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ABSTRACT

There has been a growing trend in deploying deep neural networks (DNNs) on tiny
devices. However, it is challenging to do so due to the contradiction of large execu-
tion memory requirement of many DNNs and stringent memory constraint of tiny
devices. Some previous works incurs large latency overhead to save memory and
cannot optimize networks with complex structures; some methods employ coarse-
grained scheduling for complicated networks, leading to limited memory footprint
reduction. This paper proposes MOTES that performs fine-grained scheduling via
operator partitioning on arbitrary DNNs to dramatically reduce peak memory usage
with little latency overhead. MOTES presents a graph representation named Axis
Connecting Graph (ACG) to perform operator partition at graph-level efficiently.
MOTES further proposes an algorithm that searches the partition and schedule
guided by memory bottlenecks. We evaluate MOTES using various popular net-
works and show that MOTES achieves up to 80% of peak memory usage reduction
compared to state-of-art works with nearly no latency overhead on tiny devices.

1 INTRODUCTION
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Figure 1

There has been a growing trend in deploying deep neural networks
(DNNs) on tiny devices such as micro-controller units (MCUs), fa-
cilitating ubiquitous application of AI in Internet of Things (IoT)
area. The tiny device has simple storage architecture, including an
SRAM of usually no more than 2 MB and an extensible read-only
Flash of several MBs. For instance, the STM32F767ZI has a 512
KB SRAM and an extensible Flash with initial capacity of 2 MB.
Generally, when deploying models on tiny devices, model weights
are allocated to Flash with relatively sufficient capacity (Banbury
et al., 2021), while the intermediate tensors during inference must
be allocated to the capacity-limited SRAM. However, even networks
tailored for resource-limited devices require large memory com-
pared to the limited SRAM of tiny devices. Some networks like
MobileNetV2 (Sandler et al., 2019) / BERT-Tiny (Devlin et al., 2018) need large image resolution
/ long token sequence for accuracy. Some networks have complicated structure to enhance model
expressiveness (Zoph et al., 2018; Real et al., 2019; Cui et al., 2019; Liu et al., 2019a; Xie et al., 2019;
Devlin et al., 2018). Figure 1 (a) displays the structure of a cell in networks like NASNet (Zoph et al.,
2018). These complex structures often result in intermediate tensors with long lifetimes during the
inference process, as shown in Figure 1 (b). These long-lived tensors occupy a considerable amount
of memory.

Previous work (Huang et al., 2020; Ahn et al., 2020; Wang et al., 2022) find that carefully choosing
the execution order of operators in networks with complicated structures can effectively reduce
memory usage. However, these memory optimization is limited because they consider only coarse-
grained scheduling, that is, scheduling the network in an operator-by-operator manner. We find that
exploring the scheduling space inside the operator can better reduce memory usage. By partitioning
the operators into smaller ones and scheduling the finer-grained graph, more memory reduction can
be achieved. For example, Figure 2 (a) shows that when we schedule the graph coarsely, we can
optimize peak memory usage to at most 768. But if we enable more fine-grained scheduling, as
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shown in Figure 2 (b), we can reduce peak memory usage to 384. This insight can be intuitively
understood as follows: each output value of a sub-graph may depend only on a subset of input
values. With good partition and scheduling, different blocks within the same original tensor can
have non-overlapping lifetimes, and the memory of them can be shared. For example, the tensor
of operator v1 in Figure 2 (a) is partitioned into the tensors of operators v3, v6, v11, v14 in (b).
Under the schedule of (b), these tensors’ lifetime intervals are disjoint, so they can share the
same memory with size 4 × 32 instead of the memory of the original tensor with size 8 × 64.
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Figure 2: The graph & schedule & peak memory
usage before and after fine-grained scheduling with
the help of operator partition, where the numbers
in nodes indicate execution order.

However, fine-grained scheduling makes operator
shapes smaller and the amount of operators larger,
which results in lower hardware utilization and
more kernel invocations, incurring latency overhead.
Therefore, memory optimization via fine-grained
scheduling needs to be performed under certain la-
tency constraint. But there are quite a lot of partition
schemes for each operator in the network, which
together form a large optimization space. How to
search for a network partition scheme and correspond-
ing schedule to minimize peak memory under the
latency constraint is challenging. Meanwhile, for op-
erators with overlapped sliding-windows such as con-
volution or pooling, partitioning the output operator
may cause overlapped input dependency, leading to a large amount of re-computation overhead (Lin
et al., 2021; Stahl et al., 2023). How to deal with overlapped sliding-windows also poses challenges.

To address these challenges and enable efficient fine-grained scheduling, we propose a memory
optimizer, called MOTES. We find that since peak memory usage is determined by the maximum
memory usage during execution, many combinations of partition strategies for operators have the
same effect. Therefore, it is inefficient to explore each partition strategy for each operator separately.
We introduce a graph representation called Axis Connecting Graph (ACG) to consider partitioning
operators at the graph level, significantly reducing the optimization space. With the help of ACG, we
design an optimization algorithm to select sub-graphs based on the current memory bottleneck to
further reduce the optimization space. In addition, to avoid the large computation overhead caused by
overlapped sliding-windows, we can carefully manage and allocate memory for the input blocks that
are dependent by multiple output blocks to eliminate computation overhead.

In summary, this paper makes the following contributions:

• We propose MOTES, a memory optimizer using fine-grained scheduling for DNN.
• We propose a graph representation named “Axis Connecting Graph” (ACG) and design an opti-

mization algorithm based on ACG and memory bottleneck to partition and schedule network to
reduce its peak memory usage.

• We evaluate MOTES extensively with popular vision and language models, e.g., MobileNetV2 (San-
dler et al., 2019), MCUNetV2 (Lin et al., 2020), BERT-Tiny (Devlin et al., 2018), etc, and networks
with complex structures, e.g., NASNet (Zoph et al., 2018).

Experiment results shows that MoteNeT can reduce up to 80% peak memory usage compared to
state-of-the-arts scheduling frameworks with less then 5% latency overhead, enabling many powerful
networks deployed on memory-limited tiny devices.

2 RELATED WORK

Model Compression. Several techniques have been developed to compress the parameters of a given
model to deploy it on resource-constrained devices. Pruning removes redundant parameters (Liu
et al., 2017; 2019b; Lin et al., 2017; He et al., 2017; 2018; Han et al., 2015b). Quantization reduces
bit precisions for both parameters and activations. (Choi et al., 2018; Courbariaux et al., 2016; Han
et al., 2015a; Rastegari et al., 2016; Wang et al., 2019; Zhou et al., 2016; Zhu et al., 2016). Tensor
decomposition reduces redundant ranks of parameters (Gong et al., 2014; Lebedev et al., 2015; Kim
et al., 2016). Neural Architecture Serach optimizes structures of networks or shapes of layers to
reduce the number of parameters (Zoph et al., 2018; Real et al., 2019; Cui et al., 2019; Liu et al.,
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2019a; Xie et al., 2019; Sandler et al., 2019; Cai et al., 2019; Tan et al., 2019; Cai et al., 2020; Lin
et al., 2020).

Table 1: Comparison with prior-art methods of network inference on tiny devices

Method Network
Structure

Memory
Reduction

Latency
Overhead Techniques

CMSIS-NN (Lai et al., 2018)
CMix-NN (Capotondi et al., 2020) Arbitrary No No Library Support

TFLite-Micro (David et al., 2021)
Micro-TVM (Chen et al., 2018) Arbitrary No No Runtime Support

TinyEngine (Lin et al., 2020; 2021)
FDT (Stahl et al., 2023) Simple High Medium Patch-based Inference;

Depth-wise Tiling

Serenity (Ahn et al., 2020)
HMCOS (Wang et al., 2022) Arbitrary Medium No Coarse-grained Scheduling

MOTES (Ours) Arbitrary High Low Graph-level Analysis,
Fine-grained Scheduling

Network Inference on Tiny Devices. Deploying neural networks on tiny devices has been a hot
topic in recent years. Table 1 shows the comparison of MOTES related works. CMSIS-NN (Lai
et al., 2018) and CMix-NN (Capotondi et al., 2020) provide library support for accelerating neural
network operators on MCUs based on ARM Cortex-M chips. TFLite-Micro (David et al., 2021)
and Micro-TVM (Chen et al., 2018) provide framework support for model inference on tiny devices.
TinyEngine (Lin et al., 2020; 2021) reduces memory usage via patch-based inference for the initial
layers of linear CNNs, and FDT (Stahl et al., 2023) reduces memory usage via depth-wise tiling
along channel dimension of CNNs; such techniques can be transformed into a simple case of the fine-
grained scheduling discussed in this paper. However, these methods will introduce large computation
overhead for overlapped sliding-windows of convolutions, and they are hard to directly support more
complicated networks like NASNet (Zoph et al., 2018), BERT-Tiny (Devlin et al., 2018) etc. For
a complex network, there are many valid schedules, and different schedules can lead to different
peak memory usage. Serenity (Ahn et al., 2020) uses a dynamic programming algorithm to find the
schedule that minimizes peak memory usage. HMCOS (Wang et al., 2022) proposes an algorithm to
cluster the network into hierarchical groups and performs group-wise scheduling. These methods
perform coarse-grained scheduling, resulting limited memory reduction as illustrated in Figure 2.

3 PRELIMINARIES

Computation Graph. A DNN is often represented as a graph G. V = V(G) represents operators,
where each operator has several input tensors and one output tensor (we might interchangeably use
the terms node, operator, and tensor in this paper, since each node/operator corresponds to an output
tensor). E = E(G) ⊆ V × V represents the dependencies between operators, such as (v1, v2) ∈ E
indicates that operator v2 depends on v1 (usually, this means that the output tensor of v1 is one of the
input tensors of v2). We use pre(v), suc(v), anc(v), des(v), #axes(v), v@i, |v@i|, size(v)
to represent the predecessors, successors, ancestors, descendants, number of axes (dimensions), the
ith axis of v, the length of v@i, and output tensor size of v ∈ V , respectively.

Graph Schedule & Memory Usage & Memory Bottlenecks. A topo-order T = (v1, v2, ..., vn)
of V(G) is a schedule of graph G. Assuming that i represents the time point when the ith

operator is completed, we can get the lifetime of each operator vi: start(i) = i − 1,
end(i) = maxvj∈suc(vi) j. The set of tensors that are alive during the execution of operator
vi is alive(i) = {vj ∈ T | start(j) ≤ i ≤ end(j)}. The memory usage of operator vi during
execution is Mi =

∑
u∈alive(i) size(u); and the peak memory usage during the execution of G

is Mpeak = max1≤i≤n Mi. The tensor that contributes to the peak memory usage is called memory
bottleneck: Vmb =

⋃
{alive(i) | Mi = Mpeak}.

Example. In Figure 2 (c), during v3’s execution there are three tensors alive: v0, v2, and v3. Therefore,
M3 = 8∗16+8∗64+8∗16 = 768, which is the peak memory usage of this graph under such schedule.
Thus v0, v2, v3 are memory bottlenecks. In Figure 2 (d), during v16’s execution there are five tensors
alive: v2, v10, v13, v15, and v16. Therefore, M16 = 4 ∗ 16+ 4 ∗ 16+ 4 ∗ 16+ 4 ∗ 32+ 4 ∗ 16 = 384,
which is the peak memory usage of this graph under such schedule. Thus v2, v10, v13, v15, v16 are
memory bottlenecks.
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4 METHODS

4.1 INSIGHTS OF MEMORY OPTIMIZATION VIA FINE-GRAINED SCHEDULING
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Figure 3: Different partition choices re-
sult in different peak memory usages.

We aim to optimize the peak memory usage, which refers
to the maximum memory occupancy during execution.
Our methods are based on two insights.

Insight 1: It is inefficient to consider the operator partition
separately for each operator, as this may introduce much
redundancy and hard to model the connections among
operators. For instance, as shown in Figure 3 (b), splitting
the two Linear operators separately in (a) has no impact
on the peak memory usage. We need to consider the
partition and scheduling of operators at the graph level.

Insight 2: It is important to focus on memory bottlenecks,
like the tensors of size 8 × 32 and 8 × 64 in Figure 3 (a). The partition of non-bottleneck tensors
like (c) doesn’t impact the peak memory usage, while (d) splits bottlenecks of (a) and nearly halves
the peak memory usage. In practice, memory bottlenecks are mostly concentrated inside certain
cells (Wilken et al., 2000; Ahn et al., 2020). Thus cells are appropriate sub-graphs for operator
partitioning.

4.2 WORKFLOW OVERVIEW
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Figure 4: Workflow Overview of MOTES

Figure 4 shows the workflow of MOTES. It accepts
a model description like ONNX as input. The an-
alyzer analyzes the model and builds an Axis Con-
necting Graph (ACG) based on the axis mappings of
each operator and the dependency between operators.
The optimizer then searches for feasible partition
schemes and corresponding schedules based on ACG
and memory-bottlenecks. It uses a profiler & simula-
tor to measure the latency of operators with specific
shapes and estimate the latency of the entire graph.
Then, MOTES generates code based on the searched fine-grained graph and operator schedule. Finally,
the generated code is compiled into a binary file for deployment on the target device.

4.3 AXIS CONNECTING GRAPH (ACG) FOR GRAPH-LEVEL OPERATOR PARTITION
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Figure 5: Example of Axis Connecting Graph (ACG) (a) Graph of an inverted-bottleneck in MobileNetV2 (San-
dler et al., 2019). (b) ACG of graph in (a). (c) Partition sub-graph {v1, v2, v3} into two parts along ACG
{v1@3, v2@3, v3@0}. (d) Partition sub-graph {v0, v1, v2, v3} into parts along ACG {v1@3, v2@3, v3@0}.

Based on Insight 1, we need to consider operator partition at the graph level. When considering
partition at the operator level, we need to get the axes (spatial-axis, reduce-axis) of an operator
and partition along these axes. Likewise, to consider operator partition and scheduling at the graph
level, we need a data structure to represent the “axes” of a subgraph. To this end, we propose Axis
Connecting Graph (ACG) that represents the connection among the axes of different operators in a
graph. The “axis” of a subgraph in the computation graph is a subgraph of the ACG. ACG represents
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the inter-axis dependencies of operators in the form of a graph, which allows us to consider operator
partition from graph-level, greatly reducing the optimization space that needs to be explored.

Given a graph G, we define its Axis Connecting Graph (ACG) as A = A(G), where
1. ∀v ∈ V(G), i = 1, 2, ...,#axes(v)⇒ v@i ∈ V(A).

2. ∀v ∈ V(G) : v has a reduce-axis ⇒ v@0 ∈ V(A).

3. ∀(u, v) ∈ E(G), i, j ≥ 1 : |u@i| = |v@j| ∧ u@i, v@j correspond to a spatial-axis ⇒ (u@i, v@j) ∈ E(A).

4. ∀(u, v) ∈ E(G), i ≥ 1 : u@i corresponds to a reduce-axis of v ⇒ (u@i, v@0) ∈ E(A).

For instance, consider a Linear operator node v with shape N ×K and its input node u with shape
N × C. The first axis of u and v corresponds to the same spatial-axis, and the second axis of u
corresponds to the reduce-axis of v, yielding (u@1, v@1), (u@2, v@0) ∈ E(A). Figure 5 (a) presents
the graph of an inverted-bottleneck in MobileNetV2 (Sandler et al., 2019), and (b) shows sub-graphs
of its ACG, where there are four connected sub-graphs, corresponding to the height-axis of Input,
width-axis of Input, channel-axis of Input, and channel-axis of DW-Conv respectively.

With the help of ACG, we can represent the operator partition at graph level. For a graph G
and its subgraph S ⊆ G, we define a Partition Scheme p = (S,A, VI , VO, n), where A is a
connected sub-graph of A(S), VI ⊆ V(S) represents the input nodes of S (which can be explicitly
split by Slice), VO ⊆ V(S) represents the output nodes of S (which can be explicitly merged
by Concat), and n is the number of partitions. The scheme satisfies the following conditions:
(1) ∀v ∈ VO : ∃i ≥ 0 : s.t. v@i ∈ V(A) (output nodes must be partitioned or reduced); (2)
∀v ∈ V(S) \ VO : v@0 /∈ V(A) (non-output nodes must not be partitioned along reduce-axis).
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Figure 6: Illustration of partition. (a) Graph for
partition. (b) ACG that partition along (i, j > 0).
(c) Result graph after partition.

Figure 6 illustrates how to partition a sub-graph
based on partition scheme. There are two input
and two output nodes, with u1 being split while
u2 is not. v1 is split along the spatial-axis, while
v2 is split along the reduce-axis. The subgraph
is split into two parts, with u1 being split into
two parts using a Slice operator, and u2 being
reused in both parts. Parts of v1 are merged us-
ing a Concat operator in the end, while parts of
v2 are accumulated using an Add operator. Fig-
ure 5 (c) (d) shows two examples of partitioning
sub-graphs of (a) along sub-ACG of (b).

4.4 HANDLING OVERLAPPED
SLIDING-WINDOW
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Figure 7: (a) L consecutive 3× 3 Conv2d. (b) Dependency between blocks if we split the output into n parts.
(c) (d) (e) Three solutions to split the subgraph. “Extra #MAC Ratio” means the ratio of extra #MAC to original
one. “Peak memory ratio” means the ratio of current peak memory to original one. (f) Example of a subgraph
where different paths have different numbers of Conv2d.

For an operator like convolution with kernel size greater than 1, a sliding-window reduction will be
performed along the height/width axis, resulting enlarged receptive fields. If a sub-graph contains
multiple such operators in a pathway, the receptive field enlargement accumulates, leading to a
significant amount of extra computation (Lin et al., 2021). Figure 7 (a) shows L consecutive 3× 3
Conv2d, (b) shows the block-dependencies between layers when the sub-graph is split into n parts
starting from the output, and (c) shows the resulting partitioned sub-graph and its extra computation
ratio as well as peak memory ratio. We can observe that to reduce memory usage, n needs to
be increased, resulting larger extra computation. To eliminate such overhead, we can infer the
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blocks’ bounds layer by layer based on their dependency, and split the overlapping parts among input
blocks into separate blocks, as shown in Figure 7 (d). This method incurs no extra computation, but
some intermediate tensors should reside in memory, so memory usage is slightly larger. However,
although such method introduces not extra computation, it leads to too many small operators, greatly
influencing actual performance, as illustrated in Table 3. Furthermore, the two methods above have
a common drawback when dealing with many complicated CNNs, where different paths may have
different numbers of operators with sliding-windows. As shown in Figure 7 (f), the receptive fields
from v5 to v1 differ on the two paths due to the different numbers of Conv2d. It is complicated to
handle the sub-graph partition in such situation with the above methods.

Therefore, we propose a compromised solution, which is to keep the partition granularity consistent
across layers, as shown in Figure 7 (e). Before each block is executed, we use a BlockConcat
kernel to merge the input blocks that it depends on (for some input blocks, only a portion of their
values are consumed by output blocks, and we will only copy such portion). The overhead introduced
by BlockConcat can be ignored in most cases as shown in Table 3. This method incurs more
memory usage than the previous ones. For most cells of most networks, L usually varies from 2 to 6
(He et al., 2016; Howard et al., 2017; Sandler et al., 2019; Zoph et al., 2018; Real et al., 2019; Cui
et al., 2019; Liu et al., 2019a; Xie et al., 2019). Here, we take L = 4 and obtain the peak memory ratio
of our solution is n+16

2n , which is larger than the method in Figure 7 (c) by 7
n − 7

H . As n increases,
i.e., when the overall memory usage is lower, the difference becomes smaller.

4.5 OPTIMIZATION ALGORITHM

Algorithm 1: Memory-bottleneck-aware Beam Search Algorithm
input :Graph: G. Latency constraint ratio: δ. Beam width: β
output :Fine-grained graph after operator partition: G′. Schedule: T ′

1 Crest := all cells of G; P := {{DummyPartitionScheme}};
2 G′ := G; T ′ := Schedule(G′); L⊤ := Latency(G′)× δ;
3 def LessThen(P1, P2):
4 return if P1.L ≤ L⊤ ∧ P2.L ≤ L⊤ then (P1.M, P1.L) < (P2.M, P2.L) else (P1.L, P1.M) < (P2.L, P2.M);

5 while true do
6 Vmb := MemBottlenecks(G′, T ′); Cmb := {C ∈ Crest | V(C) ∩ Vmb ̸= ∅};
7 if Cmb = ∅ then break;
8 C := argmaxC∈Cmb

Σv∈(V(C)∩Vmb)
size(v); Crest := Crest \ {C};

9 Amb := {A ∈ all valid connected sub-graphs of A(C) | ∃v ∈ Vmb, i ≥ 1 s.t. v@i ∈ V(A)};
10 for A ∈ Amb sorted by depth do
11 P′ := {P ∪ {p} | P ∈ P, p ∈ GenSchemes(A)};
12 P := MaxHeap(LessThen);
13 for P ∈ P′ do
14 G′ := Apply(G, P); T ′ := Schedule(G′);
15 P.M := PeakMem(G′, T ′); P.L := Latency(G′);
16 P.push(P ); if |P| > β then P.pop largest();

17 P := P.get smallest(); G′ := Apply(G, P); T ′ = Schedule(G′);

18 return G′, T ′;

With the aid of ACG, we design a beam search algorithm based on Insight 2 to optimize peak
memory under a given latency constraint, as shown in Algorithm 1. It iteratively partitions the graph
(line 5-17) by identifying memory bottlenecks (line 6), selecting the cell containing bottlenecks
(lines 8), and the connected sub-ACG containing bottlenecks within a cell (lines 9). P stores β
(hyper-parameter of beam search) optimization states, where each state P contains several partition
schemes p. Each sub-ACG A can generate multiple partition schemes p = (S,A, VI , VO, n) (with
different partition numbers n), which are appended to current states to construct new ones (line 11).
Then, top-β smallest new states are kept for future iterations (line 13-16). We use a maximum heap
to store new states and pop-out largest one when heap’s capacity exceeds β (line 16). Here we define
a comparing function LessThen (line 3-4) for the heap (line 12), which compares peak memory
first if latency meet the constraint otherwise compares latency first (line 4).

Details. GenSchemes generates different partition schemes p = (S,A, VI , VO, n) for a given ACG
A by enumerating factors n of the axis-length of A. Schedule is responsible for scheduling a
fixed graph. We run this function frequently, and the graph it handles is complex after partitioning.
Therefore, we choose the fastest reverse-post-order algorithm with linear complexity in terms of the
network size; it can achieve near-optimal peak memory in most cases (Wang et al., 2022). Apply
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applies the partition schemes on a given graph to produce a new fine-grained graph. PeakMem
and MemBottlenecks are implemented using the formulas in Section 3. Latency measures the
execution latency of the graph. It contains: (1) A profiler deployed on device to measure operator
latency. (2) A simulator with an operator latency cache, storing the operator latency based on its type
and shape; a simulator sums up the latency of all operators to get the total latency of the entire graph.

Complexity. Suppose the upper bounds of |Crest| in line 1, |Amb| in line 9, |GenSchemes(A)| in
line 11, and |V(G′)| in line 14 are NC , NA, Nn, and NV respectively, then the asymptotic complexity
of Algorithm 1 is O(βNCNANn) ·O(NV ). Practically, NC , i.e., the number of cells in a network,
is no more than 20, and the actual iteration number of line 5-17 is generally less than 5; NA is
generally less then 5; Nn is no more then 10 in most cases due to the small lengths of axes of
operators that can be deployed on tiny devices; β is usually set as 4 ∼ 8. O(NV ) is the complexity
of Schedule, which is fast enough in practice. In our evaluation, all the optimization processes of
MOTES conducted in Section 5 can be completed within 2 minutes (with β = 8).

5 EVALUATION

5.1 EXPERIMENT SETUP

We select the STM32H7A3ZI-Q MCU with ARM Cortex-M7 core as our test platform, which has
1.4 MB of SRAM but can be used to simulate lower memory constraints. We utilize CMSIS-NN (Lai
et al., 2018) as the back-end operator library for MOTES and baselines and implement a kernel of
BlockConcat proposed in Section 4.4 for MOTES. Besides, we adopt the in-placed depth-wise con-
volution kernel proposed in TinyEngine (Lin et al., 2020) instead of the one in CMSIS-NN for MOTES
and baselines. We implement a tiny profiler deployed on the MCU to measure the operator execution
latency given operator type and shape; the profiler communicates with the host via USB serial port.

Table 2: Networks for Evaluation

Network Name Input Size

NASNet-A (CIFAR-10) (Zoph et al., 2018) 32 × 32 × 3

DARTS (CIFAR-10) (Liu et al., 2019a) 32 × 32 × 3

NASNet-A (ImageNet) (Zoph et al., 2018) 224 × 224 × 3

DARTS (ImageNet) (Liu et al., 2019a) 224 × 224 × 3

FPNAS (Cui et al., 2019) 224 × 224 × 3

MobileNetV2 (Sandler et al., 2019) 224 × 224 × 3

MCUNetV2 (Lin et al., 2021) 224 × 224 × 3

BERT-Tiny (Devlin et al., 2018) 512 × 128

We evaluate MOTES mainly with six popu-
lar networks, as shown in Table 2. Note
that for NASNet-A (Zoph et al., 2018) and
DARTS (Liu et al., 2019a), different datasets
(input sizes) correspond to different architec-
tures. For MCUNetV2 (Lin et al., 2021), we
use the released model MCUNetV2-SE-Large.
These networks have either large activation sizes
or complex topologies, suffering from high peak
memory during inference although they are tai-
lored for resource-limited devices.

We compare MOTES with two state-of-the-art
open-sourced works of memory optimization
for network inference on tiny devices: TinyEngine (Lin et al., 2020; 2021) and HMCOS (Wang
et al., 2022). TinyEngine proposes patch-based inference to extremely optimize memory usage of
simple structured networks like MobileNetV2 (Sandler et al., 2019). HMCOS is the state-of-the-art
memory-aware graph scheduler for networks with complicated structures.

5.2 PEAK MEMORY USAGE REDUCTION

We evaluate and compare the peak memory usage optimized by TinyEngine, HMCOS, and MOTES on
the benchmark networks. We run MOTES with latency overhead constraint δ = 1.05 in Algorithm 1,
that is, the execution latency overhead introduced by fine-grained scheduling should be no more
than 5%. To demonstrate the effect of MOTES, we set several memory constraints (256KB, 320KB,
512KB, 1MB, and 2MB), which are common for tiny devices.

Results. Figure 8 (a) shows the evaluation results (with int8 as quantization precision). For all
networks, MOTES can achieve smaller peak memory usage than the baselines. MOTES achieves
average 46% (up to 72%) peak memory usage reduction compared to TinyEngine, and average 58%
(up to 87%) peak memory usage reduction compared to HMCOS. We also observe that MOTES can
meet the 320KB memory limit for all the networks, while TinyEngine can satisfy such constraint for
only MobileNetV2 and MCUNetV2, and HMCOS cannot satisfy such limit for any test networks.
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Figure 8

Furthermore, MOTES can meet the 256KB memory limit for 3 networks, while TinyEngine can
satisfy it for only 2 networks. If we change the quantization precision from 8-bit to 16-bit or 32-bit,
MOTES can easily meet memory constraints of 1MB or 2MB respectively on all benchmark networks,
while TinyEngine / HMCOS can only satisfy 1MB (2MB) constraint on 4 / 2 networks for 16-bit
(32-bit) quantization precision. We can observe that for NASNet, DARTS and FPNAS, HMCOS
performs better than TinyEngine, since TinyEngine is hard to optimize networks with complicated
structures. But for MobileNetV2 and MCUNetV2, TinyEngine is much better than HMCOS, since
HMCOS cannot exploit intra-operator scheduling space, while TinyEngine can partially do it via
patch-based inference. The reason why MOTES can achieve significant peak memory usage reduction
is that it performs fine-grained scheduling via graph-level tensor partition, exploiting much more
scheduling space inside each tensor compared with TinyEngine and HMCOS.

Memory Usages with Different Input Sizes. Note that for NASNet and DARTS with dataset
CIFAR-10, memory footprint reduction of MOTES compared to HMCOS is at most 30%, while
for dataset ImageNet, such reduction is at least 50%. Such variation is mainly because MOTES
can exploit more memory reduction opportunities via fine-grained scheduling on networks with
larger shapes. To further demonstrate the impact of input sizes, we compare MOTES with HMCOS
under different input image resolutions. Figure 8 (b) shows the peak memory usage optimized by
MOTES and HMCOS, as well as the ratio between the two, when changing the input image resolution
of NASNet-A (ImageNet). As the input image resolution increases, the benefits of MOTES over
HMCOS increases and saturates after the resolution gets larger than 224. This is consistent with the
formula for peak memory ratio in Figure 7 (e), n+L2

2n , as the number of partitions n increases with
higher input image resolutions, causing the value of n+L2

2n to decrease, but at a slower rate.
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Figure 9
Memory Usage Breakdown of FPNAS. Among all the test cases, MOTES can achieve the largest
relative memory footprint reduction compared to baselines on FPNAS. This is mainly because they
adopt inverted-bottleneck structure, which will greatly expand channel size temporarily. MOTES can
exploit more memory optimization opportunities by partitioning some tensors along channel axis.
Besides, FPNAS (containing Slice, Concat, and Add in each cell) is much more complicated than
MobileNetV2 and MCUNetV2, so TinyEngine is hard to optimize it. We breakdown the cell-wise
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peak memory on FPNAS. As shown in Figure 9 (a), MOTES can greatly reduce memory footprint
on each cell. But the absolute memory reduction compared to baselines is smaller in deeper cells.
After we perform tensor partition on cell 1, the major memory bottlenecks become cells 2, 3, and
5. In practice, our algorithm will only partition operators of the memory bottleneck cells to avoid
unnecessary latency overhead.

5.3 LATENCY OVERHEAD EVALUATION

Table 3: Performance of partitioning 3 × 3 Conv2d along the height-axis and width-axis. The
operator has a shape of height=32,width=32,in-channel=8,out-channel=8.

Height & Width Partition Factor 16 8 4 2 1

Latency before Partition (us) 6394

Latency after Partition (us) 6416 6448 6528 6656 9216

Total Latency Overhead 0.34% 0.84% 2.09% 4.09% 44.13%

BlockConcat Latency (us) 28 48 108 281 819

Latency Ratio of BlockConcat 0.44% 0.74% 1.66% 4.23% 8.89%

Full Network Latency Overhead. In this section, we analyze the latency overhead introduced by
MOTES. We set the latency overhead constraint δ in Algorithm 1 as 1.05, 1.02, 1.01 (5%, 2%, 1%
latency overhead) and collect some sample points of memory ratio (the ratio between peak memory
optimized by MOTES and HMCOS) and latency overhead of MOTES when optimizing NASNet-A
(ImageNet). As shown in Figure 9 (b), to optimize memory ratio to 60%, the latency overhead
is less than 1%, which is negligible. However, to further optimize it, the graph should be more
fine-grained, resulting in more kernel invocations and lower hardware utilization due to smaller
operators. Therefore, the latency overhead increases rapidly when the memory ratio is reduced.
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Figure 10: Peak memory usage and latency
overhead curves of MCUNetV2-SE-Large
optimized by TinyEngine and MoteS.

Single Operator Latency Overhead. We further conduct
an experiment to evaluate the performance degradation
caused by partitioning a Conv2d operator along both
height-axis and width-axis. The results are shown in Ta-
ble 3. We can observe that as the factor decreases, the total
latency increases faster and faster. For instance, reducing
the factor from 16 to 8 only incurs less than 0.5% extra la-
tency overhead, while reducing it from 2 to 1 leads to 40%
extra latency overhead. Table 3 also shows that the latency
of all BlockConcat kernels, relative to the total latency,
is typically less than 2%. However, for extremely small
partition factor, such ratio approaches to 10% because of
too many kernel invocations.

Comparison to Latency Overhead of TinyEngine. Besides, we present a comparison between
MOTES and TinyEngine in terms of peak memory usage and latency overhead in MCUNetV2-SE-
Large. For TinyEngine, we obtain three optimization results with patch sizes of 2, 4, and 7. For
MOTES, we set the latency overhead constraint δ = 1.1 and show three optimization states during
search. Figure 10 shows the results. We can observe that both TinyEngine and MOTES can easily
reduce peak memory from the original 1470KB to within 320KB. However, TinyEngine’s latency
overhead is much larger than MOTES due to the significant computation overhead caused by the
patch-based inference, as shown in Figure 7 (c). In contrast, our approach can achieve comparable
memory optimization with little additional computation overhead.

6 CONCLUSION

Memory optimization is critical to deploy DNN on tiny devices. This paper proposes MOTES
which performs fine-grained scheduling for DNN to optimize peak memory. MOTES builds Axis
Connecting Graph to represent graph-level axis partition, and search partition and schedule based on
memory-bottlenecks. Our evaluation results show that MOTES can reduce up to 80% peak memory
usage of DNN compared to state-of-the-art works with nearly no latency overhead.
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