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ABSTRACT

Recent years have witnessed a surge of successful applications of machine read-
ing comprehension. Of central importance to the tasks is the availability of mas-
sive amount of labeled data, which facilitates the training of large-scale neural
networks. However, in many real-world problems, annotated data are expensive
to gather not only because of time cost and budget, but also of certain domain-
specific restrictions such as privacy for healthcare data. In this regard, we pro-
pose an uncertainty-based adaptive learning algorithm for reading comprehension,
which interleaves data annotation and model updating to mitigate the demand
of labeling. Our key techniques are two-fold: 1) an unsupervised uncertainty-
based sampling scheme that queries the labels of the most informative instances
with respect to the currently learned model; and 2) an adaptive loss minimization
paradigm that simultaneously fits the data and controls the degree of model up-
dating. We demonstrate on the benchmark dataset that 25% less labeled samples
suffice to guarantee similar, or even improved performance. Our results demon-
strate a strong evidence that for label-demanding scenarios, the proposed approach
offers a practical guide on data collection and model training.

1 INTRODUCTION

The goal of machine reading comprehension (MRC) is to train an AI model which is able to under-
stand natural language text (e.g. a passage), and answer questions related to it (Hirschman et al.,
1999); see Figure 1 for an example. MRC has been one of the most important problems in nat-
ural language processing thanks to its various successful applications, such as smooth-talking AI
speaker assistants – a technology that was highlighted as among 10 breakthrough technologies by
MIT Technology Review very recently (Karen, 2019).

Of central importance to MRC is the availability of benchmarking question-answering datasets,
where a larger dataset often enables training of a more informative neural networks. In this regard,
there have been a number of benchmark datasets proposed in recent years, with the efforts of pushing
forward the development of MRC. A partial list includes SQuAD (Rajpurkar et al., 2016), NewsQA
(Trischler et al., 2017), MSMARCO (Nguyen et al., 2016), and Natural Questions (Kwiatkowski
et al., 2019). While the emergence of these high-quality datasets have stimulated a surge of research
and have witness a large volume of deployments of MRC, it is often challenging to go beyond
the scale of the current architectures of neural networks, in that it is extremely expensive to obtain
massive amount of labeled data. The barrier of data collection can be seen from SQuAD: the research
group at Standford University spent 1,547 working hours for the annotation of SQuAD dataset, with
the cost over $14,000. This issue was also set out and addressed by AI companies. However, even
equipped with machine learning assisted labeling tools (e.g. Amazon SageMaker Ground Truth),
it is still expensive to hire and educate expert workers for annotation. What makes the issue more
serious is that there is a rise of security and privacy concerns in various problems, which prevents
researchers from scaling their projects to diverse domains efficiently. For example, all annotators
are advised to get a series of training about privacy rules, such as Health Insurance Portability &
Accountability Act, before they can work on the medical records.

In this work, we tackle the challenge by proposing a computationally efficient learning algorithm
that is amenable for label-demanding problems. Unlike prior MRC methods that separate data an-
notation and model training, our algorithm interleaves these two phases. Our algorithm, in spirit,
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• Question: What causes precipitation to fall?
• Passage: In meteorology, precipitation is any product of the condensation of atmo-

spheric water vapor that falls under gravity . The main forms . . . intense periods of
rain in scattered locations are called “shower”.

• Answer: gravity

Figure 1: An illustrative example in the SQuAD dataset (Rajpurkar et al., 2016).

resembles the theme of active learning (Balcan et al., 2007), where the promise of active learning
is that we can always concentrate on fitting only the most informative examples without suffering
a degraded performance. While there have been a considerable number of works showing that ac-
tive learning often guarantees exponential savings of labels, the analysis holds typically for linear
classification models Awasthi et al. (2017); Zhang (2018); Zhang et al. (2020). In stark contrast,
less is explored for the more practical neural network based models since it is nontrivial to extend
important concepts such as large margin of linear classifiers to neural networks. As a remedy, we
consider an unsupervised sampling scheme based on the uncertainty of the instances (Settles, 2009).
Our sampling scheme is adaptive (i.e. active) in the sense that it chooses instances that the cur-
rently learned model is most uncertain on. To this end, we recall that the purpose of MRC is to take
as input a passage and a question, and finds the most accurate answer from the passage. Roughly
speaking, this can be thought of as a weight assignment problem, where we need to calculate how
likely each word span in the passage could be the correct answer. Ideally, we would hope that the
algorithm assigns 1 to the correct answer, and assigns 0 to the remaining, leading to a large separa-
tion between the correct and those incorrect. Alternatively, if the algorithm assigns, say 0.5 to two
different answers and assigns 0 to others, then it is very uncertain about its response – this is a strong
criterion that we need to query the correct answer to an expert, i.e. performing active labeling. Our
uncertainty-based sampling scheme is essentially motivated by this observation: the uncertainty of
an instance (i.e. a pair of passage and question) is defined as the gap between the weight of the best
candidate answer and the second best. We will present a more formal description in Section 2.

After identifying these most uncertain, and hence most informative instances, we query their labels
and use them to update the model. In this phase, in addition to minimize the widely used entropy-
based loss function, we consider an adaptive regularizer which has two important properties. First,
it enforces that the new model will not deviate far from the current model, since 1) with reasonable
initialization we would expect that the initial model should perform not too bad; and 2) we do not
want to overfit the data even if they are recognized as informative. Second, the regularizer has
a coefficient that is increasing with iterations. Namely, as the algorithm proceeds the stability of
model updating outweighs loss minimization. In Section 2 we elaborate on the concrete form of our
objective function. It is also worth mentioning that since in each iteration, the algorithm only fits the
uncertain instances, the model updating is more faster than traditional methods.

The pipeline is illustrated in Figure 2. Given abundant unlabeled instances, our algorithm first
evaluates their uncertainty and detects the most informative ones, marked as red. Then we send
these instances to an expert to obtain the groundtruth answers, marked as yellow. With the newly
added labeled samples, it is possible to perform incremental updating of the MRC model.

Roadmap. We summarize our main technical contributions below, and discuss more related works
in Section 5. In Section 2 we present a detailed description of the core components of our algorithm,
and in Section 3 we provide an end-to-end learning paradigm for MRC with implementation details.
In Section 4, we demonstrate the efficacy of our algorithm in terms of exact match, F-1 score, and
the savings of labels. Finally we conclude this paper in Section 6.

1.1 SUMMARY OF CONTRIBUTIONS

We consider the problem of learning an MRC model in the label-demanding context, and we pro-
pose a novel algorithm that interleaves data annotation and model updating. In particular, there are
two core components for this end: an unsupervised uncertainty-based sampling scheme that only
queries labels of the most informative instances with respect to the currently learned model, and
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Figure 2: Illustration of our learning algorithm in each iteration. Given a pool of unlabeled
pairs of passage-questions, the algorithm first identifies the instances that it is most uncertain on,
e.g. those marked in red. Then it queries to an expert to gather the answers (i.e. labels), and restricts
to fit the newly labeled instances.

an adaptive loss minimization paradigm that simultaneously fits the data and controls the degree of
model updating. Moreover, our approach is modular in nature, meaning that the community would
benefit from this work by leveraging our techniques into more real-world problems (e.g. image
classification) where the availability of labels is a major concern.

2 ALGORITHM

In this section, we formally introduce the problem setup and our main algorithm ALBUS (Algo-
rithm 1). We use x := (p, q) to represent a pair of passage p and question q, which is also called
an unlabeled instance, or simply an instance. If there are multiple questions, say q1, q2, to a same
passage p, we will use two instances x1 := (p, q1) and x2 := (p, q2). Given an instance x, our
goal is to predict an answer. We use a zero-one vector a to indicate the correct answer, and (x,a)
is called a labeled instance. The prediction made by the learner is denoted by â. We will always
assume that all the coordinates of â are non-negative, and their sum equals one, which can be easily
satisfied if the last layer of the neural network is softmax.

2.1 UNSUPERVISED UNCERTAINTY-BASED RANDOM SAMPLING

Since data annotation is expensive, we treat the problem as such that all the instances are unlabeled
before running the algorithm, and as the algorithm proceeds, it may adaptively detects the most
informative instances to be labeled by experts or crowd workers. Thus, the central questions to
learning are: 1) how to measure the informativeness of the unlabeled instances in a computationally
efficient manner; and 2) how to select a manageable number of instances for annotation (since the
algorithm might identify bunch of useful instances). We address both questions in the following.

2.1.1 METRIC OF INFORMATIVENESS

Intuition. We first address the first question, i.e. design a metric to evaluate the informativeness. To
ease the discussion, suppose that for a given instance x, there are only two answers to choose from,
i.e. a is a two-dimensional vector, and that the algorithm has been initialized, e.g. via pre-training.
If the current model takes as input x, and predicts â = (1, 0), then we think of this instance as
less informative, in that the algorithm has an extremely high confidence on its prediction.1 On the
other spectrum, if the prediction â = (0.5, 0.5), then it indicates that the current model is not able
to distinguish the two answers. Thus, sending the correct answer a together with the instance to the
algorithm will lead to significant progress.

We observe that underlying the intuition is a notion of separation between the answer with highest
confidence and that with second highest, denoted by ∆w(x), where w denotes the current model

1The algorithm may of course make a mistake, but this will be treated by future model updating. Here we
are just giving an intuitive explanation following the idealized scenario.
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Algorithm 1 ALBUS: Adaptive Learning By Uncertainty-Based Sampling
Require: a set of unlabeled instances U = {x1, . . . ,xn}, initial MRC model w0, maximum itera-

tion number T , thresholds {τ1, . . . , τT }, number of instances to be labeled n0.
Ensure: A new MRC model wT .

1: U1 ← U .
2: for t = 1, · · · , T do
3: Compute ∆wt−1

(x) for all x ∈ Ut.
4: Bt ← {x ∈ Ut : ∆wt−1

(x) ≤ τt}.
5: Compute the sampling probability Pr(x) for all x ∈ Bt.
6: St ← randomly choose n0 instances from Bt by the distribution {Pr(x)}x∈Bt

, and query
their labels.

7: Update the model wt ← arg minw L(w;St).
8: Ut+1 ← Ut\St.
9: end for

parameters. In fact, let our algorithm be a function fw : x 7→ â. Denote by â(1) and â(2) the highest
and second highest value in â. Then

∆w(x) = â(1) − â(2). (1)

Given the unlabeled training set {x1,x2, . . . ,xn} and the currently learned model, we can evaluate
the degree of separation {∆1,∆2, . . . ,∆n} where we write ∆i := ∆w(xi) to reduce notation
clutter since most of the time, the model w is clear from the context. This answers the first question
proposed at the beginning of the section, i.e. how to measure the informativeness of the instances.

2.1.2 UNCERTAINTY-BASED SAMPLING

It remains to design a mechanism so that we can gather a manageable number of instances to be
labeled. A natural approach will be specifying the maximum number n0, so that in each iteration
the algorithm chooses at most n0 instances with lowest degree of separation. Yet, we observe that
for some marginal cases, many instances have very close ∆i, e.g. ∆1 = 0.101 and ∆2 = 0.102.
Using the above strategy may annotate x1 while throwing away x2. From the practical perspective,
however, we hope both instances have a chance to be selected to increase diversity. Henceforth, we
consider a “soft” approach based on random sampling in this paper.

Fix an iteration t of the algorithm. First, we define a threshold τt ∈ (0, 1]. Based on the current
model wt−1, we calculate ∆1, . . . ,∆n. Then we obtain a sampling region

Bt := {xi : ∆i ≤ τt}, (2)

which contains informative instances (recall that a lower degree of separation implies more infor-
mative). Inspired by the probability selection scheme (Abe & Long, 1999), we define the sampling
probability as

Pr(x) =

{
1

|Bt|+γ(∆x−∆x∗ ) , ∀x ∈ Bt\x∗,
1−

∑
x′ 6=x∗

1
|Bt|+γ(∆x′−∆x∗ ) , when x = x∗.

(3)

In the above expression, x∗ is the instance in Bt with lowest degree of separation, i.e. the most
uncertain instance; γ ≥ 0 is a tunable hyper-parameters. Observe that if γ = 0, it becomes uniform
sampling. In addition, in view of the sampling probability in (3), the instance x 6= x∗ will be
sampled with probability less than 1/|Bt|, and x∗ is sampled with probability more than 1/µ, as

Pr(x∗) ≥ 1−
∑

x′ 6=x∗

1

|Bt|
= 1− |B1| − 1

|Bt|
=

1

|Bt|
. (4)

Therefore, the sampling scheme always guarantees that x∗ will be selected with highest probability,
and if needed, it is possible to make this probability close to 1 by increasing γ. In our algorithm, we
set γ = Θ(

√
|Bt|) which works well in practice.
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2.2 ADAPTIVE LOSS MINIMIZATION

Another crucial component in ALBUS is loss minimization. Here our novelty is an introduction of
an adaptive regularizer that balances the progress of model updating and per-iteration data fitting.

Let St be the set of labeled instances determined by our random sampling method at the t-th itera-
tion. For any (x,a) ∈ St, since a is an indicator vector, the problem can be thought of as multi-
classification. Therefore, a typical choice of sample-wise loss function is logistic loss, denoted by
`(w;x,a), which can be easily implemented by using a softmax layer in the neural network. On
top of the logistic loss, we also consider an adaptive `2-norm regularizer, which gives the following
objective function:

L(w;St) :=
1

|St|
∑

(x,a)∈St

`(w;x,a) +
λt
2
‖w −wt−1‖2 . (5)

Different from the broadly utilized `2-norm regularizer ‖w‖2, we appeal to a localized form, in
the sense that the objective function pushes the updated model to be close to the current model
wt−1 under Euclidean distance. This is motivated by the fact that in many cases, warm starting the
algorithm with pre-training often exhibits favorable performance. Hence, though we want the model
to be adapted to the new dataset, we carefully control the progress of model updating so that it does
not deviate far from the current.

Regarding the coefficient λt, we increase it by a constant factor greater than one in each iteration.
Therefore, as the algorithm proceeds, the localization property plays a more important role than the
logistic loss. Our treatment is inspired by the literature of active learning, where similar localized
`2-norm constraint is imposed (Balcan et al., 2007; Zhang et al., 2020). This can be viewed as a
stability property of our algorithm, and we discover that it works very well on benchmark datasets.

3 IMPLEMENTATION DETAILS

Uncertainty-based sampling. We introduce how to select the batch St in each iteration with
current MRC model wt−1. For a given pair of (p, q), an answer is of the form of a word span from
the i-th position to the j-th position of the passage. Given the span (i, j) and the passage p, we use
BERT (Devlin et al., 2019) as our embedding method, which produces a feature description denoted
by Ep(i, j). We then construct a probability matrix M̂ whose (i, j)-th entry M̂i,j is given by the
following:

M̂i,j =
exp(wt−1 · Ep(i, j))∑

i′,j′ exp(wt−1 · Ep(i′, j′))
. (6)

Observe that the matrix M̂ forms a distribution over all possible word spans, i.e. all possible an-
swers. It is then straightforward to convert M̂ into the vector â, for example, by concatenating all
the columns. Based on the obtained answer â, we are able to perform uncertainty-based sampling
as discussed in Section 2.

Adaptive loss minimization. We already derived the probability matrix M̂ in (6). During loss
minimization, i.e. supervised fine-tuning, we aim to update wt−1 by minimizing L(w;St). Since
we have clarified the regularizer, it suffices to give the detailed form of the loss `(w;x,a) where we
recall that x = (p, q). Note that using the groundtruth answer a, we know the correct span (ia, ja)
for question q. Thus, the likelihood that we observe St is

Pr(St) =
∏

(p,q,a)∈St

exp(w · Ep(ia, ja))∑
i′,j′ exp(w · Ep(i′, j′))

(7)

The loss function `(w;St) is simply the negative log-likelihood.

4 EXPERIMENTS

Datasets. We focus on the span-based datasets, namely Stanford Question Answering Dataset
(SQuAD) (Rajpurkar et al., 2016) and NewsQA (Trischler et al., 2017).SQuAD consists of over
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Table 1: EM and F1 score on the SQuAD dataset.

#Labels queried EM F1 score
Badge Conf Entropy Margin Rand Ours Badge Conf Entropy Margin Rand Ours

5000 60.94 59.62 60.52 62.71 62.58 64.03 72.20 72.29 72.78 74.28 73.97 75.30
15000 71.75 72.05 71.89 72.69 71.54 74.13 81.62 82.18 82.31 82.59 81.41 83.50
21000 73.88 74.38 74.67 74.31 73.75 75.48 83.54 83.90 84.23 83.77 83.08 84.53
41000 77.55 77.37 77.80 78.16 75.86 79.02 86.02 85.69 85.95 86.19 84.51 87.09
61000 77.90 77.98 77.75 78.06 77.98 80.44 86.15 85.86 85.43 86.32 86.10 88.13
81000 76.08 76.08 75.66 76.34 78.63 81.14 84.75 84.08 83.74 84.64 86.98 88.53

100k questions posed by crowdworkers on a set of 536 Wikipedia articles. We use the original split
87,599 questions for training and test on the 10,570 questions. NewsQA is a machine comprehen-
sion dataset of over 100k human-generated question-answer pairs from over 10k news articles from
CNN. The dataset consists of 74,160 questions for training and 4,212 questions for validation 2.

Evaluation Metrics. We use two metrics: Exact Match (EM) and F1 score. EM measures the
percentage of predictions that matches any one of the annotated answers exactly. EM gives credit
for predictions that exactly match (one of) the gold answers. F1 score measures the average overlap
between the prediction and the annotated answer.

Baselines. We compare against the following baseline algorithms:

• Badge (batched based sampling) (Ash et al., 2020): it learns the gradient embedding of
samples and selects a set of samples by k-MEANS++ (Arthur & Vassilvitskii, 2007).

• Conf (confidence sampling) (Wang & Shang, 2014): it is an uncertainty-based algorithm
that selects samples with lowest class probability.

• Entropy (Wang & Shang, 2014): it selects samples based on the entropy of the predicted
probability distribution.

• Marg (margin-based sampling) (Roth & Small, 2006): it also checks the degree of separa-
tion as our algorithm, but selects the n0 lowest rather than performing random sampling as
we did.

• Rand (Random sampling): It is the naive baseline of uniformly randomly selecting samples
from unlabeled set.

Other Settings. To ensure a comprehensive comparison among state-of-the-art approaches, we
simulate the annotation process with human experts in the loop by selecting a fixed number of
examples n0 to query their labels from training set in each iteration (we set n0 = 2, 000 for SQuAD
and n0 = 5, 000 for NewsQA). The labeled data is used to update the MRC model. We report the
exact match and F1 score with the number of iterations. The BERT-base is used as the pretrained
model and fine-tuned for 2 epochs with a learning rate of 3e− 5 and a batch size of 12 3. The MRC
model is initialized with 1,000 labeled samples for SQuAD and 10,000 for NewsQA. The parameter
τ0 is tuned from the range of [0.01, 0.1] on the training set and decreases at the rate of 1.1.

Results. Figure 3 and Figure 4 present EM and F1 score with the increase of the number of labeled
samples selected by various active learning algorithms. We show the results with all labeled data
(Figure 3(a) and Figure 4(a)) and 20,000 labeled data (Figure 3(b) and Figure 4(b)). Our algorithm
outperforms state-of-the-art active learning algorithms in almost all the cases.

Table 1 lists some detailed results with a specific number of labeled samples. Our algorithm reaches
the best performance in all cases and the advantage is significant specially with a small subset of
labeled samples available. For example, in the case of 5,000 labeled examples, our algorithm reaches
the EM of 64.07 % while the best of compared algorithms is 62.71 %. Figure 3 and Figure 4 plot
the trend EM and F1 score with the rise of labeled examples on SQuAD dataset. We observe that
all active learning algorithms reach the best performance before accessing all labeled data compared
with Rand. It demonstrates the active learning effectively reduces the number of required labeled
data for learning process. Specifically, our algorithm reaches EM 80.44 % and F1 score 88.53 %
with 61,000 queries which is close to the best result but with 25% less labeled samples. We can
observe the same advantage of our algorithm on the NewsQA dataset as shown in Figure 5.

2https://github.com/mrqa/MRQA-Shared-Task-2019
3https://github.com/huggingface/transformers/tree/master/examples/question-answering
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Figure 3: Compared results of EM on SQuAD with over 80k (left) and 20k (right) labeled data.
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Figure 4: Compared results of F1 score on SQuAD with over 80k (left) and 20k (right) labeled data.

5 RELATED WORKS

Machine Reading Comprehension. MRC is the ability to read text and answer questions about it.
It is a challenging task as it requires the abilities of understanding both the questions and the context.
A data-driven approach to reading comprehension goes back to (Hirschman et al., 1999). There are
a number of works have proposed to create datasets (Rajpurkar et al., 2016; 2018; Kwiatkowski
et al., 2019; Reddy et al., 2019). For example, Stanford Question Answering Dataset (SQuAD)
dataset consists of 100K questions on a set of Wikipedia articles (Rajpurkar et al., 2016). Natural
Questions dataset (Kwiatkowski et al., 2019) consists of queries issued to the Google search engine,
the wikipedia page, long answers and short answers.

Recently, researchers are devoted to develop unsupervised deep learning frameworks to learn the
word representation based on a batch of unlabeled data which could be simply fine-tuned for multiple
downstream tasks. For example, ELMo (Peters et al., 2018) learned forward and backward language
models: the forward one reads the text from left to right, and the other one encodes the text from right
to left. GPT (Radford et al., 2018) used a left-to-right Transformer to predict a text sequence word-
by-word. Devlin et al. (2019) designed BERT to pre-train deep bidirectional representations from
unlabeled text by jointly conditioning on both left and right context in all layers. There are some
following works aiming to improve the framework of BERT for different language modeling tasks
(Yang et al., 2019; Dai et al., 2019; Dong et al., 2019).BERT significantly improves the performance
of natural language understanding tasks. Our work is based on a pretrained BERT model. We fine-
tuned BERT with one additional output layer to create the model for the reading comprehension task
following (Devlin et al., 2019).

Another direction in reading comprehension is to explore different real-world settings. For example,
in open-domain reading comprehension, the passage that contains the answer is not provided but re-
quires retrieval from the knowledge pool (Wang et al., 2019). Yue et al. (2020) considered language
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Figure 5: Compared results of EM and F1 score on NewsQA with increase of labeled data.

understanding of clinical data. This work considers the general reading comprehension setting in
which the question and related passage are provided.

Active Learning. Active learning is a machine learning paradigm that mainly aims at reducing label
requirements through interacting with the oracle (experts/annotators) (Settles, 2009).

Active learning has been well studied in both theory and applications. One popular branch of the-
oretical works follows the PAC active learning setting: researchers are engaged to reduce the label
complexity, i.e. the number of query requests, with the error bound guarantee for the produced
halfspace with high probability Valiant (1984); Balcan et al. (2009); Hanneke (2014). There are
some exciting works focusing on active halfspace learning, such as margin based active learning
(Balcan et al., 2007; Balcan & Long, 2013). These approaches learn a classifier from the class of
homogeneous linear classifiers, to predict labels from instances.

Existing active learning approaches can be roughly divided to uncertainty-based sampling and rep-
resentative sampling (Settles, 2009). Representative sampling based approaches select samples that
are representative of the whole unlabeled dataset. It can be achieved by performing an optimization
minimizing the difference between the selected subset and the global dataset (Sener & Savarese,
2018; Gissin & Shalev-Shwartz, 2019). The uncertainty sampling based algorithms select samples
that maximally reduce the uncertainty the algorithm has on a target learning model, such as samples
lying closest to the current decision boundary (Tür et al., 2005). The work in this paper belongs to
uncertainty-based sampling but using a novel sampling scheme tailored to MRC.

Active learning has shown outstanding performance in real-world applications, such as computer vi-
sion (Joshi et al., 2009) and natural language processing (Culotta & McCallum, 2005; Reichart et al.,
2008). For example, Shen et al. (2004) combined multiple criteria of active learning for named entity
recognition. Recent studies combining deep neural networks and active learning approaches have
been proposed (Wang et al., 2016; Zhang et al., 2017; Shen et al., 2018; Geifman & El-Yaniv, 2019).
However, these approaches do not consider the correlation between adaptively learned models of se-
lected samples. There are some related work about active learning in visual question answering (Lin
& Parikh, 2017). However, little is known about active learning for machine reading comprehension.

6 CONCLUSION AND FUTURE WORKS

In this work, we have proposed a novel adaptive learning algorithm for the reading comprehension
task. There are two crucial components in our algorithm: an unsupervised uncertainty-based random
sampling scheme, and a localized loss minimization paradigm, both of which are adaptive to the
currently learned model. We have described the strong motivation of using these techniques, and
our empirical study serves as a clear evidence that our algorithm drastically mitigates the demand
of labels on large-scale datasets. We highlight that our approach is not essentially tied to MRC, and
we expect that it can be extended to other label-demanding problems in natural language processing
and image classification.
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rhonen, David R. Traum, and Lluı́s Màrquez (eds.), Proceedings of the 57th Conference of the
Association for Computational Linguistics, pp. 2978–2988, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, pp. 4171–4186,
2019.

Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xiaodong Liu, Yu Wang, Jianfeng Gao, Ming Zhou,
and Hsiao-Wuen Hon. Unified language model pre-training for natural language understand-
ing and generation. In Annual Conference on Neural Information Processing Systems 2019, pp.
13042–13054, 2019.

Adam Fisch, Alon Talmor, Robin Jia, Minjoon Seo, Eunsol Choi, and Danqi Chen. MRQA 2019
shared task: Evaluating generalization in reading comprehension. In Proceedings of 2nd Machine
Reading for Reading Comprehension (MRQA), 2019.

Snehal Gaikwad, Durim Morina, Rohit Nistala, Megha Agarwal, Alison Cossette, Radhika Bhanu,
Saiph Savage, Vishwajeet Narwal, Karan Rajpal, Jeff Regino, et al. Daemo: A self-governed
crowdsourcing marketplace. In Adjunct proceedings of the 28th annual ACM symposium on user
interface software & technology, pp. 101–102, 2015.

Yonatan Geifman and Ran El-Yaniv. Deep active learning with a neural architecture search. In
Annual Conference on Neural Information Processing Systems, pp. 5974–5984, 2019.

Daniel Gissin and Shai Shalev-Shwartz. Discriminative active learning. arXiv preprint
arXiv:1907.06347, 2019.

Steve Hanneke. Theory of disagreement-based active learning. Found. Trends Mach. Learn., 7(2-3):
131–309, 2014.

9



Under review as a conference paper at ICLR 2021

Lynette Hirschman, Marc Light, Eric Breck, and John D. Burger. Deep read: A reading comprehen-
sion system. In Robert Dale and Kenneth Ward Church (eds.), Proceedings of the 27th Annual
Meeting of the Association for Computational Linguistics, pp. 325–332, 1999.

Ajay J. Joshi, Fatih Porikli, and Nikolaos Papanikolopoulos. Multi-class active learning for image
classification. In Proceedings of the 2009th IEEE Computer Society Conference on Computer
Vision and Pattern, pp. 2372–2379, 2009.

Hao Karen. 10 breakthrough technologies 2019. MIT Technology Review, 2019.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris Al-
berti, Danielle Epstein, Illia Polosukhin, Matthew Kelcey, Jacob Devlin, Kenton Lee, Kristina N.
Toutanova, Llion Jones, Ming-Wei Chang, Andrew Dai, Jakob Uszkoreit, Quoc Le, and Slav
Petrov. Natural questions: a benchmark for question answering research. Transactions of the
Association of Computational Linguistics, 2019.

Xiao Lin and Devi Parikh. Active learning for visual question answering: An empirical study. CoRR,
abs/1711.01732, 2017. URL http://arxiv.org/abs/1711.01732.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh Tiwary, Rangan Majumder, and
Li Deng. MS MARCO: A human generated machine reading comprehension dataset. In Proceed-
ings of the Workshop on Cognitive Computation: Integrating neural and symbolic approaches,
volume 1773, 2016.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and
Luke Zettlemoyer. Deep contextualized word representations. In Marilyn A. Walker, Heng Ji,
and Amanda Stent (eds.), Proceedings of the 2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, pp. 2227–2237,
2018.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language under-
standing with unsupervised learning. Technical report, OpenAI, 2018.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100, 000+ questions for
machine comprehension of text. In Jian Su, Xavier Carreras, and Kevin Duh (eds.), Proceedings
of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2383–2392,
2016.

Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable questions
for squad. In Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics, pp. 784–789, 2018.

Siva Reddy, Danqi Chen, and Christopher D. Manning. Coqa: A conversational question answering
challenge. Trans. Assoc. Comput. Linguistics, 7:249–266, 2019.

Roi Reichart, Katrin Tomanek, Udo Hahn, and Ari Rappoport. Multi-task active learning for lin-
guistic annotations. In Kathleen R. McKeown, Johanna D. Moore, Simone Teufel, James Allan,
and Sadaoki Furui (eds.), Proceedings of the 46th Annual Meeting of the Association for Compu-
tational Linguistics, pp. 861–869, 2008.

Dan Roth and Kevin Small. Margin-based active learning for structured output spaces. In Pro-
ceedings of the 17th European Conference on Machine Learning, volume 4212, pp. 413–424,
2006.

Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set
approach. In Proceedings of the 6th International Conference on Learning Representations, 2018.

Burr Settles. Active learning literature survey. Technical report, University of Wisconsin-Madison
Department of Computer Sciences, 2009.

Dan Shen, Jie Zhang, Jian Su, Guodong Zhou, and Chew-Lim Tan. Multi-criteria-based active
learning for named entity recognition. In Proceedings of the 42nd Annual Meeting on Association
for Computational Linguistics, pp. 589. Association for Computational Linguistics, 2004.

10

http://arxiv.org/abs/1711.01732


Under review as a conference paper at ICLR 2021

Yanyao Shen, Hyokun Yun, Zachary C. Lipton, Yakov Kronrod, and Animashree Anandkumar.
Deep active learning for named entity recognition. In Proceedings of the 6th International Con-
ference on Learning Representations, 2018.

Adam Trischler, Tong Wang, Xingdi Yuan, Justin Harris, Alessandro Sordoni, Philip Bachman,
and Kaheer Suleman. Newsqa: A machine comprehension dataset. In Proceedings of the 2nd
Workshop on Representation Learning for NLP, pp. 191–200, 2017.

Gökhan Tür, Dilek Hakkani-Tür, and Robert E. Schapire. Combining active and semi-supervised
learning for spoken language understanding. Speech Commun., 45(2):171–186, 2005.

Leslie G. Valiant. A theory of the learnable. In Richard A. DeMillo (ed.), Proceedings of the 16th
Annual ACM Symposium on Theory of Computing, pp. 436–445, 1984.

Dan Wang and Yi Shang. A new active labeling method for deep learning. In Proceedings of the
2014 International Joint Conference on Neural Networks, pp. 112–119, 2014.

Keze Wang, Dongyu Zhang, Ya Li, Ruimao Zhang, and Liang Lin. Cost-effective active learning
for deep image classification. IEEE Transactions on Circuits and Systems for Video Technology,
27(12):2591–2600, 2016.

Zhiguo Wang, Patrick Ng, Xiaofei Ma, Ramesh Nallapati, and Bing Xiang. Multi-passage BERT:
A globally normalized BERT model for open-domain question answering. In Kentaro Inui, Jing
Jiang, Vincent Ng, and Xiaojun Wan (eds.), Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing, pp. 5877–5881, 2019.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Carbonell, Ruslan Salakhutdinov, and Quoc V. Le.
Xlnet: Generalized autoregressive pretraining for language understanding. In Annual Conference
on Neural Information Processing Systems 2019, pp. 5754–5764, 2019.

Xiang Yue, Bernal Jimenez Gutierrez, and Huan Sun. Clinical reading comprehension: A thorough
analysis of the emrqa dataset. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pp. 4474–4486, 2020.

Chicheng Zhang. Efficient active learning of sparse halfspaces. In The 31th Annual Conference on
Learning Theory, volume 75, pp. 1856–1880, 2018.

Chicheng Zhang, Jie Shen, and Pranjal Awasthi. Efficient active learning of sparse halfspaces with
arbitrary bounded noise. CoRR, abs/2002.04840, 2020.

Ye Zhang, Matthew Lease, and Byron C Wallace. Active discriminative text representation learning.
In Proceedings of the 31st AAAI Conference on Artificial Intelligence, 2017.

11


	Introduction
	Summary of contributions

	 Algorithm
	Unsupervised Uncertainty-Based Random Sampling
	Metric of Informativeness
	Uncertainty-Based Sampling

	Adaptive Loss Minimization

	Implementation Details
	Experiments
	Related Works
	Conclusion and Future Works

