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1. Introduction
MLIPs have opened up new directions in com-

putational materials chemistry. They offer a com-
pelling combination of accuracy, flexibility, and
computational efficiency [1, 2]. ML-driven simula-
tions are enabling new insights into the structure
and behavior of amorphous materials, bridging fun-
damental understanding and real device applica-
tions [3, 4]. As their reliability and generalizabil-
ity continue improving, ML potentials rapidly evolve
intomainstream simulation tools formaterialsmod-
eling [5, 6]. A foundation model has been pro-
posed using state-of-the-artMACE architecture[7, 8],
which can achieve qualitative and at times quanti-
tative accuracy on a huge dataset including diverse
molecules and atoms.
This study investigates the application of MLIPs

based on MACE models to multicomponent solid-
state electrolytes (SSEs), a critical class of materials
for next-generation batteries. We apply this method
to study all-solid-state batteries, where liquid elec-
trolytes are replaced by solid fast ion conductors,
offering a promising pathway for safer commercial
lithium- and sodium-based batteries. Ion transport
inmixed polyanion solid electrolytes has been previ-
ously investigated using both computational and lab-
oratory methods. We are using computational ways
to study here.
We first benchmark MLIP performance against

established SSE families, Na1+xZr2SixP3-xO12 and
Li4xGexP1-xO4-4xS4x, confirming their general appli-
cability while identifying key considerations for ro-
bust potential development in chemically diverse
systems.
Then the predictive power of this approach is

demonstrated by constructing a high-performance
MLIP for the new halide system Li3InxY1-xBr6yCl6-6y.
This potential facilitated an efficient exploration of
its two-dimensional compositional space, leading
to the identification of the Li3InxY1-xBr6yCl6-6y stoi-
chiometry with the most favorable predicted. Our
results underscore the capability of MLIPs to accel-
erate the discovery cycle of complex functional ma-
terials and provide a robust computational frame-
work for designing advanced solid electrolytes.

2. Methodology
2.1 Dataset generation
The distribution of training dataset is a critical

factor governing the performance of MLIP mod-
els. We designed a workflow depicted in Fig. 1 to
build a comprehensive training dataset for a multi-
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Fig. 1: Workflow to build training dataset.

component system.
First, we generate different orderings for each

composition, and their energies are estimated us-
ing the foundation model (MACE-MP0) to construct
a convex hull. These structures are then selected
based on their energy above the hull ∆E, with a
probability proportaional to the Boltzmann distribu-
tion, p ∝ exp− ∆E

kBT . T is set to 800K in this work.
This probability balances low-energy structures and
thermodynamically accessible higher-energy struc-
tures realistically. The structure with minimum en-
ergy is always included to ensure baseline coverage.
Subsequently, for all these chosen structures,molec-
ular dynamics simulations are performed using the
same foundationmodel (MACE-MP0),in the NVT en-
semble at 800K for 15ps. This step aims to explore
the possible configuration space effectively. Then
we randomly select about 2500 structures from these
MD trajectories after 1 ps, and perform DFT calcula-
tions to build an accurate training dataset efficiently.
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2.2 Model training
Fine-tuning has the advantage of requiring only a

small dataset to achieve stable results, but it heav-
ily relies on the quality and suitability of the un-
derlying foundation model. In some cases, signifi-
cant additional datamay be needed to correctmodel
biases or limitations. Fine-tuning on a multi-head
model can prevent catastrophic forgetting that oc-
curs sometimes during naive fine-tuning.
In this work, we perform a multi-head fin-tuning

on the materials project model MACE-MP0 with
medium size, rather than naive fine-tuning, to avoid
catastrophic forgetting. The model is trained for a
maximumof 500 epochs, with early stopping applied
if the validation loss does not improve for 20 consec-
utive epochs. The learning rate is 0.01.
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