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Abstract

Within population biobanks, incomplete measurement of certain traits limits power for genetic 

discovery. Machine learning (ML) is increasingly used to impute the missing values from the 

available data. However, performing genome-wide association studies (GWAS) on imputed traits 

can introduce spurious associations, identifying genetic variants not associated with the original 

trait. Here we introduce a new method, synthetic surrogate (SynSurr) analysis, which makes 

GWAS on imputed phenotypes robust to imputation errors. Rather than replacing missing values, 

SynSurr jointly analyzes the original and imputed traits. We show that SynSurr estimates the 

same genetic effect as standard GWAS, and improves power in proportion to the quality of the 

imputations. SynSurr requires a commonly-made missing at random assumption, but relaxes the 

requirements of existing imputation methods by not requiring correct model specification. We 

present extensive simulations and ablation analyses to validate SynSurr, and apply it to empower 

GWAS of dual-energy x-ray absorptiometry traits within the UK Biobank.

Introduction

The emergence of high-quality population biobanks, such as FinnGenn (> 200,000 

individuals), the Million Veteran Program (> 500,000 veterans), and the UK Biobank 

(> 400,000 individuals), is empowering new genetic discoveries1-3. While these deeply 

phenotyped resources have created an unprecedented opportunity to increase both the 

scope and precision of genome-wide association studies (GWAS), they have simultaneously 
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introduced new statistical challenges4,5. Among these challenges, incompletely measured 

or partially missing phenotypes are a key issue6. Missingness often arises due to the 

difficulty, expense, or invasiveness of ascertaining the target phenotype7. Examples of 

partially missing phenotypes from the UK Biobank (UKBB)8 include body composition 

phenotypes obtained from dual-energy x-ray absorptiometry (DEXA) scans9, neurological10 

and cardiac11 structural features extracted from functional magnetic resonance imaging, 

optic morphology parameters extracted from retinal fundus images12 , and sleep wake 

patterns extracted from accelerometry trackers13. Each of these phenotypes was ascertained, 

at least initially, in only a subset of the cohort.

Restricting GWAS to only those individuals with observed phenotypes substantially 

diminishes power. As biobanks contain extensive demographic and clinical information, 

researchers can often impute missing phenotypes from the available data14,15, and 

increasingly do so via machine learning12,16-20. Armed with an imputation model, the 

analysis can proceed in several ways. One approach, which we call proxy GWAS, predicts 

the target phenotype for all subjects then performs GWAS on the predicted values. 

Although proxy GWAS may perform well if the imputation model is highly accurate, this 

approach incurs bias and identifies false positives associations when the imputation model is 

inaccurate. Another approach, single-imputation, imputes the target phenotype for unlabeled 

subjects only, then performs GWAS on the combination of observed and imputed values. 

Single-imputation is statistically invalid because it ignores imputation uncertainty and treats 

the observed and imputed values as originating from the same distribution21-24. Multiple 

imputation25-27 has been proposed to overcome the limitations of single imputation. In this 

approach, several sets of imputations are generated from a probabilistic model, analyzed in 

parallel, then combined via Rubin’s rules, correctly accounting for imputation uncertainty. 

The major limitation of multiple imputation is the necessity for a correctly specified 

imputation model27-30. As we show here, if the imputation model is misspecified, as is 

most likely in practice, the estimates resulting from multiple imputation are biased.

To overcome the limitations of proxy- and imputation-based GWAS, we introduce synthetic 

surrogate (“SynSurr”) analysis for GWAS of a partially missing target phenotype. Within 

a model-building dataset, we first train an imputation model for predicting the target 

phenotype on the basis of available data. Next, within the GWAS dataset, the imputation 

model is applied to generate an imputation or “synthetic surrogate” phenotype for all 

subjects. The partially-observed target phenotype and the synthetic surrogate are then 

jointly analyzed within a bivariate outcome framework31. We illustrate the methodological 

advantages and practical implementation of SynSurr through extensive analyses of simulated 

and real data. These analyses illustrate three key properties of SynSurr, which are backed by 

theoretical derivations provided in the Supplementary Methods. First, SynSurr is robust to 

imputation error, meaning that neither bias nor loss of power are incurred when the model 

that generates the synthetic surrogate is misspecified. Second, SynSurr is more powerful 
than standard GWAS, with the power advantage increasing with the proportion of target-

missingness and the target-surrogate correlation. Third, SynSurr is always valid, meaning 

that the effect sizes are unbiased and the type I error is properly controlled, irrespective of 

the imputation model.
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Our real-data analyses in the UK Biobank (UKBB) include an ablation analysis of two 

phenotypes with minimal missingness, height and forced expiratory volume in 1 second 

(FEV1), and an application of SynSurr to 6 body composition phenotypes, measured by 

DEXA, with substantial missingness. The ablation analysis demonstrates that SynSurr and 

standard GWAS identify all the same variants in the absence of missingness, but that 

SynSurr is uniformly more powerful in the presence of missingness. SynSurr achieves 

this power advantage not by inflating the false discovery rate or distorting the estimated 

genetic effect, but by leveraging the surrogate outcome to obtain more precise estimation 

(i.e., smaller standard errors). The application to the DEXA phenotypes demonstrates the 

substantial opportunity for improved power with SynSurr. Compared to standard GWAS, 

SynSurr identified on average 21.5× as many genome-wide significant variants, and did so 

at 3.3× the level of significance. Moreover, the variants identified by SynSurr are relevant 

to body composition, being significantly enriched for salient gene sets and overlapping 

substantially with previously reported associations from the GWAS Catalog32.

Results

Overview of Method

Fig. 1 provides a graphical overview of SynSurr, which aims to empower GWAS of a 

partially missing target phenotype. The data are first split into model-building and inference 

sets. The model-building data should contain surrogate variables (i.e., the inputs to the 

imputation model) and at least some subjects with observed target phenotypes, assuming 

the imputation model is trained in a (semi-)supervised manner. The inference set, in which 

GWAS is performed, requires genetics and surrogates, and is assumed to be only partially 

labeled, meaning the target outcome is partially missing.

Within the model-building data, an imputation model is trained to predict the target 

phenotype from surrogate information. Predictions of the target phenotype are then 

generated for all subjects in the inference set (not only those with missing phenotypes). 

Because the imputation model combines multiple surrogates to predict the target phenotype, 

we refer to its output as a synthetic surrogate. Unlike standard imputation, the synthetic 

surrogate is maintained as a separate and distinct outcome from the target phenotype. 

Finally, within the inference data, GWAS is performed by jointly regressing the partially-

missing target phenotype and the fully-observed synthetic surrogate on genotype and 

covariates.

The Methods section provides a mathematical description of the SynSurr model and an 

overview of the estimation procedure. The Supplementary Methods provide a detailed 

derivation of maximum likelihood estimates for all model parameters, their standard errors, 

and a Wald test for evaluating the association between genotype and the target phenotype.

Generation of synthetic surrogates

SynSurr depends on the availability of a synthetic surrogate Y  which is predictive of the 

target phenotype Y . We focus on the setting where the surrogate is a prediction of Y  from 

an ML model. This setting is particularly relevant in population biobanks where certain 
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phenotypes are too invasive, expensive, or time-consuming to measure for the entire cohort, 

but can be predicted from a model trained on available surrogate data (e.g., information from 

electronic health records or baseline assessments). The inputs to the imputation model (i.e., 

the model that generates the synthetic surrogate) should not include genetics G, and may 

or may not include covariates X adjusted for during the GWAS. In training the imputation 

model, the goal is to obtain a prediction Y  that is highly correlated with the target phenotype 

Y  after adjusting for any covariates included in the GWAS. As detailed in the Supplementary 

Methods section, a stronger residual correlation leads to increased power. To capture the 

potentially complex relationship between a set of covariates and the phenotype of interest, 

we recommend generating Y  from a nonlinear model. For tabular data settings with well-

defined covariates, tree-based models such as random forest33 or Extreme Gradient Boosting 

(XGBoost)34 generally perform well and are straightforward to train. Neural network may 

be particularly advantageous for models using images or free-text.

SynSurr overcomes the pitfalls of imputation-based inference

Recall that our goal is to perform inference on the association between genotype G and 

a partially-missing target phenotype Y . As the synthetic surrogate Y  is available for all 

subjects, one option is to perform proxy GWAS on Y  in place of Y . This approach, however, 

changes the research question from studying the association between Y  and G (i.e., βG in 

Equation 4) to studying that between Y  and G (i.e., αG in Equation 4). Moreover, analyzing 

Y  instead of Y  can lead to spurious association if Y  is an imperfect proxy for Y  (see the 

ablation studies). To preserve the original research question, another common approach is to 

generate a completed outcome Y ∗, where missing values of Y  are replaced by Y :

Y ∗ =
Y if Y is observed,
Y if Y is missing .

A single-imputation analysis would perform GWAS on Y ∗ once, whereas multiple 

imputation performs several imputations of the missing data then combines the results 

via Rubin’s rules21,27. As shown below, single-imputation leads to underestimation of the 

standard errors while multiple-imputation requires the imputation model to be correctly 

specified. In contrast, SynSurr jointly models Y  with Y , allowing for missing data (Fig. 1). 

A key contribution of SynSyrr, with ramifications beyond GWAS, is to provide a framework 

for utilizing Y  to improve inference on Y  without requiring that Y  be generated from a 

correctly specified model.

As an example of the pitfalls that can arise when performing imputation-based inference, we 

generated phenotypes from the following model

Y = GβG + XβX + ϵ .

(1)
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where X is a covariate and ϵ a residual. The genetic effect is βG = 0.1, corresponding to 

a variant with ℎ2 = 1 %. The total sample size is n = 104 and 25% of the values of Y
are missing. We compare the performance of an oracle estimator, which has access to Y
before the introduction of missingness, the standard estimator, which only has access to the 

observed values of Y , single-imputation, multiple-imputation, and SynSurr. The imputation 

models are as follows:

1. A correctly specified model, which imputes Y  using G and X.

2. A misspecified model, which imputes Y  using G only.

3. A misspecified model, which imputes Y  using X only.

Each imputation model was fit on an independent model-building data set of size 103 

then applied to generate Y  for all subjects in the inference data set. All estimators utilized 

Equation (1) as the association model, allowing for direct comparison of the estimates of βG.

Fig. 2 and Supplementary Table 1 present the point estimates and standard errors (SEs) 

of the imputation-based estimators compared to SynSurr. The oracle estimator (green) is 

unbiased for βG, and as a correctly specified maximum likelihood estimator, its SE is the best 

possible in the absence of missing data35. The standard estimator (orange) is also unbiased, 

and because observations with missing outcomes do not contribute to this estimator, its SE 

is larger than the oracle’s. The single- (red) and multiple-imputation (blue) estimators are 

unbiased only when the imputation model is correctly specified. While the 95% confidence 

interval (CI) for the multiple-imputation estimator has proper coverage, as indicated by 

the agreement between the analytical (dotted) and empirical CIs (solid), the analytical CI 

for the single-imputation estimator falls short of the empirical CI. This occurs because 

the SE of the single-imputation estimator is underestimated. Consequently, inference based 

on the single-imputation estimator leads to an overstatement of significance (i.e., inflated 

type I error)36. Estimates based on an incorrectly specified imputation model are biased, 

whether the the misspecification was due to omission of the variable of interest (i.e., G) or a 

covariate (i.e., X)26. In contrast, SynSurr (purple) is unbiased regardless of what collection 

of covariates is used to generate Y .

SynSurr is robust to the choice of surrogate

Unlike imputation-based inference, which is sensitive to correct specification of the 

imputation model, SynSurr is robust to the choice of synthetic surrogate in that it (i) 

consistently estimates the effect of G on Y  regardless of the correlation between Y  and Y
and (ii) provides improved power over standard GWAS when the synthetic surrogate Y  is 

correlated with the target phenotype Y . To demonstrate these points, we again simulated 

phenotypes from Equation (1) and varied the proportion of subjects with missing phenotypes 

and the correlation between Y  and Y  (see Supplementary Section 3.1). Extended Data 

Fig. 1 presents box plots of β G − βG for the standard GWAS estimator and the SynSurr 

estimator under different levels of missingness in Y . In panel A, the synthetic surrogate Y
is completely uncorrelated with, and in fact independent of, the phenotype of interest Y . 

Nevertheless, SynSurr is unbiased and no less efficient than standard GWAS, as indicated 

McCaw et al. Page 5

Nat Genet. Author manuscript; available in PMC 2025 March 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



by consistent widths of the box plots. This demonstrates that SynSurr is robust to having 

an uninformative Y . However, as demonstrated in panel B, when Y  is correlated with Y , 

the precision of SynSurr increases with the extent of missingness (also see Supplementary 

Fig. 2). These findings are supported by a quantitative comparison of standard errors in 

Supplementary Table 2 as well as theoretical analysis (see Supplementary Section 1.4).

SynSurr controls type I error and improves power

Building on the findings of the previous section, we again simulated phenotypes from 

Equation (1) to evaluate the type I error and power of SynSurr across various missing 

rates, synthetic surrogates, and levels of SNP heritability. Type I error is the probability 

of incorrectly rejecting H0 :βG = 0 when βG = 0 and power is the probability of correctly 

rejecting H0 when βG ≠ 0. Fig. 3 demonstrates proper type I error control in that the SynSurr 

p-values are uniformly distributed under the null hypothesis across all simulation settings. 

Extended Data Table 1 presents the type I error, as well as power and the average χ2

statistics at a SNP heritability of ℎ2 = 0.5 % (βG ≈ 0.07). The type I error is consistently 

controlled, and power increases with both target missingness and the correlation of the 

synthetic surrogate. For instance, when the missingness rate is 90% and the correlation 

between the synthetic surrogate and the target phenotype is 0.75, there is a 27% increase in 

power relative to standard GWAS. Fig. 4 illustrates the benefit of SynSurr with respect to 

power across SNP heritabilities ranging from 0.1% to 1.0%. As the proportion of subjects 

with missing target phenotypes increases, the benefit of SynSurr with a well-correlated 

surrogate phenotype is increasingly apparent. Interestingly, the relative efficiency of SynSurr 

does not depend on the SNP heritability (Supplementary Fig. 3).

Evaluation on UK Biobank (UKBB) data

We next demonstrate the advantages of SynSurr over standard GWAS through multiple 

analyses in the UKBB37. Our first evaluation compares SynSurr and standard GWAS 

of height and FEV1 – two traits measured for nearly-all participants – as the target 

phenotype is increasingly ablated, providing a scenario in which the ground truth is 

known. We then perform SynSurr analysis of 6 incompletely measured DEXA traits. 

Bioelectrical impedance, an imprecise measure of body-composition, was recorded for 

most participants at baseline37,38. Ascertainment of DEXA scans, a highly-precise measure 

of body-composition, began with a pilot study of 5K randomly selected participants in 

2014 and remains ongoing39,40. At the time of our study, DEXA traits were available for 

30K participants, whereas impedance measurements were available for 500K participants, 

providing a natural opportunity for deploying SynSurr.

SynSurr outperforms standard GWAS with increasing ablation—Details of the 

ablation study are described in the Methods. Briefly, sets of kin were identified, then one 

subject was allocated to the GWAS data set while the remaining were allocated to the 

model-building data set. The synthetic surrogate was generated from a random forest trained 

on the model-building data. We note that having related subjects in the model-building and 

GWAS data sets is not problematic because 1. the GWAS data are not being used to evaluate 

generalization performance, and 2. the subjects within the GWAS data are independent.
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For each phenotype, we performed an oracle GWAS prior to the introduction of missingness, 

which establishes the number of genome-wide significant (GWS) associations that would 

be detected if the target phenotype were fully observed. Then, between 25% and 90% 

of the target phenotypes were randomly ablated. Both standard and SynSurr GWAS were 

performed on the remaining data. Prior to the introduction of missingness, the correlation 

between the target and the synthetic surrogate in the GWAS data set was R2 = 0.67 for height 

and R2 = 0.51 for FEV1. Scatter plots of predicted vs. observed height and FEV1 in the 

model-building and GWAS data are shown in Supplementary Figs. 8-9. Table 1 presents 

the numbers of oracle associations recovered by both the standard and SynSurr GWAS. 

SynSurr consistently recovers a higher proportion of the oracle associations than standard. 

Importantly, as demonstrated in Supplementary Table 7, SynSurr does not achieve this 

higher recovery by having a higher false discovery rate (FDR). Rather, SynSurr is leveraging 

the correlated surrogate outcome to obtain more precise SEs (Supplementary Tables 8-9). 

Extended Data Fig. 2 verifies that SynSurr is estimating the same genetic effect as the 

oracle GWAS (as is standard GWAS, see Supplementary Fig. 11). Even with 90% of target 

phenotypes ablated, the R2 for the genetic effects between SynSurr and oracle is 0.90 for 

height and 0.87 for FEV1. With 50% of target phenotypes ablated, the R2 rises to 0.99 and 

0.98 respectively, and in the absence of missingness, R2 = 1.00.

Working within the ablation framework, we also compared SynSurr with imputation-based 

GWAS and Multi-Trait Analysis of GWAS (MTAG)41. Beginning with imputation, we 

focused on the setting of 50% missingness, comparing SynSurr with single- and multiple-

imputation when the surrogates and imputations were either high quality (generated by 

random forest), low quality (generated by linear regression), permuted, or negated. The 

results are presented in Supplementary Tables 10-14. As expected, single-imputation fails 

to consistently control the FDR, and although multiple-imputation performed better in 

this regard, it was underpowered, identifying fewer than 20% associations then SynSurr. 

While permutation or negation compromised imputation-based inference, SynSurr was 

robust to permutation, performing comparably to standard GWAS, and invariant to negation. 

Extended Data Fig. 3 (height) and Supplementary Fig. 13 (FEV1) demonstrate that even 

when single- or multiple-imputation properly control the FDR, the estimated genetic effects 

are generally biased, whereas those of SynSurr are always unbiased.

For comparison with MTAG, we performed proxy GWAS (i.e., standard GWAS of Y ) then 

combined standard GWAS of Y  with proxy GWAS via MTAG. The results are presented in 

Extended Data Table 2 (height) and Supplementary Table 18 (FEV1). Due to the imperfect 

correlation between Y  and Y , proxy GWAS was biased (Supplementary Fig. 14) and poorly 

controlled the FDR, identifying numerous significant associations not detected by the oracle. 

As a result, MTAG inherited an inflated FDR. For example, in the case of FEV1, proxy 

GWAS had a FDR of 86% while MTAG had a FDR rising from 19% in the absence 

of missingness to 67% at 90% missingness. In cases where MTAG did control the FDR, 

SynSurr generally provided higher power.

SynSurr empowers body composition GWAS—We next performed SynSurr analysis 

of 6 DEXA traits, following the same sample splitting procedure used for the ablation 
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analysis (see Methods). Among subjects in the GWAS data set, the average R2 between 

the target phenotype and the synthetic surrogate was 0.80 (Extended Data Fig. 4). The 

distributions of covariates (Supplementary Fig. 16) and of predicted DEXA measurements 

(Extended Data Fig. 5) were similar between subjects with and without DEXA scans.

Figure 5 presents the number of GWS associations (p < 5 × 10−8) for standard GWAS and 

SynSurr GWAS, as well as the average χ2 statistic at the union of variants that reached 

significance in either GWAS. A larger χ2 statistic indicates higher power to detect an 

association. Standard GWAS identified between 8 and 10 GWS variants (8.3 on average), 

while SynSurr GWAS identified between 65 and 270 GWS variants, for an average of 

179.5 (21.5-fold improvement; Extended Data Table 3). The average χ2 statistic at GWS 

variants was 46.2 for SynSurr GWAS, compared with 14.1 for standard GWAS, a 3.3-fold 

improvement. To check control of the type I error, the SynSurr analysis was repeated using 

permuted phenotypes. The uniform quantile-quantile plots in Supplementary Fig. 18 show 

no evidence of type I error inflation under the null.

The Miami plots in Supplementary Fig. 19 indicate SynSurr can elevate a subthreshold 

signal to genome-wide significance. For example, the association of rs2814993 with leg 

mass, which has a suggestive P = 1.1 × 10−6 with standard GWAS, becomes GWS with 

SynSurr at P = 2.3 × 10−20 (in fact, this SNP is significant for all DEXA traits via SynSurr). 

rs2814993 is an intronic variant of the ILRUN gene, and was previously associated with 

height in a meta-analysis42 of European populations and an Australian twin study43. As 

another example, rs17782313 is associated with all DEXA traits by SynSurr, foremost with 

total mass P = 1.8 × 10−26, but at best reaches a P  of 1.6 × 10−5 with standard GWAS. 

rs17782313 is an intergenic variant near the MC4R gene, and has a well-characterized 

association with obesity44-46.

Although we are not aware of an independent GWAS of the same traits, for external 

validation we overlapped SynSurr’s findings with body composition associations from the 

GWAS Catalog32. On average, 70% of the DEXA associations identified by SynSurr were 

previously associated body composition in the GWAS Catalog (Fig. 6). As an internal 

validation, we performed a split-sample analysis, randomly allocating our GWAS data 

set 80:20 to independent discovery and validation cohorts. On average, 75.8% of GWS 

associations identified by SynSurr in the discovery cohort (n = 277, 998) replicated in the 

validation cohort (n = 69, 500)(Supplementary Table 22). Moreover, for all traits, the genetic 

correlation between the discovery and validation cohorts was high, 94.2% on average, with 

the 95% confidence interval always including 1.0 (Supplementary Fig. 21), underscoring the 

reproducibility of SynSurr’s findings.

To investigate the biological function of the GWS variants, we performed gene set 

enrichment analysis using FUMA47. On average, 509 gene sets were enriched among the 

SynSurr results, while no significant enrichment was identified with standard GWAS. For all 

phenotypes, gene sets related to body fat distribution were among the most significant, and 

numerous enrichments related to anthropometric traits were identified (Supplementary Data 

1).
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Discussion

Here we introduced SynSurr, a robust and powerful approach to performing GWAS on 

a partially missing target outcome. Analyses of real and simulated data demonstrate that 

SynSurr estimates the proper genetic effect, controls the type I error, and provides power at 

least equaling, but typically exceeding, standard GWAS. Meanwhile, alternative approaches 

like proxy GWAS and multiple-imputation provide biased effect estimates, and either fail to 

control the type I error (proxy GWAS) or lack power (multiple-imputation).

For all analyses reported in the main text, the model-building and GWAS data sets were 

non-overlapping. For our UKBB analyses, the relatives of subjects in the GWAS data set 

formed a natural model-building data set. However, in data-limited settings, splitting the 

cohort into disjoint subsets will likely reduce power. Analyses in simulated (Extended Data 

Fig. 6) and real (Supplementary Tables 15-16) data suggest that SynSurr remains valid 

when the same subjects are reused for both model-building and GWAS. While dropping 

the requirement for disjoint model-building and GWAS data sets would simplify analyses 

and facilitate training more complex surrogate models, more theoretical work is needed to 

understand the circumstances under which this is justified.

Many additional analyses are reported in the Supplementary Materials. Supplementary 

Section 6 examines the trade-off between allocating subjects to the model-building versus 

GWAS data sets, given that the two will be kept disjoint. We find that allocating more 

of the labeled subjects to the GWAS data set improved power (Supplementary Fig. 5). 

Supplementary Section 7 examines the validity of imputing an input to the imputation 

model (i.e., the model that generates Y ). Unlike imputing Y , imputing a model input does 

not modify the relationship of interest (i.e., that between G and Y , as quantified by βG). 

Thus, as demonstrated in Supplementary Fig. 6, imputing an input to Y  neither biases the 

estimated genetic effects nor inflates the type I error. Supplementary Section 8 examines 

the bias introduced by selectively depleting the sample of subjects with extreme phenotypes, 

introducing missingness not at random (MNAR)21. Although all methods incur bias when 

the data are MNAR, SynSurr is no more sensitive to MNAR than standard or imputation-

based GWAS (Supplementary Fig. 7, Supplementary Table 5).

Lastly, SynSurr is not without limitations. First, the method was derived assuming the 

joint distribution of the target phenotype and the synthetic surrogate is bivariate normal. 

To mitigate departures from this assumption, we suggest applying the rank-based inverse 

normal transformation48 to both Y  and Y , and did so for all analyses. Our current work 

focuses on dropping the bivariate normality assumption. This can be achieved by replacing 

the score equations derived from maximum likelihood theory with a set of weighted 

estimating equations49. Moreover, we plan to extend SynSurr to generalized linear models 

with outcomes from the exponential family using a zero-mean augmentation approach50,51. 

Second, SynSurr requires that the target phenotype is missing at random (MAR; see 

Supplementary Methods). This assumption is prevalent in the GWAS literature (Extended 

Data Fig. 7), and is made by any study that performs complete-case analysis21. While MAR 

is expected to hold for the DEXA phenotypes, because the invitation to participate did 

not depend on a subject’s body composition39, it may fail in settings where the factors 
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affecting ascertainment are unknown21. A future direction to develop an implementation of 

SynSurr that is applicable when the phenotype is MNAR, perhaps by specifying models 

for the missing data mechanism, then performing various sensitivity analyses. Third, 

SynSurr does not currently accommodate related individuals. Future work will introduce a 

subject-specific random effect for modeling genetic relatedness52. Finally, SynSurr currently 

requires individual-level data. An important next step is to develop an implementation that 

works from summary statistics.

Methods

Statement on Ethics

Our use of data from the UK Biobank (UKBB; https://www.ukbiobank.ac.uk) was approved 

under application 64875, and our study complied with all conditions and access procedures 

set forth by the UK Biobank.

Statistics and Reproducibility

For the analyses in UKBB, all participants of self-identified ‘White British’ ancestry with 

available genetics and non-missing values for either the target outcome or the surrogate 

outcomes were included. Restriction to the largest single ancestry was solely for the purpose 

of avoiding spurious associations due to population structure. Among sets of kin, one 

subject was allocated at random to the GWAS data set, and the remaining subjects to the 

model-building data set. No statistical method was used to predetermine sample size. Study 

participants were not randomized, however, as discussed in the Mendelian randomization 

literature [53], the genotypes of unrelated individuals at loci not in linkage can be viewed 

as randomly assigned in the absence of confounding (e.g., due to population structure). The 

investigators did not ascertain any data from participants, and were not blinded to any data.

Standard GWAS

For the standard GWAS, the target phenotype Y  is regressed on genotype G and covariates X
among those subjects whose target phenotypes are observed:

Y = GβG + XβX + ϵ .

(2)

The null hypothesis H0 :βG = 0 is evaluated using the standard two-sided Wald test54 :

TW = β G
2

SE2(β G)
,

(3)

where β G is the ordinary least squares (OLS) estimate of the genetic effect, and SE(β G) is the 

corresponding standard error.
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SynSurr GWAS

As shown in Figure 1, we recommend allocating disjoint model-building and inference 

data sets. Within the inference data, suppose the target phenotype Y  is observed for nobs

subjects and missing for nmiss, with n = nobs + nmiss denoting the total sample size. Denote by Y
a synthetic surrogate for Y  that is available for all n subjects. We recommend constructing 

Y  by means of a nonlinear ML model, however Y  could simply be another phenotype. Let 

G denote the genotype and X a vector of covariates, such as age, sex, and genetic principal 

components. To make use of both Y  and Y  in evaluating the association between Y  and G, 

SynSurr utilizes the joint association model:

Y
Y

∣ Z = Z 0
0 Z

β
α +

ϵT

ϵS

(4)

where Z = (G, X)T , β = (βG, βX)T , α = (αG, αX)T , and the residuals (ϵT, ϵS)T  follow a bivariate 

normal distribution:

ϵT

ϵS
∼ N 0

0 ,
ΣTT ΣTS

ΣST ΣSS
.

Here, the subscripts of T  and S denote the target phenotype and the synthetic surrogate 
respectively. In model (4), βG is the parameter of interest, which quantifies the association 

between the genotype and the target phenotype. This is the same parameter estimated by 

standard GWAS of Y  on G among the nobs subjects with observed target phenotypes in (2). 

Proxy GWAS, which regresses Y  rather than Y  on G, estimates αG instead of βG. Needless to 

say, αG can differ from βG, and likely will when Y  is generated from a misspecified model. 

SynSurr enables inference on βG while making use of all n subjects. Moreover, SynSurr 

is computationally tractable at biobank scale, requiring only two ordinary least squares 

regressions:

1. First, among all n subjects, regress Y  on Z to obtain an estimate of α.

2. Second, among the nobs subjects with observed phenotypes, regress Y  on (Y , Z)T

to obtain an estimate of the associated regression coefficient, denoted (δ, γ)T .

The validity of this two-step approach is demonstrated through a reparameterization of the 

log-likelihood function which allows the association parameter to be recovered as β = γ + δα. 

Details of this equivalence, as well as derivation of the Wald test for SynSurr, are provided in 

the Supplementary Methods.

UK Biobank genotype and sample quality control

Our UKBB data release contains genotypes for 488,377 subjects and 784,256 directly 

genotyped variants. Prior to the analysis, we performed the following common quality 

control steps55:
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1. Excluded individuals with > 10% missing genotypes.

2. Excluded SNPs with a genotyping rate < 90%.

3. Excluded SNPs with a Hardy-Weinberg Equilibrium p < 10−5.

4. Excluded SNPs with MAF < 1%.

5. Included only who self-identified as ‘White British’ and have very similar 

genetic ancestry based on a principal components analysis of the genotypes 

(Data-Field 22006).

6. Selected one member of each set of subjects with a kinship coefficient greater 

than 0.0625 (the threshold for third-degree relatives) for the GWAS data set, and 

allocated the remaining subjects to the model-building data set.

The stages from our genotype QC are summarized in Supplementary Table 6. After QC, 

435,468 directly genotyped genetic variants remained. Note that the model-building data 

set is allowed to contain related individuals, as there is not statistical requirement for 

independence.

Ablation studies

In total, 349,474 unrelated subjects were included in the height GWAS and 308,518 in 

the FEV1 GWAS. For each phenotype, sets of kin up to the third-degree were identified. 

One subject was randomly allocated to the GWAS data set and the remaining subjects 

to the model-building data set. Note that the subjects allocated to model-building could 

not otherwise participate in the GWAS as our bivariate association model (Equation 4) 

currently does not accommodate related individuals. The model-building data were used to 

construct a random forest for predicting the target phenotype on the basis of age, sex, and 

anthropomorphic measurements (see Supplementary Section 10.1).

Body composition GWAS

We performed SynSurr analyses of 6 incompletely measured DEXA phenotypes: android, 

arm, gynoid, leg, trunk, and total mass. In each case, the model-building data set included 

4,584 subjects with observed target outcomes, while the GWAS data set included 347,498 

subjects, 29,577 (8.5%) of which have observed target phenotypes. Within the model-

building data set, a random forest was trained to predict the DEXA phenotype on the basis 

of age, sex, height, body weight, body mass index, and 5 measures of impedance: whole 

body, left/right arm, left/right leg. The fitted models were transferred to the GWAS data set, 

where a synthetic surrogate outcome was generated for all subjects.

GWAS catalog overlap analysis

Summary statistics for body fat distribution, body fat percentage, fat 

body mass, lean body mass were downloaded from the NHGRI-EBI GWAS catalog32. 

After concatenating and reducing to 1 record per unique combination of chromosome 

and base pair, this set contained 984 associated variants. Overlap of study variants with 

GWAS catalog variants was assessed using the GenomicRanges (v1.54.0)56 package in R 
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(v4.3.2)57. A study variant was considered overlapped if fell within 250 kb of GWAS catalog 

variant for one of the aforementioned traits.

Extended Data

Extended Data Figure 1: Robustness and precision of SynSurr with an uninformative and 
informative synthetic surrogate.

In all cases, the number of subjects with observed phenotypes was n = 103. The number of 

subjects with missing phenotypes was varied to achieve the indicated level of missingness. 

The standard estimator utilizes the observed values of Y  only. In panel A, the synthetic 

surrogate has correlation ρ = 0.00 with the target phenotype, and is in fact independent of 

the target phenotype. Use of the SynSurr estimator with this uninformative surrogate results 

in no loss of efficiency relative to the standard analysis. In panel B, the synthetic surrogate 

has correlation ρ = 0.75 with the target phenotype. SynSurr becomes more efficient as the 
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number of subjects with missing target outcomes increases. The center of the box plot is the 

median, the upper and lower bounds of the box are the 75th and 25th percentiles, and the 

whiskers extend from the minimum to the maximum. The number of simulation replicates is 

5 × 103.

Extended Data Figure 2: Signal recovery of SynSurr relative to the oracle GWAS for height and 
FEV1.
A slope of 1.0 indicates that the estimated effect sizes are consistent with the oracle 

effect sizes. Note that although the slope deviates from 1.0 at 90% missigness, the 

slope approaches 1.0 as missingness declines. The following figure, which assesses signal 

recovery for standard GWAS, provides a point of comparison for the R2 values.

McCaw et al. Page 14

Nat Genet. Author manuscript; available in PMC 2025 March 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Figure 3: Signal recovery of imputation-based approaches and SynSurr relative 
to the oracle GWAS for height with 50% missingness.
A slope of 1.0 indicates that the estimated effect sizes are consistent with the oracle effect 

sizes, whereas a slope deviating from 1.0 suggests the presence of bias.
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Extended Data Figure 4: Predicted vs. observed values of body composition phenotypes within 
the model-building and GWAS data sets.
A random forest was trained to predict each of the 6 body composition phenotypes, obtained 

via DEXA scan, using 4,584 subjects allocated to the model-building data set. The GWAS 

dataset consists of 29,577 unrelated subjects with body compositions measured via DEXA. 

Model inputs included age, sex, height, body weight, body mass index, and 5 impedance 

measures (whole body, left arm, right arm, left leg and right leg).
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Extended Data Figure 5: Distribution of predicted body masses comparing subjects with and 
without DEXA measurements.
The violin plot shows the kernel density estimation of the distribution of the data, with the 

tips of the violin indicating the maximum and minimum observed values among subjects. 

Sample sizes: n = 29, 577 independent subjects with DEXA measurements; n = 317, 921
subjects without DEXA measurements.
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Extended Data Figure 6: SynSurr remains unbiased and properly controls the type I error when 
the same data are utilized for model training and for GWAS.

The number of subjects with observed phenotypes was n = 103, while the number with 

missing phenotypes was varied to achieve the indicated level of missingness. The model 

that generated the synthetic surrogate was either trained in the GWAS data set or in an 

independent data set of size n = 103. Upper shows the distribution of effect sizes across 20 

× 103. The true genetic effect size is βG = 0.1. The center of the box plot is the median, 

the upper and lower bounds of the box are the 75th and 25th percentiles, and the whiskers 

extend from the 5th to the 95th percentile. Lower shows the average χ2 statistic under 

H0 :βG = 0 across 50 × 103 simulation replicates, for which the expected value is 1.0. Error 

bars are 95% confidence intervals for the mean. Panel A (left) considers a “misspecified” 

(k = 2) model that can only capture quadratic dependence of Y  on X, while Panel B (right) 

considers a “correctly specified” model (k = 3) that can capture the cubic dependence. As 

seen, the validity of SynSurr is not contingent on correct specification of the surrogate 

model.
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Extended Data Figure 7: Survey of assumptions surrounding missing phenotypic data in GWAS.
The methods sections of all studies contributing summary statistics to the GWAS catalog 

between May 1st and November 1st, 2023, were manually reviewed. Among 47 studies, 24 

did not address missing phenotypic data. Of the 23 remaining, 21 made an assumption of 

missing at random (MAR) or missing completely at random (MCAR).

Extended Data Table 1:
Type I error and power of SynSurr across various 
missing rates and synthetic surrogates.

In all cases, the number of subjects with observed phenotypes was n = 103, while the number 

with missing phenotypes was varied to achieve the indicated level of missingness. The 

synthetic surrogate has correlation ρ = 0.00, 0.25, 0.50, 0.75, 0.25, 0.50, 0.75 with the target 

phenotype. The power is reported for the setting with SNP heritability of 0.5% (βG = 0.07). 

Type I error is controlled across all settings. The power is stable across values of ρ when 

there is no missing phenotype information, which is asymptotically equivalent to the 

standard analysis. The power of SynSurr increases with increasing missing rate and 

correlation. The number of simulation replicates is R = 105.

Missing
Rate (%)

ρ Type I
Error χ2 Power χ2

0 0.00 0.05 1.01 0.65 6.58

0 0.25 0.05 1.00 0.65 6.59

0 0.50 0.05 0.99 0.65 6.56

0 0.75 0.05 1.00 0.65 6.59
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Missing
Rate (%)

ρ Type I
Error χ2 Power χ2

25 0.00 0.05 0.99 0.66 6.59

25 0.25 0.05 1.00 0.66 6.69

25 0.50 0.05 1.00 0.68 6.96

25 0.75 0.05 1.00 0.72 7.52

50 0.00 0.05 1.01 0.65 6.56

50 0.25 0.05 1.00 0.67 6.76

50 0.50 0.05 0.99 0.71 7.37

50 0.75 0.05 1.00 0.79 8.77

75 0.00 0.05 1.00 0.65 6.56

75 0.25 0.05 1.00 0.68 6.89

75 0.50 0.05 1.00 0.75 7.90

75 0.75 0.05 1.00 0.87 10.68

90 0.00 0.05 1.00 0.66 6.58

90 0.25 0.05 1.00 0.68 6.84

90 0.50 0.05 1.01 0.76 8.29

90 0.75 0.05 0.99 0.92 12.2

Extended Data Table 2:
Comparison of SynSurr with Proxy and MTAG GWAS 
for height.

Proxy GWAS analyzes the synthetic surrogate Y  in place of the true target outcome Y . 

MTAG augments the results from standard GWAS, for a given level of missingness, with 

those from proxy GWAS. An association was considered a true positive if it was identified 

by the oracle GWAS (i.e. standard GWAS in the absence of missingness), and a false 

positive if it was not identified by the oracle GWAS. Below, “Total” is the total number of 

genome-wide significant associations, “True Positives” gives the number and percentage of 

oracle variants recovered, and “False Positives” gives the number and percentage of the total 

associations that were not detected by the oracle.

Method Missing (%) Oracle Total True Positives False Positives

Proxy 0 7,177 1,654 1,363(18.99%) 291(17.59%)

MTAG 0 7,177 2,981 2,981(41.54%) 0(0%)

SynSurr 0 7,177 7,177 7,177(100%) 0(0%)

MTAG 25 7,177 2,384 2,384(33.22%) 0(0%)

SynSurr 25 7,177 5,416 5,305(73.92%) 111(2.05%)

MTAG 50 7,177 1,703 1,698(23.66%) 5(0.29%)

SynSurr 50 7,177 3,453 3,421(47.67%) 32(0.93%)

MTAG 75 7,177 1,075 1,057(14.73%) 18(1.67%)

SynSurr 75 7,177 1,250 1,243(17.32%) 7(0.56%)

MTAG 90 7,177 832 788(10.98%) 44(5.29%)
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Method Missing (%) Oracle Total True Positives False Positives

SynSurr 90 7,177 329 329(4.58%) 0(0%)

Extended Data Table 3:
Comparison of genome-wide significant SNPs 
discovered by SynSurr with Standard GWAS for the 
UKBB DEXA phenotypes.

DEXA Phenotype SynSurr Only SynSurr and Standard Standard Only

Android 65 8 0

Arms 80 9 1

Gynoid 252 8 0

Legs 270 8 0

Total 268 8 0

Trunk 142 8 0

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Graphical overview of a SynSurr GWAS.
A. The data set is first split into a fully labeled model-building data set, including the target 

phenotype and surrogates, and a partially labeled inference data set, which also includes 

genetics. B. Within the model-building data set, an imputation model is trained to predicted 

the target phenotype on the basis of surrogates. C. The imputation model is transferred 

to the partially labeled inference data set and applied to predict the target outcome for 

all subjects. The predicted value of the target outcome is referred to as the “synthetic 

surrogate”. Importantly, the synthetic surrogate is maintained as a separate and distinct 

outcome from the partially missing target phenotype. D. Finally, within the inference data 

set, the partially missing target phenotype and the fully observed synthetic surrogate are 

jointly regressed on genotype and covariates to identify genetic variants associated with the 

target outcome.
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Figure 2: Unlike imputation-based estimators, SynSurr is robust to misspecification of the 
imputation model.
The true value for the parameter of interest is βG = 0.1, corresponding to a variant with 

ℎ2 = 1 %. For each estimator, the sample size is n = 104, the mean value across 103 

simulations is shown by the point, and two 95% confidence intervals (CIs) are presented: the 

dotted CI is based on the analytical standard error (SE) while the solid CI is based on the 

empirical SE. The oracle estimator has access to the complete version of Y , before 25% of 

values were set to missing. The standard estimator has access to the observed values of Y
only. The imputation-based estimators impute the missing values of Y  using an imputation-

model fit on an independent data set. The set of covariates used to fit the imputation model 

are shown as a tuple: the imputation model based on G and X is correctly specified, whereas 

that based on G alone or X alone is misspecified. The SynSurr estimator jointly analyzes 

the partially missing Y  with the synthetic surrogate Y , where Y  is generated for all subjects 

from the imputation model. The key observation is that SynSurr does not require a correctly 

specified generative model to yield unbiased estimation and valid inference.
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Figure 3: SynSurr controls type I error across missingness rates and target-surrogate 
correlations.
Type I error is the probability of incorrectly rejecting the null hypothesis H0 :βG = 0. In 

all cases, the number of subjects with observed phenotypes was n = 103. The number of 

subjects with missing phenotypes was varied to achieve the indicated level of missingness. 

The synthetic surrogate has correlation ρ ∈ {0.00, 0.25, 0.50, 0.75} with the target phenotype. 

The number of simulation replicates is 106. P-values are two-sided and were calculated by 

SynSurr. Error bands (dashed black lines) represent 95% confidence intervals around the 

expected −log10 (p-values) under the null hypothesis. Adherence to the diagonal (red line) 

indicates that the p-values are uniformly distributed under the null.
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Figure 4: Power of SynSurr across various missing rates, target-surrogate correlations, and SNP 
heritabilities.
Power is the probability of correctly rejecting the null hypothesis H0 :βG = 0. In all cases, 

the number of subjects with observed phenotypes was n = 103. The number of subjects with 

missing phenotypes was varied to achieve the indicated level of missingness. In each panel, 

the synthetic surrogate has correlation ρ ∈ {0.00, 0.25, 0.50, 0.75} with the target phenotype 

and the SNP heritability was varied from 0.1% to 1%. When there is no missingness, 

SynSurr is equivalent to the standard analysis and shows no variation across values of ρ. The 

power of SynSurr increases with increasing missingness and target-surrogate correlation. 

The number of simulation replicates is 104.
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Figure 5: Comparing SynSurr and standard GWAS with respect to the number and significance 
of genome-wide significant associations for body composition traits.

A. Number of genome-wide significant (GWS) associations (p < 5 × 10−8) with DEXA 

body composition traits for standard and synthetic surrogate (SynSurr) GWAS. P-values 

are two-sided and are calculated by linear regression (Standard) or SynSurr. B. Average χ2

statistic at the union of variants that reached genome-wide significance under either method. 

A greater expected χ2 statistic directly corresponds to greater power to detect an association. 

Error bars are 95% confidence intervals for the mean. The number of independent GWS 

variants averaged across is shown in A.
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Figure 6: External validation via overlap of genome-wide significant variants for body 
composition with associations from the GWAS catalog.
Variants from the GWAS catalog associated with body fat distribution, body fat percentage, 

fat body mass, and lean body mass were compiled. A study variant was considered 

overlapped if it fell within 250 kb of a GWAS catalog variant. Panels A and B show the 

counts and proportions of overlapped variants, respectively. Note that, with 1 exception, 

all variants identified by standard GWAS were also identified by SynSurr (Supplementary 

Table 21). The perfect overlap of the standard GWAS variants with known body composition 

associations in panel B is a direct consequence of the standard GWAS detecting very few 

genome-wide significant variants (8.3 on average), and indicates that all of these variants 

were previously known.
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Table 1:
Number of genome-wide significant SNPs recovered by standard and SynSurr GWAS 
across increasing ablation of the target phenotype.

The oracle method establishes the number of genome-wide significant (GWS) variants (p < 5 × 10−8) that 

would be identified in the absence of missingness. P-values are two-sided and calculated by linear regression 

(Oracle, Standard) or SynSurr. Missingness was introduced by ablating 25%, 50%, 75%, and 90% of the target 

phenotypes. Standard and SynSurr GWAS were performed on each of the ablated data sets. Standard GWAS 

refers to performing GWAS using only the observed values of the target outcome. The number and percentage 

of full-sample (oracle) GWS variants recovered by each method are reported. The false negative rate is 100% 

minus the recovery rate shown. Also see Supplementary Tables 7-9.

Missing Rate (%)

Height FEV1

nobs Oracle Standard SynSurr nobs Oracle Standard SynSurr

0 349,474 7,177 7,177(100%) 7,177(100%) 308,518 974 974(100%) 974(100%)

25 262,105 7,177 4,896(68.22%) 5,305(73.92%) 231,388 974 546(56.06%) 599(61.50%)

50 174,737 7,177 2,742(38.21%) 3,421(47.67%) 154,259 974 278(28.54%) 326(33.47%)

75 87,368 7,177 834(11.62%) 1,243(17.32%) 77,129 974 60(6.16%) 81(8.32%)

90 34,947 7,177 192(2.68%) 329(4.58%) 30,852 974 0(0%) 0(0%)
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