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Abstract

Geometric inductive biases such as spatial curvature, factorizability, or equivariance have
been shown to enable learning of latent spaces which better reflect the structure of data and
perform better on downstream tasks. Training such models, however, can be a challenging
task due to the topological constraints imposed by encoding to such structures. In this
paper, we theoretically and empirically characterize obstructions to training autoencoders
with geometric latent spaces. These include issues such as singularity (e.g. self-intersection),
incorrect degree or winding number, and non-isometric homeomorphic embedding. We
propose a method, isometric autoencoder, to improve the stability of training and convergence
to an isometric mapping in geometric latent spaces. We perform an empirical evaluation of
this method over 2 domains, which demonstrates that our approach can better circumvent
the identified optimization problems.

Keywords: Representation Learning, Autoencoders, Homeomorphism, Topological, Equiv-
ariant, Lie Groups, Isometry

1. Introduction

Recent research has shown that geometric inductive biases can be helpful for representation
learning (Higgins et al., 2022, 2018; Pfau et al., 2020). Representations that are equivariant
to transformations of the underlying generative factors, many of which can be elegantly
described by geometric priors such as groups (rotation, translation, etc.), make it easier to
reason about the similarities of different instances in the dataset. In this paper, we focus on
geometric inductive biases in the context of unsupervised and weakly-supervised models for
representation learning. While the prevailing intuition is that an inductive bias that matches
the underlying topology of the data will guide a model towards a useful representation, there
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are also indications that certain inductive biases can make a model more difficult to train in
practice (Park et al., 2022; Falorsi et al., 2018).

To understand why encoding to geometric structures can give rise to optimization
challenges, we formalize different topological defects that can occur in a randomly initialized
encoder, such as discrepancies in the winding number or crossing number relative to those
in a homeomorphic encoder. We show that these topological defects will be preserved under
the assumption of continuous optimization, which shows that escaping these local optima
relies on the discrete jumps that are employed during optimization (Section 3). Moreover,
we show that, even in the absence of topological defects, a homeomorphic encoder may
violate isometry, which is to say that equidistant points on the abstract manifold may not
map to equidistant points in the latent space. To alleviate these challenges to optimization,
we propose an autoencoder objective (Section 4) that encourages equidistant points on the
abstract manifold to map to equidistant points in latent space. Experiments demonstrate
that this objective can help to escape local optima during the early stages of training,
resulting in more reliable convergence and a greater degree of isometry after training.

2. Problem Statement

Homeomorphic Autoencoders. We focus on learning representations in domains where
we can associate a known geometry with input data. Concretely, we assume that our data
lies on a low-dimensional manifold M that is embedded in a higher-dimensional input
space X := Rn via a mapping gX : M → X . This is commonly known as the manifold
hypothesis (Bengio et al., 2013). We denote the image of the mapping byMx := gX (M) ⊆ X .
Then gX is a homeomorphism, or topological isomorphism, onto its image g : M ∼−→Mx.
That is, g is continuous, bijective, and has a continuous inverse.

Our goal is to learn a mapping fφ : X → Z for some suitable latent space Z such that
the encoder is itself a homeomorphism when restricted to the embedded manifold Mx. To

do so, we follow the design proposed by Falorsi et al. (2018) fφ : X
hφ−→ Y π−→ Z. Here

Y := Rd is an intermediate Euclidean space capable of embedding M. The first function
hφ is an ordinary neural network. The second function π is parameter-less mapping which
can be interpreted as a projection to Z. For example, For example, Y := R2 and π is the
Gram-Schmidt process in the case of group SO(2). As we assume we know the geometry of
the data, we set Z to be M

To learn a homeomorphic encoder fφ|Mx : Mx → M in an unsupervised manner, we

will introduce a decoder network f †θ : Z → X . The composition f †θ ◦ fφ then defines an
autoencoder that can be trained by minimizing the reconstruction loss Lφ,θ(x) := dX (x, x̂)

based on a distance metric dX , where x̂ := f †θ (fφ(x)). Note that while minimizing the

reconstruction loss ensures that f †θ ◦ fφ|Mx approximates the identity, it need not be the case
that the composition ηφ = fφ ◦ g : M→M is also the identity. Rather it is a self-bijection
on M representing the different potential choices of parameterizations of M.

3. Theory

In this paper, we uncover topological obstructions that are distinct from the homological
obstruction identified by de Haan and Falorsi (2018). The main insight that we put forward
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is that imposing a geometric structure on the latent space introduce additional obstructions
during optimization, which we call optimization obstructions. We now discuss several specific
optimization obstructions. We focus on the case where M is the Lie group SO(2) with
underlying manifold S1, y ∈ R2, and z = π(y) = y/‖y‖. All the optimization obstructions
we consider occur in this case and in the case of higher-dimensional manifolds M as well,
but are simpler to describe for S1. See Appendix B & E for more details and proofs.

3.1. Figure Eight Local Minima

To understand what obstructions might arise during optimization, we consider continuous-
time training along a gradient flow. We denote the weights of the initialized encoder as
φ(0) and the trained weights as φ(1). We consider the idealized setting in which φ(t) is a
continuous function of t. That is, fφ(t)(x) is a homotopy from the initialized encoder fφ(0)(x)
to the trained one fφ(1)(x). Empirically, either at initialization or after some training, we
often observe a “figure 8” pattern in Y (Figure 11, bottom left). Once this local minimum is
obtained, it is very difficult to move out of it in practice using gradient descent. We make
this intuition precise by observing that continuous optimization preserves the ordering of
points on the circle as demonstrated by Proposition 1 and Figure 13.

Proposition 1 Assume that fφ(t) undergoes continuous optimization. Assume that fφ(t) ◦g
is injective for all t. The cyclic ordering induced on k points by fφ(0) is equal to fφ(1). Thus
a figure 8 embedding, cannot be transformed to a homeomorphic embedding.

In other words, transition from a “figure 8” to a homeomorphic embedding is impossible
without violating continuity during optimization. This suggests that when training with
SGD, we will need to rely on the stochasticity of the gradient estimate and discrete jumps
to escape this local optimum.

3.2. Degree Obstructions

A second obstruction is that continuous optimization preserves the winding number of a
mapping. This number is defined as follows. If the embedded image hφ(Mx) does not
contain the origin, then the mapping factors through R2 \ {(0, 0)} and is consequently
continuous. In this case ηφ = π ◦ hφ ◦ g has a well-defined degree, also known as winding
number w(ηφ) ∈ Z. In order to be a homeomorphic embedding the winding number must
be w(ηφ) ∈ {−1, 1}. Under random initialization, however, the initial network may have
winding number equal to any integer. Assuming continuous optimization then hφ(t)(x) is
a continuous function of both x, t. We assume that hφ(t)(x) 6= (0, 0) for any t, x and thus
winding number is defined for any time. The following proposition thus holds.

Proposition 2 The winding number of the initialized model and final model are equal
w(π ◦ hφ(0) ◦ g) = w(π ◦ hφ(1) ◦ g).

In practice, neither the continuous optimization assumption nor the avoidance of the
origin holds. Rather hφ is updated by SGD in discrete jumps and hφ ◦ g may map to the
origin. Thus, empirically, we do see that if the weights and learning rate is high enough, the
winding number may change. For more discussion on this, see Appendix B.
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L-shaped Tetrominoe Teapot Airplane
# H. Isometry # H. Isometry # H. Isometry

AE 0/15 141.28± 39. 2/15 114.68± 66. 0/15 104.94± 44.
DAE 0/15 133.83± 26. 2/15 117.22± 71. 0/15 91.40± 31.
Isom-AE 12/15 44.94± 79. 12/15 24.48±43. 9/15 80.43±105.
Isom-AE + y-reg 9/15 82.71± 104.20 8/15 74.51± 81. 5/15 124.10± 93.53

Sup-AE 15/15 5.74±0.49 13/15 5.67± 0. 0/15 96.78± 38.

Table 1: Evaluation of latent space for different objectives trained on different images.

4. Isometric Autoencoders

We argue that preserving relative distance is key for a representation to be useful in most
downstream tasks. For example, if we want to cluster our latent representations based on
there orientation, we want the the distances in latent space to reflect the actual distance in
the abstract manifold M. For the purpose of representation learning, we do not necessary
need the encodings to match the ground truth exactly as long as we are able to compare
instances in a meaningful way. We can formalize this concept in terms isometry. A function
η : X → Z is isometric if dX (x1, x2) = dZ(η(x1), η(x2)) for all x1, x2 ∈ X . We now define
our notion of optimality based on this property.

Definition 3 Let g, fφ, ηφ be defined as above. The encoder fφ is optimal if ηφ is isometric.

While an isometry is desirable, it is generally almost impossible to guarantee and
practically difficult to verify for a function with neural network components. Therefore, we
need a notion of isometry that is both computable and achievable using standard gradient
descent optimization methods. Motivated by these practical limitations, we define a less
restrictive property that can be verified in practice in Appendix A. Moreover, we propose
an objective that encourages to learn an optimal encoder by making slightly stronger
assumptions about the data.

Concretely, we assume our dataset has the form D{{xi,1 . . . xi,K}}Ni=1 generated as follows.
We assume that M is a group manifold, for example SO(2). We then sample m1,mT ∈M.
We iteratively apply the transformation mT to get a sequence mk = mTmk−1 ∈M. Then
we pass mk to the ground truth generative network xk = g(mk). Let zk = f(xk) be the
encoding of xk and z(k−1,k) = zkz

−1
k−1 be the group element that sends zk−1 to zk. In each

sequence, we know z(k−1,k) should be identical for all k. We define our objective as

LIsom-AE
φ,θ ({xk}Kk=1) =

K∑
k=1

dX (xk, x̂k) + α

K−1∑
k=2

dZ(z(k−1,k), z(k,k+1)), (1)

5. Experiments

We perform a series of experiments to explore the difficulty of learning an optimal fφ.
Concretely, we investigate how often do we fall into one of the failure cases described in
Section 3. We also examine whether training with the Isom-AE objective helps in terms of
learning an optimal encoder. The baselines are discussed in Appendix D.
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Figure 1: Latent space interpolation in the decoder (Top) and encoder (Bottom).

Evaluation. We evaluate all models based on three criteria (1) homeomorphism, (2)
isomtery, and (3) reconstructions. Similar to isometry, it is practically difficult to determine
if a learned mapping is homeomorphic. Here, we verify homeomorphism by examining the
encoder to check if it has (1) winding number 1 or -1, (2) crossing number 0, (3) yields
a continuous path when interpolating in the data manifold from −π to π. For evaluating
isometry, we simply compute and report the term Lp(N) described in Definition 4 for p = 2
and N = 10000 rather than applying a binary threshold.

Images. In this experiment, we train on images of an L-shaped tetromino, a teapot, and
an airplane (Shilane et al., 2004). The SO(2) manifold corresponding to each object is
made by rotating the image of the object around the center. We describe the full sequence
generation process in Appendix H.

Results. We report our findings in Table 1. Similar to the 3D crown experiment, we
observe that even though the types of obstructions vary across images, both AE and DAE in
general fail to learn a homeomorphic encoder. The Isom-AE objective improves performance
noticeably across all metrics. Contrary to the 3D-Crown experiment (Appendix D), we
observe that y regularization is not very helpful. We observed the main failure case for most
of the non-homeomorphic encoders was due to discontinuity. Isom-AE resolved this issue
for the most part, which allows us to interpolate nicely in the Z-space (Figure 1). What is
very surprising is that in the case of airplane, we see that even supervised objective fails to
overcome these optimizations obstructions, while an Isom-AE is able to achieve this nicely.

6. Conclusion

In this paper, we investigate obstructions to optimization encountered when learning encoders
to topological spaces. This work contains several limitations. Firstly, our theoretical analysis
is limited by the idealized assumptions necessary to analyze the method using topological
tools which do not exactly match those encountered in practice. Secondly, the metrics we
define such isometry and harder to define and compute for higher dimensional manifolds.
Future work includes expanding our analysis and techniques to a boarder array of Lie groups
and non-group manifolds.
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Appendix for “Understanding Optimization Challenges when

Encoding to Geometric Structures”

Appendix A. Isometric Representations

Even when a learned representation is homeomorphic, it may not be isometric, in the sense
that equidistant points on the abstract manifold M may not map to equidistant points
in the latent space Z. As an example, let us consider the case where M is the special
orthogonal Lie group SO(2) defined as

SO(2) = {z | z ∈ GL(2), zT z = I, det(z) = 1} =

{
A(y) :=

[
y1 −y2
y2 y1

]
| y ∈ R2, ‖y‖ = 1

}
,

(2)

where GL(2) is the general linear group, the group of invertible 2 × 2 matrices under
matrix multiplication. Define, for example, the embedding g : SO(2)→ R2 by z 7→ z(0, 2)>,
embedding the manifold as a circle of radius 2. We consider fφ mapping this embedding
back to the group by first encoding to Y ⊆ R2 via hφ and then projecting to the circle S1,
the manifold underlying the Lie group, via π : R2 → SO(2) defined y 7→ A(y/‖y‖).

We can construct a mapping fφ = π ◦ hφ by first mapping x ∈ R2 to points on an ellipse,

hφ(x) := (a cos θ(x), b sin θ(x))>, θ(x) = atan2(x2, x1), (3)

and then projecting them to SO(2) via π as described above. Restricted toMx := g(SO(2)),
fφ is an homeomorphism. Moreover, as demonstrated in Figure 15 the resulting mapping ηφ
might not preserve the distances between instances on the manifold M when mapping to
the latent space Z.

A.1. Approximate Isometry

While an isometry is desirable, it is generally almost impossible to guarantee and practically
difficult to verify for a function with neural network components. Therefore, we need a
notion of isometry that is both computable and achievable using standard gradient descent
optimization methods. Motivated by these practical limitations, we define a less restrictive
property that can be verified in practice:

Definition 4 Let f : X → Y. Let xi, x
′
i ∼ pX (x) for 1 ≤ i ≤ N , yi = f(xi), y

′
i = f(x′i),

and qi = dX (xi, x
′
i)/dY(yi, y

′
i). Let 1 = (1, . . . , 1) ∈ Rn. Define

Lp(N) = ‖q − 1‖p. (4)

We say f is approximately-isometric with probability greater than 1− α (for ε, α, p,N), if

P(Lp(N) < ε) > 1− α. (5)
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Appendix B. Theory: Additional Details

B.1. Proposition for the figure “8” shape

Let (z1, z2, z3, z4) denote the four end points of the two disjoint intervals of fφ(0). Since
there is no starting point for the circle, an ordering of these points is only well defined up to
cyclic permutations in the group C4, that is (z1, z2, z3, z4) mod C4 = (z2, z3, z4, z1) mod C4.
Proposition 1 now states that continuous optimization must preserve an ordering up to
equivalence. The proof is illustrated in Figure 13.

B.2. Winding number in practice

Empirically, we do see that if the weights and learning rate is high enough, the winding
number may change. However, if the initialization avoids origin, then due to the tendency
of the magnitude of the unnormalized embeddings hφ(x) to grow during optimization, the
winding number changing becomes more unlikely and thus a significant obstruction to
finding homeomorphic embeddings under optimization. Winding number is also the primary
optimization obstruction which makes it impractical to remove the hard projection π. If
instead we decode directly from y ∈ Y but push embeddings to the unit circle using the
loss |‖y‖ − 1|, then it is far more likely we converge to discontinuous embeddings with the
incorrect winding number (Appendix G).

B.3. Magnitude Growth in Y

Empirically, we observe the values of the embeddings in Y = R2 continually grow during
training. This phenomenon makes it more difficult for the embedded data manifold hφ(Mx)
to cross the origin and for the winding number to change. We give a theoretical explanation
for this behavior.

Consider what would happen if the embedding y were updated directly based on the
gradient of the loss ∇yL with respect to y. We assume the loss depends only on z = y/‖y‖,
and so has level sets which are unions of radial rays from the origin. The gradient ∇yL
must then be tangent to a circle about the origin. That is, for y = (a, b), the gradient
∇yL = (±b,∓a). Under gradient flow, the evolution of y in time yt would thus flow along
circles of fixed radius and so ‖y0‖ = ‖yt‖. Under gradient descent, however, due to the
convexity of the flow lines, which are circular, the embeddings y will tend to grow in
magnitude. For η ∈ R>0, we compute

‖y − η∇yL‖2 = (a∓ ηb)2 + (b± ηa)2 = (a2 + b2)(1 + η2) > ‖y‖2.

In practice, however, we do not update y based on ∇yL but rather based on the gradient
with respect to model parameters φ. Let F : Φ → Y be the map from model parameters
φ to y given fixed input data x. Then the actual update to y is ∇̃yL = dF T ◦ ∇φL where
dF is the total derivative or Jacobian of the map F . Since ∇φL = (dF )∇yL we have
∇̃yL = dF TdF∇yL. The angle between ∇̃yL and ∇yL is bounded by some θ a quantity
depending on the eigenvalues of the operator dF . Given that ∇yL is tangential to the circle,
assuming for simplicity ∇̃yL has constant length L and uniform distribution [−θ, θ] in angle
to ∇yL, the norm of y still grows in expectation.

9
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Proposition 5 Assume a circle of radius R. Let v be a random vector at y on the circle of
length L < R with angle to the tangent uniform in [−θ, θ]. Then

E[‖y + v‖2] =
φ
(
L2 + 2R2

)
+ L sin(φ)(2− L cos(φ))

2φ
> ‖y‖2.

Appendix C. Related Work

Unsupervised or Weakly Supervised Learning of Geometric Representations
There has been a large amount of work concerned with learning representations from
data with geometric structure in the unsupervised, weakly supervised, or semi-supervised
setting. To this end, different methodologies have been brought forward, including the
use of hyperspherical prior distributions (Davidson et al., 2018a), specializations of the
reparameterization trick (Falorsi et al., 2018; Rey et al., 2019), and making use of local
connectivity information (Moor et al., 2020; Chen et al., 2021; Lee et al., 2021).

Learning Disentangled Representations. Topological group structure in data can also
be used to define a notion of disentanglement based on the invariance properties of the
representations under certain group transformations (Higgins et al., 2018). This has given
rise to a corpus of work that aims to learn disentangled group representation in various
settings (Caselles-Dupré et al., 2019; Quessard et al., 2020; Tonnaer et al., 2022; Pfau
et al., 2020; Zhu et al., 2021). Tonnaer et al. (2022) propose an objective which is similar
our Isom-AE objective in Section 1 to learn Linear Symmetry-Based Disentangled (LSBD)
representations. However, this objective assumes knowledge of ground truth group elements
while our objective only assumes that sequences are generated by repeated application of
the same unknown group element. Our work differs from these approaches in that we are
not interested in disentanglement, but focus on fundamental topological obstructions when
encoding to group with non-trivial topological structure.

Topological Obstructions in Learning To develop a better understanding of the failure
modes that we observe in Figure 14, we will formalize topological obstructions to training
homeomorphic embeddings in Section 3. Homological obstructions to auto encoding have
been observed (de Haan and Falorsi, 2018; Batson et al., 2021; Falorsi et al., 2018; Rey
et al., 2019) in previous work. de Haan and Falorsi 2018, Theorem 1 give a formal condition.
For any latent space Z with non-trivial topology, it is possible to learn an encoder fφ
that is continuous when restricted to Mx ⊂ X , but this encoder must be discontinuous on
the full space X . For this reason, Falorsi et al. (2018) and others (Xu and Durrett, 2018;
Davidson et al., 2018b; Meng et al., 2019) use the two-part encoder like ours, inserting
discontinuous layers π when mapping to circles, spheres, SO(n), or other manifolds. This
explicit discontinuity circumvents the homological obstruction without forcing the linear
layers of the network to approximate discontinuities using large weights, which we and others
find leads to instability during training and inferior reconstructions (Section 5 and Falorsi
et al. (2018)).
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Appendix D. Experimental Details

Baselines. Throughout our experiments, we compare against (1) a standard AE where
the objective is only based on reconstruction loss, (2) a supervised AE where in addition
to minimizing the reconstruction loss, the encoder is trained to predict the ground truth
representations. These two scenarios serve as extremes on the spectrum of guiding the
model to the right representation. As another baseline, we also compare against a denoising
autoencoders (DAE) which aids to learn a smoother embedding space. In addition to
Isom-AE, we also tried regularizing the y-space to be close S1 (by penalizing (‖y‖2 − 1)2) in
order to mitigate the optimization problem discussed in Subsection B.3, which we refer to
as “Isom-AE + reg-y”.

We train all our models for 100 epochs with a batch-size of 100. For optimization, we use
the RAdam optimizer (Liu et al., 2019) with a learning rate of 5e-4. For low-dimensional
cases, we use a 4-layer MLP with 512 hidden units followed by a tanh activation for both the
encoder and decoder architecture (Table 2). For the high-dimensional image datasets, we
use a 4-layer CNN with kernel, stride, and padding of size 4, 2 and 1 respectively followed by
a leakyReLU activation (Table 3). All models were initialized and trained with 151 different
random seeds. Though we hypothesize that these topological defects may occur in a variety
of topological structures, in this paper we restrict our experiments to the Lie group SO(2)
with π defined as in Section 2.

Encoder

Input x ∈ R3

F.C. 512, Tanh.

F.C. 512, Tanh.

F.C. 512, Tanh.

F.C. 2, π(y) := y/‖y‖.

Decoder

Input z ∈ R2 s.t. ‖z‖2 = 1

F.C. 512, Tanh.

F.C. 512, Tanh.

F.C. 512, Tanh.

F.C. 3.

Table 2: Architecture of the Encoders and Decoders for the 3D crown dataset.

Encoder

Input 32× 32 images

4× 4 conv. 32 stride 2, LeakyReLU.

4× 4 conv. 32 stride 2, LeakyReLU.

4× 4 conv. 64 stride 2, LeakyReLU.

4× 4 conv. 64 stride 2, LeakyReLU.

F.C. 2, π(y) := y/‖y‖.

Decoder

Input z ∈ R2 s.t. ‖z‖2 = 1

4× 4 deconv. 64, stride 2, LeakyReLU.

4× 4 deconv. 64, stride 2, LeakyReLU.

4× 4 deconv. 32, stride 2, LeakyReLU.

4× 4 deconv. 3, stride 2, LeakyReLU.

Table 3: Architecture of the Encoders and Decoders for the image datasets.

1. We used a higher number of random seeds than normal to account for the training instability.
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Appendix E. Proofs

We include the proofs for the propositions in the main text.

E.1. Figure Eight Local Minimum

Proposition 6 Assume that fφ(t) undergoes continuous optimization and is thus continuous
in t. Assume that π ◦ fφ(t) ◦ g is injective for all t. The cyclic ordering induced on k points
by fφ(0) is equal to that induced by fφ(1). Thus a figure 8 embedding, which corresponds to
cyclic order (z1, z2, z4, z3) mod C4, cannot be transformed to a homeomorphic embedding,
which has cyclic order (z1, z2, z3, z4) mod C4 or (z4, z3, z2, z1) mod C4.

Proof Since we assume π◦fφ(t)◦g is injective for all t, the path z(t) = (π◦fφ(0)◦g(θi))
4
i=1 is

inside the k-fold configuration space on S1 defined Confk(S
1) = {(z1, . . . , zk) ∈ (S1)k : zi 6=

zj for i 6= j}. In order to prove the claim, we will show that the path-connected components
of Confk(S1) correspond to cyclic orderings of (z1, . . . , zk) and thus the start and end point
of every path share a cyclic ordering.

Mapping (z1, . . . , zk) 7→ (zk, (z
−1
k z1, . . . , z

−1
k zk−1)) gives a homeomorphism Confk(S1) ∼=

SO(2) × Confk−1(S
1 \ {1}) ∼= SO(2) × Confk−1(R). Let z̃i = z−1k zi. Consider D =

{(z̃1, . . . , z̃k−1) : z̃1 < . . . < z̃k−1} ⊂ Confk−1(R).
We can identify the connected components of Confk−1(R). The set D is a fundamental

domain for the action of the symmetric group Sk−1 on Confk−1(R). Thus Confk−1(R) =∐
σ∈Sk σ(D) is a disjoint union. Linear interpolation shows D is connected. The sets D

and σ(D) for σ ∈ Sk are not connected. Consider a path from z = (z1, . . . , zk) ∈ D to
σ(z) ∈ σ(D). The element σ must reverse the order of at least two elements zj < zi. Thus
the function f(z) = zi − zj must take the value 0 over the path by intermediate value
theorem. Hence the path cannot be in Confk−1(R). Thus the connected components of
π0(Confk−1(R)) ∼= Sk−1.

Since SO(2) is connected, π0(Confk(S
1)) ∼= Sk−1. That is each connected component

of Confk(S
1) is labeled by an element of Sk−1 describing the ordering of z̃1, . . . , z̃k−1 in R.

Each ordering of (z̃1, . . . , z̃k−1) in turn corresponds to a different cyclic ordering of z1, . . . , zk
in S1, that is, a different element of Sk/Ck. Thus two k-point configurations are homotopic
if and only if they have the same cyclic ordering.

E.2. Degree Obstruction

Proposition 7 The winding number of the initialized model and final model are equal
w(π′ ◦ hφ(0) ◦ g) = w(π′ ◦ hφ(1) ◦ g).

Proof The winding number of a map is a continuous function t 7→ w(π′ ◦ hφ(t) ◦ g). Since
the output space Z is discreet, the winding number must be constant in t.

E.3. Magnitude Growth in Y

As noted in the main text, we have ∇̃yL = (dF TdF )∇yL. We assume that dF is full rank,
which is a reasonable assumption for an overparameterized neural network. In that case

12
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M = dF TdF is a positive definite symmetric matrix and can be orthogonally diagonalized
M = QΛQT where Q is orthogonal and

Λ =

(
λ1 0
0 λ2

)
and λi > 0. The maximum angle between x = ∇yL and Mx = ∇̃yL can then computed in
terms of the eigenvalues λi. This maximum is computed for the case of an n× n symmetric
positive definite matrix here2. We include the proof for the 2× 2 case we consider here for
completeness.

Lemma 8 The maximum angle between x and Mx for x ∈ R2
6=0 is

cos−1
(

2
√
λ1λ2

λ1 + λ2

)
.

Proof The angle is maximized at the minimum value of

xTMx

‖x‖‖Mx‖
.

It suffices to consider ‖x‖ = 1. Substituting M = QΛQT and y = Qx, we want to minimize

xTQTΛQx

xTQTΛ2Qx
=

yTΛy

yTΛ2y

over all ‖y‖ = 1 since ‖Qx‖ = ‖x‖ = 1. Letting a = y21 and noting y21 + y22 = 1, this is equal
to minimizing

aλ1 + (1− a)λ2
aλ21 + (1− a)λ22

over 0 ≤ a ≤ 1. Setting the derivative equal to 0 gives

(λ1 − λ2)2(−λ2 + a(λ1 + λ2))

2
(
λ22 + a(λ21 − λ22))

)3/2 = 0

and yields one critical value at a = λ2/(λ1 + λ2) corresponding to value 2
√
λ1λ2

λ1+λ2
. This is the

global minimum since the boundary values a = 0 and a = 1 correspond to maxima with
value 1.

Thus the angle between ∇yL and ∇̃yL is bounded by θ = cos−1
(
2
√
λ1λ2/(λ1 + λ2)

)
.

Given that ∇yL is tangential to the circle, assuming for simplicity ∇̃yL has constant length
L and uniform distribution [−θ, θ] in angle to ∇yL, the norm of y grows in expectation.

Proposition 9 Assume a circle of radius R. Let v be a random vector at y on the circle of
length L with angle to the tangent uniform in [−θ, θ]. Then

E[‖y + v‖2] = L2 +R2 > R2 = ‖y‖2.
2. karakusc (https://math.stackexchange.com/users/176950/karakusc), Maximum angle between a vector x

and its linear transformation Ax, URL (version: 2017-05-06): https://math.stackexchange.com/q/2266057

13



Esmaeili Walters∗ Zimmermann van de Meent

Proof Without loss of generality, y = (0, R) and v = (L cos t, L sin t) where |t| < θ. Then
we evaluate

E[‖y + v‖2] =
1

2θ

∫ θ

−θ
‖(L cos t, R+ L sin t)‖2‖dt

=
1

2θ

∫ θ

−θ
(L2 cos2 t+R2 + 2RL sin t+ L2 sin2 t)dt

=
1

2θ

∫ θ

−θ
(L2 +R2)dt

= L2 +R2.

by Pythagorean identity and the fact sin t is odd.

Appendix F. Continuity Metric

For measuring continuity, we adopt a similar method as Falorsi et al. and evaluate continuity
in terms of how the largest “jump” compare to others when walking a continuous path
mi ∈ M for i = 1 · · ·N pairwise close points. We compute qi similar to Definition 4 by
computing the relative distances

qi =
dM(ηφ(mi), ηφ(mi+1))

dM(mi,mi+1)
.

From the set {qi}i, we compute the continuity metric Lcont as

Lcont =
M

Pα
, M = max

i
qi, Pα = α-th percentile of {qi}Ni=1. (6)

In our experiments, we set α = 90.
There are two differences between how we evaluate continuity compared to (Falorsi

et al., 2018). First, we measure the continuity of ηφ rather than fφ which we argue is more
relevant in Section 4. Second, in (Falorsi et al., 2018), the authors are mainly interested in
verifying whether the encoder is discontinuous in topological sense (which they verify by
examining the inequality M > γPα for some γ). We on the other hand report continuity on
the spectrum by computing the γ that would make ηφ discontinuous.

14
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Appendix G. Decoding From Y

We consider the alternate strategy of removing the projection π and adding a loss so that y
stays close to the desired manifold M in Y . Winding number obstructions become far more
prominent in this case. In Figure 2, we show the latent space for different random seeds in
the teapot case when we train with such an objective.

Figure 2: Y and Z space of Isom-AEs trained on teapots for 15 random seeds, where instead
of decoding from Z, we decode from Y with an additional soft regularization that
constrain y values to have unit length.
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3D-Crown
# H. # W. # C. Cont. Isometry Recons.

AE 6/15 14/15 9/15 97.56± 139.53 78.81± 61.07 0.00± 0.01
DAE 7/15 14/15 8/15 171.72± 260.73 83.13± 76.02 0.00± 0.00
Isom-AE 11/15 12/15 11/15 20.95± 52.39 48.21± 106.02 0.04± 0.12
Isom-AE + reg-y 15/15 15/15 15/15 1.20±0.06 7.00± 2.29 0.07± 0.03

Sup-AE 15/15 15/15 15/15 1.02± 0.00 3.44± 0.47 0.00± 0.00

Table 4: Comparison of different AEs trained on the toy dataset in terms of number of
encoders with homeomorphic mappings (# H.), correct winding number (# W.),
and correct crossing number (# C.). We additionally the error on continuity,
isometry, and reconstructions (lower is better).

Appendix H. Additional Experiments

H.1. 3D Crown

In our first experiment, we consider a simple dataset in R3 with parameterization x =
(cos θ, sin θ, sin 4θ) for θ ∈ [−π, π]. We generate 60k sequences of data points with length
K = 6 In each sequence, a constant rotation of θi is applied where θi is sampled from
U(−π/5, π/5). For the objectives that do not rely on sequences, we simply flatten data
before training.

Results. We report our findings in Table 4. We can see that in the majority of cases,
both AE and DAE fail to learn a homeomorphic encoder. Interestingly, though the data
is low-dimensional, it is still difficult to model due to non-linearity of the data manifold
embedding. Concluding from the low crossing number (as well examining the latent spaces
in Figure 10), the most common failure cases for learning a homeomorphic encoder are the
figure eight obstruction as well as discontinuity. Isom-AE mitigates these problems to an
extent, but not perfectly. We show an example of how isom-AE is able to unwind the latent
the space to achieve a homeomorphic mapping in Figure 73. Isom-AE with y regularization,
however, is able to avoid such obstructions completely, achieving a 100% homeomorphic
success rate along with Sup-AE. We can also observe from Table 4 that homeomorphic
mappings are overall more stable during training. Lastly, looking at the learning curves in
Figure 5, we observe that winding number is susceptible to changing during training.

3. The y values are very large, but we scale them down for visualizing near a unit circle.
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Figure 3: Homeomorphic autoencoders can encounter optimization obstructions during
training. Here a network hφ maps from data space X (e.g. images of rotated
teapots) to an intermediate space Y , followed by a projection π onto a latent space
Z with a non-trivial topology (e.g. the unit circle S1). Optimization obstructions
can arise when a randomly initialized network maps data onto a trajectory with
topological defects, such as the crossing in a “figure 8” shape, which manifest as
discontinuities after projection.

Appendix I. Additional Figures

Figure 4: Y-space of various failure cases for encoding to SO(2).
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Figure 5: Learning curves of different AEs trained on the 3D-Crown dataset.
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Figure 6: Learning curves of different objectives for for the Tetrominoe (Top), Teapot
(Middle), and Airplane (Bottom) dataset.
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Figure 10: Y and Z space for AEs trained on the 3D-crown dataset.
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Figure 11: Y and Z space for AEs trained on the tetrominoes datasets.
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Figure 12: ‖y‖2 as a function of epoch for a standard autoencoder trained on teapots for
seed 0.
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L-shaped Tetrominoe
# H. # W. # C. Cont. Isometry Recons

AE 0/15 0/15 0/15 146.33± 15.24 141.28± 39.02 8.85± 5.96
DAE 0/15 0/15 0/15 159.24± 17.29 133.83± 26.12 10.18± 5.44
Isom-AE 12/15 15/15 12/15 19.77± 37.48 44.94± 79.67 0.51± 0.44
Isom-AE + reg-y 9/15 14/15 9/15 49.07± 69.49 82.71± 104.20 2.59± 7.96

Sup-AE 15/15 15/15 15/15 1.60± 0.05 5.74± 0.49 0.23± 0.15

Teapot
# H. # W. # C. Cont. Isometry Recons

AE 2/15 6/15 5/15 108.35± 67.06 114.68± 66.94 0.92± 0.49
DAE 2/15 6/15 5/15 106.96± 68.37 117.22± 71.50 0.94± 0.51
Isom-AE 12/15 13/15 12/15 11.97± 29.05 24.48± 43.99 0.52± 0.58
Isom-AE + reg-y 8/15 9/15 8/15 38.79± 54.36 74.51± 81.42 5.32± 8.80

Sup-AE 13/15 15/15 13/15 1.11± 0.04 5.67± 0.48 0.30± 0.02

Airplane
# H. # W. # C. Cont. Isometry Recons

AE 0/15 12/15 12/15 101.05± 33.64 104.94± 44.70 1.32± 0.44
DAE 0/15 15/15 13/15 89.54± 23.41 91.40± 31.66 1.24± 0.54
Isom-AE 9/15 12/15 9/15 37.84± 49.42 80.43± 105.58 1.35± 1.19
Isom-AE + reg-y 5/15 13/15 5/15 91.07± 70.20 124.10± 93.53 1.40± 0.71

Sup-AE 0/15 15/15 0/15 90.88± 35.28 96.78± 38.71 1.41± 0.21

Table 5: Evaluation of different objectives trained on the Tetrominoe, Teapot, and Airplane
datasets.

Figure 13: The figure 8 pattern in Y (grey) maps to two disconnected components in Z.
The cyclic order of these 4 endpoints is preserved by homotopy. Following the
parameterization of the data manifold the cyclic order is (z1, z2, z4, z3), which is
distinct from the cyclic order of a homeomorphic embedding, either (z1, z2, z3, z4)
or (z4, z3, z2, z1).
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Figure 14: Intermediate space Yx = hφ(Mx) after convergence for 3 seeds.

Figure 15: Example of a homeomorphism fφ and corresponding non-isometric map ηφ for
φ = (1.7, 1.3).
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