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Abstract

Low-Rank Adaptation (LoRA) offers a parameter-efficient paradigm for tuning
large models. While recent spectral initialization methods improve convergence
and performance over the naive “Noise & Zeros” scheme, their extra computational
and storage overhead undermines efficiency. In this paper, we establish update
magnitude as the fundamental driver of LoRA performance and propose LoRAM,
a magnitude-driven “Basis & Basis” initialization scheme that matches spectral
methods without their inefficiencies. Our key contributions are threefold: (i) Mag-
nitude of weight updates determines convergence. We prove low-rank structures
intrinsically bound update magnitudes, unifying hyperparameter tuning in learn-
ing rate, scaling factor, and initialization as mechanisms to optimize magnitude
regulation. (ii) Spectral initialization succeeds via magnitude amplification. We
demystify that the presumed knowledge-driven benefit of the spectral component
essentially arises from the boost in the weight update magnitude. (iii) A novel
and compact initialization strategy, LORAM, scales deterministic orthogonal bases
using pretrained weight magnitudes to simulate spectral gains. Extensive experi-
ments show that LORAM serves as a strong baseline, retaining the full efficiency of
LoRA while matching or outperforming spectral initialization across benchmarks.

1 Introduction

The rise of large pretrained models [, 2} 3| 4} [5] has driven urgent needs for parameter-efficient
fine-tuning (PEFT) methods [6, (7, 18, 9L [10, [11]]. Among these, Low-Rank Adaptation (LoRA) [[7]
stands out for its efficiency, flexibility, and stability. By freezing pretrained weights and injecting
trainable low-rank matrices, LoRA enables the update of less than 1% of the parameters, significantly
reducing memory and compute costs. Its plug-and-play nature achieves easy integration into diverse
models, facilitating model sharing and federated learning [12} [13]]. Additionally, LoRA helps prevent
catastrophic forgetting [[14], making it well-suited for continual learning. These advantages have led
to its wide adoption in multilingual NLP [[15}116}117, 18] and multimodal applications [[19} 20} 21} 22]].

Despite achieved efficiency, the low-rank reparameterization constrains practical performance and
convergence [14]]. Besides the well-known “representation bottleneck™ [23] [10, 24, 25| 26, 27,
28, 29], LoRA is highly sensitive to hyperparameters due to the non-convex and non-smooth loss
landscape [30]. Effective training relies on careful tuning of rank [31} 32} [33]], scaling factor [34]],
learning rate [35]], initialization strategies [36} 37,1301, and preconditioning [30L|38}|39]]. Recent works
increasingly leverage information from pretrained weights [40l 41} 42] or task-specific data [43] 44,
39] to improve the “Noise & Zeros” baseline. Among these, PiISSA [40] pioneers the use of Singular
Value Decomposition (SVD) for LoRA initialization, employing spectral components of pretrained
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Figure 1: We propose LoRAM, a magnitude-driven initialization method that enhances both the
convergence and performance of LoORA while maintaining its efficiency. Unlike spectral initializa-
tion, which precomputes and stores singular components (U, V., S) [40], LORAM uses deterministic
orthogonal bases and derives scaling from pretrained weight statistics. This elegant simplification is
grounded in our analysis of LoRA through a novel lens of magnitude dynamics, where we show that
the benefits of spectral values in scaling weight update magnitude can be effectively approximated.

weights to significantly enhance convergence and performance. Subsequent works [41144}42} 39/ 143
extend to diverse matrix decompositions, fostering a wave of knowledge-driven initialization schemes.

While spectral initialization [40} 411 144} 39| 143]] showcases considerable promise in convergence and
performance, two fundamental challenges persist. First, they introduce complexity by requiring
additional matrix decomposition and storage overhead, undermining usage efficiency in resource-
constrained settings [45,25/46] and hindering seamless integration with deep learning libraries [6,147]].
Second, their success remains poorly understood. The common justification [40, 411 [43] 48] that
spectral components preserve features better than random alternatives lacks theoretical grounding.
Although recent works [44} [39] suggest that some specific initialization may approximate full-
parameter gradients, the non-convex nature of LoRA renders training dynamics unpredictable.

In this paper, we demystify the knowledge-driven intuition behind spectral initialization and reveal
that its effectiveness primarily stems from the magnitude scaling of weight updates. We design a
minimal “Basis & Basis” initialization strategy, which demonstrates comparable performance without
the overhead of SVD operations. Specifically, our key contributions can be summarized as:

* We identify weight update magnitude as a fundamental principle for analyzing and improving
LoRA’s training dynamics. This principle unifies previously independent factors, such as learning
rate, scaling, and initialization, revealing their shared ability to control weight update strength and
achieve comparable amplification effects when properly configured.

* We demonstrate that initialization scheme critically shapes LoRA’s weight magnitude dynamics.
Theoretically, we prove that LoRA naturally produces smaller updates than full fine-tuning, which
limits its convergence and expressiveness. Moreover, we show that spectral initialization amplifies
updates, providing a principled explanation for its effectiveness beyond knowledge-driven intuition.

* Guided by the magnitude principle, we propose Magnitude-driven Initialization (LoRAM) to
make LoRA initialization efficient again. LORAM employs a logarithmic magnitude factor to retain
the benefits of spectral scaling, while directly scaling deterministic orthogonal bases to eliminate the
need for decomposition and storage. Extensive experiments on language and vision-language tasks
establish LORAM as a strong and practical baseline, surpassing prior initialization schemes.

2 Magnitude Principle for Characterizing LoRA Dynamics

2.1 Preliminaries and Notations

Given a pretrained weight matrix W € R"*™, LoRA [[7]] reparameterizes the forward pass as
y =Wz + Wrraz = Wz + a(BA — BOAO)g, (1)

where B € R"*", A € R"*™ are trainable low-rank matrices with 7 < min(n, m), and « scales the

update magnitude. The initialization term B(®) A(®) can be absorbed into W for the convenience, as
illustrated in Figure[T[b). Given a loss function L, LoRA updates are computed as:

Vil = aBT%xT =aB"(VwL), VpL= a%xTAT =a(VwL)AT. )

Magnitude metric. To elucidate how LoRA affects the training process, we analyze the dynamics
of the parameters A, B, and the resulting weight update Wi ora. Specifically, we define the weight



magnitude as v[Wiora] = # |[Wiora ||%, which serves as a central metric in our study. Assuming
independent and zero-mean entries [49]], the expected weight magnitude is given by E[v[BA]] =
r E[v[B]] E[v[A]]. In the asymptotic regime where m and n are large, v[Wiora] is approximated
with the variance of Wi ora, and v¥[BA] =~ r v[B] v[A]. Our analysis is motivated by the fact that
LoRA introduces no change to the pretrained weights initially, i.e., I/[WIESI)( A) = 0, while its effect
emerges gradually through training. Therefore, we use the term “magnitude” instead of “variance”
to highlight the cumulative growth of Wy ,ra. In Appendix [B] we also present a theoretical insight
showing that parameter magnitude is a key determinant of LoRA’s expressiveness.

2.2 Effect of Hyperparameters on Update Magnitude

Let AWIE?R A denote the weight update at step ¢ for LoORA framework, and WIE& A= Zf;é AW]S?R A
represent cumulative adaptation. Given a learning rate 7, we expand AWIEZ)R A using gradient update

rules, leading to the following formulations for the update magnitud
AWL(?RA =an (B(t)vAL(t) +VRLMOAWD ¢ anL(t)vAL(t)) 7 3)

and ’/[AWIE?RA] ~ ra’n? (V[B(t)]V[VAL(t)] + I/[VBL(t)]I/[A(t)]) . 4

These equations indicate the complex interplay of multiple hyperparameters, distinct from the full-
parameter updates given by AW () = —Vy;, L(*) We investigate the interplay among the learning
rate 7, scaling factor «, and initialization magnitude, revealing a quantifiable equivalence relationship.

Proposition 1 (Parameter Scaling Equivalence). For LoRA layers defined in Eq. (1), consider
decomposing the scaling factor « = o’ s, where o ,aa, g € RT. Under the commonly used
optimization frameworks with negligible numerical errors, the following parametrization schemes

exhibit dynamical equivalence throughout training: For all iterations t > 0, AWIE?R A=A i ]SZ)R A

and WIEZ)R A= W]EZ)R A» Where A® B and W represent the re-parameterized versions.

Original SGD Adam
Representation aBAx o' BAx o BAz
Initialization A0 — Aiit, B® — Binit A© — aa A, BO® = aB Binir A© = aa Aty BO = aB Binit
Learning Rates na >0, >0 Ni= aQAnA,nB = a2BnB Ni = QANA,Ng = ABNB

Remarks. This equivalence underscores how hyperparameters collectively regulate update magnitude,
effectively reducing the search space for optimal configurations. A striking implication is that,
increasing 7 in LORA+ [35] is identical to scaling  in RsLoRA [34] under the "Noise & Zeros"
initialization, highlighting the critical role of initialization magnitude in shaping LoRA’s training
dynamics, which is rarely discussed in prior works. For the non-zero initialization, it is advisable to
first adjust the initialization magnitudes and learning rates for moderate improvements, as modifying
« inherently combines the effects of both and may result in drastic and unpredictable changes.

To demonstrate the joint effect of hyperparameters on LoRA dynamics, we conduct a controlled
experiment using a 5-layer MLP with “Noise & Zeros” initialized LoRA layers, setting the interme-
diate dimension to 400 and the LoRA rank to 25. The network is trained on synthetic data under
various hyperparameter settings, consequently using SGD and Adam optimizers with = 5 x 107,
As shown in Figure[2{(a), all settings with o = 16 result in identical loss trajectories and parameter
evolution, confirming the theoretical predictions. In contrast, weight updates deviate significantly
when using o = 1 with 7 scaled by 4, indicating that equivalence holds only under specific rules.

2.3 Magnitude Limitation Rooted in Low-Rank Structure

Guided by the established equivalence framework, we fix @ = 1 to eliminate the interference of
scaling factors, which is the most commonly-used configuration in practical implementation. In the
following, we prove initialization magnitudes and other factors critically influence the weight update.
Proposition 2 (Parameter Magnitude Dynamics). Consider LoRA parameters updated with the same
learning rate 1. Assume: A©) ~ N(0,0%1), B®) ~ N(0,0%1), Viy LY ~ N(0,021), and

?See Appendix for derivation and proof
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Figure 2: (a) Validation of Proposition Each curve represents a model with unique hyperparameters.
The norm difference (right axis) aggregates Frobenius norm discrepancies between the baseline
model (black) and others across layers. Purple and other curves share identical learning rates but
diverge due to differing initialization magnitudes. Equivalent optimization trajectories emerge from
diverse hyperparameter combinations under both SGD and Adam optimizers. (b) Validation of
Proposition 2] The black curve represents random orthogonal initialization. Parameter magnitudes
are predominantly governed by initialization scaling, resulting in smaller weight changes compared to
conventional linear layers. This necessitates the magnitude scaling in enhancing LoRA performance.

E[(A®, VALY = E[(BW,VEL®)] = 0. Under these conditions, the parameter magnitudes

v, = [E[AV]],E[v[BY]]] " evolve as a linear dynamical system. Its exponential solution admits
the linearized approximation under small-n regime:

0 A+ tysoy
Vi = (1+ {M VOBD Vet~ [‘;g; tnR ®)

where ya = mn?0?, yp = nn?c3. This further yields the evolution of weight update magnitude:
VW] & kvt + O(2t2), where y = o, ki = r(ma’y + noh). ©)

Remarks. This analysis uncovers essential properties of LoRA initialization and optimization
trajectory. First, since 74 and yp are very small values (< 1), the magnitudes of parameters A®*)
and B(®) remains nearly unchanged throughout training, potentially constraining the representation
capacity of the learned model. Moreover, unlike full-parameter tuning, which evolves at a linear rate
of v, the low-rank structure introduces a proportional factor k1, significantly slowing updates. For
instance, the naive “Noise & Zeros” initialization yields k; = #, while the dimension m in large
models like LLaMA [3] is in the thousands or more. Despite the quadratic term accelerates growth,
small gradients may temper this effect in the later training stages.

Figure 2[b) visualizes LoORA magnitude dynamics during training. We use the same network as
in Figure a) but apply a nonzero initialization with o4 = op = 2—10 We explore a regular MLP
with the same magnitude denoted as “Linear”, and a group of networks with larger initialization
magnitudes. Notably, while the loss decreases significantly, the magnitudes of A and B remain nearly
unchanged throughout training. The magnitude evolution of W reveals that the basic LoRA with
theoretically k1 = 1—16, grows substantially slower than the regular MLP. Increasing the initialization
magnitude effectively accelerates the growth of W, aligning with our theoretical analysis.

Integrating analyses in this section, we derive a magnitude principle for LoRA development:

[ A valid improvement to LoRA convergence will enhance weight update magnitude v[Wi,ga). ]

As shown in Proposition [2} magnitude principle could unify and explain improvement factors in
existing works, including the learning rate, scaling factor, gradients, rank and initialization schemes.

3 Demystifying Spectral Gains with Magnitude Principle

The sheer scale of modern neural networks complicates the determination of optimal LoRA initializa-
tion across layers. Drawing inspiration from recent spectral initialization methods [40} 41,43} 44, 39],
which have demonstrated improved convergence and task performance, we reinterpret their effec-
tiveness through the lens of the magnitude principle and introduce a magnitude-driven initialization
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Figure 3: Illustration of spectral gain factor Q[r] defined in Eq. (I0) and spectral concentration
factor p[r] defined in Eq. (8] across DeBERTa-v3-base [50], LLaMA-2-7B [3] and FLUX.1-12B [31].
Values are computed from uniformly sampled layers. The white dotted line represents the linear
growth rate of naive LoRA weight magnitudes, while spectral initialization exhibits faster growth.
Due to its concave nature, we approximate the spectral gain factor using a logarithmic function.

method called LoORAM. Notably, these methods requires extra SVD computations and storage, lead-
ing to increased resource overhead and implementation complexity. In contrast, LORAM mitigates
these drawbacks and achieves even better performance. In the following, we take the seminal work
PiSSA [40] as a representative baseline and ablate other methods in experiments (see Section .3).

3.1 Magnitude Gain in Spectral Initialization

The PiSSA method [40]] initializes LoRA using the spectral decomposition of pretrained weight
matrix W = USV'T, which has a rank of R[WW]. The spectral initialization is defined as:

AO) = Agyp = \/@VK B = Bsyvp = U:,:T\/Sirv O

where S, € R"*" contains the top-r singular values, and U € R"*", V € R™*™ are the left
and right singular vector matrices. While prior works [40, 411143} 48] attribute PISSA’s success to
its ability to preserve principal components, we show that its key advantage lies in singular value
weighting. By redistributing dominant variance into the initialization, PiSSA facilitates adaptive
magnitude updates across layers, accelerating convergence.

Consider the statistics of the top-r singular values, we define the spectral concentration factor as:
” 2
s _E.[s]? (: 20 si)
r| = = .
plr] Er w57 - SR 2 (8)

k3

This factor captures the concentration of energy in the top-r singular values. We then reformulate

v(Asvp) = B [s]v[V.,] = /"3 v(Bsyp) = B, [sp[U. ] = /"2 )

Essentially, p[r] acts as a scaling factor that redistributes variance from the pretrained weight matrix,
influencing the magnitude of updates during training. Since p[r] monotonically decreases with r, its
impact is more pronounced for smaller r, making it particularly relevant for LoRA applications.

Spectral Gain Factor. Taking the above magnitudes into the dynamics in Eq. (6) further derives:

k1= Qlr(m +n)v[W], 0< Q]2 Air <1 (10)

Given that v[W] ~ O(min(-, 1)), this results in a gain factor of at least Q[r], which we term as
the “spectral gain factor”. As shown in Figure [3| the spectral gain factor Q)[r] exhibits bounded
variation in [0, 1] with characteristic concavity, which can be formally derived via Jensen’s inequality.
Although SVD components are not completely independent preventing the theoretical monotonic
increase in Q[r], this concavity also suggests that the gain effect is more pronounced when r is small,

reinforcing the effectiveness of spectral initialization for LoRA in the parameter-efficient manner.

3.2 Efficient Magnitude-driven Initialization with LoORAM

We propose LORAM to achieve similar magnitude update rate in Eq. (T0) like PiSSA while eliminating
spectral computation. As depicted in Algorithm[I} LORAM initializes the parameter matrices as:

1
A® = Arram = -9, BO = Broram =5-P,, = (%) toooan



Algorithm 1 LoRAM Initialization Procedure

Input: Pretrained weight W € R™*", target rank r
Output: Initialized parameters A(©), BOO) 1}

®,,, D, < get_basis(n, r), get_basis(m, r) > Generate basis matrices, e.g., Eq @])
. [ 174 . .

B+ (W) > Compute magnitude gain factor

BO AW ., 6-0 W —52-8,0] > Initialize parameters

Here ®,, and ®,,, denote the first » columns of an n- and m-dimensional orthogonal basis matrices,
respectively. Given that v[®,] = 1 and v[®,,] = L, LoORAM achieves the similar magnitude

as PiSSA with k; = Q[r](m + n)v[W]. We can also derive v[B(Y) A(0)] = Q[r]v[W], implying
LoRAM inherently ensures numerical stability and moderate corrections to the pretrained weight.

Logarithmic Gain Factor. Due to the concave nature of Q[r], we approximate its analytical form
using an asymptotic expansion: Q[r] & 10g,in(,,m) (7). As illustrated in Figure this logarithmic
function effectively captures the monotonic increase nature, providing a predictable improvement
than LoRA and PiSSA particularly when using a small rank r.

Deterministic Basis Matrix. To eliminate the need for storing initialization buffers, we adopt
an analytic approach instead of random initialization. Specifically, we employ the Discrete Sine
Transform (DST) basis due to its simplistic mathematical definition:

By li, j] = /527 sin (“*Q}ﬂ”“) . 0<i,j<m. (12)

This formulation constructs orthogonal matrices of arbitrary dimensions, ensuring reproducibility

across different devices while providing provable statistical properties: E[®,,,] = 0 and v[®,,] = L.
One may wonder if randomness is required for initialization, we find it unnecessary in LoRA. In fact,

DST even slightly outperforms random strategies in our ablation experiments (see Section [4.3).

Efficiency and Compatibility. Since 5 and ¢ avoid complex matrix operations, LORAM retains
the efficiency and storage footprint of naive LoRA. As it only modifies initialization, LORAM
remains plug-and-play, integrating seamlessly into any pipeline that supports standard LoRA. This
is especially valuable for modern large models built on fixed and highly optimized frameworks. In
contrast, other initialization methods require costly preprocessing, such as matrix generation [44, 43]]
or decomposition [40, 42, 41]], which complicates adoption in standard workflows.

4 Experiments

We conduct comprehensive experiments to evaluate LoORAM efficiently implemented via the PEFT
library [6]. Following conventional settings [40} 41, 35]], we assess performance on language tasks
and extend the evaluation to vision-language tasks, demonstrating LoORAM’s generalization across
diverse models and modalities. All experiments are run on servers with 8§ NVIDIA H800 GPUs.

Baselines. While extensive research on LoRA has explored aspects like structural modifications and
rank control, these directions are largely orthogonal to our focus on hyperparameter analysis within
the naive LoRA framework. In line with this, we compare LoORAM with the naive LoRA (ICLR
2022) [[7], as well as several representative hyperparameter tuning strategies. We first consider
weight-driven initialization (marked “§”), including PiSSA (NeurIPS 2024) [40]], which uses the top-r
singular vectors and values of pre-trained weights; MiLoRA (NAACL 2025) [41], which utilizes
the last r singular vectors and values; and OLoRA [42], which applies orthogonal initialization
via QR decomposition. All these methods adopt a fixed scaling factor « = 1. We then include
RsLoRA [34] (marked “1”), which enhances performance by setting @ = /r, and LoRA+ (ICML
2024) [35] (marked “1”), which increases the learning rate with the recommended np = 4174. We
also evaluate data-driven initialization in the ablation study, including LORA-GA (NeurIPS 2024) [52]]
and CorDA (NeurIPS 2024) [43], which require extra pipeline to leverage training data information.
Most of these baselines have been integrated and validated in the PEFT library.



Table 1: Comparison of LoORAM versus hyperparameter tuning baselines on NLG tasks. Experiments
conducted with LLaMA2-7B model using two ranks, reporting mean =+ std results (%) over three
runs. Bold and underlined values represent the best and second-best performances, respectively.

Rank #Param  Method GSMSK MATH HumanEval MBPP Commonsense
N/A 6738M Full FT 6034 +£132 11.74 +063 3230 +126 39.27 + 1.01 79.20 £1.20

LoRA 31.51 031 4.16 +0.27 1598 £020 28.65 +0.47 66.56 + 121

RsLoRAT  39.04 £053 494 +040 18.85+066 28.10 +0.64 73.24 £ 084

16 OM [ oRA+ 31694064 3984038  18.54+052 28.00+081  72.19 + 143
MiLoRAS 2970 +042  4.18 £ 021 14.69 £066 27.23 £0.53 67.90 + 1.20

OLoRA® 3583 +058 4.80 +£0.53 16.58 + 038  27.44 +0.76 73.48 £ 1.09

PiSSA?S 37.68 £045 5.16 £ 041 18.37 £049  28.62 +0.68 73.72 +£1.05

LoRAM?!  40.32 +043  5.30 +0.37 1892 +055 28.83 4+ 0.63 75.19 +1.10

LoRA 40.27 £070 4.72 £043 20.11 £ 032  28.84 £037 73.64 +1.13

RsLoRAT 5038 +037 7.32+028 21.32 +070  30.73 +£0.43 77.01 +1.17

128 320M LoRA+' 4041 +067 5.28 +053 20.71 £ 088 29.13 +0.78 78.19 +1.33
MiLoRA®  39.81 +089 5.18 +0.58 20.39 £ 021 29.95 +1.05 74.29 + 1.09

OLoRA®  50.10 064 7.0l +056 20.72+067 30.21 +0.89 78.61 +0.97

PiSSA?S 5148 +077 7.04 £054  21.62 4048 31.07 £0.68 77.28 +£0.98

LoRAM?  51.12 4073  7.25 +0.68 22.03 +056 31.53+072 77.81 +0.96

Table 2: Comparison of LORAM versus hyperparameter tuning baselines on GLUE benchmark.
Experiments conducted with the DeBERTa-v3-base model using rank 8, reporting mean results over
three runs. Bold and underlined values represent the best and second-best performances, respectively.

Method #Param MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B
Full FT 184M 88.31 93.57 89.46 67.26 9280 9152 8375  86.87

LoRA 1.33M 90.23 95.87 84.06 63.56  93.88 90.55 50.18  87.20
RsLoRAT 1.33M 90.33 95.64 86.38 64.85 93.97 90.26 60.31 88.37
LoRA+* 1.33M 90.37 95.32 87.54 64.79 9432 9093 6537  89.20
MiLoRAS 1.33M 90.28 95.75 87.00 62.58 9397 90.83 5487 87.74
OLoRAS 1.33M 90.19 94.83 88.72 65.59 9336 90.74 74.09  88.52
PiSSAS 1.33M 90.38  95.64 89.21 65.06 93.84 9135 7436  88.90
LoRAM?® 1.33M 90.34  95.29 89.95 65.53 94.08 91.70 74.72  89.93

4.1 Evaluating the Performance on Natural Language Tasks

Nature Language Generation (NLG). As shown in Table[I} we conduct supervised fine-tuning of
LLaMA 2-7B [3] on math, coding, and commonsense reasoning tasks. Our setup strictly follows
PiSSA [40], using the AdamW optimizer with a batch size of 128, a learning rate of 2 X 1075, a
warmup ratio of 0.03, and no weight decay. All experiments are performed on subsets containing
100K data points for one epoch to minimize training overhead. For math tasks, the model is tuned on
MetaMathQA [53]] and evaluated on GSMS8K [54] and MATH [33]] validation sets. For coding tasks,
we use CodeFeedback [55] as training dataset, with evaluations on HumanEval [56]] and MBPP [57]].
For commonsense tasks, model is tuned on Commonsense170K [58], and we report averaged accuracy
on eight sub-datasets. The results in Table [I] demonstrate that LORAM consistently outperforms
LoRA variants across diverse tasks and rank settings, without requiring matrix decomposition.

Nature Language Understanding (NLU). We evaluate the NLU performance by fine-tuning the
DeBERTa-v3-base model [50] with a rank of 8 on eight tasks in the GLUE benchmark [59]. We
utilize scripts from the Transformers Library [47] to ensure a fair comparison. All methods are
trained with a learning rate of 1 x 10~* for 3 training epochs, except for MRPC, which uses 5 epochs
due to its smaller size. We report overall matched and mismatched accuracy on MNLI, Matthew’s
correlation on CoLA, Pearson correlation on STS-B, and accuracy on the other datasets. As shown in
Table 2] LoORAM achieves competitive performance against PISSA across most tasks.

4.2 Evaluating the Performance on Vision-Language Tasks

Text-to-image synthesis. We adapt the advanced FLUX.1-12B [51] to address the image customiza-
tion task, implementing LoRA, PiSSA, and LoRAM under identical configurations: a learning rate
of 1 x 1074, a batch size of 1 and 1,000 iterations. We set the rank to 8, optimizing 9.3 million



Table 3: Comparing LORAM with other LoRA variants on LLaVA for multimodel tasks. Bold and
underlined values indicate the top and second-best performances, respectively.

Method MMEc,, MMEp, MMMU AI2ZD ChartQA OCRBench TextVQA ScienceQA

Full FT 280 1541 0.355 0.583 0.251 0.361 0.597 0.722
LoRA 278 1402 0.331 0.557 0.231 0.333 0.536 0.684
RsLoRAT 274 1385 0334  0.573 0.227 0.328 0.539 0.694
LoRA+ 283 1389 0.341 0.565 0.229 0.331 0.545 0.690
MiLoRA§ 285 1354 0.340  0.564 0.220 0.335 0.536 0.681
OLoRAS§ 288 1404 0.345 0.565 0.228 0.330 0.540 0.677
PiSSA§ 311 1411 0.344  0.564 0.232 0.338 0.547 0.686
LoRAMS 308 1406 0.350 0.571 0.238 0.336 0.551 0.700

LoRA Reference

PiSSA

LoRAM

Figure 4: Comparison of LoRA, PiSSA, and LoORAM on image customization task. Experiments
conducted with the state-of-the-art FLUX.1-12B model using rank 8.

parameters while maintaining computational efficiency on a single GPU. The training data and
prompt template adhere to DreamBooth’s protocol [22]]. Qualitative results in Figure 4 demonstrate
that LORAM exhibits marginally superior performance in detail fidelity compared to PiSSA.

Image-to-text generation. Following the pipeline of LLaVA [60], we employ CLIP-ViT-L/14 [61]
as the visual encoder, Vicuna-13B [62] as the text decoder, and a new visual resampler [63]] as the
connector. In the pre-training stage, we fine-tune only the perceiver resampler using the CC-595K
dataset [6Q] for one epoch. During the subsequent instruction-tuning stage, we fine-tune both Vicuna
and the resampler using a 656K mixture dataset [60]. The learning rate is set to 2 x 1075, and the
batch size is 128. We follow the official implementation and use a rank of 64. As shown in Table 3]
LoRAM achieves favorable performance across multiple multimodal benchmarks.

Training curves. We provide representative training loss curves of diverse initialization methods in
Figure[3] It can be noticed that LORAM is able to have a faster convergence rate in the early stages
compared to other LoRA variants and incur smaller losses in the end.

4.3 Ablating the Magnitude Principle in LoORA improvements

We conduct ablation experiments on LLaMA-2-7B [3]] under the NLG setting, focusing on the effect
of magnitude gain factor, the choice of basis matrix, and the validation of the magnitude principle.

Magnitude Gain Factor. As shown in TableEI, we first evaluate different values of [r] and observe
that increasing its value slightly improves performance. We further introduce a “tracking mode” that
adjusts 3 in Algorithm I|based on the initialization magnitudes from reference methods. Specifically,
V[BrerAre

V[[<1>nf<1>;f]] ’
or data-driven approaches [43] 44]]. Under this mode, LoORAM essentially matches the performance
of prior methods, confirming that magnitudes govern its performance. We also observe that PiISSA,

we set 3 = where Byt and A are initialization matrix using weight-driven [40]
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Figure 5: Illustration of training loss curves. LORAM achieves comparative convergence dynamics to
PiSSA across diverse models and benchmarks. See tables and texts for the evaluation results.

Table 4: Results of ablation study. “Orth.” denotes the random orthogonal initialization. The left and
right sides of the slash indicate the results of the method and the tracking mode, respectively. The
average value is calculated over all the ranks and tasks to compare the overall trend of change.

Rank Task \ Q[r] \ Basis \ Weight-driven \ Data-driven \ + RsLoRA

|log 5 logr® log2r | Orth. Gaussian | MiLoRA PiSSA | CorDA  LoRA-GA | LoORA-GA LoRAM

MATH 508 530 5.18 | 4.74 4.62 4.18/4.05 5.16/5.10|4.60/4.14 5.73/3.76 7.94 7.22

16 GSM8k 40.1 403 40.7 | 363 35.8 29.7/29.6 37.6/36.7|36.2/30.7 45.7/30.9 51.5 52.1

MBPP 28.8 28.8 283 | 28.6 27.5 27.2/27.8 28.6/29.1|257/283 283/27.8 339 31.5

HumanEval | 17.1 18.9 17.1 17.7 17.7 14.6/147 183/17.3|152/152 19.5/17.7 22.0 18.3

MATH 752 725 751 | 740 7.62 5.18/5.04 7.04/6.95|6.26/5.04 9.18/7.32 9.08 11.1

128 GSM8k 50.7 51.1 504 | 50.2 49.8 39.8/39.2 51.4/49.5|44.5/403 54.4/50.8 53.6 59.4

MBPP 315 315 323 | 313 32.8 29.9/30.2 31.0/29.6 | 29.6/29.9 32.0/30.2 31.7 38.1

HumanEval | 20.7 220 22.6 | 232 22.6 20.3/19.5 21.6/20.3|20.1/18.9 24.4/20.7 26.8 31.7

Average value ‘ 25.1 255 256 ‘ 249 24.8 ‘ 21.1/212 25.0/243 ‘ 22.7/121.6 27.4/23.6 ‘ 29.5 31.1

which selects the top-r singular values, outperforms MiLoRA, which selects the last r singular values.
This indicates that leveraging the large dominant singular values enhances performance.

Basis Matrix. We find that the choice of basis matrix generally has limited impact. For instance,
replacing the DST basis with a random orthogonal or Gaussian matrix just results in only minor
performance degradation. In tracking mode, substituting the SVD-derived basis with DST does not
significantly impact performance. A notable exception is LORA-GA [44]], which approximates the
full-parameter gradient at initialization. Nonetheless, we emphasize that tracking mode fails not due
to incorrectness of magnitude principle, but because the LORA-GA matrix form maximizes gradient
magnitudes of Eq. (2), making it irreplaceable by alternatives and validating magnitude principleﬂ

Upper Bound of Magnitude Scaling. While increasing update magnitude generally improves
performance, the benefit is not unlimited. For example, applying RsLoRA to LoRA-GA yields a
clear gain at rank 8, but the improvement diminishes and may even reverse at rank 128. This suggests
that magnitude scaling should be applied conservatively at higher ranks, since larger ranks inherently
amplify updates, as demonstrated in our Proposition[2] Given that data-driven methods involve costly
gradient and SVD computations, we recommend LoRAM with RsLoRA as a more efficient and
scalable alternative for accelerating LoRA convergence and performance.

5 Conclusion

In this paper, we explore the magnitude principle of Low-Rank Adaptation (LoRA) and introduce
a novel magnitude-driven initialization strategy, LORAM, that bridges the gap between efficiency
and performance. Our work demystifies the prevailing awareness surrounding spectral initialization
methods, demonstrating that their success primarily stems from the amplification of weight update
magnitudes. By focusing on magnitude regulation as the key driver of convergence, we provide a
unified perspective that connects seemingly disparate hyperparameter adjustments, such as learning
rate, scaling factor, and initialization schemes, under a single framework.

Limitations and Future Work. Despite the advancements introduced in this work, several challenges
remain open for future research. First, LORAM mimics spectral initialization magnitudes rather than
seeking optimal ones; exploring alternative strategies could yield further gains. Additionally, different
layers may benefit from tailored magnitude settings, motivating joint optimization with learning
rate and rank. Finally, our work does not explicitly address optimization dynamics and convergence
properties. These directions remain valuable for advancing parameter-efficient fine-tuning.

3See Proposition [5/in Appendix. We prove LoRA-GA initialization maximizes LoRA gradient magnitude.
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A Related Work

Advances in Low-Rank Adaptation. LoRA [7] has garnered significant attention in leveraging
low-rank structures to represent weight updates, with subsequent studies expanding its foundations
and applications [64,48]]. Existing improvements to LoRA primarily focus on three directions:

* The low-rank constraint creates bottlenecks when learning complex features. Recent approaches
enhance expressiveness through iterative stacking of LoRA modules [27, 28, 24| [29], high-order
matrix operations [23| [10], and customized architectural designs [65} 26, 166, 167, 68} 32, 69].

* The non-convex landscapes pose challenges for numerical optimization and hyperparameter
tuning [30]]. Researchers have explored to improve scaling factor [34} [70, [14], learning rate [33],
dropout rate [[71]], optimizers [30, 38, |39} 44], and initialization strategies [40l |41} 142} 37,139,143\ 44].

» The growing scale and application of large pre-trained models need more efficient fine-tuning
methods. Recent works reduce computational and memory overhead through freezing parameters [[72|
36|, designing more compact adapters [45] [73| 25] and parameter quantization [40\ 146\ [74]].

Knowledge-Driven Low-Rank Initialization. Proper initialization critically influences neural net-
work training outcomes [75,/49]]. The standard LoRA [[7] initializes its low-rank matrices with random
noise and zeros, referred to as "Noise & Zero" scheme, demonstrated to hinder convergence. Recent
advances address this limitation by leveraging knowledge from pre-trained weights [40 |41} 42} [12]
or task-specific data [39, 43| 44]. Most prominent approaches involve Singular Value Decomposi-
tion (SVD), which allows flexible control over matrix rank. As a pioneer, PiSSA [40] initializes
LoRA weights using principal singular components of pre-trained matrices, aligning adaptation
directions with the most significant parameter variations to accelerate convergence. Subsequent
works [43}144][39,[76] propose data-driven strategies that incorporate domain knowledge into adapter
construction. For instance, LORA-GA [44]] aligns low-rank gradient directions with full fine-tuning
counterparts during initialization. While these methods boost performance and retain the core LoRA
structure, their theoretical effects on optimization dynamics remain unclear. More importantly, they
are less pluggable than LoRA, requiring extra computational pipelines and storage for SVD buffers.

Optimization Dynamics of LoRA. LoRA exhibits inherently nonlinear and non-convex optimization
dynamics that complicate theoretical analysis [30]. Most existing theoretical studies are limited
to simplified and idealized scenarios, such as the lazy-training regime [77, (78] and infinite-width
limit[35,137)]. A common goal across existing studies involves ensuring feature learning stability to
prevent unstable or collapsed training dynamics. For instance, [34] proves that improper scaling
factors induce gradient collapse in high-rank adapters, proposing modified scaling mechanisms to
stabilize forward and backward propagation. Recent work [35} 136, [37]] reveals critical asymmetries in
LoRA: The two low-rank matrices exhibit divergent distinct impacts on optimization trajectories. This
asymmetry motivates [35] to employ distinct learning rates for each matrix. For SVD-based initializa-
tion, [39] investigates principal components derived from single-step full fine-tuning gradients [44],
providing convergence guarantees yet under restrictive assumptions. Moreover, such analyses still
fail to explain the efficacy of alternative approaches like weight-driven initialization [40].

The intricate nature of LoRA and its numerous advancements motivates us to seek a streamlined
principle explaining its empirical success and guiding practical applications. We identify update
magnitude amplification as a key mechanism, unifying seemingly disparate elements, such as scaling
factors [34} [14], initialization strategies [40} 44], and learning rates [35]], into a cohesive perspective.

B Lower Bound on Representation Error

Proposition 1 (Lower Bound on Representation Error). Consider the function class of LoRA-
parameterized linear models:

H={(W+aBA)z | BcR"™ , AcR*™ v[A] < My,v[B] < My} .

Let R(f) = E( )~ l(f(x),y)] denote the expected regression loss under data distribution D,
with squared error loss ((f(z),y) = ||y — f(x)||*. Define f* = argminy R(f) as the globally
optimal predictor and f;, = argmingey R(f) as the optimal predictor within H. With loss of
generality, we consider the optimal predictor is linear, i.e., f*(x) = W*x. Assume that the input
covariance matrix is positive definite, i.e., Xp = E,.p [;v:cT} > 0, and the magnitudes is limited,
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satisfying ar/mnMy My < |W* — Wy || p. Then, the representation error is strictly positive and
lower bounded:

R(f) — R(fY) = Amin(Ep) (HW* — Wollr — ar\/manMg)z >0,

where Amin () denotes the smallest eigenvalue of the matrix.

Proof. Due to the linear learnability, we have that y(z) = f*(x) = W*z. For any W, we have that
R(W) = Egrp [[[(W — W*)z|?]

= B [(W = W) (W~ W*)a) |

(13)
=Tr (W —-W"Ep(W —W*)T)
2 )‘min(zD)”W - W*H%
The last inequality comes from Apin (Xp) > 0.
Due to v[A] < My, v[B] < Ms, we have that
|l < rmMy, |BlF < rnbMs.
Further, for any A, B € H, we have that
[Wo +aBA=W"|[p = [Wo = W¥|p — [[aBA|
> [Wo = W*|r — allAllr||BF 04
> |[Wo — W¥|p — ary/mnM; M,
> 0.
Therefore, we have that
R(fy) — R(f")
= min R(Wy + aBA)
v[A]<M,,v[B]<M,
> Amin (2 i W, BA —-W*|J2
= dnin(E) a0 T Iz
2
> )\min(zp) (HWO — W*”F — ary/ manMg) > 0.
The first inequality comes from Eq. (T3) and the last inequality comes from Eq. (T4). O

C Proof of Main Theorems

C.1 Proof of Parameter Scaling Equivalence

Proposition 2 (Parameter Scaling Equivalence). For LoRA layers defined in Eq. (1), consider
decomposing the scaling factor « = o’ g, where o, a.q, g € RT. Under the commonly used
optimization frameworks with negligible numerical errors, the following parametrization schemes

exhibit dynamical equivalence throughout training: For all iterations t > 0, AWIEZ)R A=A j ]EZ)R A

and WIEZ)R A= W]EZ)R r» where A®), B and W) represent the re-parameterized versions.

Original SGD Adam

Representation aBAx o BAx o BAz
Initialization A9 = 4,0, BO = Byy A9 = aaApir, B = apBiir  AY = aaAii, B = apBiu

Learning Rates na >0, >0 Ni = a?477A»77B = 012BT]B Ni = QANA, N5 = ABNB

Proof. Given LoRA’s weight decomposition Wy ga = aBA where o > 0, the gradient updates
follow:

AWL(?RA = a(BUHD AT _ p®) A1), (15)
with learning rates 74, np for parameters A and B, respectively. We define reparameterized parame-
ters A= aqA, B=apB,and o = a/(aaap). The LoRA projection becomes:

Wiora = aBA = o/ BA. (16)
This transformation preserves the functional form while redistributing scaling factors.
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Proof for SGD Under initial conditions:
A = g Ay, a7
B = apBiy. (18)

Gradients for reparameterized parameters:
ViL=dB"VwL, (19)
Vsl =a'ViwLAT. (20)

With learning rates 1 ; = a%n4, g = a%np and ¢t = 0:

A — () _ a,%lnAVAL(t) 21
= a2 AY — 2na(a’apBY) Vi LY (22)
=ay (A(t) - aUA(B(t))TVWL(t)) (23)
= a4 (A(t> —nAVAL(”) (24)
— ozAA(t+1). (25)

Similarly for B:
B — ap (B(t) _ T]BVBL(t)) — ap B, (26)
These equations propagate through all £ > 0 via mathematical induction. Compare weight increments:
AWy = o [BUHDACHD — BO 4] @7)
= o/ aap[BUHD ACTD _ B A()] (28)
= a[BIHD AW _ B() A1) (29)

t

— AW, 30
O

Proof for Adam Adam maintains exponential moving averages (m;, v;) for gradients. Under

parameter scaling P = kP, gradients transform as V 5L = £V p L. The momentum terms inherit
scaling factors:

mp :Blmp+(1—ﬂ1)kVpL, (31)
vp = Bavp + (1 — Bo)k*(VpL)?. (32)

The pratical gradients for Adam:

VIP=mp/\/vp+e (33)
[Bimp + .../ \/Bavp + ... (34)

When setting ¢ = 0 for alleviating numerical errors, we have VP = VP, Setting 5 = knp
cancels scaling factors, preserving update magnitudes. With learning rates n; = oana, 5 = apnB
and ¢ = O:

A+ — A0 _ CYATIAVEL@ (35)
= OZAA(t) - OzAnAVBL(t) (36)
= AT, (37)

Similarly for B. These equalities propagate through all £ > 0 via mathematical induction.
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C.2  Proof of Proposition

For the convenience, we split the proof of Proposition [2]into two parts.

Proposition 3 (Parameter Magnitude Dynamics). Consider LoRA parameters A") and B®Y) updated
with learning rate 1. Assume: A©) ~ N(0,0%1), B ~ N(0,0%1), ViwL ~ N(0,0%1),
and E[(A® VLMY = E[(BY,VEL®)] = 0. Under these conditions, the parameter norm
vector e; = [E[| A" 2], B[ B3]
closed-form solution (right):

evolve as the following linear dynamical system (left) with

t t t t
. AL AL AN AL
YA 2 B 2
€ry1 = (I + |:’YB 0l)es e = S5 AL AL AL +AL €. (38)
\Vya 2 2

where y4 = mn*o2, yg = nn’o2 and Ay = 1 + \/yavyp. Similarly, the parameter magnitudes

v, = [Ev[AW]],E[v[BY]]] " evolve as a linear dynamical system:

v, = <I + [7?4 V(fD vi_i. (39)

Proof. Following the gradient descent update rule, the parameter dynamics are:
{At+1 = A —nValy
Bii1 =By —nVpL

where the gradient relationships VoL = BT (VL) and VgL = (Vi L)AT are derived from the
LoRA architecture. Expand the Frobenius norm for A, 1:

(40)

[Aer1 [z = 1 AellF — 20(Ae, VaLe) + 02|V aLe| - (41)
Taking expectations (using independence E[(A;, V 4 L:)] = 0):
E[|As17 = E[AellF +n*E[VaLell7. (42)
Similarly, for By ;:
E|| Bl = EllBil& + n*E| V5Ll 43)
Expand the norm of VoL = BT (Vy L):
|VaL||3 = Tr((VAL)(VAL) ") = Te(BT (Vw L) (VwL) " B). (44)
Taking expectations (using gradient entry independence):
E|VAL|} = Tr (BTE[(VwL)(VwL) |B) = mo? || B} (45)

where E[(Vw L)(VwL)"] = mo?1, follows from the i.i.d. assumption on gradient entries.
For VpL = (VwL)AT:
E||VpL|F = Tr (AE[(Vw L) (Vi L)]AT) = noi || A] 2. (46)

Substitute gradient norms results:

E||Berlf = BBl + n*nof Ell Al
Define parameters and state vector:
E||A:||?
A= 1Pmod, s =1Pnol, e = {EH BtHE] . 48)
tilF

The recursive system becomes:

| oyal 0 7a
€11 = |:’YB 1}&—(]4-[73 0})@- (49)

Similar results for v; can be obtained using the same proof techniques.
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Proposition 4 (Linearized Dynamics Approximation). For sufficiently small learning rate n, the
closed-form solution admits the first-order approximation:

~ 0 7 s [V[AD]] _ [0% +typoy,
vy & (I+t {’YA 0 }) Vg, wherev; = L/[B(t)] = o2 + tyao? | (50)

This yields the update variance expansion under small-n regime:
VWil = kint + kv, 51)
with v = n?a2, ky = r(mv[AD]2 + nv[B)2), and ky = rmnv[AQ]v[BO)].,

Proof. For a sufficiently small learning rate 1), the product y4yp = mnn*o? is very small. Hence,
the eigenvalues

Ar =1+ /7478 (52)
can be approximated via a first-order Taylor expansion. Thus, for small ¢, the closed-form solution
for v; can be approximated as

0
v~ (I +t {m W(fD V. (53)
By definition, we set
s [[AY]] _ [of +typog,
vt [l = 4 Tkt 9

which agrees with the first-order expansion of the linear system. O

D Analyzing LoRA-GA from Magnitude Principle

Proposition 5 (LoRA-GA initialization maximizes low-rank gradient magnitude). Given a gradient
matrix Vyy L € R™ ™ with SVD decomposition Vyy L = USV'", the optimal rank-r matrices
A € R™™ and B € R™ " that maximize the Frobenius norm of the gradients |V oL||% and
|V L||% in Eq. @), under the constraints ||A||% = r and | B||% = r, are given by:

A* =V, B =U.,, (55)

B )

where V. .. and U. ., contain the first r right and left singular vectors of VL, respectively.

Proof. Let G = Vy L € R™™ and write its SVD G = USV T with singular values o; > 0y >
-+ > 0. From the LoRA gradient expressions we have

VaL=B'aG, Vel =GAT.

Note that V 4 L does not depend on A and V 5L does not depend on B, hence the two maximization
problems decouple.

(i) Maximizing ||V g L||% w.r.t. A under ||A||% =r. Let A’ := AV. Then ||A’||% = ||A||% = r and
IGAT |7 = [US(A)TIIF = [1S(A) T = tr(AS?(A)T).

Form the Lagrangian £(A’, \) = tr(A’S?(A’) ") — A(tr(A’(A’) ") — r). Taking derivative w.r.t. A’
yields the stationarity condition A’S? = MA’. Thus the rows of A’ lie in the eigenspaces of S2. To
maximize the trace, one places the Frobenius norm onto the coordinates corresponding to the largest
diagonal entries of S, i.e. the first r singular values. Taking A™ = [I,. | 0] attains the maximum

T
max [|GAT(E =) o7,
lAjz=r —

and A* = A”*V'T = V.| (up to orthonormal transformations within the chosen r-subspace).
(ii) Maximizing ||V aL||% w.r.t. B under || B||% = r. Analogously let B’ := U B. Then
IBTG||% = te((B)'$2B),
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and the same Lagrange argument gives that the optimal choice concentrates norm on the first r
coordinates, producing

T
max |B'G|: =) o7,
I1BIIZ=r P

and one may take B* = U. ...

,:

Hence the stated solutions A* = VJT and B* = U. ., are optimal, with the above maximal values.
This completes the proof. O

E Details on Key Formulas
E.1 Weight Update Magnitude

Z/[AW]E?RA] ~ ra’n? (V[B(t)}u[VAL(t)] + V[VBL(t)]y[A(t)D )

Proof. Given the LoRA parameter update rule:
AW = an (BOVALY + VLA ) 4 O(p2), (56)
where we retain first-order terms in 1 under small learning rate assumption.

Assumptions:

(A1) Independence: B 1l VAL, VgL 1l A
(A2) Zero-mean initialization: E[B;;] = E[Ay] =0
(A3) Spatial homogeneity: var[B;;] = v[B], var[(VaL);;] = v[VaL].

For entry (m, n) in AWIE?RA:

var (AW )mn] = o®n’var | > (Brr(VaL)kn + (VBL)mk Agn) (57)
k=1
= a2n2 (UQT ZBmk(VAL)kn —+ var Z(VBL)mkAkn > . (58)
k k
By assumptions (A1)-(A3):
var |y Bmk(VAL);m] = war[Builvar((VaL)kn) (59)
k k
= rv[Blv[VaL]. (60)
Similarly:
var | Y (VpL)mrAin | = rv[VLIv[A]. (61)
k
Combining these terms:
VAW iRl & 0% (rv[By[V L] + rv[V s L]y [A]) (62)
=ra’n? (V[Blv[VaL] + v[VBLIV[A]). (63)

where v[B], v[A] inherit their magnitudes from initialization scheme, and v[V L] terms reflect
task-specific loss landscape characteristics. O
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E.2 Spectral Concentration Factor

Let the singular values of the pretrained weight matrix W be {sl}g?j} Define the average of the

top-r singular values as

1
E,[s] = . ; Sis (64)
and the average of the squares of all singular values as
1 R[W]
Ermwls”] = 777 ; 7. (65)
Because the square function is convex, Jensen’s inequality implies
E,[s]* < E,[s7], (66)
with equality if and only if all s; (forz = 1,...,r) are equal. Moreover, since lower singular values

generally contribute less to the overall energy, as r increases the value of [E,.[s] decreases relative to
Exw)[s?], making p[r] a monotonically decreasing function of r.

E.3 Variance of Asyvp and Bgyp

Recall that the PiSSA initialization is given by
Asvp =S V... Bsvp =U..+\/ Sy, (67)

where S, is a diagonal matrix containing the top-r singular values of W. Assuming that the columns
of V' (and similarly, U) form an orthonormal basis, the variance of V. ., (taken elementwise) is

approximately v[V..| ~ %n (or %L for U), since for an orthogonal matrix the energy is uniformly

distributed. Thus, the variance of Asyp can be expressed as:

Tr(v Sv-T‘/:?:rV:,:r\/E) 22:1 Si

V(ASVD) = = = IET [S}Z/[VT] (68)
mr mr
To connect this with the variance of W, note that
1 RIW]
Wl = — 2. 69
QUIE—) D (69)

Thus, we can relate E,.[s] to v[W] via the spectral concentration factor p[r]. Incorporating a factor of
n to account for the dimensions of Agyp, we obtain:

np[rlv[W]
mR[W] -

A similar argument, with the roles of m and n interchanged, leads to the expression for v(Bgyp).

V(ASVD) = (70)

E.4 Spectral Gain Factor

The dynamics of the LoRA weight update variance are captured by an expression of the form:
V[Wiokal & kit + kay?t?, (1)

where k; is the linear evolution rate. Substituting the variance expressions derived for Agyp and
Bsvyp into the dynamical system (see Eq. (6)), we obtain:

B plr]r (m+n)
k1 = 7R[W] v[W]. (72)
Defining
N plr]r
QI 2 B 73)
this expression becomes:
k1 = Q[r](m + n)v[W], (74)

with the constraint 0 < Q[r] < 1. When v[W] ~ O(min(1/m,1/n)), the factor Q[r] effectively
quantifies the amplification of the weight update magnitude due to the spectral initialization.
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Proof. Recall that

plr] ROV 57 (75)
RIW] Zzz[l ] 57
and the spectral gain factor is defined as
rlr
qdég&q (76)

Let m = R[W]. By Jensen’s inequality (or by the Cauchy—Schwarz inequality), we have

T 2 T
(i};) < i;& (77)

Therefore,
IS 82 m N )
PO LY L R 9)
T 2ie1 5 D DR r
since %ii :z < 1. Substituting this bound into the definition of Q[r] yields
o =dilrom oy (79)
m room
This completes the proof that Q[r] < 1. O

F Further Clarifications

In this section, we provide additional details regarding the experimental setup for our theoretical
validations and justify the core assumptions underlying our propositions.

F.1 Clarification on Figure 2} Experimental Setup and Optimizer Dynamics

The experiments illustrated in Figure [2] were conducted in a controlled environment to isolate and
validate our theoretical claims regarding hyperparameter equivalence and magnitude dynamics. The
setup uses a 5-layer MLP with an intermediate dimension of 400, where LoRA modules are trained
to fit a mapping for randomly generated synthetic data. This simple setting effectively tests the
fundamental fitting capabilities of LoRA.

Figure [J[(a) is specifically designed to empirically validate Proposition [T} reproduced with clearer
separation in Figure[6] We deliberately use two different optimizers, SGD for the first 2,500 steps
and Adam thereafter, to demonstrate that when the hyperparameter product o« 4o is held constant,

LoRA exhibits equivalent training trajectories regardless of the optimizer. This equivalence is

confirmed by the overlapping loss curves. Furthermore, the norm difference | |AV~VL(3{ A AVVL(Q2 All%

between the baseline and other equivalent settings remains near zero, confirming that the learned
weights themselves evolve identically.

F.2 Clarification on Figure 3} Direct Relationship to PiSSA

The goal of Figure [3]is to visualize the source of magnitude gain in spectral initialization methods,
for which we use PiSSA [40] as a representative example. The link is direct:

* The solid colored curves for the spectral concentration factor (p[r]) and spectral gain factor (Q[r])
are calculated directly from the SVD of the pretrained weights. This is precisely the mechanism that
PiSSA employs for initialization. Therefore, these curves illustrate the inherent magnitude dynamics
of a PiSSA-initialized model.

* The plots reveal two key insights from our analysis of PiSSA. First, the plot of p[r] shows that
spectral energy is highly concentrated in the top singular values, explaining why PiSSA is particularly
effective at low ranks. Second, the plot of Q[r] quantifies the significant magnitude gain that PiSSA
(colored lines) achieves over the naive "Noise & Zeros" baseline (white dotted line). This is precisely
the gain that LORAM is designed to mimic efficiently without performing SVD.
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Figure 6: A detailed view of the validation of Proposition |1} separating the SGD and Adam opti-
mization phases. Each curve represents a model with a unique hyperparameter combination. The
norm difference (right axis) aggregates the Frobenius norm discrepancies between the baseline model
(black curve) and others across all layers. The results show that diverse hyperparameter sets can
produce identical optimization trajectories, confirming our theoretical equivalence framework.

G Further Analysis on the Interplay of Initialization, Learning Rate, and
Performance

Our primary experiments were conducted under a unified hyperparameter configuration to ensure
a fair and controlled comparison. However, different initialization strategies may achieve optimal
performance under varying hyperparameters, particularly the learning rate. To provide a more
nuanced understanding, we conducted a supplementary analysis investigating the performance of
LoRAM, PiSSA [40], and MiLoRA [41]] under different learning rates.

Specifically, we compare the results from our original experiments using a moderate learning rate (2 x
10~°) with new results obtained using a higher learning rate (2 x 10~%), which aligns with the setting
used in the original MiLoRA paper. The detailed results for ranks » = 16 and r = 128 are presented
in Table [5]and Table [f] respectively.

Table 5: Performance of PiSSA, LoRAM, and MiLoRA with different learning rates at rank » = 16.

Learning rate 2x10°° 2x107*

Method PiSSA LoRAM MiLoRA PiSSA LoRAM MilLoRA
GSMS8K 37.68 40.32 29.70 52.46 53.29 46.62
MATH 5.16 5.30 4.18 8.80 8.92 6.18
HumanEval 18.37 18.92 14.69 24.47 25.62 17.14
MBPP 28.62 28.83 27.23 31.22 31.74 28.65

Commonsense  73.72 75.19 67.90 77.02 79.11 76.67

Table 6: Performance of PiSSA, LoRAM, and MiLoRA with different learning rates at rank r = 128.

Learning rate 2x107° 2x 1074

Method PiSSA LoRAM MilLoRA PiSSA LoRAM MiLoRA
GSMSK 51.48 51.12 39.81 58.37 59.28 54.66
MATH 7.04 7.25 5.18 11.46 10.76 9.20
HumanEval 21.62 22.03 20.39 26.81 29.95 28.02
MBPP 31.07 31.53 29.95 36.54 37.80 33.35

Commonsense  77.28 77.81 74.29 67.09 74.23 79.01

The results reveal several key patterns:

* At alower rank (r = 16), all methods generally benefit from the higher learning rate, showing
improved performance across tasks. This suggests that in low-rank settings, a larger learning rate can
enhance convergence speed.

* At a higher rank (r = 128), a clear divergence emerges. While most methods still improve,
PiSSA exhibits a notable performance degradation on the Commonsense dataset. Its training loss
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curve in this high-rank, high-LR configuration plateaus early, suggesting that the amplified updates
overshoot the effective descent direction.

* These findings align perfectly with our magnitude principle. PiSSA’s use of principal singular
components leads to stronger initial magnitude amplification, which necessitates a smaller optimal
learning rate to maintain stability. Conversely, MiLoRA, which initializes with smaller minor
singular components, can benefit from a larger learning rate. This analysis reinforces our claim from
Section[4.3} “Magnitude scaling should be applied conservatively at higher ranks, since larger ranks
inherently amplify updates.”

This supplementary analysis underscores that the optimal learning rate is intrinsically linked to the
magnitude scaling introduced by the initialization method.

H Efficiency Analysis: Computational and Memory Overhead

A primary motivation for LORAM is to achieve the performance gains of spectral initialization
methods while preserving the computational efficiency and minimal memory footprint of the original
LoRA framework. In this section, we provide a detailed comparison of the theoretical and practical
overhead associated with LORAM, LoRA, and PiSSA.

H.1 Theoretical Complexity

The theoretical time and space complexities for the initialization phase of each method are summarized
in Table[/| LoRA’s overhead is minimal, stemming from random matrix initialization. LoORAM
maintains this same linear complexity, as its deterministic DST basis is generated efficiently through
vector multiplication. In contrast, PISSA’s complexity is dominated by the SVD of the pretrained
weight matrices, a computationally intensive operation. Furthermore, PiISSA requires storing both the
original and decomposed components, effectively doubling the space requirement compared to LoORA
and LoRAM.

Table 7: Theoretical initialization time and space complexities of LoORA, LoRAM, and PiSSA.
Method LoRA LoRAM PiSSA

Time O(mr +nr)  O(mr+nr) O(min(m?n, mn?))
Space O(r(m+n)) O(r(m+n)) O2r(m+n))

H.2 Practical Performance

We empirically validated these complexities by measuring the practical initialization time and memory
usage while fine-tuning LLaMA-7B on an 8-GPU server. The results, shown in Table[§] highlight
two distinct workflows for PiSSA:

1. Pre-processing : This approach first computes and saves the residual model after subtracting
the low-rank approximation. While the initialization itself is faster, this process incurs a
substantial one-time storage cost, requiring over 12.5 GB to store the residual weights in
addition to the LoRA adapter weights.

2. Direct Workflow: This method computes SVD on-the-fly, which avoids the large storage
overhead. However, it is significantly slower (often taking over 10 minutes in our setup) due
to known bottlenecks related to CPU-based SVD computations before GPU transfer .

As shown in the table, LORAM'’s practical performance is nearly identical to that of the standard
LoRA implementation, demonstrating its exceptional efficiency . It successfully eliminates the
significant time and space overhead introduced by SVD-based methods like PiSSA, confirming its
utility as a lightweight yet powerful initialization strategy.

I Scope and Limitations of the Magnitude Principle

While our work establishes the magnitude of weight updates as a fundamental driver of LoRA’s
performance, it is crucial to clearly define the scope and limitations of this principle. Our central
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Table 8: Practical initialization time and space cost of LoRA, LoRAM, and PiSSA on LLaMA-7B.

Metric LoRA LoRAM PiSSA (pre-process) PiSSA (direct)
Time (r = 16) 1.36s 0.95s 51.32s > 10min
Time (r = 128) 4.23s 2.19s 57.79s > 10min
Time (r = 512) 8.50s 5.19s 110.31s > 10min
Space (r = 16) 152MB  152MB 12.5GB + 152MB 305MB
Space (r =128) 1.2GB 1.2GB 12.5GB + 1.2GB 2.4GB
Space (r = 512) 4.8GB 4.8GB 12.5GB + 4.8GB 9.6GB

claim is that magnitude plays a primary, not universal, role in the success of various hyperparameter-
tuning strategies. The principle provides a coherent and predictive lens for unifying these strategies,
rather than suggesting that magnitude is the sole determinant of all outcomes.

The applicability and effects of magnitude scaling are subject to several important considerations:

¢ Interplay with Other Hyperparameters: As indicated by our analysis in Proposition [2} the
magnitude principle is not limited to initialization magnitudes (0%, 0%) alone. It is intrinsically
linked to other key factors, including the LoRA rank (r), the learning rate (1), and the task-dependent
gradient variance (02 ). The final performance is a result of the complex interplay among all these
components.

* Interaction with Rank Size: A key finding, highlighted in our ablation studies and consistent with
our theoretical analysis, is that the benefits of magnitude scaling are not monotonic. We empirically
observe that the performance gains from increased magnitude scaling tend to diminish and can even
reverse at higher ranks. This is because larger ranks inherently amplify updates, as predicted by
Proposition [2] suggesting that magnitude should be scaled more conservatively in high-rank settings.
* On Optimality: Our work aims to identify and validate update magnitude as a core mechanism
influencing LoRA’s training dynamics, thereby demystifying the success of methods like PiSSA.
We do not claim to have identified an optimal magnitude scaling strategy. Determining the optimal
magnitude for different models, tasks, and layers remains a challenging and important direction for
future research.

In summary, the magnitude principle serves as a powerful analytical tool for understanding and
designing LoRA-based methods, but its application should be contextualized within the broader
optimization landscape.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims in the abstract and introduction have clearly reflected the
theoretical and empirical contributions of the paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
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assumptions, and have cited relevant literature to show that these assumptions are commonly
used in the field. We have also included additional technical limitations at the end of the
main paper.
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* The answer NA means that the paper has no limitation while the answer No means that
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is low or images are taken in low lighting. Or a speech-to-text system might not be
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tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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important formulas in the paper, we also give the corresponding derivation in the Appendix.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
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be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: Since we have conducted extensive experiments on several datasets, providing
detailed scripts is intricate. The code will be made available upon acceptance of the article.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All benchmarks, as well as the experimental setup, are from or based on work
that has been open-sourced.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We have provided the variance of the test results, and also the range of
fluctuations in the training curves.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Our experiments are based on a server with 8 H800 GPUs. The timing of
experiments is diverse depending on the datasets, while there will be no differences between
LoRAM and other approaches on the same dataset, since they do not modify the training
process.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We have carefully checked and followed the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our paper presents a general fine-tuning technique that is not specific to actual
application scenarios.

Guidelines:
» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have properly cited the original paper that produced the code package or
dataset.

Guidelines:

* The answer NA means that the paper does not use existing assets.

 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

» The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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