Imagereward: Learning and evaluating human preferences for text-to-image generation,
2023.

Sizhe Yang, Qian Luo, Anumpam Pani, and Yanchao Yang. Bbsea: An exploration of brain-body
synchronization for embodied agents. arXiv preprint arXiv:2402.08212, 2024.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on robot learning, pp. 1094–1100. PMLR, 2020.

Zhecheng Yuan, Sizhe Yang, Pu Hua, Can Chang, Kaizhe Hu, and Huazhe Xu. Rl-vigen: A rein-
forcement learning benchmark for visual generalization. Advances in Neural Information Pro-
cessing Systems, 36, 2024.

Xinlu Zhang, Yujie Lu, Weizhi Wang, An Yan, Jun Yan, Lianke Qin, Heng Wang, Xifeng Yan,
William Yang Wang, and Linda Ruth Petzold. Gpt-4v(ision) as a generalist evaluator for vision-
language tasks, 2023a.

Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu, Tingchen Fu, Xinting Huang, Enbo Zhao,
Yu Zhang, Yulong Chen, Longyue Wang, Anh Tuan Luu, Wei Bi, Freda Shi, and Shuming Shi.
Siren’s song in the ai ocean: A survey on hallucination in large language models, 2023b.

Yaoming Zhu, Sidi Lu, Lei Zheng, Jiaxian Guo, Weinan Zhang, Jun Wang, and Yong Yu. Texy-
gen: A benchmarking platform for text generation models. The 41st International ACM SI-
GIR Conference on Research & Development in Information Retrieval, 2018. URL https:
//api.semanticscholar.org/CorpusID:3636178.

18

https://arxiv.org/abs/2401.06209
https://arxiv.org/abs/2401.06209
https://api.semanticscholar.org/CorpusID:3636178
https://api.semanticscholar.org/CorpusID:3636178


972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 PROMPT FOR EVALUATION

Here is the prompt for the evaluation of the completion score:

You are an assessment expert responsible for the Task Completion rate.
Your task is to score the completion rate for the task in the
following rules:

1. Evaluate the completion rate for the robotics task.
2. During the evaluation, you will receive 8 images and a basic

description of the task.
3. During the evaluation, you need to make very careful judgments

and evaluate the completion of the task based on the order
of the pictures and the task description.

4. In the evaluation you need to pay attention to the smoothness
of the trajectory.

5. Assign a score between 0 and 10, with 10 being the highest. Do
not provide a complete answer.

6. Your should provide the answer in the following format:

Score: X

Here is the prompt for the evaluation of the scene alignment score without the caption model:

You are an assessment expert responsible for Task description and Scene
images pairs. Your task is to score the Scene caption according to
the following requirements:

1. Evaluate how well the Scene images covers the scene of the
robotics task. You should consider whether the scene is similar
to the requirement of the task.

2. During the evaluation, you will receive 4 images and a basic
description of the task.

3. In the evaluation, you should pay attention to the alignment
between the Scene image and the real-world task following the
description of the task.

4. A good scene should not only provide an environment for completing
a robotics task but should also contain items that may appear

near the task, even though they may have nothing to do with the
task itself.

5. Assign a score between 1 and 5, with 5 being the highest.
6. Your should provide the answer in the following format:

Score: X

Here is the prompt for the evaluation of the scene alignment score with the caption model:

You are an assessment expert responsible for Task description and Scene
captions pairs. Your task is to score the Scene caption according to
the following requirements:

1. Evaluate how well the Scene captions covers the scene of the
robotics task. You should consider whether the scene is similar
to the requirement of the task.

2. In the evaluation, you should pay attention to the alignment
between the Scene captions and the real-world task following the
description of the task.

3. A good scene should not only provide an environment for completing
a robotics task but should also contain items that may appear
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near the task, even though they may have nothing to do with the
task itself.

4. Scene caption sets will be a set of different views to the scene.
5. Assign a score between 1 and 5, with 5 being the highest. Do not

provide a complete answer; give the score in the format: Score: 3

A.2 HUMAN EVALUATION RESULT

In table 4 and table 5, we collected the scoring results from 18 researchers in the field of robotics
on 20 tasks, which were sourced from RoboGen and GenSim, respectively. We conducted five
evaluations for each model, with the values in parentheses representing the variance of the five
evaluations. Based on these two tables, we derived the results presented in Figure 3.

Table 4: Comparison of Human Evaluation and Various Models on Scene Alignment Score of Dif-
ferent Tasks.

Task Name (RoboGen) Human GPT-4+Blip2 Cambrian LLava GPT-4v GPT-4+LLava GPT-4+Cambrian

Open Laptop 3.6 2.56(0.9) 2.00(0) 3.00(0) 3.96(0.03) 3.20(1.20) 2.00(0.00)
Change Lamp Direction 3.45 2.88(0.75) 2.00(0) 3.00(0) 3.96(0.03) 3.80(0.08) 3.28(0.21)
Flush the Toilet 3.55 3.00(0.91) 0.00(0) 3.00(0) 3.40(0.02) 2.80(1.20) 4.00(0)
Extend Display Screen 2.55 2.16(0.13) 0.00(0) 4.00(0) 3.80(0.14) 2.00(0) 1.96(0.01)
Close the Oven Door 3.45 1.80(0.2) 0.00(0) 3.00(0) 3.60(0.04) 2.00(0) 2.00(0)
Set Oven Timer 3.20 2.80(1.2) 0.00(0) 3.00(0) 3.04(0.03) 3.96(0.01) 4.00(0)
Close Window 3.10 2.40(0.48) 1.00(0) 3.00(0) 3.96(0.01) 1.60(0.30) 1.00(0)
Adjust Water Flow 2.85 1.40(0.3) 2.00(0) 3.00(0) 3.36(0.03) 1.24(0.11) 1.48(0.05)
Open Both Table Doors 3.20 2.24(0.29) 5.00(0) 3.00(0) 3.24(0.05) 2.00(0) 2.00(0)
Press Start Button 3.20 3.24(1.29) 0.00(0) 3.00(0) 3.48(0.03) 2.20(2.70) 4.00(0)

Task Name (Gensim) Human GPT-4+Blip2 Cambrian LLava GPT-4v GPT-4+LLava GPT-4+Cambrian

Align Balls in Colored
Boxes

4.30 4.00(0.00) 2.00(0) 3.00(0) 3.36(0.07) 1.33(0.33) 2.00(0)

Block Pyramid with
Limited Space

4.10 4.00(3.00) 2.00(0) 3.00(0) 3.64(0.07) 1.50(0.50) 2.04(0.01)

Align Spheres in Col-
ored Zones

4.20 4.40(0.16) 2.00(0) 3.40(0.30) 4.32(0.03) 2.00(0.00) 2.00(0)

Color Coded Blocks on
Corner

3.15 4.13(0.05) 0.40(0.80) 3.00(0) 3.68(0.07) 2.00(0) 3.24(0.61)

Align Rope Cross Zone 4.35 3.53(0.65) 2.00(0) 1.00(0) 3.56(0.11) 1.00(0) 1.80(0.20)
Color Ordered Insertion 4.40 2.00(0.00) 2.00(0) 3.00(0) 4.08(0.11) 2.00(0) 2.00(0)
Color Specific Container
Fill

4.25 2.00(0.00) 0.60(0.30) 3.00(0) 3.84(0.03) 2.00(0) 2.20(0.20)

Color Coordinated Zone
Stacking

3.70 4.27(0.21) 2.00(0) 3.00(0) 3.88(0.03) 1.00(0) 2.40(0.80)

Vertical Insertion Blocks 3.75 3.13(1.77) 1.60(0.80) 3.00(0) 3.44(0.09) 2.07(1.21) 2.20(0.20)
Color Blocks in Cylinder
Maze

2.65 2.47(0.65) 0.00(0) 3.00(0) 3.12(0.05) 2.00(0) 1.76(0.13)

A.3 DIVERSITY AND GENERALIZATION EXPERIMENT DETAILS

A.3.1 TASK SELECTION AND GROUPING

For GenSim, we use all the templates and generated tasks released by the authors. For RoboGen,
we only use the manipulation tasks but not locomotion and soft body because the locomotion tasks
yield very poor learning performance and the soft-body tasks are not publicly available at the time.
For BBSEA, we perform generation following the instructions provided by the authors.

We group these tasks mainly for two reasons: (1) grouped tasks offer more perspectives for analysis,
and (2) the latent dynamics model and diffusion policy training, with their original implementation,
are insufficient for learning a large number of tasks. The dimensions to consider include scene
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Table 5: Comparison of Human Evaluation and Various Models on Completion Score of Different
Tasks

Task Name (RoboGen) Human Cambrian-8B LLava-1.5 GPT-4

Open Laptop 8.2 0.00(0) 8.00(0) 7.96(0.01)
Change Lamp Direction 8.4 0.00(0) 8.00(0) 6.40(0.92)

Flush the Toilet 8.3 0.00(0) 8.00(0) 7.40(0.06)
Extend Display Screen 5.1 0.00(0) 8.00(0) 6.36(1.11)
Close the Oven Door 4.8 0.00(0) 8.00(0) 5.80(1.02)

Set Oven Timer 7.8 0.00(0) 8.00(0) 6.40(0.04)
Close Window 9.3 0.00(0) 8.00(0) 6.80(0.42)

Adjust Water Flow 7.2 0.00(0) 8.00(0) 7.64(0.07)
Open Both Table Doors 6.3 0.00(0) 8.00(0) 5.76(1.35)

Press Start Button 8.4 0.00(0) 8.00(0) 6.88(0.81)

Task Name (Gensim) Human Cambrian-8B LLava-1.5 GPT-4

Align Balls in Colored Boxes 9.2 0.00(0) 8.00(0) 4.92(0.23)
Block Pyramid with Limited Space 6.8 0.00(0) 8.00(0) 5.16(2.35)

Align Spheres in Colored Zones 4.9 0.00(0) 8.00(0) 3.16(2.97)
Color Coded Blocks on Corner 6.2 0.00(0) 8.00(0) 6.48(1.27)

Align Rope Cross Zone 8.7 0.80(3.20) 8.00(0) 4.25(2.81)
Color Ordered Insertion 9.5 1.60(4.80) 8.00(0) 5.56(1.21)

Color Specific Container Fill 9.2 0.80(3.20) 8.00(0) 5.88(0.43)
Color Coordinated Zone Stacking 8.4 0.00(0) 8.00(0) 5.52(0.83)

Vertical Insertion Blocks 8.1 0.00(0) 8.00(0) 3.72(1.31)
Color Blocks in Cylinder Maze 6.3 0.00(0) 8.00(0) 6.08(1.69)

configuration (e.g., table-top vs. ground), skill, and objects involved (e.g., pick-and-place using a
suction gripper vs. moving piles of grains using a shovel-like end-effector).

A summary with examples is shown in Table 6.

Table 6: Details of Task Grouping

Project Group # Tasks Desc. Examples

GenSim

Placement 19 “cylinder-line-placement: place cylinders of different colors
on a line at specific location”

Stacking 30 “stack-cylinder-on-bowl: stack cylinders of matching colors
on top of bowls”

Piles 11 “sweeping-piles: push piles of small objects into a target goal zone”

Assembling 14 “build-bridge: construct a bridge using two yellow blocks and
three blue blocks”

RoboGen Table-Top 17 “Adjust Water Flow: the robotic arm will turn one of the faucets
hinge switches to adjust the flow of the water”

Ground 15 “Adjust Chair Position: the robot arm will adjust the position
of the unfolded chair”

BBSEA Table 49 “Gather all objects and organize them in the green bin”
Drawer 26 “Open the drawer using the drawer handle”

A.3.2 TRAJECTORY COLLECTION

Trajectories are collected for both dynamics model learning and imitation learning. GenSim imple-
ments an oracle agent for generating demonstrations. The oracle agent’s action specifies the target
end-effector pose command, which is executed by a low-level Inverse Kinematics controller with
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joint commands. Therefore, we collect transitions of both high-level (target end-effector pose as ac-
tions) and low-level (joint commands as actions) with the observations being RBG image and robot
joint states. We collect for each task 40 trajectories with manually varied random seeds.

RoboGen decomposes a long-horizon task into multiple stages, each solved by motion planning
or reinforcement learning. In this work, we are only concerned with the sub-tasks that require
reinforcement learning. Specifically, we run their pipeline to train a policy for each task and subse-
quently collect trajectories using that policy. The action space includes joint and gripper commands
and the observation space includes RGB images and robot joint states. We collect for each task 40
trajectories with manually varied random seeds.

BBSEA generates trajectory demonstration by querying ChatGPT to output parameterized action
primitives, which are then executed by low-level controllers. Since BBSEA does not have officially
released tasks, we run the pipeline for generation and collection for each of the 32 scenes, giving
256 trajectories in total. BBSEA’s proposed pipeline additionally filters success trajectories. But
here we use all trajectories for learning the dynamics model.

A.3.3 DYNAMICS MODEL TRAINING DETAILS

We adopt a popular community implementation (Hafner et al., 2024). For all experiments, the model
is trained for 10 epochs with a batch size of 8. The data was chunked into sequences of size 40/40/20
for GenSim/RoboGen/BBSEA. All other hyperparameters are kept as default. Since DreamerV3 is
designed for reinforcement learning from visual observations, its model architecture is expressive
and robust to different domains. Data augmentation could be used to improve its robustness to
aspects such as the variation in color and appearance further to obtain a lower prediction error.
However, we do not incorporate that in this paper for simplicity.

A.3.4 IMITATION LEARNING MODEL TRAINING DETAILS

For GenSim and RoboGen, the implementation is adapted from the official release of Diffusion
Policy (Chi et al., 2023). We use the configuration provided by the authors of Diffusion Policy for
image-state observation. For all experiments, the policy is trained for 8000 epochs. For BBSEA, we
use the image-language diffusion policy implementation provided by the authors.
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