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ABSTRACT

Multi-View Representation Learning (MVRL) aims to derive a unified represen-
tation from multi-view data by leveraging shared and complementary informa-
tion across views. However, when views are irregularly missing, the incomplete
data can lead to representations that lack sufficiency and consistency. To address
this, we propose Multi-View Permutation of Variational Auto-Encoders (MVP),
which excavates invariant relationships between views in incomplete data. MVP
establishes inter-view correspondences in the latent space of Variational Auto-
Encoders, enabling the inference of missing views and the aggregation of more
sufficient information. To derive a valid Evidence Lower Bound (ELBO) for learn-
ing, we apply permutations to randomly reorder variables for cross-view genera-
tion and then partition them by views to maintain invariant meanings under per-
mutations. Additionally, we enhance consistency by introducing an informational
prior with cyclic permutations of posteriors, which turns the regularization term
into a similarity measure across distributions. We demonstrate the effectiveness
of our approach on seven diverse datasets with varying missing ratios, achieving
superior performance in multi-view clustering and generation tasks.

1 INTRODUCTION

Multi-view data are prevalent in real-world applications1, capturing various aspects of a shared
subject. Examples include observing a 3D object from multiple angles, applying diverse image
feature descriptors, or reporting the same news in different languages. This offers valuable self-
supervised signals that enable the extraction of meaningful patterns. Multi-View Representation
Learning (MVRL) aims to maps this data into a latent space, integrating information from multiple
views into a unified representation for downstream tasks like clustering, classification, and genera-
tion (Li et al., 2018). However, in practice, not all views are available for every sample, presenting
the challenge of Incomplete Multi-View Representation Learning (IMVRL) (Tang et al., 2024). The
incomplete data complicates the integration of information from different views, making it difficult
to derive high-quality representations under varying missing ratios.

Among MVRL methods, Multimodal Variational Auto-Encoders (MVAEs) stand out for their ro-
bustness in modeling the latent distributions of multi-view data (Aguila & Altmann, 2024). Their
flexibility in handling incomplete data stems from mean-based fusion strategies, such as Mixture-
of-Experts (MoE) and Product-of-Experts (PoE) (Wu & Goodman, 2018; Shi et al., 2019; Sutter
et al., 2021), which can accommodate varying numbers of views and have been validated by Hwang
et al. (2021). Furthermore, some MVAE variants enhance inter-view consistency by incorporating
data-dependent priors, which facilitate better information integration (Sutter et al., 2020; 2024) and
reduce reliance on missing views (Hwang et al., 2021). Despite these advancements, the sufficiency
and consistency of learned representations are still not assured in the presence of incomplete data.
Samples with fewer views inherently provide less information, which hampers the integration and
undermines inter-view consistency. As a result, these methods experience significant performance
degradation and semantic incoherence across views as the rate of missing data increases.

1Multi-view: In this paper, we follow (Hwang et al., 2021), using the term “view” broadly to refer to what
other works may call view (Lin et al., 2023; Hwang et al., 2021), modality (Sutter et al., 2021; Huh et al., 2024),
or any perspective describing different aspects of a common entity.
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To address the challenge in IMVRL, an increasing number of studies have proposed inferring miss-
ing views through cross-generation from available ones. These methods leverage the invariant rela-
tionship between views, meaning that converting one view into another preserves the sample-specific
information while altering only the style (Zhang et al., 2020; Lin et al., 2023; Cai et al., 2024). This
intrinsic property of multi-view data allows for a deeper extraction of information from it. Fur-
thermore, Huh et al. (2024) observe a phenomenon of representational convergence, indicating that
inter-view transformation can be easily achieved using simple mappings in an well-aligned repre-
sentative space. This occurs naturally in MVAEs, where multiple encoders map different views into
a latent space and align their representations by promoting inter-view consistency. Building on these
insights, we aim to explicitly establish inter-view correspondences (Huang et al., 2020) in MVAEs,
effectively learning and enriching the latent space with invariant relationships between views, thus
enabling the inference of representations for missing views.

In this paper, we propose the Multi-View Permutation of VAEs (MVP), designed to learn more suf-
ficient and consistent representations from incomplete multi-view data. MVP captures inter-view
relationships by modeling correspondences between views, which enables latent variables to be
transformed from one view to another. To facilitate these transformations, we apply permutations
that randomly shuffle variables within each view—either through self-view encoders or cross-view
correspondences. Next, we partition variables by view to preserve their invariant meanings under
permutation, which helps factorize the joint posterior and derive a valid Evidence Lower Bound
(ELBO) for optimization. Additionally, we propose an informational prior based on cyclic permu-
tations of posteriors, which converts the Kullback-Leibler (KL) divergence term into a similarity
measure among distributions. We validate the effectiveness of our method through experiments in
multi-view clustering and generation tasks. The key contributions of this work are:

• We enhance MVAEs by modeling inter-view correspondences in the latent space to infer
missing views. Our novel approach of applying permutations and partitions to the latent
variable set leads to the derivation of a valid ELBO for optimization.

• We introduce an informational prior using cyclic permutations of posteriors. This results
in the regularization term into a similarity measure to enhance consistency between views.

• Quantitative and qualitative results on seven diverse datasets, across different missing ra-
tios, show that our approach learns more sufficient and consistent representations compared
to other IMVRL methods and MVAEs.

2 RELATED WORKS

Incomplete Multi-View Representation Learning (IMVRL) Early IMVRL approaches addressed
incomplete data by grouping available views and applying classical methods like CCA (Hotelling,
1992). DCCA (Andrew et al., 2013) introduced nonlinear representations via correlation objectives,
while DCCAE (Wang et al., 2015) enhanced reconstruction with autoencoders. As missing rates in-
creased, the need for handling incomplete information grew. Methods like DIMVC (Xu et al., 2022)
projected representations into high-dimensional spaces to improve complementarity, and DSIMVC
(Tang & Liu, 2022) used bi-level optimization to impute missing views. Completer (Lin et al., 2021;
2023) maximized mutual information and minimized conditional entropy to recover missing views,
while CPSPAN (Jin et al., 2023) aligned prototypes across views to preserve structural consistency.
ICMVC (Chao et al., 2024) proposed high-confidence guidance to enhance consistency, and DVIMC
(Xu et al., 2024) introduced coherence constraints to handle unbalanced information.

Multimodal Variational Auto-Encoders (MVAEs) MVAEs are generative models that maximize
the log-likelihood of observed data through latent variables. MVAE (Wu & Goodman, 2018) models
the joint posterior using PoE (Hinton, 2002), though this may hinder unimodal posterior optimiza-
tion. MMVAE (Shi et al., 2019) and mmJSD (Sutter et al., 2020) use MoE for the joint posterior,
with MMVAE applying pairwise optimization for reconstructing all views, but struggling to ag-
gregate information efficiently. mmJSD addresses this with a dynamic prior, replacing regulariza-
tion with Jensen-Shannon Divergence. Sutter et al. (2021) propose Mixture-of-Product-of-Experts
(MoPoE) to decompose KL divergence into 2V terms, while MVTCAE (Hwang et al., 2021) intro-
duces an information-theoretic objective using forward KL divergences. MMVAE+ (Palumbo et al.,
2023) extends MMVAE by separating shared and view-peculiar information in latent subspaces and
incorporating cross-view reconstructions.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Informational Priors in VAE Formulations Tomczak & Welling (2018) first introduced a data-
dependent prior into VAE, which was later extended to multimodal VAEs for better inter-view con-
sistency. Sutter et al. (2020) employed a dynamic prior combined with the joint posterior to define
Jensen-Shannon divergence regularization. Hwang et al. (2021) used view-specific posteriors as
priors, regularizing the joint posterior to ensure representations could be inferred from all views.
Sutter et al. (2024) develop an MoE prior for soft-sharing of information across view-specific rep-
resentations rather than simply aggregation. They relies on fusion of posteriors and enforce strict
alignment, while we encourage soft consistency between views after transformations.

3 METHOD

In this section, we present the core components of our method, which aims to capture relationships
between views in incomplete multi-view data. Our approach models inter-view correspondences
in the latent space of MVAEs, enabling the inference of missing views and the generation of more
sufficient and consistent representations. To facilitate transformations between views, we apply
permutations to reorder the latent variables and introduce two partitions based on their encoding in-
formation (Section 3.1). We then use these partitions to factorize the posterior and derive the ELBO
for optimization (Section 3.2). Finally, we define priors using the permuted variables in the regular-
ization term. By applying cyclic permutations to the posteriors, we transform the regularization into
a similarity measure, enforcing consistency across views (Section 3.3).

3.1 INTER-VIEW CORRESPONDENCE AND LATENT VARIABLE PARTITION

Given an incomplete multi-view dataset {Xi}ni=1, where each Xi = {x(v)}v∈Ii consists of multiple
views, we denote by Ii a subset of the complete view indices [L] = {1, 2, . . . , L} (i.e., Ii ⊆
[L]). Each observed view x(v) is a vector in Rdv . For simplicity, we drop the subscript i from Ii
and use I. We then encode the data from each view into a latent variable set, where each view
contributes complementary information. These latent variables, z ∈ Rd, are derived using encoders
parameterized by {ϕv}Lv=1, following standard MVAEs.

We adopt the term “correspondences” from Huang et al. (2020), but extend it to explicitly construct
a mapping channel, referred to as inter-view correspondences. Specifically, we introduce multiple
nonlinear mappings from the v-th view to the l-th view, represented by functions {flv}, parameter-
ized by {αlv}. For each pair where v ̸= l, a unique mapping flv establishes a direct relationship
between the source view v and the target view l. This allows for cross-view transformations, where
information from one view informs the representation of another. The latent variables are then or-
ganized into a set Z = {z(l)v }(v,l)∈I×[L], where z

(l)
v denotes the representation of the l-th view,

with subscript v indicating its source view. Specifically: (1) If v = l, z(v)v is directly encoded from
the observed view x(v), following a d-dimensional Gaussian distribution N (z

(v)
v ;µ(x(v)),Σ(x(v))),

denoted as q(z
(v)
v | x(v);ϕv). (2) If v ̸= l, z(l)v is transformed from z

(v)
v using flv, following a

Gaussian distribution N (z
(l)
v ; flv ◦ µ(x(v)), flv ◦ Σ(x(v))), denoted as q(z(l)v | x(v);ϕv, αlv).

To organize the encoded latent variables, we construct a matrix Z0, as shown in Figure 1. The diag-
onal elements of Z0 correspond to the self-view encoding (case 1), while the off-diagonal elements
correspond to cross-view transformations (case 2). The core idea is that variables with the same
superscript l encode similar information about the l-th view, regardless of whether they are directly
encoded or transformed. Thus, even if the columns of Z0 are reordered, as illustrated in the transition
from Z0 to Z1 in Figure 1, each column continues to represent the same view, and the information
encoded by elements at corresponding positions remains invariant. This observation motivates us to
group the latent variables by views, leading to a partition of the set Z . Mathematically, a partition
P of a set X is a collection of non-empty, mutually disjoint subsets of X , also known as a “set of
sets”. Accordingly, we define the single-view partition for Z:

Definition 1 (Single-view Partition). A single-view partition of Z , denoted as Ps(Z), is defined
as {Sl}Ll=1 such that

⋃L
l=1 Sl = Z . The l-th single-view cell Sl = {z(l)

v }v∈I and |Sl| = |I|.

Accordingly, each sample has a unique Ps(Z), where each single-view cell Sl consists of all vari-
ables with the same superscript, representing the l-th view. More specifically, these variables are all
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Figure 1: Overview of our method: (a) Incomplete multi-view data X1 is fed into encoders to gen-
erate the diagonal elements of matrix Z0, while off-diagonal elements are derived through inter-view
correspondences. (b) Latent variables are partitioned by columns for single-view partition {Si} and
by rows for complete-view partition {Ci}, with each row aggregated into a consensus variable ω,
capturing shared information across views. A cyclic permutation within each column transforms
Z0 into Z1, generating new partitions (See Figure 5 for transformation details.). Regularization is
applied by comparing distributions at the same positions before (Z0) and after (Z1) permutation. (c)
Each view x(v) is reconstructed from its latent representation z(v) and a consensus variable ω.

drawn from the l-th column of matrix Z0 or Z1. The set Sl is expected to be homogeneous, meaning
the distributions of the variables within it should be as close as possible.

To combine complete information across L views for downstream tasks, we randomly select L
variables from different views in Z . In practice, this is achieved by selecting a row from matrix Z0

or Z1, each representing a subset of Z that contains complete information from all L views. This
approach leads to another partition based on combinations of complete views:

Definition 2 (Complete-view Partition). A complete-view partition of Z , denoted as Pc(Z), is de-
fined as {Cn}n∈I such that

⋃
n∈I Cn = Z . Each complete-view cell Cn is given by {z(l)

v }Ll=1,v∈Jn
,

where the index set Jn ⊆ I and
⋃

n∈I Jn = I. The size of each cell is |Cn| = L.

For each sample, multiple complete-view partitions satisfy Definition 2. This is evident in the matrix,
where we can divide Z0 by rows; each row corresponds to a complete-view cell Cn which consists
of variables with superscripts ranging from 1 to L and subscripts indicating their sources. After
randomly reordering variables in each column, we obtain a new Pc(Z) by similarly dividing Z1 by
rows. This reordering action is rigorously described as a permutation of a set, which is a bijection
from a set to itself. Applying permutations to each column in matrix Z0 generates different Pc(Z),
facilitating the selection of any complete-view combination from each row.

To aggregate the shared information from L views, we introduce a consensus variable ω, which
is obtained from a complete-view cell Cn. We assume that the first k dimensions of z capture
information common to all views, such as categorical features, and compute the geometric mean of
the k-dimensional marginal distributions within the set Cn. This approach combines the L complete
views into a single, sharper k-dimensional Gaussian distribution with explicitly computed mean and
covariance (Cochran, 1954), represented as q(ωn | Cn, {x(v)}Jn) = Nk(ωn;αn,Λn), n ∈ I.
Thus, a complete-view partition Pc(Z) with |I| cells produces a set Ω = {ωn|ωn ∼ q(ωn |
Cn, {x(v)}Jn

),Cn ∈ Pc(Z), n ∈ I}. The set Ω should also be homogeneous, meaning that any
combination of L views fused in this way should encode consistent information.

By defining these two partitions, we enable the factorization of the posterior in the following sec-
tions, forming the foundation for our learning objective.
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3.2 POSTERIOR FACTORIZATION AND THE DERIVATION OF ELBO

Given the latent variables Z and Ω, our goal is to infer their posterior distribution p(Z,Ω |
{x(v)}I). However, this exact posterior involves an intractable integral, so we approximate it with
a variational posterior q(Z,Ω | {x(v)}I). For a given complete-view partition Pc(Z) = {Cn}n∈I ,
we assume that the density factorizes as follows:

q(Z,Ω | {x(v)}I) ≜
∏

n∈I
q(ωn | Cn, {x(v)}Jn)q(Cn | {x(v)}Jn)

=
∏

n∈I

[
q(ωn | Cn, {x(v)}Jn

)
∏L

l=1,v∈Jn

q(z(l)
v | x(v))

]
.

To optimize this factorized posterior, we minimize the KL divergence between the true posterior and
the variational posterior, expressed as:

KL
[
q(Z,Ω | {x(v)}I) ∥ p(Z,Ω | {x(v)}I)

]
= log p({x(v)}I)− LELBO({x(v)}I),

where LELBO({x(v)}I) is the Evidence Lower Bound (ELBO) of the log-likelihood of incomplete
multi-view data {x(v)}I . Maximizing the ELBO effectively minimizes the KL divergence, thereby
improving the approximation of the true posterior. Next, we use decoders parameterized by {θv}Lv=1

to reconstruct the observations. Each view x(n) is reconstructed using the latent variable z
(n)
∗ (rep-

resent the n-th view) and a consensus variable ωn. The likelihood can be written as:

p(x(n)|Cn, ωn) = p
(
x(n)|Cn ∩ Sn, ωn; θn

)
,

where Cn ∩ Sn = z
(n)
∗ is the diagonal element of Z1, with its source ∗ determined by the permuta-

tion. Then the ELBO is expressed as (with detailed derivations in Appendix A.4):

LELBO({x(v)}I) =
∑
n∈I

Eq(Cn,ωn|{x(v)}Jn )

[
log p(x(n) | Cn ∩ Sn, ωn)

]

−
L∑

l=1

∑
v∈I

KL
[
q(z(l)v | x(v)) ∥ p(z(l)v )

]
−

∑
n∈I

KL
[
q(ωn | Cn, {x(v)}Jn

) ∥ p(ωn)
]
.

(1)

The ELBO in Eq. (1) consists of three terms. The first term represents the reconstruction loss for all
observed views, ensuring that the variable z(n)∗ = Cn ∩Sn encodes information of n-th view, while
ω captures shared aspects. By applying permutations to obtain a new Pc(Z), we can derive another
LELBO. This randomness in permutation results in z

(n)
∗ with different source views ∗, facilitating

both self-view reconstruction and cross-view generation. We can even use a convex combination
of different LELBO, discussed in Appendix A.4. Different partitions produce varying ω that serve the
same role, ensuring that the first k dimensions capture shared features across views. The remaining
two terms are regularization terms for z and ω, further discussed in Section 3.3.

3.3 PRIOR SETTING USING CYCLIC PERMUTATIONS OF POSTERIORS

The regularization terms in the ELBO for z and ω, when their priors are properly set, support our
learning objective of establishing inter-view correspondences in MVAEs. In the first term for z,
the outer summation spans all single-view cells Sl, while the inner summation includes all l-th
view latent variables z in Sl, or equivalently, all variables in the l-th column of matrices Z0 or Z1.
With well-established inter-view correspondences, the l-th view variables should encode similar
information and have distributions that are as close as possible, regardless of their sources.

In Section 3.1, we introduced the idea of permuting the columns of matrix Z0 to generate different
complete-view partitions. When these permutations follow a cyclic structure, the permuted poste-
riors can be used as informational priors. For example, if we have three distributions P1, P2, P3,
we can set the prior for P1 as P3, for P2 as P1, and for P3 as P2. As these pairs converge, the
distributions become more similar due to the cyclic nature of the permutation (P1⇒P3⇒P2⇒P1).
This cyclic permutation of indices ensures that the latent variables in each single-view cell become
more homogeneous. Cyclic permutations can be efficiently generated before training using Sattolo’s
Algorithm with time complexity O(N) (Wilson, 2005), defined as follows:
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Table 1: Summary of the seven multi-view datasets. These benchmarks exhibit diverse character-
istics, with the last two image datasets enabling better observation through visualization.

Dataset #View Type Dimension #Sample #Class
Handwritten 6 Fou, Fac, Kar, Zer, Pix, Mor 76, 216, 64, 47, 240, 6 2000 10

CUB 2 Image, Text 1024, 300 600 10
Scene15 3 GIST, PHOG, LBP 20, 59, 40 4485 15
Reuters 5 Text: Eng., Fr., Ger., It., Sp. 10, 10, 10, 10, 10 18758 6

SensIT Vehicle 2 Acoustic, Seismic 50, 50 98528 3
PolyMNIST 5 RGB Image 3×28×28 70000 10

MVShapeNet 5 RGB Image 3×64×64 25155 5

Definition 3 (Cyclic Permutation (Gross, 2016)). A cyclic permutation of a set X is a bijection
σ : X → X . For any x ∈ X , σ|X|(x) = x and σk(x) ̸= x for all k < |X|, k ∈ N+.

In our model, for each single-view cell Sl, we define the prior for z(l)v as a cyclic permutation of
its corresponding posterior. Specifically, we compute the KL divergence between the distributions
at the same positions in Z0 and Z1 (before and after permutation). This leads to a new measure
of similarity within each single-view cell, which we define as Permutation Divergence, aimed at
minimizing the heterogeneity among distributions.
Definition 4 (Permutation Divergence). Let N ≥ 2 be a fixed natural number. Given a cyclic
permutation σ on the index set [N ] and a set P of probability distributions on the same measure
space, the Permutation Divergence of order N is a mapping d from PN to the extended real line
R ∪ {+∞}, defined as follows for any P1, P2, . . . , PN ∈ P:

d(P1, P2, . . . , PN ;σ) =
∑N

i=1
KL[Pi ∥ Pσ(i)].

The proof that Permutation Divergence is a valid similarity measure is provided in Appendix A.3.
The key property is that d(P1, P2, . . . , PN ) = 0 if and only if P1 = P2 = · · · = PN . Minimizing
the Permutation Divergence ensures that the distributions of the latent variables in each single-view
cell become as similar as possible, whether they are self-encoded or cross-transformed. This reflects
how well the model captures inter-view correspondences, a property we refer to as Inter-View
Translatability. This approach also enforces a form of soft consistency in the latent space, which
encourages easier transformation between views rather than strict alignment.

The second regularization term in Eq. (1) targets the consensus variable ω, deterministically derived
from z via the geometric mean of marginal distributions in Cn. Serving as a central anchor across L
views, ω acts as an additional regularizer for z. Each ωn captures shared information across views
and should be similar, with its prior set as the posterior fused from another complete-view cell C′

n.
Minimizing it ensures the similarity of all ωn, a property we refer to as Consensus Concentration.
For visualizations of their impacts, please refer to Appendix A.5.

4 EXPERIMENTS

We extensively evaluated the proposed method across seven diverse multi-view datasets, summa-
rized in Table 1. These datasets encompass a variety of view types with different dimensions,
originating from diverse sensors or descriptors, as well as real-world perspectives captured from
different angles. PolyMNIST (Sutter et al., 2021) consists of five images per data point, all sharing
the same digit label but varying in handwriting style and background. ShapeNet is a large-scale
repository of 3D CAD models of objects (Chang et al., 2015). For each object, we rendered five
images from viewpoints spaced 45 degrees apart around the front of the object. Then we selected
five representative categories to create a multi-view dataset called MVShapeNet. The missing pat-
terns are predetermined and saved as masks before training. Specifically, for each missing rate
η = {0.1, 0.3, 0.5, 0.7}, we randomly select η × len(dataset) samples to be incomplete, ensuring
that each incomplete sample retains at least one view while missing at least one. For more details
on the generation of missing patterns and masks, please refer to Appendix C.2.

In Section 4.1, we perform clustering in the latent space and compare our method to eight state-
of-the-art IMVRL approaches. The results, consistent across various missing ratios, underscore the
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Table 2: Clustering results of nine methods on five multi-view datasets with missing rates η =
{0.1, 0.3, 0.5, 0.7}. The first and second best results are indicated in bold red and blue, respectively.
Each experiment was run five times, with the means reported here due to space limit. The complete
table, including standard deviations, is provided in Table 3 from Appendix B.

Missing Rate 0.1 0.3 0.5 0.7
Metrics ACC↑ NMI↑ ARI↑ ACC↑ NMI↑ ARI↑ ACC↑ NMI↑ ARI↑ ACC↑ NMI↑ ARI↑

H
an

dw
ri

tt
en

DCCA 73.83 71.10 55.13 68.02 64.93 44.76 63.25 60.27 38.93 59.07 56.44 33.58
DCCAE 73.61 72.22 54.61 68.12 65.76 43.42 63.36 60.72 37.32 59.31 56.89 32.55
DIMVC 89.13 80.06 77.96 85.24 74.67 70.83 82.76 71.17 66.81 79.66 68.94 63.12

DSIMVC 81.27 79.47 71.59 81.82 80.27 73.36 81.39 79.23 71.88 77.38 74.80 66.84
Completer 82.18 77.73 68.92 78.70 69.08 58.14 74.73 67.49 50.21 68.86 62.41 41.06
CPSPAN 80.30 78.43 71.84 79.80 79.08 72.28 84.64 80.23 75.34 83.90 80.60 75.25
ICMVC 88.86 82.19 79.51 80.95 74.53 68.15 73.83 67.95 58.72 67.48 61.99 48.66
DVIMC 87.89 83.51 79.66 85.36 82.82 78.50 85.01 82.96 78.50 81.66 80.78 74.85

MVP(Ours) 90.55 87.08 84.46 88.69 84.86 81.59 90.76 85.44 83.53 86.74 82.56 78.75

C
U

B

DCCA 58.93 59.59 40.87 55.65 54.23 35.63 48.60 46.71 27.88 42.35 39.42 21.77
DCCAE 57.27 61.04 43.09 53.43 54.59 36.48 47.21 47.05 28.37 41.52 40.50 22.66
DIMVC 66.03 61.70 48.96 57.20 56.00 41.25 60.65 55.75 42.81 56.08 51.07 36.65

DSIMVC 72.93 67.82 55.89 66.83 61.78 47.71 68.37 61.55 48.21 67.33 59.89 46.31
Completer 52.97 65.47 45.98 60.73 68.88 52.78 51.90 61.84 45.11 19.43 17.37 0.73
CPSPAN 58.77 62.27 45.35 61.30 64.21 48.93 60.07 64.18 46.42 58.60 62.16 45.23
ICMVC 29.23 38.31 21.55 24.33 25.74 14.17 22.90 19.87 10.52 19.43 16.10 7.79

DVIMVC 44.53 41.83 23.78 43.37 45.18 28.29 39.57 34.39 20.52 39.47 36.71 22.41
MVP(Ours) 78.67 77.67 66.73 74.97 73.09 61.35 74.20 71.40 59.11 66.53 63.11 50.59

Sc
en

e1
5

DCCA 38.22 41.20 19.89 36.16 39.46 17.12 34.05 37.26 14.48 30.84 33.93 12.60
DCCAE 39.46 42.08 20.36 36.73 39.80 17.06 34.49 37.66 14.57 31.16 34.21 12.64
DIMVC 42.51 41.53 24.45 40.37 38.57 20.84 40.17 35.95 20.59 36.01 32.57 16.29

DSIMVC 29.43 30.38 14.86 31.38 32.54 16.29 27.24 28.68 13.38 28.42 29.09 13.85
Completer 37.00 41.89 23.60 40.04 42.41 24.22 36.64 38.99 19.70 35.37 37.05 17.58
CPSPAN 42.69 38.79 24.56 43.21 39.42 24.94 43.44 39.19 24.96 42.53 38.41 24.38
ICMVC 43.88 40.03 25.80 43.14 38.06 24.74 37.96 33.45 20.34 36.70 35.80 18.35
DVIMC 45.16 45.06 28.64 43.68 42.32 26.68 41.13 39.58 25.03 39.59 36.66 21.56

MVP(Ours) 45.70 43.77 27.90 45.81 42.54 27.53 45.28 41.84 26.80 43.14 39.53 24.68

R
eu

te
rs

DCCA 47.66 23.93 15.46 46.28 20.62 12.71 44.10 22.63 11.04 43.36 22.90 10.03
DCCAE 42.70 23.84 7.59 43.71 26.07 8.15 42.32 24.30 6.80 41.32 23.11 5.90
DIMVC 48.83 28.94 25.78 50.54 29.86 26.89 48.51 27.29 24.74 46.94 25.79 23.24

DSIMVC 51.26 35.56 28.21 51.33 34.88 26.61 50.78 36.85 28.27 47.12 33.57 25.51
Completer 41.08 21.38 7.92 40.56 22.48 10.32 41.77 20.41 9.80 42.27 22.47 11.51
CPSPAN 38.35 14.35 10.94 38.51 13.11 10.47 38.21 11.80 11.30 37.86 12.03 10.16
ICMVC 54.01 36.52 29.44 51.09 30.71 25.66 47.59 28.43 23.56 47.67 26.83 22.14
DVIMC 44.06 16.08 15.21 43.06 10.84 11.77 35.37 5.14 4.98 32.18 3.02 3.15

MVP(Ours) 57.83 37.25 32.20 55.70 37.02 31.35 53.67 35.43 30.24 55.16 36.00 30.66

Se
ns

IT
Ve

hi
cl

e

DCCA 57.11 11.60 14.26 57.76 14.46 16.62 53.89 11.01 12.79 50.69 8.47 9.75
DCCAE 57.93 12.84 15.28 60.32 19.42 22.46 54.08 13.32 15.40 51.33 10.31 11.81
DIMVC 59.72 17.31 21.82 62.38 23.18 27.93 61.09 22.08 26.21 60.57 21.36 25.44

DSIMVC 69.82 33.40 34.88 69.24 32.95 33.50 68.05 31.49 31.56 66.54 30.08 29.73
Completer 52.63 5.33 3.72 55.59 12.09 11.29 55.09 13.96 12.52 56.37 14.77 14.66
CPSPAN 63.48 28.43 32.32 64.03 28.10 32.33 65.47 28.62 32.25 64.16 28.60 31.28
ICMVC 71.50 34.53 36.41 70.79 32.95 33.63 67.80 29.11 29.36 54.11 19.39 18.93
DVIMC 69.48 30.41 34.98 69.58 30.31 35.26 67.89 29.27 34.00 61.91 25.84 28.59

MVP(Ours) 72.08 34.81 41.10 71.28 33.57 39.76 70.21 32.05 38.06 68.87 30.08 36.23

structural robustness and informativeness of our learned representations. To further evaluate the
effectiveness of our posterior and prior settings within the VAE framework, Section 4.2 compares
our method with six MVAEs using two image datasets, PolyMNIST and MVShapeNet. Through
multi-view clustering and generation tasks on different missing combinations, we demonstrate that
our method learns representations with greater sufficiency and consistency. Additionally, an ablation
study on the use of permutation, permutation types, and prior settings is provided in Appendix B.3,
which confirms that our cyclic approach delivers the best results.

4.1 ENHANCED PERFORMANCE FOR INCOMPLETE MULTI-VIEW CLUSTERING

To evaluate the ability of our method to handle incomplete multi-view data, we first assess clus-
tering performance under various missing ratios, following Zhang et al. (2020); Lin et al. (2023);
Cai et al. (2024). We apply k-means clustering to the consensus representation ω and compare
our method with eight IMVRL approaches: DCCA, DCCAE, DIMVC, DSIMVC, Completer,
CPSPAN, ICMVC, and DVIMC (see Section 2 and Table 9 in Appendix D.1 for their modeling
details). Clustering performance is measured by Accuracy (ACC), Normalized Mutual Information
(NMI), and Adjusted Rand Index (ARI).
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The experimental results in Tables 2 and 3 show that our method consistently achieved the best
(bold red) or second-best (bold blue) performance across various missing ratios and datasets. This
highlights the robustness of our method on both large and small datasets with varying class num-
bers. In contrast, other methods fluctuated significantly across datasets. Notably, on smaller datasets
like Handwritten, with six views provided rich self-supervised information, our method maintained
strong performance even as missing rates η increased. On CUB, where image-text modality dispar-
ity is larger, our approach excelled at moderate missing rates (η = 0.1, ACC: 78.67% vs. 72.93%;
η = 0.3, ACC: 74.97% vs. 66.83%) by better integrating complementary information from dif-
ferent views. However, as η rose, the limited views and small sample size led to a faster decline
in performance than on other datasets. Still, our method stayed competitive with DSIMVC, which
uses bi-level optimization to impute missing views, far outperforming the VAE-based DVIMC. On
SensIT Vehicle, with also two views but a larger sample size, our method experienced a smaller
performance drop and maintained the best results even at higher missing ratios. The Reuters, with
its large size but more views, more clearly highlighted our method’s advantage, achieving an 8.04%
lead in ACC over the second-best method at η = 0.7. For datasets with more classes, like Scene15
and Handwritten, our method performed comparably to DVIMC, which uses a Gaussian Mixture
for explicit class modeling in the VAE. However, as η increased, DVIMC struggled with incom-
plete information due to missing views, while our method mitigated this by inferring complete-view
information, maintaining robustness.

4.2 COMPARING WITH OTHER MVAES USING TWO IMAGE DATASETS

In this section, we compare our method with six other MVAEs that utilize different posterior and
prior modeling techniques: mVAE (Wu & Goodman, 2018), mmVAE (Shi et al., 2019), MoPoE
(Sutter et al., 2021), mmJSD (Sutter et al., 2020), MVTCAE (Hwang et al., 2021), and MMVAE+
(Palumbo et al., 2023). These models can naturally adapt to incomplete scenarios because their
mean-based fusion can accommodate any number of views, as validated by Hwang et al. (2021). We
perform experiments on two tasks: multi-view clustering and generation, to demonstrate that our
learned representation is able to extract more sufficient information from multiple views and infer
missing views from incomplete observations while maintaining consistent semantics. We conduct
our evaluation using two image datasets, PolyMNIST and MVShapeNet.

4.2.1 POLYMNIST: PRESERVING CONSISTENT SEMANTICS ACROSS DIVERSE STYLES

For the PolyMNIST dataset, the shared information across its five views is the digit ID, while view-
specific details include handwriting styles and backgrounds. Although the digit is present in each
view, it can be obscured or unclear in some images, making it crucial to aggregate complementary
information from all views for accurate recognition. We use the original split with 60K tuples for
training and 10K for testing, All models are trained on incomplete observations (η = 0.5), with 50%
of samples having 1 to 4 views missing. We evaluate model performance on the testing data across
all possible incomplete view combinations, totaling C1

5 + C2
5 + C3

5 + C4
5 = 30 cases.

Evaluation protocol At test time, given the incomplete subset {x(v)}I , we extract the represen-
tation using |I| encoders and evaluate its quality. We perform k-means clustering directly and use
Normalized Mutual Information (NMI) as the performance metric. Next, we generate all views
{x(v)}[L] using the corresponding decoders. To assess consistent semantics across views, we mea-
sure coherence accuracy by feeding the generated views into a pretrained CNN-based classifier and
checking if the predictions match the labels of the given subsets. Finally, we use the Structural Sim-
ilarity Index Measure (SSIM) to compare the similarity between the reconstructions and the ground
truth. All results are averaged across subsets of the same size.

Results The left plot in Figure 2 shows that our method consistently outperforms others in clus-
tering across various incomplete scenarios. As the number of missing views increases, PoE- and
MoE-based fusion methods experience sharp performance declines due to severe incomplete infor-
mation. In contrast, only our method and MVTCAE maintain high levels of structural information.
Our approach explicitly establishes inter-view correspondences to compensate for missing infor-
mation, encoding different views into a latent space that facilitates easier transformations between
them. MVTCAE penalizes latent information that cannot be inferred from other views to retain only
highly correlated details. Both methods enforce a form of consistency in the representation, ensuring
that the aggregated information is less affected by the presence of missing views.
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Figure 2: Quantitative results on the PolyMNIST dataset compared to six MVAEs. Evaluations
were conducted on all incomplete subsets of the testing set, averaged across same-sized subsets.

Input mVAE (46.85%) mmVAE (74.90%) mmJSD (74.75%) MoPoE (72.93%) MVTCAE (70.21%) MMVAE+ (29.52%) MVP (83.56%)

Figure 3: Multi-view sample generation conditioned on view 2. The leftmost column shows in-
put images of view 2, randomly selected from digit classes 0 to 9. The following columns display
multi-view samples (five views per sample) generated by various models. Ideally, the conditional
generated digits should match the input digit, with yellow boxes highlighting inconsistencies. Accu-
racy scores, shown in parentheses, are derived from pre-trained classifiers on the generated images.

The middle plot in Figure 2 shows the semantic coherence results. Our method exhibits a smaller
performance drop and surpasses others as missing views increase. In contrast, other models show
an obvious decline when up to four views are missing. Perversely, MMVAE and mmJSD slightly
improve as more views are lost due to MoE’s limitations in aggregating information (Hwang et al.,
2021), which favors single-view identification. Figure 3 illustrates a task where only view 2 was
provided, with representations extracted from incomplete observations to generate full views. Our
method achieved 83.56% accuracy in maintaining semantic consistency with the input, significantly
outperforming other models. In contrast, other methods showed notable inconsistencies across the
five-view tuples, highlighted by the yellow boxes. mVAE struggled to maintain consistent semantics
across views due to the precision miscalibration of each view caused by PoE fusion (Shi et al., 2019).
MoE-based models like mmVAE, mmJSD, and MoPoE maintained some semantic coherence but
failed with more challenging samples, producing blurry backgrounds. MVTCAE generated clearer,
more varied backgrounds but still showed semantic inconsistencies in several samples. Although
designed to retain highly correlated information between views, missing views made it harder to
maintain consistency, especially with only one view available. MMVAE+ produced clearer back-
grounds than mmVAE by separating shared and view-specific subspaces, but sampling missing-view
information from auxiliary priors caused severe category confusion.

The right plot in Figure 2 shows the SSIM results. Also, mmVAE and mmJSD exhibit improved
reconstruction quality as the number of missing views increases—a counterintuitive trend, yet con-
sistent with theirs in semantic coherence. MMVAE+ performs moderately, likely because we used
the same network structure for all models rather than its original ResNet architecture, suggesting it
may overly rely on powerful decoders for good generation. Since SSIM primarily reflects the quality
of dominant backgrounds in the PolyMNIST dataset, our method is the only one that consistently
balances high semantic coherence with diverse background styles.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 4: Multi-view samples generated by our method on the MVShapeNet dataset. Categories
include table, chair, car, airplane, and rifle, with each sample consisting of five views from different
angles. The model was trained with missing rate η = 0.5 and tested with only view 5 available.

4.2.2 MVSHAPENET: CAPTURING DETAILED INFORMATION FROM VARIOUS ANGLES

We further evaluate our method on the MVShapeNet dataset. Unlike PolyMNIST, where views share
a few common pixels depicting the same digit against various background styles, MVShapeNet
presents a smaller inter-view gap and greater consistency due to its uniform white backgrounds with
the same object captured from different real-world angles. We use an 80:20 train-test split and apply
the same experimental settings as in Section 4.2.1.

In this setting, MVAEs are less prone to semantic inconsistencies observed with PolyMNIST, mean-
ing the generated object generally matches the input. However, we expect the learned representa-
tions to preserve more detail such as furniture hollowing, textures, and lightnings, which remains a
challenge under high missing ratios. To evaluate this, we compare our method with other MVAEs
at missing rates of η = 0.1 and 0.5, testing across all possible incomplete combinations. For quan-
titative evaluation, we use average SSIM to evaluate the basic structure of generated images. Addi-
tionally, we pretrain two CNN-based classifiers on all views to evaluate whether the decoded images
accurately capture object categories and perspective angles. As demonstrated in Table 4 of Appendix
B.1, our method consistently performs well, regardless of whether it is trained at high or low missing
rates and tested on any incomplete combination. In contrast, other methods either show a dramatic
performance drop as the number of missing views increases or rely on memorizing incomplete sam-
ples without effectively aggregating complementary information from additional views. As shown
in Figure 4, when only view 5 is provided, MVP leverages inter-view correspondences to transform
latent representations and successfully infer the missing views. Further visualizations in Figure 10
illustrates that other models tend to produce blurry reconstructions with a lack of detail or unclear
perspective angles. In contrast, our method clearly infers more accurate details in missing views,
such as the placement of table legs at different angles, changes in light and shadow, and hollowed-
out armrests on chairs. All these results suggest that our method learns representation with more
sufficient and consistent information from incomplete multi-view data.

5 CONCLUSION

In this paper, we presented Multi-View Permutation of VAEs (MVP), a novel framework to address
the challenges of incomplete multi-view learning. By explicitly modeling inter-view correspon-
dences in the latent space, MVP effectively captured invariant relationships between views. We
derived a valid ELBO for efficient optimization by applying permutation and partition operations to
the latent variable set. Notably, these operations on multi-view representations are not limited to the
VAE framework and can be extended into non-generative models. Additionally, the introduction of
an informational prior using cyclic permutations of posteriors resulted in regularization terms with
both practical meanings and theoretical guarantees. Extensive experiments on seven diverse datasets
demonstrated the robustness and superiority of MVP over existing methods, particularly in scenarios
with high missing ratios. These findings underscore its potential to reveal more informative latent
spaces and fully unlock the capability of MVAEs to handle incomplete data.
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A THEORETICAL ANALYSIS

In this section, we present a comprehensive theoretical analysis of the proposed method, offering
additional details to complement the main text.

A.1 PARTITION AND PERMUTATION OF A SET

In mathematics, a partition of a set refers to a division of its elements into non-empty, mutually
exclusive subsets, such that each element of the original set belongs to exactly one of these subsets.
In simpler terms, a partition is a “set of sets”, where each subset is known as a cell.
Definition 5 (Partition of A Set (Brualdi, 2004)). A family of sets P is a partition of the set X if
and only if all of the following conditions hold:

(1) P does not contain the empty set (i.e., ∅ /∈ P ).

(2) The union of the sets in P is equal to X (i.e.,
⋃

A∈P A = X). The sets in P are said to
exhaust or cover X .

(3) The intersection of any two distinct sets in P is empty (i.e., ∀A,B ∈ P, A ̸= B =⇒
A ∩B = ∅). The elements of P are said to be pairwise disjoint or mutually exclusive.

In this work, we introduce two specialized types of partitions applied to the latent variable set Z: the
single-view partition Ps(Z) and the complete-view partition Pc(Z). These partitions are tailored
to the particular structure and requirements of the problem under study.

The visualization of these two partitions is facilitated by arranging the variables in a matrix and
dividing them according to rows and columns. In Figure 5, the left matrix Z0 contains diagonal
elements directly derived from observed data, while off-diagonal elements represent transformations
of the diagonal elements. Each column consists of variables z

(l)
∗ corresponding to the l-th view,

derived from different sources. Hence, the single-view partition of Z corresponds to the set of
columns in the matrix. In contrast, the complete-view partition can be represented by dividing the
matrix by rows, where each row encompasses all L views. However, this partition is not unique; by
reordering the elements within each column and then partitioning the matrix by rows, we obtain a
new complete-view partition P ′

c(Z), as illustrated by the right matrix Z1 in Figure 5.

Figure
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Figure 5: An illustration of column-wise permutations to generate different complete-view parti-
tions. In the first column (red box), the permutation σ1 = (1532)(4) is applied, and its inverse
(σ1)

−1 = (2351)(4) reverses the cycle order. This results in σ1(
[
z
(1)
1 , z

(1)
2 , z

(1)
3 , z

(1)
4 , z

(1)
5

]
) =[

z
(1)
5 , z

(1)
1 , z

(1)
2 , z

(1)
4 , z

(1)
3

]
. The same procedure is applied to the other columns. Partitioning each

row (purple box) yields the complete-view partition.

Next, we define permutations, which are central to generating new partitions.
Definition 6 (Permutation of A Set (Bóna, 2008)). A permutation of a set X is a bijective function
σ : X → X . In other words, it is a one-to-one mapping of the set X onto itself.

A common method for representing permutations is cycle notation, where a permutation is ex-
pressed as a product of disjoint cycles. Each cycle indicates how the permutation rearranges a
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subset of elements, moving each element to the position of the next one in the cycle. For example,
consider a permutation σ of the set X = 1, 2, 3, 4, defined by σ(1) = 2, σ(2) = 3, σ(3) = 1, and
σ(4) = 4. In cycle notation, this permutation is written as σ = (123)(4). The cycle (123) indicates
that 1 is mapped to 2, 2 to 3, and 3 back to 1. The element 4 remains fixed, represented as (4), often
referred to as a fixed point.

A.2 CYCLIC PERMUTATION AND SATTOLO’S ALGORITHM

A cyclic permutation is a specific type of permutation that consists of exactly one cycle in its cycle
notation, with the cycle length equal to the size of the set (Gross, 2016). For example, a cyclic
permutation σ of the set X = {1, 2, 3, 4} can be written as (k1k2k3k4), where ki ∈ X . A formal
definition is given in Definition 3. In a cyclic permutation, each element of a set with more than
one element is cyclically shifted, meaning each element is mapped to another, and after a number
of mappings equal to the set size, every element returns to its original position. Cyclic permutations
are particularly useful in our setting, as they guarantee convergence of the regularization term (see
Appendix A.3) and can be efficiently generated using Sattolo’s Algorithm (Wilson, 2005), which
operates with linear time complexity.

Algorithm 1 Sattolo’s Algorithm for Cyclic Permutation
Input: Array A of size n
Output: A cyclic permutation of A
Initialize array length n = |A|.

1: for i = n− 1 to 1 do
2: Randomly select j from 0 to i− 1;
3: Swap A[i] and A[j];
4: end for
5: return A;

The algorithm starts with the identity permutation σ(0) = Id. For each i ∈ {1, . . . , n−1}, we denote
by σ(i) the permutation obtained after the i first steps. Step i consists in choosing a random integer ki
in {1, . . . , n− i} and swapping the values of σ(i−1) at places ki and n− i+1. In this way, we obtain
a new permutation σ(i), which is equal to τki,n−i+1 ◦ σ(i−1), where τki,n−i+1 is the transposition
exchanging ki and n − i + 1. Finally, the algorithm returns the permutation σ = σ(n−1). This
process is captured in Algorithm 1. Figure 6 provides an example where n = 5, and the sequence of
random swaps is 3, 1, 2, 1. The resulting cyclic permutation is 1 → 5 → 3 → 2 → 4 → 1.

Figure 6: Execution of Sattolo’s algorithm for n = 5, where the sequence of random swaps is
3, 1, 2, 1 (Wilson, 2005).

Proposition 1. The mapping produced by Sattolo’s algorithm is a cyclic permutation, and every
cyclic permutation can be obtained using Sattolo’s algorithm.

Proof. The correctness of Sattolo’s algorithm follows from the fact that it generates a unique decom-
position of a cyclic permutation σ as a product of transpositions, τkn−1,2◦· · ·◦τki,n−i+1◦· · ·◦τk1,n,
where ki ∈ {1, . . . , n− i} for 1 ≤ i ≤ n− 1.

For n = 2, the permutation σ = τk1,2 is clearly a cyclic permutation. Assuming Sattolo’s algorithm
works for sets with fewer than n elements, we now demonstrate that it also holds for a set of size n.
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Consider a set of n elements. The permutation σ = τkn−1,2 ◦ · · · ◦ τki,n−i+1 ◦ · · · ◦ τk2,n−1 ◦ τk1,n

consists of n−1 transpositions. The first n−2 transpositions act on the set {1, . . . , n−1}, excluding
k1, where k1 is swapped with n. By the inductive hypothesis, these form a cyclic permutation on
n−1 elements, which can be represented as a single cycle: τkn−1,2 ◦· · ·◦τki,n−i+1 ◦· · ·◦τk2,n−1 =
(n, r1, · · · rn−2).

Applying the final transposition τk1,n swaps k1 with n, yielding:

σ = (n, r1, · · · rn−2) ◦ τk1,n = (n, k1, r1, · · · rn−2),

which is a cyclic permutation of n elements. By induction, Sattolo’s algorithm always produces a
cyclic permutation for any set size n.

Since Sattolo’s algorithm generates (n− 1)! distinct cyclic permutations for a set of size n, and this
is precisely the number of all possible cyclic permutations on n elements, every cyclic permutation
can be obtained using this method. This completes the proof.

Next, we explain how permutations generate different complete-view partitions. Let v represent
rows and l columns, with the matrix form of the set Z expressed as Z0 =

[
z
(l)
v

]
L×L

. We assume
the missing views preserve the matrix’s square form, simplifying notation. Let the observed views
be I = {k1, . . . , kn} ⊆ [L], with missing views given by [L] \ I = {r1, . . . , rm}. A complete-view
partition is obtained by dividing Z0 by rows: Pc(Z; Id) = {C0

n}n∈I , where C0
n = {z(l)n }Ll=1, with

Id representing the identity mapping. We call Pc(Z; Id) the basic complete-view partition.

The matrix Z0 can also be expressed by columns as
[
z
(l)
v

]
L×L

=
[
z(1), · · · , z(L)

]
. Consider

L permutations σ = {σl}Ll=1 defined on the index set [L], each being a cyclic permutation on
{k1, · · · , kn} with m fixed points {r1, · · · , rm}. A new matrix Z1 can then be constructed by per-
muting the row indices within each column

[
z
(l)
σl(v)

]
L×L

=
[
z̃(1), · · · , z̃(L)

]
, where z̃(l) contains

the same elements as z(l), which implies that single-view partition is unique. And this results in a
new Pc(Z;σ) = {Cn}n∈I , where Cn = {z(l)σl(n)

}Ll=1.

As illustrated in Figure 5, if we disregard the missing views treated as fixed points, applying a cyclic
permutation transforms matrix Z0 into Z1. Notably, applying the inverse of the permutation, which
is also cyclic, restores Z1 back to Z0. This highlights a symmetric relationship between the two
matrices, governed by cyclic permutations and their inverses.
Proposition 2. The inverse of a cyclic permutation is also a cyclic permutation.

Proof. We prove this using a convenient feature of the cycle notation. Consider a cyclic permutation
σ defined on the set [L], with cycle notation (k1, k2, · · · , kL). The inverse permutation σ−1 is
obtained by reversing the order of the elements in the cycle, yielding (kL, kL−1, · · · , k1). Since this
reversed sequence still forms a single cycle, σ−1 is indeed a cyclic permutation.

A.3 THE SIMILARITY MEASURE OVER DISTRIBUTIONS

In this section, we introduce a similarity measure between distributions, referred to as the Dissimi-
larity Coefficient (d.c.), which we use to reduce the value of the KL divergence term in the ELBO.
Consequently, this reduction minimizes the dissimilarity between distributions, effectively maxi-
mizing their similarity. We also explain how the informational prior in our method transforms the
regularization term into a new d.c..

In various statistical fields—such as hypothesis testing, cluster analysis, and pattern recognition—it
is essential to distinguish between probability distributions using appropriate dissimilarity coeffi-
cients (or separation measures, denoted as d.c.). A d.c. for a set of N probability distributions
quantifies their “degree of heterogeneity”. For N = 2, a d.c. can be interpreted as a “distance”
between two distributions, though it may not always represent a metric distance in the strict sense.
Definition 7 (Dissimilarity Coefficient (Sgarro, 1981)). Let P denote the set of probability mea-
sures on a measurable space (Ω,F). Let N ≥ 2 be a fixed natural number. A dissimilarity coefficient
(d.c.) of order N is a mapping d : PN → R ∪ {+∞} that satisfies the following properties for any
P1, P2, . . . , PN ∈ P:
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(1) Non-negativity: d (P1, P2, . . . , PN ) ≥ 0;

(2) Identity of Indiscernible: d (P1, P2, . . . , PN ) = 0 if P1 = P2 = · · · = PN ;

(3) Symmetry: d (P1, P2, . . . , PN )=d
(
Pϕ(1), Pϕ(2), . . . , Pϕ(N)

)
for any permutation ϕ of [N ].

In some cases, condition (2) can be strengthened to:

(2’) d (P1, P2, . . . , PN ) = 0 if and only if P1 = P2 = · · · = PN .

The Kullback-Leibler (KL) divergence (Kullback, 1959), while not symmetric, is widely regarded
as a fundamental statistical measure for distinguishing between two probability distributions. To
extend its application to multiple distributions (N ≥ 2), several symmetric dissimilarity coefficients
based on the KL divergence have been proposed. For example, the average divergence sums the
KL divergence over all N(N − 1) pairs of distributions (Kullback, 1959), while the information
radius resembles the Jensen-Shannon divergence for multiple distributions (Sibson, 1969; Jardine &
Sibson, 1971). Additionally, Sgarro (1981) introduced the minimum divergence, which measures
the KL divergence for the pair with the smallest difference.

In this work, we reuse the permuted posteriors generated during the construction of complete-view
partitions and set them as priors within the multimodal VAE framework. This transforms the KL di-
vergence term in the ELBO into a new d.c., which we call the Permutation Divergence (Definition
4). We prove that this is a valid d.c.:
Theorem 1. The Permutation Divergence defined in Definition 4 is a dissimilarity coefficient.

Proof. Consider a cyclic permutation σ defined on [N ] with cycle notation (1, r1, . . . , rN−1). The
corresponding permutation divergence is given by:

d(P1, P2, . . . , PN ;σ) =

N∑
i=1

KL[Pi ∥ Pσ(i)].

Since the divergence is a sum of KL divergences, property (1) of non-negativity is satisfied.

To verify the identity of indiscernible, note that d(P1, P2, . . . , PN ;σ) = 0 if and only if each term
in the sum is zero. This implies KL[Pi ∥ Pσ(i)] = 0 for all i, which occurs if and only if Pi = Pσ(i).
Consequently, P1 = Pr1 = · · · = PrN−1

, satisfying property (2’).

Finally, for any permutation ϕ of [N ]:

d
(
Pϕ(1), Pϕ(2), . . . , Pϕ(N);σ

)
=

N∑
i=1

KL[Pϕ(i) ∥ Pσ(ϕ(i))]

=

N∑
j=1

KL[Pj ∥ Pσ(j)] = d(P1, P2, . . . , PN ;σ).

Thus, the Permutation Divergence satisfies the symmetry property (3).

The proof of property (2’) demonstrates why cyclic permutations are used instead of general permu-
tations: the one-cycle structure ensures that the divergence reaches its minimum when all distribu-
tions are identical.
Proposition 3. The sum of dissimilarity coefficients defined on the same set of distributions is itself
a dissimilarity coefficient.

Proof. The proofs of these properties for the sum of d.c.’s follow directly from the corresponding
properties of the individual coefficients. For brevity, these straightforward proofs are omitted here.

As a result, the sum of two Permutation Divergences, each defined with different cyclic permutations
on the same set of distributions, remains a valid d.c.. Importantly, this applies to the case where the
cyclic permutation and its inverse are used together.
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Proposition 4. The sum of the Permutation Divergences defined with a cyclic permutation σ and its
inverse σ−1 is also a dissimilarity coefficient and is composed of symmetric KL divergences.

Proof. Consider a cyclic permutation σ defined on [N ]. The corresponding permutation divergence
is given by:

d(P1, P2, . . . , PN ;σ) =

N∑
i=1

KL[Pi ∥ Pσ(i)].

According to Proposition 3, σ−1 is also a cyclic permutation, thus

d(P1, P2, . . . , PN ;σ−1) =

N∑
j=1

KL[Pj ∥ Pσ−1(j)].

For any j ∈ [N ], there exists a unique k ∈ [N ] such that σ(k) = j. Therefore, we have:
N∑
i=1

KL[Pi ∥ Pσ(i)] +

N∑
j=1

KL[Pj ∥ Pσ−1(j)]

=

N∑
i=1

KL[Pi ∥ Pσ(i)] +

N∑
k=1

KL[Pσ(k) ∥ Pσ−1(σ(k))]

=

N∑
i=1

(
KL[Pi ∥ Pσ(i)] + KL[Pσ(i) ∥ Pi]

)
≜ d(P1, P2, . . . , PN ;σ, σ−1),

where each term is symmetric with respect to the pair Pi and Pσ(i).

As illustrated in Figure 5, a cyclic permutation transforms one complete-view partition into a new
one, while its inverse restores the original partition. This allows for the interchangeability of the
matrices, Z0 and Z1, where one can be used for posterior factorization and the other for priors.
Consequently, examining the sum of the Permutation Divergences defined by a cyclic permutation
and its inverse highlights this symmetry, which will be further explored in the next section.

A.4 DERIVATION AND ANALYSIS OF THE EVIDENCE LOWER BOUND (ELBO)

With the complete-view partition factorizing the joint approximate posterior and the permuted uni-
modal posteriors serving as informational priors, we are now ready to derive the ELBO for in-
complete multi-view data {x(v)}I . To facilitate this derivation, which involves two types of latent
variables, we first present a useful lemma that establishes the chain rule for KL divergence.
Lemma 1 (Chain Rule of KL divergence).

KL(q(x, y)∥p(x, y)) = KL(q(x)∥p(x)) + KL(q(y|x)∥p(y|x))

Proof. The proof follows from the definition of the KL divergence and the factorization of joint
distributions:

KL(q(x, y)∥p(x, y)) =
∫ ∫

q(x, y) log
q(x, y)

p(x, y)
dy dx

=

∫ ∫
q(x, y) log

q(x)q(y|x)
p(x)p(y|x)

dy dx

=

∫ ∫
q(x, y) log

q(x)

p(x)
dy dx+

∫ ∫
q(x, y) log

q(y|x)
p(y|x)

dy dx

=

∫
q(x) log

q(x)

p(x)
dx+

∫
q(x)

∫
q(y|x) log q(y|x)

p(y|x)
dy dx

= KL(q(x)∥p(x)) + KL(q(y|x)∥p(y|x)).
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Theorem 2. Equation (1) is the evidence lower bound (ELBO) for incomplete multi-view data
{x(v)}I .

Proof. We begin with the log-likelihood of the incomplete multi-view data {x(v)}I , assuming two
sets of latent variables, Z and Ω. For any joint distribution q(Z,Ω), the following equation holds:

log p({x(v)}I) =
∫

q(Z,Ω) log p({x(v)}I)dZdΩ

=

∫
q(Z,Ω) log

p({x(v)}I | Z,Ω)p(Z,Ω)

p(Z,Ω | {x(v)}I)
q(Z,Ω)

q(Z,Ω)
dZdΩ

=

∫
q(Z,Ω) log

p({x(v)}I ,Z,Ω)

q(Z,Ω))
dZdΩ︸ ︷︷ ︸

Evidence Lower Bound (ELBO)

+KL(q(Z,Ω)∥ p(Z,Ω | {x(v)}I)︸ ︷︷ ︸
True posterior

)

We use encoders to model the distribution q(Z,Ω) given the observed data, denoted as q(Z,Ω |
{x(v)}I). The first term in this equation represents the ELBO, which serves as a lower bound on the
log-likelihood of the data. By maximizing the ELBO, the KL term becomes smaller, meaning that
the learned distribution approximates the true posterior p(Z,Ω | {x(v)}I). For a given complete-
view partition Pc(Z;σ) = {Cn}n∈I , where Cn = {z(l)σl(n)

}Ll=1, we can factorize the joint posterior
as:

q(Z,Ω | {x(v)}I) ≜
∏
n∈I

q(ωn | Cn, {x(v)}Jn
)q(Cn | {x(v)}Jn

)

=
∏
n∈I

q(ωn | Cn, {x(v)}Jn)
∏L

l=1,v∈Jn

q(z(l)
v | x(v)).

Next, we assume the generative process as:

p({x(v)}I ,Z,Ω) ≜
∏
n∈I

p(x(n)|Cn, ωn)p(Cn, ωn)

=
∏
n∈I

p
(
x(n)|Cn ∩ Sn, ωn

)
p(ωn)

∏L

l=1,v∈Jn

p
(
z(l)v

)
.

Here, we again explain why we use Cn ∩ Sn, the diagonal of the matrix of Z , for reconstruction.
From the derivation, we partition according to {Cn}n∈I , where each Cn contains L latent variables
representing different views. Among them, only z

(n)
σl(n)

= Cn ∩ Sn is related to x(n) (with the
same superscript). This approach also simplifies practical implementation, as we can directly use
the diagonal of the matrix of Z to extract all the Cn ∩ Sn.

∫
q(Z,Ω | {x(v)}I) log

p({x(v)}I ,Z,Ω)

q(Z,Ω | {x(v)}I)
dZdΩ

=
∑
n∈I

{∫
q(Cn, ωn | {x(v)}Jn

) log
p(x(n) | Cn, ωn)p(ωn)

∏L
l=1,v∈Jn

p(z
(l)
v )

q(ωn | Cn, {x(v)}Jn)
∏L

l=1,v∈Jn
q(z

(l)
v | x(v))

dCndωn

}
=

∑
n∈I

{
Eq(Cn∩Sn,ωn|{x(v)}Jn )

[
log p(x(n) | Cn ∩ Sn, ωn)

]
+

∫
q(ωn | Cn, {x(v)}Jn

) log
p(ωn)

q(ωn | Cn, {x(v)}Jn
)
dωn

+

∫ ∏L

l=1,v∈Jn

q(z(l)v | x(v)) log

∏L
l=1,v∈Jn

p(z
(l)
v )∏L

l=1,v∈Jn
q(z

(l)
v | x(v))

dCn

}
=

∑
n∈I

Eq(Cn,ωn|{x(v)}Jn )

[
log p(x(n) | Cn ∩ Sn, ωn)

]

−
L∑

l=1

∑
v∈I

KL
[
q(z(l)v | x(v)) ∥ p(z(l)v )

]
−

∑
n∈I

KL
(
q(ωn | Cn, {x(v)}In) ∥ p(ωn)

)
.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

The split of the final two KL terms follows directly from the chain rule provided in the lemma. At this
point, we have derived Eq. (1), but we can further simplify by removing redundant variables (which
are essential for modeling and derivation but not necessary for exposition) and explicitly defining
the prior settings, as outlined in Section 3.3. Specifically, we denoteq(z(l)v | x(v)), which encodes
the l-th view’s information using the v-th view as the source, as q(l)v (z). his notation represents the
encoding and transformation of the distribution, where q(l)v (z) ∼ N (z; flv ◦µ(x(v)), flv ◦Σ(x(v))),
where flv = id when l = v. Similarly, we denote the prior p(z(l)v ) as p(l)v (z). We set this prior to
p
(l)
v (z) = q

(l)

σ−1
l (v)

(z), where σ−1
l is the inverse of the permutation used to obtain the complete-view

partition and acts as a cyclic permutation on the incomplete index set I. This transforms the first
KL term into:

L∑
l=1

∑
v∈I

KL
[
q(l)v (z) ∥ q

(l)

σ−1
l (v)

(z)
]
=

L∑
l=1

d(q
(l)
k1
, . . . , q

(l)
kn
;σ−1

l ),

where {k1, . . . , kn} represents the observed views, and d is the permutation divergence, ensuring
that distributions encoding the same view from different sources remain as close as possible. For
practical implementation, we only need to compute the KL divergence between the corresponding
positions of the distributions in the left and right matrices shown in Figure 5.

The latent variable ω is derived from the fusion of the marginal Gaussian distributions in Cn. In
other words, ω can be deterministically determined by the variable z, making the regularization of
ω effectively a regularization of z. We simplify the notation for the posterior distribution q(ω |
Cn), which represents the distribution obtained by fusing the marginal k-dimensional distributions.
Specifically, q(ω | Cn) ∼ N (ω;αn,Λn), where

Λn =
[∑L

l=1
Σ(l)

v (1 : k, 1 : k)
−1

]−1

, αn = Λn

∑L

l=1

[
Σ(l)

v (1 : k, 1 : k)
−1

µ(l)
v (1 : k)

]
, v ∈ Jn.

Here, we rely on two well-known results: first, the marginal distribution of a multivariate Gaus-
sian remains Gaussian, and second, the geometric mean of several Gaussian random variables also
follows a Gaussian distribution, with parameters that are straightforward to compute.

For the prior setting of ω, since its posterior is derived from the combination Cn = {z(l)σl(n)
}Ll=1,

we can similarly fuse the priors of z, which have already been defined. It is easy to see that
{zσ−1

l (σl(n)
)(l)}Ll=1 = {z(l)n }Ll=1 = C0

n,representing the cell of the basic complete-view partition,
which corresponds to the pre-permutation position in the matrix. Therefore, we set the prior of
q(ω | Cn) to q(ω | C0

n). In practice, this simply requires calculating the KL divergence between the
ω variables obtained from the two matrices shown in Figure 5.

Finally, for given permutations and their resulting complete-view partition, we can express the
ELBO as follows:

LELBO({x(v)}I) =
∑
n∈I

Eq(Cn,ω|{x(v)}Jn )

[
log p(x(n) | z(n)σl(n)

, ω)
]

−
L∑

l=1

∑
v∈I

KL
[
q(l)v (z) ∥ q

(l)

σ−1
l (v)

(z)
]
−

∑
n∈I

KL
(
q(ω | Cn) ∥ q(ω | C0

n)
)
.

(2)

Since we can factorize the joint posterior using any complete-view partition, we can alternatively
use the basic partition P0

c (Z) = {C0
n}n∈I , where C0

n = {z(l)n }Ll=1. In this case, there are no cyclic
permuted posteriors to set the prior. Thus, assuming arbitrary cyclic permutations σ = {σl}Ll=1 on
the incomplete index set I, we can derive the basic ELBO as follows:

L0
ELBO({x(v)}I) =

∑
n∈I

Eq(C0
n,ω|x(n))

[
log p(x(n) | z(n)n , ω)

]

−
L∑

l=1

∑
v∈I

KL
[
q(l)v (z) ∥ q

(l)
σl(v)

(z)
]
−

∑
n∈I

KL
(
q(ω | C0

n) ∥ q(ω | Cn)
)
.

(3)
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Figure 7: Loss evolution curves during the training process on the Handwritten under missing rate
η = 0.1, illustrating the trends of different loss components. The first subplot (Loss all) highlights
the warm-up phase using Eq. (3) during the initial 100 epochs (shaded yellow). Afterward, training
transitions to Eq. (4), which is defined as 0.5 × (Eq. (2) + Eq. (3)). Subplots for Reconstruction
Loss, KLD z, and KLD ω show the progressive change in their respective values over 500 epochs.

There are subtle differences between the basic ELBO in Eq.(3) and Eq.(2). The first term, rep-
resenting the reconstruction loss, shows that in the basic ELBO, the variable z

(n)
n generates x(n)

through self-view reconstruction, meaning z
(n)
n is directly encoded from x(n) without any trans-

formations. In contrast, in Eq.(2), z(n)σl(n)
comes from a cyclically permuted complete-view partition,

where σl(n) is not equal to n but instead corresponds to another observed view obtained via inter-
view correspondences. This can be interpreted as a cross-view generation. If Eq.(2) iterates over
all possible permutations, it implies that within the loss function, all observed views generate other
views via cross-generation.

The form of the remaining two terms suggests that we can form a convex combination of these two
types of ELBOs, assuming they use the same set of σ and their inverses. This leads to the following
expression:

LELBO({x(v)}I ;σ) =
1

2
(L0

ELBO({x(v)}I) + LELBO({x(v)}I))

=
1

2

∑
n∈I

{
Eq(C0

n,ω|x(n))

[
log p(x(n) | z(n)n , ωn)

]
+ Eq(Cn,ω|{x(v)}Jn )

[
log p(x(n) | z(n)σl(n)

, ω)
]}

− 1

2

L∑
l=1

∑
v∈I

{
KL

[
q(l)v (z) ∥ q

(l)

σ−1
l (v)

(z)
]
+KL

[
q(l)v (z) ∥ q

(l)
σl(v)

(z)
]}

− 1

2

∑
n∈I

{
KL

(
q(ω | Cn) ∥ q(ω | C0

n)
)
+KL

(
q(ω | C0

n) ∥ q(ω | Cn)
)}
(4)

In practical optimization, we use Eq.(3) for warm up and Eq.(4) as the final learning objective,
selecting a different σ permutation at each iteration.This approach offers three main advantages.
First, combining the two ELBOs simultaneously promotes both self-view reconstruction and cross-
view generation, which leads to a more comprehensive learning process. Second, by using cyclic
permutations σ and exploiting the fact that their inverses are also cyclic, we can efficiently obtain
two complete-view partitions. This allows the distributions at corresponding positions, both pre-
and post-permutation, to supervise each other without the need for additional computations, making
the optimization process more computationally efficient. Finally, the convex combination of the
two regularization terms introduces a higher degree of symmetry. For the term involving z, based
on Proposition 4, we can rewrite it as a more symmetric dissimilarity coefficient:
L∑

l=1

∑
v∈I

{
KL

[
q(l)v (z) ∥ q

(l)

σ−1
l (v)

(z)
]
+KL

[
q(l)v (z) ∥ q

(l)
σl(v)

(z)
]}

=

L∑
l=1

d(q
(l)
k1
, . . . , q

(l)
kn
;σl, σ

−1
l ).

Similarly, the term involving ω is also expressed as a sum of symmetric KL divergences. In prior
work, such as Sutter et al. (2020) and Hwang et al. (2021), the unimodal posteriors are fused to obtain
a joint posterior. Subsequent generations rely on sampling from this joint posterior, which becomes
the primary optimization target. As a result, Hwang et al. (2021) suggests that the asymmetry of the
KL divergence makes the forward KL more suitable than the reverse KL for this context.
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𝛀
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Figure 8: Visualization of the effects of the two regularization terms on a five-view sample with
one missing view. Each circle represents a set of homogeneous latent variables. In Sl, markers
of the same shape indicate variables from the l-th view, while colors represent their source views.
In Ω, consensus variables are fused from all five views, as shown by the dashed purple arrows.
Bidirectional black arrows illustrate the cyclic convergence of variables within each set.

In contrast, our approach maintains the unimodal posteriors throughout the factorization process,
with subsequent reconstructions dependent on these individual subspaces. Thus, optimizing all uni-
modal posteriors becomes essential. The symmetric KL divergence ensures that both distributions
are encouraged to move toward each other’s high-probability regions, fostering more stable conver-
gence during training.

A.5 LATENT SPACE DYNAMICS DURING TRAINING

The two regularization terms, Inter-View Translatability and Consensus Concentration, play dis-
tinct roles in the training process. These terms impact the arrangement and interaction of latent
variables in the learned space, as illustrated in the following visualizations.

In Figure 8, we depict the impact of the regularization terms on a five-view sample with one miss-
ing view. In the single-view cell Sl, markers of the same shape represent the latent variables z
corresponding to the l-th view, while the different colors indicate their source views, whether self-
encoded or cross-transformed. Note that each set contains as many variables as there are observed
views (four in this case), as they can only be encoded or transformed from available views. As this
term diminishes, the variables within each Sl cyclically converge, indicating that variables from
different views can effectively transform into each other, thereby establishing inter-view correspon-
dences. This process also enforce a form of soft consistency, as representations from different views
are encouraged to approach each other after being transformed, rather than aligning directly. The
learning of inter-view correspondences avoids collapsing into identity mappings because the recon-
struction loss ensures that variables retain unique information specific to each view.

The Consensus Concentration term aims to ensure that consensus variables derived from different
combinations remain consistent, as shown in Figure 8. Each ω in Ω is obtained from a complete
combination of all views. Over time, the regularization promotes closer alignment of these consen-
sus variables, facilitating the aggregation of shared information across the views.

Figure 9 illustrates the evolution of the latent space during training. The top row depicts the latent
variables z for five views across different training epochs, with each color representing a different
view. Each colored cluster contains all variables in Sl, whether self-encoded or cross-transformed.
Initially, these variables are scattered, but over time, they coalesce into five distinct clusters, indi-
cating the emergence of inter-view correspondences. In the middle row, the consensus variables
ω, derived from various complete combinations of the five views, are shown. At the start, these
variables are widely dispersed, as the views are not yet able to transform into each other effectively,
leading to inconsistencies in the captured information. As training progresses, inter-view correspon-
dences are established, and the first k dimensions of z reliably encode shared information across
views. As a result, all combinations of the five views produce similar ω’s, with their representations
converging into indistinguishable, uniformly distributed clusters.
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Figure 9: T-SNE visualization of latent space dynamics during training on the PolyMNIST
dataset. Top row: Latent variables z for five views at different training stages, with colors repre-
senting each view. As training progresses, the initially scattered representations gradually cluster,
indicating the establishment of inter-view correspondences. Middle row: Consensus variables ω,
derived from different combinations of the five views, are shown with different marker shapes.
These scattered representations gradually align and become more consistent. Bottom row: Average
consensus representations, colored by digit class, become more distinct over time, which reflects
enhanced clustering and effective information sharing across views.

B ADDITIONAL EXPERIMENTAL RESULTS

In this section, we present additional experimental results to complement those in the main text. A
complete version of the clustering results on five datasets in Section 4.1, including standard devia-
tions from five experimental runs, is provided in Table 3.

B.1 QUANTITATIVE AND QUALITATIVE RESULTS ON MVSHAPENET

In this section, we present both quantitative and qualitative comparisons on the MVShapeNet dataset
to assess the performance of our method, MVP, alongside several prominent MVAE-based ap-
proaches. These include the models discussed in Section 4.2.2, such as mVAE, mmVAE, mmJSD,
MoPoE, and MVTCAE. Although MMVAE+ is a strong method, it did not perform well on this
dataset using the same CNN-based architecture, irrespective of whether the Normal or Laplace dis-
tribution was applied. For this reason, we chose not to include it in our direct comparisons.

It’s important to note that MMVAE+ excels in handling complete datasets by leveraging auxiliary
priors to facilitate cross-modal reconstructions, making it highly effective in real-world generation
tasks. However, its design, which prioritizes robustness to hyperparameters that control the capac-
ity of modality-specific subspaces, seems less suited for scenarios where data is missing. In such
cases, its auxiliary prior may struggle to compensate for missing information, affecting its ability to
perform well under these conditions. This key distinction highlights the difference in focus between
MMVAE+ and our approach, with each serving different objectives.

Figure 10 illustrates multi-view sample generation conditioned on view 5 across different object
categories. All models were trained with a missing rate of η = 0.5, representing a complex sce-
nario where maintaining geometric consistency and capturing fine details across views is particu-
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Figure 10: Multi-view sample generation conditioned on view 5. The leftmost column shows
input images from view 5, randomly selected from five categories: table, rifle, chair, airplane, and
car. The following columns display five-view samples generated by different models.

Table 4: Quantitative results on the MVShapeNet dataset. The metrics ‘ACC’ and ‘View’ rep-
resent the classification accuracy of generated images for object categories and perspective angles,
respectively, using two pretrained classifiers. The metric ‘SSIM’ measures the structural similarity
of generated images compared to the ground truth. Models were trained with incomplete data at
missing rates η = 0.1 and η = 0.5, and evaluated across different combinations of missing views.
Results are averaged over same-sized subsets such as ‘missing 1 view’, which includes five cases:
{2,3,4,5}, {1,3,4,5}, {1,2,4,5}, and {1,2,3,4}.

Testing Subset Missing 1 view Missing 2 views Missing 3 views Missing 4 views
Method ACC↑ View↑ SSIM↑ ACC↑ View↑ SSIM↑ ACC↑ View↑ SSIM↑ ACC↑ View↑ SSIM↑

0.1

mVAE 90.56 81.34 0.8406 86.60 78.56 0.8139 79.11 73.97 0.7737 62.27 66.70 0.7045
mmVAE 91.56 81.28 0.8141 91.55 81.39 0.8132 91.56 81.42 0.8126 91.78 81.51 0.8141
mmJSD 41.16 53.03 0.7217 40.91 53.11 0.7210 40.77 53.24 0.7207 40.55 53.16 0.7215
MoPoE 86.45 83.18 0.8252 86.34 83.04 0.8223 85.94 82.66 0.8159 84.40 81.68 0.7961

MVTCAE 93.65 83.45 0.8570 93.39 83.41 0.8440 92.71 83.07 0.8308 89.90 81.70 0.7858
MVP(Ours) 94.66 84.34 0.8349 94.76 84.35 0.8336 94.77 84.58 0.8274 94.47 84.12 0.8259

0.5

mVAE 79.04 76.14 0.8111 73.02 71.88 0.7802 63.76 66.88 0.7386 49.28 61.26 0.6800
mmVAE 91.22 81.67 0.8088 91.26 81.63 0.8081 91.30 81.51 0.8076 91.38 81.40 0.8092
mmJSD 92.40 82.49 0.8118 92.41 82.46 0.8110 92.40 82.52 0.8105 92.37 82.47 0.8192
MoPoE 92.84 82.46 0.8314 92.71 82.31 0.8292 92.26 82.00 0.8247 90.55 80.91 0.8129

MVTCAE 93.38 83.09 0.8482 93.07 82.91 0.8396 92.22 82.53 0.8540 89.03 80.86 0.7865
MVP(Ours) 94.57 84.60 0.8239 94.72 84.64 0.8276 94.75 84.66 0.8268 94.45 84.50 0.8126

larly challenging. MVP stands out by producing sharper and more consistent multi-view samples
across categories compared to the other models.

Table 4 presents the quantitative evaluation on the MVShapeNet dataset. The ‘ACC’ and ‘View’
metrics represent classification accuracy for object categories and perspective angles, respectively,
while ‘SSIM’ measures the structural similarity between generated and ground truth images. As seen
from the visualization, SSIM primarily captures the basic structure of the generated images, result-
ing in relatively minor differences across most methods. Our method, MVP, consistently achieves
competitive SSIM scores and surpasses all other models in both classification accuracy metrics. This
robustness is particularly evident compared to mVAE, which suffers a notable drop in performance
as the number of missing views increases. Figure 10 illustrates this, showing how mVAE, relying
on PoE fusion, loses the structural integrity of the input object when fewer views are available.

Interestingly, mVAE, mmJSD, and MoPoE perform better in scenarios with higher missing rates.
This can be attributed to their reliance on fusing all available views in their posterior or informational
priors, making them dependent on missing data to memorize different incomplete combinations.
Thus, they struggle to fully utilize the complementary information provided by additional views.
On the other hand, mmVAE, which uses MoE fusion, shows improved performance with more
available views during both training and testing. However, its fusion strategy struggles to effectively
aggregate information from multiple views, resulting in smoother generated objects that may lack
the distinct angles necessary to capture fine details.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Figure 11: Conditional generation by our method on the CUB dataset given only text.

MVTCAE demonstrates stable performance across all conditions by enforcing strict consistency
between views, making it resilient to missing views. However, this strict consistency can result in
the loss of unique, view-specific details. Our MVP method, by enforcing consistency after trans-
formations, not only maintains robust performance but also effectively integrates information from
additional views while preserving the sharp, distinctive details of each view.

B.2 ADDITIONAL EXPERIMENT RESULTS ON CUB DATASET

We conducted additional experiments on the raw-text version of the CUB dataset to evaluate the
generative capabilities of our method on datasets with non-RGB views (Netzer et al., 2011; Shi
et al., 2019). This version contains 88,550 training and 29,330 testing samples, comprising paired
bird images and textual descriptions. Following MMVAE+ (Palumbo et al., 2023), we adopted the
same network architecture and latent dimension (64 dimensions).
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Figure 12: Conditional generation by our method on the CUB dataset given only images.

Table 5: Ablation study of permutation and different priors in MVAEs with inter-view corre-
spondences. Clustering results on the Handwritten dataset with a missing rate of 0.5, averaged over
five training runs. “Perm.” refers to the use of permutation, which reorders the variables of the same
views (indicated by the same superscript) for reconstruction. The “Regularization” column indicates
the use of different prior settings. The last row represents our proposed model.

Model Reconstruction Regularization ACC↑ NMI↑ ARI↑
1 Random Perm. Diagonal 31.58±10.75 30.98±12.11 16.94±8.81
2 Random Perm. Random 59.37±4.30 58.70±2.73 44.69±4.33
3 w/o Perm. Cyclic 79.80±1.26 81.35±1.00 73.98±1.46
4 Cyclic Perm. N (0, 1) 86.96±6.44 82.49±2.80 79.23±5.65
5 Cyclic Perm. Fusion 87.71±6.09 84.47±1.57 80.77±4.61
6 Cyclic Perm. Diagonal 88.53±6.43 85.00±2.86 81.77±6.14

Ours Cyclic Perm. Cyclic 90.76±4.69 85.44±1.55 83.53±3.69

The results, shown in Figure 10, demonstrate that our method effectively generates images aligned
with textual descriptions in the incomplete setting. Clear semantic alignments are observed in at-
tributes such as colors (e.g., black, white, brown) and structures (e.g., belly, beak, wings). However,
the generated images exhibit blurry backgrounds and contours, consistent with observations in MM-
VAE+, which stem from the limitations of single-step VAE-based generation. Advanced approaches,
such as D-CMVAE (Palumbo et al., 2024), address this issue using diffusion models, though such
refinements are beyond the scope of this study.

Quantitative evaluation remains challenging, as traditional metrics like diversity or reconstruction
scores fail to capture cross-modal consistency. While MMVAE+ introduced a metric based on HSV
color alignment with textual descriptions, it does not measure higher-level consistencies, such as
specific bird features (e.g., wings, beak) or environmental contexts (e.g., sky, water). Future di-
rections could explore more precise metrics or employ large vision-language models for automated
evaluation (Lin et al., 2025).

B.3 ABLATION STUDY OF PERMUTATION AND PRIORS SETTING

We conducted an ablation study to validate the key design decisions in our method, and as shown
in Table 5, our proposed approach achieves the best performance. For MVAEs that explicitly model
inter-view correspondences, given incomplete input data {x(v)}v∈I , we derive a set of latent vari-
ables {z(l)v } corresponding to different views, organized into matrix Z0 for clarity. In this notation,
the superscript in z

(l)
v indicates that it represents the l-th view, while the subscript denotes the source

view. Thus, z(l)v is used to reconstruct the l-th view’s observation and can be regularized by other
latent variables associated with the l-th view, all of which share the same superscript in the l-th
single-view cell Sl = {z(l)v }v∈I .

Model 1 serves as a simple baseline. In this model, we randomly select a latent variable from the
l-th view to reconstruct the observation x(v) for that view, using z

(l)
l (with matching superscripts

and subscripts) to regularize all variables for the l-th view. However, this approach performs poorly
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because the random selection can pick either the self-view encoded z (v = l) or the cross-view
transformed z (v ̸= l), leading to difficulties in reconstruction and confusing the learning process.
Additionally, the regularization term for z(l)l simply vanishes entirely.

Model 2 relaxes the prior by replacing the strict z(l)l with a posterior derived from a random permu-
tation. This improves performance due to the added randomness. However, since random permu-
tations do not guarantee that elements are moved from their original positions, some regularization
terms for z(l)v may still vanish.

In Model 3, we exclude permutation during reconstruction. For the l-th view x(l), we encode it
into z

(l)
l and use it directly for decoding. Other latent variables, derived through inter-view corre-

spondences, are aligned with the target view’s variable solely through regularization terms. This
approach slightly improves performance, as it effectively adds information from other views during
decoding. However, it cannot establish and learn correspondences between views effectively.

In Models 4-6 and our proposed model, we apply cyclic permutation to the matrix Z0, using both the
diagonals of matrices Z0 and Z1 for reconstruction, effectively combining self-view reconstruction
with cross-view generation. The use of different informational priors (‘Fusion’, ‘Diagonal’, and
‘Cyclic’) demonstrates clear advantages over the standard normal distribution N (0, 1), which lacks
the flexibility to adapt to varying samples.

• ‘Fusion’ involves using the geometric mean of posteriors within a homogeneous set as the
prior for each posterior in that set, it is kind of like reducing the variance of all unimodal
posteriors. For example, the geometric mean of {z(l)v }v∈I is used to regularize each z

(l)
v .

However, when views are missing, the varying set sizes |I| for different samples result in
imbalanced fusion and increased computational complexity.

• ‘Diagonal’ regularizes all {z(l)v }v∈I using the distribution of z(l)l , and the geometric mean
of {z(l)l }l∈I to regularize all ω. However, when v = l, the regularization term fails, leading
to suboptimal performance.

• ‘Cyclic’, as used in our method, efficiently reuses the permuted posteriors as priors and
fully leverages the relationships between views. Since no element remains in its original
position, this method maximizes inter-view correspondences and achieves the best perfor-
mance. Additionally, it avoids extra fusion computation for informational priors by simply
calculating the KL divergence of Z0 and Z1.

In all, our model outperforms all others, demonstrating the effectiveness of our learning strategy.

B.4 COEFFICIENTS β OF REGULARIZATION TERMS

As is common in the VAE literature, the objective function in Eq. (4) can be rewritten as the sum
of a reconstruction term and two KL-divergence terms, each weighted by the coefficients β1 and β2

(Higgins et al., 2017). As shown in Figure 13, we conduct a sensitivity analysis on the coefficients to
examine how different combinations of β1 (for z regularization) and β2 (for ω regularization) impact
clustering accuracy. Since ω is deterministically computed from fusion of z, both terms essentially
act as regularization on z, but with different objectives. The figure shows that the best performance
is achieved when β1 = 5.0 and β2 = 2.5, resulting in a clustering accuracy of 90.76. This indicates
that a moderate weighting of both regularization terms strikes an optimal balance between promoting
smooth latent space transitions (Inter-View Translatability) and ensuring latent space consistency
(Consensus Concentration).

Interestingly, the performance degrades when either β1 or β2 is set too high, as seen when β1 = 10
or β2 = 10. This likely results from overly constraining the latent space, which could reduce the
flexibility needed for effective inter-view transformations. Conversely, lower values of β1 and β2

(e.g., β1 = 1.0, β2 = 1.0) show suboptimal performance, indicating insufficient regularization and
thus poorer structure in the latent space.
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Figure 13: Sensitivity analysis of the coefficients for the two regularization terms in the ELBO.
β1 controls the regularization for z and β2 controls the regularization for ω. Clustering accuracy
(ACC) is reported on the Handwritten dataset with missing rate 0.5, averaged over five training runs.

Table 6: Clustering results across different representation dimensions (z). Clustering accuracy
(mean ± standard deviation) is shown for various latent dimensions with a missing rate of η = 0.5,
averaged over five runs. The green cell marks the selected dimension.

Dataset Dimension of latent representation

Handwritten
8 16 24 32

85.88±6.15 90.76±4.69 88.32±5.99 86.41±5.63

CUB
8 16 32 64

67.30±5.36 74.20±3.21 73.03±3.97 69.40±2.95

Scene15
8 16 32 64

42.58±1.31 45.28±1.44 44.44±0.69 43.74±1.79

Reuters10
8 16 32 48

52.60±2.66 53.67±2.88 53.89±5.32 53.01±4.26

SensIT Vehicle
8 16 32 64

70.33±0.48 69.95±0.28 70.21±0.09 70.00±0.21

B.5 THE CHOICE OF LATENT REPRESENTATION DIMENSIONS

In this section, we examine the choice of latent variable dimensions across different datasets and
compare the selection of the first k dimensions for encoding shared information in the PolyMNIST
and MVShapeNet datasets. For the clustering task, since it requires high consistency between views
to preserve shared information and reveal the underlying category structure, we use 100% of the
dimensions of z to encode shared information, meaning k = d, with ω having the same dimension-
ality as z. Table 6 presents the clustering results for various latent representation dimensions across
different datasets. Rather than always selecting the best-performing dimension, we strike a balance
between model complexity and the inherent structure of the dataset for simplicity.

Table 7 reports the reconstruction performance on the PolyMNIST and MVShapeNet datasets as
we vary the proportion of dimensions (k) used to encode shared information. The results show that
performance remains robust across different ratios, allowing us to select the ratio based on each
dataset’s characteristics. For PolyMNIST, which exhibits greater variability between views due to
diverse background styles and colors, a smaller k/d ratio (50%) for shared information encoding
is more effective. This is because only a small portion of the pixel data (representing the digit) is
consistent across views, while the rest varies significantly. In contrast, MVShapeNet, with more
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Table 7: Reconstruction results across different shared feature dimensions (k) in the d-
dimensional z. The models are trained on the PolyMNIST and MVShapeNet datasets with a missing
rate of η = 0.5. SSIM is reported on the complete test set. The green cell highlights the selected
dimension.

k/d d 25% 50% 75% 100%
PolyMNIST 96 0.6023 0.6188 0.6137 0.6134

MVShapeNet 256 0.8383 0.8384 0.8381 0.8374

consistent views (mainly different angles of the same object against a plain background), is better
suited to a higher k/d ratio (75%).

C IMPLEMENTATION DETAILS OF OUR METHOD

C.1 NETWORK ARCHITECTURES

For the experiments in Section 4.1, we employed fully connected neural networks similar to those
used in previous studies. The choice of architecture depends on the dataset’s characteristics, such as
input dimension and number of samples. We used one of the following network configurations:

• dv - 256 - 256 - 1024 - d

• dv - 512 - 512 - 1024 - d

• dv - 512 - 512 - 2048 - d

• dv - 1024 - 1024 - 2048 - d

Here, dv is the input dimension, and d is the latent dimension. Each fully connected layer is followed
by a ReLU activation function to introduce non-linearity, except for the final output layer, which uses
a Tanh activation function to normalize the latent representation within a bounded range.

For the experiments in Section 4.2, we utilized simple convolutional neural networks (CNNs) com-
bined with fully connected layers, ReLU activations, and Tanh activations. In both the PolyMNIST
and MVShapeNet datasets, each view is encoded and decoded using separate Variational Autoen-
coders (VAEs). The architecture of a single VAE’s encoder and decoder is summarized in Table 8.
The same architecture is applied to each of the five views. The filter sizes ($filter tuple$) for PolyM-
NIST (input shape [3, 28, 28]) and MVShapeNet (input shape [3, 64, 64]) are (64, 128, 256, 512)
and (64, 128, 256, 512, 512), respectively.

Table 8: CNN architecture used for each VAE on the PolyMNIST and MVShapeNet datasets.
Module Layer Type Description

Encoder

Conv2D Layers 4 layers with increasing filter sizes $filter tuple$ and stride of 2.
Each followed by ReLU activation.

Flatten Flatten output to a vector of size 2048.
Linear Fully connected layer to latent dimension (d), followed by ReLU.
Linear (Mu, LogVar) Separate layers for mean and log variance of latent distribution.

Decoder
Linear Fully connected layer from concatenated latent vector (d+ k) to

output size of 2048.
ConvTranspose2D
Layers

4 layers with decreasing filter sizes $Reverse filter tuple$, fol-
lowed by ReLU activations.

ConvTranspose2D
(Output)

Final layer with 3 filters, followed by Tanh activation to output
RGB image.

The correspondence between each pair of views is modeled using a simple fully connected network
with linear layers and LeakyReLU activations. For all datasets in Section 4.1, we use the architecture
d - 128 - 256 - 128 - d. For MVShapeNet, we use d - 256 - 512 - 256 - d, and for PolyMNIST, we
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use d - 256 - 1024 - 256 - d. The larger network for PolyMNIST reflects the greater differences
between its views, requiring more parameters to effectively model the correspondence.

For more implementation details, please refer to the code provided in the supplementary material.

C.2 MISSING PATTERNS AND MASK GENERATION

We follow standard practices in incomplete multi-view learning, where missing-view masks are
generated before training to inform the model of the missing patterns. Following the approach
outlined in the public repository by Tang & Liu (2022), for a dataset with L views and a missing
rate η, we randomly select η × len(dataset) samples to be incomplete. For each of these samples,
we randomly remove between 1 and L − 1 views, ensuring that every incomplete sample retains at
least one view while missing at least one. The missing-view masks (e.g., ‘00101’) are generated for
the entire dataset before training and stored in a “fingerprint” file for each missing rate η. When
the dataset is loaded, the corresponding masks are applied as long as η is specified. This ensures
consistent missing patterns across different models, enabling fair and reproducible evaluations.

C.3 PRE-COMPUTATION OF CYCLIC PERMUTATION INDICES AND BATCH PROCESSING

Given an index set A = {1, 2, . . . , n}, Sattolo’s Algorithm can efficiently generate a cyclic permu-
tation, as outlined in Algorithm 1. By leveraging stack operations, all possible cyclic permutations
of the index set can be precomputed.

For incomplete multi-view datasets with fixed missing patterns, each sample has a distinct mask
(e.g., ‘01101’), indicating the available views {2, 3, 5}. Precomputing the cyclic permutations for
these masks reduces computational overhead during training. Treating missing views as fixed points
(e.g., views 1 and 4 in this case) ensures that the permuted index sets maintain the same length (e.g.,
[1,2,3, 4,5] ⇒ [1,3,5, 4,2]), simplifying batch operations. These precomputed permutations are
also stored in the “fingerprint” file for easy retrieval.

During training, these precomputed permutation indices can be directly applied to arrays containing
values for each view, enabling efficient rearrangement of data. For a dataset with L views, cyclic
permutations are applied to the latent variables of each sample by permuting elements within each
column of an L × L matrix Z0. As shown in Figure 5, the precomputed cyclic permutations are
chosen, structured as an L × L array and are used to reorder Z0 into Z1. Since these permutations
are stored with the dataset, the transformation process can be efficiently executed in batches using
indexing, allowing for fast and seamless operations during training.

C.4 OVERALL TRAINING PIPELINE OF OUR METHOD

The general pipeline of our method is outlined in Algorithm 2. The goal is to learn multiple encoders,
decoders, and inter-view correspondences. To implement more easily, we organize the variables into
a matrix Z0. The pipeline consists of the following four steps for an L-view dataset:

1. Self-view Encoding and Cross-view Transformation for Z0: We employ L encoders to
obtain z

(v)
v ∼ N (µ(x

(v)
v ),Σ(x

(v)
v )), v ∈ {1, . . . , L}. Then, using all inter-view corre-

spondences {flv}, we compute z
(l)
v ∼ N (flv ◦ µ(x

(v)
v ), flv ◦ Σ(x

(v)
v )), for l ̸= v, where

l, v ∈ {1, . . . , L}. These values are organized into a matrix Z0 =
[
z
(l)
v

]
L×L

, where the
row index denotes the subscript and the column index denotes the superscript.

2. Cyclic Permutation for Z1: We apply L pre-generated cyclic permutations {σl}Ll=1, pro-
vided with the dataset, to form an permuted index array of size L × L. This array is used
to transform Z0 into Z1 =

[
z
(l)
σl(v)

]
L×L

.

3. Fusion for ω with Complete-view Partition: For both Z0 and Z1, we fuse each row by
computing the geometric mean of the k-dimensional marginal distributions, resulting in
Ω0 = {ω0

l }Ll=1 and Ω1 = {ωl}Ll=1. We also extract the diagonal elements from Z0 and Z1,
corresponding to {z(l)l }Ll=1 and {z(l)σl(l)

}Ll=1, respectively, where σl(l) ̸= l.
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4. Decoding with ω and z: We use z to reconstruct the view indicated by its superscript,
combining it with a consensus variable ω. Specifically, we apply L decoders to reconstruct
the views as follows: x̂(l) = Decoder([ω0

l , z
(l)
l ]) and x̃(l) = Decoder([ωl, z

(l)
σl(l)

]).

5. Masked ELBO Update: We apply masks to ignore terms related to missing views and
update the model using the ELBO objective (Eq. 4).

Algorithm 2 Multi-View Permutation of VAEs for Incomplete Data
Input: Incomplete Multi-View dataset {Xi}ni=1, latent variable dimension d, and shared feature

dimension k (k ≤ d).
Output: MVAEs with inter-view correspondences.
Initialize parameters {ϕv}, {θv}, and {αlv}, where v, l ∈ [L].

1: while maximum epochs not reached do
2: for v in available views do
3: Generate (µ

(v)
v ,Σ

(v)
v ) = Encoder(x(v)) through v-th encoder;

4: Compute (µ
(l)
v ,Σ

(l)
v ) using flv for l ̸= v, l ∈ {1, 2, . . . , L};

5: end for
6: For derived Z0, apply cyclic permutations to obtain Z1;
7: for n in available views do
8: Calculate geometric mean (αn,Λn) from Cn and sample ωn;
9: Sample z

(n)
∗ from single-view cell Sn;

10: Generate x̂(n) = Decoder(ωn, z
(n)
∗ ) through n-th decoder;

11: end for
12: Update {ϕv}, {θv}, and {αlv} by maximizing the ELBO (Eq. 4);
13: end while

C.5 INFERENCE OF MISSING VIEWS WITH AVAILABLE VIEWS

During inference, given an incomplete input sample {x(v)}I , we first derive the latent vari-
able set {z(l)v }(v,l)∈I×[L]. For each view l ∈ {1, . . . , L}, we compute an averaged latent vari-
able z̄(l) by taking the geometric mean of the distributions from the available views, z̄(l) =

Geometric Average({z(l)v }v∈I). This process provides a complete set of L latent variables {z̄(l)}Ll=1.

Next, we compute a consensus variable ω from this complete set by taking the geometric mean of
their marginal distributions over the first k dimensions. Finally, we concatenate ω with each z̄(l) and
use the l-th decoder to reconstruct x(l), allowing us to infer all views.

D COMPARATIVE METHODS

D.1 INCOMPLETE MULTI-VIEW LEARNING METHODS IN SECTION 4.1

For the methods listed in Table 9, we follow their original implementations as provided in the re-
spective public repositories. For methods that are limited to handling only two views, we train them
on all possible combinations of two views and report the best performance for each dataset.

D.2 MULTIMODAL VAES IN SECTION 4.2

Table 10 summarizes the key modeling details of the various multi-modal VAE approaches used
in our comparisons, including latent space dimensions, joint posterior fusion strategies, and prior
settings. We adhere to the implementations provided in their respective public repositories. For the
first five models, we set the latent dimension to 512 for both the PolyMNIST and MVShapeNet
datasets. For mmVAE+, we use latent dimensions of 96 for PolyMNIST and 256 for MVShapeNet,
matching the settings used in our method. Following its original implementation, 50% of the latent
dimension is allocated to the shared subspace, with the remaining 50% designated for view-specific
subspaces. All methods were trained for 300 epochs across all datasets.
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Table 9: Overview of comparative methods for incomplete multi-view learning. This table
summarizes the key modeling details of the methods used for comparison.

Method Year Venue #View Description
DCCA 2013 ICML Two Baseline, CCA-based method

DCCAE 2015 ICML Two Baseline, CCA-based method
DIMVC 2022 AAAI Mutiple High-dimensional nonlinear mapping, EM

DSIMVC 2022 ICML Mutiple Bi-level opimization
Completer 2023 CVPR/TPAMI Two Information theory, contrastive learning
CPSPAN 2023 CVPR Mutiple Prototype alignment
ICMVC 2024 AAAI Two GNN, high-confidence guiding
DVIMC 2024 AAAI Mutiple GMM+VAEs

Table 10: Comparative methods for different multi-modal VAEs. This table outlines key details
of various multi-modal VAE approaches used for comparison, including the latent variable dimen-
sion, joint posterior fusion strategy, and prior setting.

Method Year Venue Dimension Joint Posterior Prior and KL divergence term
mVAE 2018 NeurIPS 512 PoE Spherical Gaussian: N (0, 1)

mmVAE 2019 NeurIPS 512 MoE Laplace distritbution
mmJSD 2021 NeurIPS 512 PoE/MoE JS divergence with Geometric Mixture
MoPoE 2021 ICLR 512 MoPoE Spherical Gaussian: N (0, 1)

MVTCAE 2021 NeurIPS 512 PoE Spherical Gaussian: N (0, 1), Total Correlation
objective resulting in forward KL

mmVAE+ 2023 ICLR 96/256 MoE Laplace distritbution

E DATASET INFORMATION AND CONSTRUCTION DETAILS

Table 1 provides an overview of the statistics for all datasets used in this study, all of which are
publicly available through their respective repositories and on the Huggingface website. For PolyM-
NIST (Sutter et al., 2021), we present sample images in Figure 14.

The MVShapeNet dataset was constructed from the ShapeNet dataset (Chang et al., 2015) using the
rendering tool developed by Stanford2. We selected five categories: table, chair, car, airplane, and
rifle, with a total of 25155 samples. The number of samples for each category is 8445, 6778, 3514,
4045, and 2373, respectively.

To convert the 3D point cloud data into multiple 2D views, we employed a directional lighting
setup. The primary light source was configured as a sun light with shadows disabled, a specular
factor of 1.0, and an energy level of 10.0. To ensure consistent lighting across surfaces not directly
illuminated by the primary source, a secondary sun light was added with a low energy level of 0.015,
positioned 180° relative to the primary light. Both light sources had shadows disabled to maintain
uniform illumination. The camera was placed at coordinates (0, 1, 0.6), with a focal length of 35mm
and a sensor width of 32mm. To capture multiple views, the camera was constrained to track an
empty object at the origin, which was rotated in 8° increments (360°/45 steps) around the Z-axis.
We selected five views, each taken from viewpoints spaced 45 degrees apart around the front of the
object. Example images from the MVShapeNet dataset are shown in Figure 15.

2https://github.com/panmari/stanford-shapenet-renderer
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Figure 14: Visualization of randomly selected MNIST samples across 10 digit classes (0-9) and 5
modalities (m0-m4). Each column represents a digit class, and each row shows a different modality.

Figure 15: Visualization of randomly selected MVShapeNet samples from 5 object categories. Each
row shows 5 different views (View1-View5) of two randomly selected samples from each category.
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