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Abstract

We introduce an approach aimed at enhanc-
ing the reasoning capabilities of Large Lan-
guage Models (LLMs) through an iterative pref-
erence learning process inspired by the success-
ful strategy employed by AlphaZero. Our work
leverages Monte Carlo Tree Search (MCTYS) to
iteratively collect preference data, utilizing its
look-ahead ability to break down instance-level
rewards into more granular step-level signals.
To enhance consistency in intermediate steps,
we combine outcome validation and stepwise
self-evaluation, continually updating the qual-
ity assessment of newly generated data. The
proposed algorithm employs Direct Preference
Optimization (DPO) to update the LLM pol-
icy using this newly generated step-level pref-
erence data. Theoretical analysis reveals the
importance of using on-policy sampled data for
successful self-improving. Extensive evalua-
tions on various arithmetic and commonsense
reasoning tasks demonstrate remarkable perfor-
mance improvements over existing models. For
instance, our approach outperforms the Mistral-
7B Supervised Fine-Tuning (SFT) baseline on
GSMS8K, MATH, and ARC-C, with substan-
tial increases in accuracy to 81.8% (+5.9%),
34.7% (+5.8%), and 76.4% (+15.8%), respec-
tively. Additionally, our research delves into
the training and inference compute tradeoff,
providing insights into how our method effec-
tively maximizes performance gains.

1 Introduction

Development of Large Language Models (LLMs),
has seen a pivotal shift towards aligning these mod-
els more closely with human values and prefer-
ences (Stiennon et al., 2020; Ouyang et al., 2022;
Bai et al., 2022a). A critical aspect of this process
involves the utilization of preference data. There
are two prevailing methodologies for incorporat-
ing this data: the first entails the construction of
a reward model based on preferences, which is
then integrated into a Reinforcement Learning (RL)

framework to update the policy (Christiano et al.,
2017; Bai et al., 2022b); the second, more stable
and scalable method, directly applies preferences
to update the model’s policy (Rafailov et al., 2023).

In this context, the concept of “iterative” devel-
opment is a key, especially when contrasted with
the conventional Reinforcement Learning from Hu-
man Feedback (RLHF) paradigm (Christiano et al.,
2017; Stiennon et al., 2020; Ouyang et al., 2022;
Bai et al., 2022a), where the reward model is of-
ten trained offline and remains static. An iterative
approach proposes a dynamic and continuous re-
finement process (Zelikman et al., 2022; Giil¢ehre
et al., 2023; Huang et al., 2023; Yuan et al., 2024).
It involves a cycle that begins with the current pol-
icy, progresses through the collection and analysis
of data to generate new preference data, and uses
this data to update the policy. This approach un-
derlines the importance of ongoing adaptation in
LLMs, highlighting the potential for these mod-
els to become more attuned to the complexities of
human decision-making and reasoning.

A compelling illustration of the success of such
an iterative approach can be seen in the case of Alp-
haZero (Silver et al., 2017) for its superhuman per-
formance across various domains, which combines
the strengths of neural networks, RL techniques,
and Monte Carlo Tree Search (MCTS) (Coulom,
2006; Kocsis and Szepesvari, 2006). The integra-
tion of MCTS as a policy improvement operator
that transforms the current policy into an improved
policy (Grill et al., 2020). The effectiveness of
AlphaZero underscores the potential of combining
these advanced techniques in LLMs. By integrating
MCTS into the iterative process of policy develop-
ment, it is plausible to achieve significant strides in
LLMs, particularly in the realm of reasoning and
decision-making aligned with human-like prefer-
ences (Zhu et al., 2023; Hao et al., 2023).

The integration of MCTS in collecting prefer-
ence data to improve the current policy iteratively
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Figure 1: Monte Carlo Tree Search (MCTS) boosts model performance via iterative preference learning. Each
iteration of our framework (on the left) consists of two stages: MCTS to collect step-level preferences and preference
learning to update the policy. Specifically, we use action values () estimated by MCTS to assign the preferences,
where steps of higher and lower () values will be labeled as positive and negative data, respectively. The scale of
@ is visualized in the colormap. We show the advantage of the online manner in our iterative learning framework
using the validation accuracy curves as training progresses on the right. The performance of ARC-C validation
illustrates the effectiveness and efficiency of our proposed method compared to its offline variant.

is nuanced and demands careful consideration. One
primary challenge lies in determining the appropri-
ate granularity for applying MCTS. Convention-
ally, preference data is collected at the instance
level. The instance-level approach employs sparse
supervision, which can lose important information
and may not optimally leverage the potential of
MCTS in improving the LLMs (Wu et al., 2023).
Another challenge is the reliance of MCTS on a
critic or a learned reward function. This function
is crucial for providing meaningful feedback on
different rollouts generated by MCTS, thus guiding
the policy improvement process (Liu et al., 2023a).

Addressing this granularity issue, evidence from
LLM research indicates the superiority of process-
level or stepwise evaluations over instance-level
ones (Lightman et al., 2023; Li et al., 2023; Xie
etal., 2023; Yao et al., 2023). Our approach utilizes
MCTS rollouts for step-level guidance, aligning
with a more granular application of MCTS. More-
over, we employ self-evaluation, where the model
assesses its outputs, fostering a more efficient pol-
icy improvement pipeline by acting as both policy
and critic (Kadavath et al., 2022; Xie et al., 2023).
This method streamlines the process and ensures
more cohesive policy updates, aligning with the
iterative nature of policy enhancement and poten-
tially leading to more robust and aligned LL.Ms.

To summarize, we propose an algorithm based
on Monte Carlo Tree Search (MCTYS) that breaks
down the instance-level preference signals into
step-level. MCTS allows us to use the current
LLM policy to generate preference data instead
of a predetermined set of human preference data,
enabling the LLM to receive real-time training
signals. During training, we generate sequences

of text on the fly and label the preference via
MCTS based on feedback from self-evaluation
(Figure 1). To update the LLLM policy using the
preference data, we use Direct Preference Opti-
mization (DPO) (Rafailov et al., 2023). We ex-
tensively evaluate the proposed approach on vari-
ous arithmetic and commonsense reasoning tasks
and observe significant performance improvements.
For instance, the proposed approach outperforms
the Mistral-7B SFT baseline by 81.8% (+5.9%),
34.7% (+5.8%), and 76.4% (+15.8%) on GSM8K,
MATH, and SciQ, respectively. Further analysis
of the training and test compute tradeoff shows
that our method can effectively push the perfor-
mance gains in a more efficient way compared to
sampling-only approaches.

2 MCTS-Enhanced Iterative Preference
Learning

In this paper, we introduce an approach for improv-
ing LLM reasoning, centered around an iterative
preference learning process. The proposed method
begins with an initial policy 7y, and a dataset of
prompts Dp. Each iteration 7 involves selecting a
batch of prompts from Dp, from which the model,
guided by its current policy 7,.i-1), generates po-
tential responses for each prompt. We then apply
a set of dynamically evolving reward criteria to
extract preference data D; from these responses.
The model’s policy is subsequently tuned using
this preference data, leading to an updated policy
Tg(), for the next iteration. This cycle of sam-
pling, response generation, preference extraction,
and policy tuning is repeated, allowing for continu-
ous self-improvement and alignment with evolving
preferences. In addressing the critical aspects of



this methodology, two key challenges emerge: the
effective collection of preference data and the pro-
cess of updating the policy post-collection.

We draw upon the concept that MCTS can act
as an approximate policy improvement operator,
transforming the current policy into an improved
one. Our work leverages MCTS to iteratively col-
lect preference data, utilizing its look-ahead ability
to break down instance-level rewards into more
granular step-level signals. To enhance consistency
in intermediate steps, we incorporate stepwise self-
evaluation, continually updating the quality assess-
ment of newly generated data. This process, as
depicted in Figure 1, enables MCTS to balance
quality exploitation and diversity exploration dur-
ing preference data sampling at each iteration. De-
tailed in section 2.1, our approach utilizes MCTS
for step-level preference data collection. Once this
data is collected, the policy is updated using DPO,
as outlined in section 2.2. Our method can be
viewed as an online version of DPO, where the
updated policy is iteratively employed to collect
preferences via MCTS. Our methodology, thus, not
only addresses the challenges in preference data
collection and policy updating but also introduces
a dynamic, iterative framework that significantly
enhances LLM reasoning.

2.1 MCTS for Step-Level Preference

To transform instance-level rewards into granular,
step-level signals, we dissect the reasoning process
into discrete steps, each represented by a token se-
quence. We define the state at step ¢, s;, as the
prefix of the reasoning chain, with the addition of
a new reasoning step a transitioning the state to
S¢+1, where sy is the concatenation of s; and a.
Utilizing the model’s current policy my, we sam-
ple candidate steps from its probability distribu-
tion mg(a | x,s¢)!, with 2 being the task’s input
prompt. MCTS serves as an approximate policy
improvement operator by leveraging its look-ahead
capability to predict the expected future reward.
This prediction is refined through stepwise self-
evaluation (Kadavath et al., 2022; Xie et al., 2023),
enhancing process consistency and decision accu-
racy. The tree-structured search supports a balance
between exploring diverse possibilities and exploit-
ing promising paths, essential for navigating the

"For tasks (e.g., MATH) where the initial policy performs
poorly, we also include the ground-truth reasoning steps for
training. We detail the step definition for different tasks with
examples in Appendices C and D.

vast search space in LLM reasoning.

The MCTS process begins from a root node, s,
as the sentence start or incomplete response, and
unfolds in three iterative stages: selection, expan-
sion, and backup, which we detail further.

Select. The objective of this phase is to identify
nodes that balance search quality and computa-
tional efficiency. The selection is guided by two
key variables: (s, a), the value of taking action
a in state s;, and N (s;), the visitation frequency of
state s;. These variables are crucial for updating
the search strategy, as explained in the backup sec-
tion. To navigate the trade-off between exploring
new nodes and exploiting visited ones, we employ
the Predictor + Upper Confidence bounds applied
to Trees (PUCT) (Rosin, 2011). At node s;, the
choice of the subsequent node follows the formula:

spi1" = arg max [Q(st, a)
t

(H
N
+ Cpuct 'P(a ’ St) (St) :|

1+ N(st41)

where p(a | s¢) = mg(a | z,s;)/|a|* denotes the
policy my’s probability distribution for generating
a step a, adjusted by a A-weighted length penalty
to prevent overly long reasoning chains.

Expand. Expansion occurs at a leaf node dur-
ing the selection process to integrate new nodes
and assess rewards. The reward r(s;, a) for exe-
cuting step a in state s; is quantified by the reward
difference between states R(s;) and R(s¢1), high-
lighting the advantage of action a at s;. As defined
in Eq. (2), reward computation merges outcome
correctness O with self-evaluation C. We assign
the outcome correctness to be 1, —1, and O for cor-
rect terminal, incorrect terminal, and unfinished
intermediate states, respectively. Following Xie
et al. (2023), we define self-evaluation as Eq. (3),
where A denotes the confidence score in token-
level probability for the option indicating correct-
ness®. Future rewards are anticipated by simulating
upcoming scenarios through roll-outs, following
the selection and expansion process until reaching
a terminal state>.

R(St) = O(St) + C(St) )

C(St) = WQ(A | prompte,, %, St) (3)

2We show an example of evaluation prompt in Table 6.
3The terminal state is reached when the whole response is
complete or exceeds the maximum length.



Algorithm 1. MCTS-Enhanced Iterative Preference Learning. Given an initial policy my) = g,
our algorithm iteratively conducts step-level preference data sampling via MCTS and preference learning
via DPO to update the policy.

Input: Dp: prompt dataset; ¢(- | z): MCTS sampling strategy that constructs a tree-structured set of possible responses given
a prompt x, where g, represents that the strategy is based on the policy 7 for both response generation and self-evaluation;
£;(x, yw, y1; 0): loss function of preference learning at the i-th iteration, where the corresponding sampling policy is x®; M:

number of iterations; B: number of samples per iteration; 1": average number of steps per sample

Train ¢ on Dp using step-level preference learning.
for i = 1to M do

7T(7') — T < Ty(i—1)

Sample a batch of B samples from Dp as Dg).

/* MCTS for Step-Level Preference Data Collection */

For each z € Dg), elicit a search tree of depth 7" via gr, (- | x).
Collect a batch of preferences D; = { {(z7, y"", y?" )L}y st a7 ~ DYy # 4G ~ guy (- | 27) }, where

yg,t) and yl(j’t

their parent node.
/* Preference Learning for Policy Improvement */

) is the nodes at depth ¢, with the highest and lowest @ values, respectively, among all the children nodes of

Optimize 6 by minimizing J(0) = E(4 ., .y,)~D, i (T, Y, Y15 0).

Obtain the updated policy i)
end for
To < To(M)
Output: Policy mp

Backup. Once a terminal state is reached, we
carry out a bottom-up update from the terminal
node back to the root. We update the visit count IV,
the state value V', and the transition value ():

Q(st,a) < r(st,a) + YV (st41) “4)

V(st) ¢ > N(sty1)Q(st,a)/ > N(si41)

)
N(st) < N(s) +1 (6)

where + is the discount for future state values.

For each step in the response generation, we con-
duct K iterations of MCTS to construct the search
tree while updating () values and visit counts N. To
balance the diversity, quality, and efficiency of the
tree construction, we initialize the search breadth
as b; and anneal it to be a smaller by < by for the
subsequent steps. We use the result ) value cor-
responding to each candidate step to label its pref-
erence, where higher () values indicate preferred
next steps. For a result search tree of depth T, we
obtain 7" pairs of step-level preference data. Specif-
ically, we select the candidate steps of highest and
lowest () values as positive and negative samples
at each tree depth, respectively. The parent node
selected at each tree depth has the highest value
calculated by multiplying its visit count and the
range of its children nodes’ visit counts, indicating
both the quality and diversity of the generations.

2.2 TIterative Preference Learning

Given the step-level preferences collected via
MCTS, we tune the policy via DPO (Rafailov et al.,
2023). Considering the noise in the preference la-
bels determined by () values, we employ the conser-
vative version of DPO (Mitchell, 2023) and use the
visit counts simulated in MCTS to apply adaptive
label smoothing on each preference pair. Using the
ot 15— o 2% = g 8]
at the ¢-th iteration, given a batch of preference
data D; sampled with the latest policy my(i—1), we
denote the policy objective ¢;(6) as follows:

4i(0) = = Eoyu.y)~D; [(1 — Qg y, ) logo(B h%’#;’y’)

+0z y,, 4, 10g o (—BhYLY! )]

(N
where y,, and y; represent the step-level preferred
and dispreferred responses, respectively, and the
hyperparameter (3 scales the KL constraint. Here,
Oz ..y, 18 @ label smoothing variable calculated
using the visit counts at the corresponding states of
the preference data v, y; in the search tree:

1
a pu—
T, Yw Yl N(ﬂf, yw)/N(x7 yl) + 1

(®)

where N (z,y,,) and N (z,y;) represent the states
taking the actions of generating ¥,, and y;, respec-
tively, from their previous state as input z.

After optimization, we obtain the updated policy
Ty and repeat the data collection process in Sec-
tion 2.1 to iteratively update the LLM policy. We



outline the full algorithm of our MCTS-enhanced
Iterative Preference Learning in Algorithm 1.

3 Experiments

We evaluate the effectiveness of MCTS-enhanced

iterative preference learning on arithmetic and com-
monsense reasoning tasks. We employ Mistral-
7B (Jiang et al., 2023) as the base pre-trained model.
We conduct supervised training using Arithmo *
which comprises approximately 540K mathemat-
ical and coding problems. Detailed information
regarding the task formats, specific implementation
procedures, and parameter settings of our experi-
ments can be found in Appendix C.

Datasets. We aim to demonstrate the effective-
ness and versatility of our approach by focusing
on two types of reasoning: arithmetic and com-
monsense reasoning. For arithmetic reasoning,
we utilize two datasets: GSMS8K (Cobbe et al.,
2021), which consists of grade school math word
problems, and MATH (Hendrycks et al., 2021),
featuring challenging competition math problems.
Specifically, in the GSM8K dataset, we assess both
chain-of-thought (CoT) and program-of-thought
(PoT) reasoning abilities. We integrate the train-
ing data from GSM8K and MATH to construct
the prompt data for our preference learning frame-
work, aligning with a subset of the Arithmo data
used for Supervised Fine-Tuning (SFT). This ap-
proach allows us to evaluate whether our method
enhances reasoning abilities on specific arithmetic
tasks. For commonsense reasoning, we use four
multiple-choice datasets: ARC (easy and chal-
lenge splits) (Clark et al., 2018), focusing on sci-
ence exams; Al2Science (elementary and mid-
dle splits) (Clark et al., 2018), containing science
questions from student assessments; OpenBookQA
(OBQA) (Mihaylov et al., 2018), which involves
open book exams requiring broad common knowl-
edge; and CommonSenseQA (CSQA) (Talmor
et al., 2019), featuring commonsense questions ne-
cessitating prior world knowledge. The diversity
of these datasets, with different splits representing
various grade levels, enables a comprehensive as-
sessment of our method’s generalizability in learn-
ing various reasoning tasks through self-distillation.
Performance evaluation is conducted using the cor-
responding validation sets of each dataset. Further-
more, we employ an unseen evaluation using the

“https://huggingface.co/datasets/akjindal 53244/ Arithmo-
Data

validation set of an additional dataset, SciQ (Welbl
et al., 2017), following the approach of Liu et al.
(2023b), to further test our model’s ability to gen-
eralize to novel reasoning contexts.

Baselines. Our study involves a comparative
evaluation of our method against several promi-
nent approaches and fair comparison against vari-
ants including instance-level iterative preference
learning and offline MCTS-enhanced learning. We
use instance-level sampling as a counterpart of
step-level preference collection via MCTS. For a
fair comparison, we also apply self-evaluation and
correctness assessment and control the number of
samples under a comparable compute budget with
MCTS in instance-level sampling. The offline ver-
sion uses the initial policy for sampling rather than
the updated one at each iteration.

We contrast our approach with the Self-Taught
Reasoner (STaR)(Zelikman et al., 2022), an iter-
ated learning model based on instance-level ratio-
nale generation, and Crystal(Liu et al., 2023b), an
RL-tuned model with a focus on knowledge intro-
spection in commonsense reasoning. Considering
the variation in base models used by these methods,
we include comparisons with Direct Tuning, which
entails fine-tuning base models directly bypassing
chain-of-thought reasoning. In the context of arith-
metic reasoning tasks, our analysis includes Lan-
guage Model Self-Improvement (LMSI)(Huang
et al., 2023), a self-training method using self-
consistency to gather positive data, and Math-
Shepherd(Wang et al., 2023a), which integrates
process supervision within Proximal Policy Opti-
mization (PPO). To account for differences in base
models and experimental setups across these meth-
ods, we also present result performance of SFT
models as baselines for each respective approach.

3.1 Main Results

Arithmetic Reasoning. In Table 1, we present a
comparative analysis of performance gains in arith-
metic reasoning tasks. Our method demonstrates
substantial improvements, notably on GSM8K, in-
creasing from 75.9% — 81.8%, and on MATH,
enhancing from 28.9% — 34.7%. When com-
pared to Math-Shepherd, which also utilizes pro-
cess supervision in preference learning, our ap-
proach achieves similar performance enhancements
without the necessity of training separate reward
or value networks. This suggests the potential of
integrating trained reward model signals into our
MCTS stage to further augment performance. On
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Conceptual Comparison

Approach Base Model GSMSK MATH
NR OG OF NS
LMSI PalLM-540B v/ v X X 73.5 — ARC-C
SFT (MetaMath) - — — — — 777 28.2 784 75.6 75.8
Math-Shepherd Mistral-7B X v X /841164  33.0T4.s 75 741 !
SFT (Arithmo) - - - = 75.9 28.9 73 722 752 =y
MCTS Offline-DPO Mistral 7B v X X v 79.9 31.9 =70 i
Instance-level Online-DPO ) v v v v 79.9 31.9 2 %/
Ours v 4 v v 80.7 32.2 5
Ours (w/ G.T.) v v / 7/ 81.8159 34.715.s 2165 — Step-Level Orine)
| —— Instance-Level (Online) ____ 60.6 |
Table 1: Result comparison (accuracy %) on arithmetic tasks. We super- 60 ztep-LevT' (Offline)
. . . . ——- SFT Baseline
vised fine-tune the base model Mistral-7B on Arithmo data, while Math- 55

Shepherd (Wang et al., 2023a) use MetaMATH (Yu et al., 2023b) for SFT.
We highlight the advantages of our approach via conceptual comparison with
other methods, where NR, OG, OF, and NS represent “w/o Reward Model”,
“On-policy Generation”, “Online Feedback”, and “w/ Negative Samples”.
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Trainina Data %

Figure 2: Performance on the valida-
tion set of ARC-C via training with
different settings.

Conceptual Comparison

Approach Base Model ARC-c AI2Sci-m CSQA SciQ Train Data Used (%)
NR 0G OF NS

CoT Tuning GPT-3-curie (6.7B) v X X X — — 56.8 — 100
Direct Tuning v X X X - - 60.0 - 100
STaR GPT-J (6B) v v v X — — 72.5 — 86.7
Direct TUning T5-11B v X X X 72.9 84.0 82.0 83.2 100
Crystal - X v v v 73.2 84.8 82.3 85.3 100
SFT Base (Arithmo) — — — — 60.6 70.9 54.1 80.8 —
Direct Tuning v X X X 73.9 85.2 79.3 86.4 100
MCTS Offline-DPO Mistral-7B v X X v 70.8 82.6 68.5 87.4 19.2
Instance-level Online-DPO v v v v 75.3 87.3 63.1 87.6 45.6
Ours v v v /  76.4715s  88.2717.3  T4.8M193  88.517.7 47.8

Table 2: Result comparisons (accuracy %) on commonsense reasoning tasks. The results based on GPT-3-
curie (Brown et al., 2020) and T5 (Raffel et al., 2020) are reported from Liu et al. (2023b). For CSQA, we also
include the GPT-J (Wang and Komatsuzaki, 2021) results reported by Zelikman et al. (2022). We follow Liu et al.
(2023b) to combine the training data of ARC, AI2Sci, OBQA, and CSQA for training , while STaR (Zelikman et al.,

2022) only use CSQA for training.

the other hand, we observe significant performance
gain on MATH when incorporating the ground-
truth solutions in the MCTS process for preference
data collection, illustrating an effective way to re-
fine the preference data quality with G.T. guidance.

Commonsense Reasoning. In Table 2, we
report the performance on commonsense reason-
ing tasks, where our method shows consistent im-
provements. Notably, we achieve absolute accu-
racy increases of 2.5%, 3.0%, and 2.1% on ARC-
Challenge (ARC-C), AI2Sci-Middle (AI2Sci-M),
and SciQ, respectively, surpassing the results of
direct tuning. However, in tasks like OBQA and
CSQA, our method, focusing on intermediate rea-
soning refinement, is less efficient compared to
direct tuning. Despite significant improvements
over the Supervised Fine-Tuning (SFT) baseline
(for instance, from 59.8% to 79.2% on OBQA, and
from 54.1% to 74.8% on CSQA), the gains are
modest relative to direct tuning.

This discrepancy could be attributed to the base
model’s lack of specific knowledge, where eliciting
intermediate reasoning chains may introduce in-
creased uncertainty in model generations, leading
to incorrect predictions. We delve deeper into this
issue of hallucination and its implications in our
qualitative analysis, as detailed in Section 3.2.

3.2 Further Analysis

Training- vs. Test- Time Compute Scaling. Our
method integrates MCTS with preference learning,
aiming to enhance both preference quality and pol-
icy reasoning via step-level alignment. We analyze
the impact of training-time compute scaling versus
increased inference-time sampling.

We measure success by the pass rate, indicat-
ing the percentage of correctly elicited answers.
Figure 3 displays the cumulative pass rate at
each checkpoint, aggregating the pass rates up
to that point. For test-time scaling, we increase
the number of sampled reasoning chains. Addi-
tionally, we compare the inference performance
of our checkpoints with a sampling-only method,
self-consistency, to assess their potential perfor-
mance ceilings. The pass rate curves on ARC-C,
SciQ, and MATH datasets reveal that our MCTS-
enhanced approach yields a higher training com-
pute scaling exponent. This effect is particularly
pronounced on the unseen SciQ dataset, highlight-
ing our method’s efficiency and effectiveness in
enhancing specific reasoning abilities with broad
applicability. Inference-time performance analy-
sis shows higher performance upper bounds of
our method on ARC-C and SciQ. For instance,
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Figure 3: Training- vs. Test- Time Compute Scaling on ARC-C, SciQ, and MATH evaluation sets. The cumulative
pass rate of our iterative learning method can be seen as the pass rate of an ensemble of different model checkpoints.
We use greedy decoding to obtain the inference time performance of our method of iterative learning.

GSMSK MATH ARC-C
Approach
AUC Accuracy AUC Accuracy AUC Accuracy
w/ example answer 4.7 72.5 76.6 48.8 65.2 57.5
w/o example answer  62.0 69.5 48.1 42.3 55.8 48.4

Table 3: Ablation of “EXAMPLE ANSWER?” in self-evaluation on GSM8K, MATH, and ARC-C. We report both
AUC score and accuracy (%) to compare the discriminative abilities of self-evaluation scores.

while self-consistency on SciQ plateaus at around
84%, our framework pushes performance to 88.6%.
However, on MATH, the sampling-only approach
outperforms training compute scaling: more sam-
pling consistently enhances performance beyond
35%, whereas post-training performance hovers
around 32.2%. This observation suggests that in-
domain SFT already aligns the model well with
task-specific requirements.

Functions of Self-Evaluation Mechanism. As
illustrated in Section 2.1, the self-evaluation score
inherently revises the () value estimation for sub-
sequent preference data collection. In practice, we
find that the ground-truth information, i.e., the “EX-
AMPLE ANSWER” in Table 6, is crucial to ensure
the reliability of self-evaluation. We now compare
the score distribution and discriminative abilities
when including v.s. excluding this ground-truth
information in Table 3. With this information , the
accuracy of self-evaluation significantly improves
across GSM8K, MATH, and ARC-C datasets.

Ablation Study. We ablate the impact of step-
level supervision signals and the online learning as-
pect of our MCTS-based approach. Tables 1 and 2
shows performance comparisons across common-
sense and arithmetic reasoning tasks under different
settings. Our method, focusing on step-level online

preference learning, consistently outperforms both
instance-level and offline approaches in common-
sense reasoning. For example, we achieve 76.4%
on ARC-C and 88.5% on SciQ, surpassing 70.8%
and 87.4% of the offline variant, and 75.3% and
87.6% of the instance-level approach.

In arithmetic reasoning, performance differences
among settings are less pronounced for challenging
task such as MATH without the incorporation of
ground-truth solutions (e.g., 32.2% for our method
(w/o G.T.) vs. 31.9% and 32.9% for offline and
instance-level on MATH). The comparable perfor-
mance of offline learning aligns with our theoreti-
cal analysis that offline approaches can be effective
when the initial policy is already well-tuned with
high-quality, in-domain data. We further interpret
how G.T. guidance integration to enhance the effec-
tiveness of our framework in Figure 4. With G.T.
supervision, the accuracy of training signals im-
prove significantly from 81.2% to 97.9%, leading
to substantial performance gain on model perfor-
mance. This also explains the similar performance
(w/o G.T.) between corresponding using step- and
instance-level supervision, where our step-level ap-
proach shows effectiveness in narrowing the gap
between accuracies of corresponding supervisions.

Training Dynamics in Iterative Learning. As
shown in Figure 2, online learning exhibits cyclic
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Figure 4: Abltation study on step- vs. instance-level supervision, online vs. offline learning, and w/ vs. w/o G.T.
supervision. We also compare the accuracy of the training signals collected via MCTS or instance-level sampling.

Task Inputs and Outputs Answer
Question: As the rain forest is deforested the atmosphere will increase with:
Answer Choices: (A) oxygen (B) nitrogen (C) carbon (D) rain
SFT Baseline: As the rain forest is deforested the atmosphere will increase with carbon. The answer is C.
OBQA Ours: When trees are cut down, the carbon stored in the trees is released into the atmosphere as carbon dioxide. This carbon dioxide then increases the carbon ©)
content of the atmosphere. Since carbon is the main ingredient in plant life, the increased carbon content of the atmosphere will lead to increased plant growth,
which will lead to increased photosynthesis, which will lead to increased oxygen production. Therefore, oxygen is the gas that will increase in the atmosphere
as the rain forest is deforested. The answer is: A.
Question: Which pair of instruments can be used to measure wind chill?
Answer Choices: (A) barometer and wind vane (B) wind vane and anemometer (C) thermometer and barometer (D) anemometer and thermometer
SFT Baseline: Wind chill is the effect of wind on the apparent temperature, it is the temperature that the human body feels due to the movement of air. It is an
index of the discomfort felt by the human body due to low temperature and high wind speed. It is measured by an instrument called wind chill meter.
AI2Sci The answer is B (D)
Ours: To measure wind chill, you would need an anemometer and a thermometer. The anemometer measures the wind speed, and the thermometer measures
the temperature. Together, these two instruments can be used to calculate the wind chill factor. The answer is: D
Question: Let f(x) = 27 + ax® + ca If f(5) = 3, then find f(—5).
SFT Baseline: We know that f(5) = 57 + 5a 4 5¢ = 3. We want to find f(—>5), whichis (—5)7 + (—5a) + (—5c). Since (—5)7 = —57
MATH = —3,wehave f(—5) = —3 — 5a — 5c. We can rewrite thisas f(—5) = —3 — 5(—3) —5c = -3+ 15 —5c=| 1 -3

Ours: We know that f(5) = 57 + Ba + 5¢ = 3. Since f () is a polynomial, we can use the fact that f(—5) = (75)7 — Ba — 5c = .

Table 4: Qualitative Analysis of model outputs on OBQA, AI2Sci, and MATH. We highlight correct and incorrect
keywords. The predicted answers on MATH are , where our method solves the complex problem while SFT

baseline failed to elicit a complete reasoning chain.

performance fluctuations, with validation perfor-
mance peaking before dipping. We conduct theoret-
ical analysis on this in Appendix B and shows that
continuous policy updates with the latest models
can lead to periodic knowledge loss due to insuffi-
cient optimization in iterative updates. We further
probe these phenomena qualitatively next.

Qualitative Analysis. Our qualitative analysis in
Table 4 examines the impact of step-level supervi-
sion on intermediate reasoning correctness across
different tasks. In OBQA, the implementation of
MCTS, as discussed in Section 3.1, often leads to
longer reasoning chains. This can introduce errors
in commonsense reasoning tasks, as seen in our
OBQA example, where an extended chain results
in an incorrect final prediction. Conversely, in the
MATH dataset, our approach successfully guides
the model to rectify mistakes and formulates ac-
curate, extended reasoning chains, demonstrating
its effectiveness in complex math word problems.
This analysis underscores the need to balance rea-
soning chain length and logical coherence, par-
ticularly in tasks with higher uncertainty, such as
commonsense reasoning.

4 Related Work

Various studies focus on self-improvement to ex-
ploit the model’s capability. One line of work fo-

cuses on collecting high-quality positive data from
model generations guided by static reward heuris-
tic (Zelikman et al., 2022; Giilgehre et al., 2023;
Polu et al., 2023). Recently, Yuan et al. (2024) uti-
lize the continuously updated LLM self-rewarding
to collect both positive and negative data for pref-
erence learning. Different from prior works at
instance-level alignment, we leverage MCTS as
a policy improvement operator to iteratively facil-
itate step-level preference learning. We discuss
additional related work in Appendix A.

5 Conclusion

In this paper, we propose MCTS-enhanced itera-

tive preference learning, utilizing MCTS as a policy
improvement operator to enhance LLM alignment
via step-level preference learning. MCTS balances
quality exploitation and diversity exploration to
produce high-quality training data, pushing the
ceiling performance of the LLM on various rea-
soning tasks. We hope our proposed approach can
inspire future research on LLM alignment from
both data-centric and algorithm-improving aspects:
to explore searching strategies and utilization of
history data and policies to augment and diversify
training examples; to employ offline-online trade-
off to address the problem of cyclic performance
change of the online learning framework.



Limitations

The main limitations of this work is the consider-
ation regarding computational cost as the MCTS
process is bottlenecked by LLM inference time.
While automatic data generation and labeling via
MCTS illustrates an efficient way than human pref-
erence annotation, the increasing cost and time
from sampling may constrain the scalability of our
framework. On the other hand, the work only fo-
cuses on the application of MCTS in the context of
LLM reasoning. We leave it to future work in ex-
ploring the generalizability of our MCTS-enhanced
iterative preference learning approach across more
general tasks and models.

Ethics Statement

This paper mainly focuses on improving LLM rea-
soning via MCTS-enhanced Iterative Preference
Learning. There are many potential societal conse-
quences of our work, none of which we feel must
be specifically highlighted regarding the ethical
concern here.
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A Related Work

Iterated Learning. Typical iterated learning operates in a multi-agent scenario, consisting of a loop
where an apprentice self-plays, learns from expert feedback, and replaces the current expert for the new
iteration (Anthony et al., 2017). Polu et al. (2023) apply expert iteration on formal mathematical reasoning
to conduct proof search interleaved with learning. Zelikman et al. (2022) avoid the need for training a
separate value function by directly assessing the final outcomes of reasoning to filter generated examples
for iterated learning. Recently, Yuan et al. (2024) leverage the technique of LLM-as-a-Judge (Zheng
et al., 2023) and introduce self-rewarding language models to improve LLM alignment with self-feedback.
Differently, we combine the feedback of outcome assessment and LLM self-evaluation and further
decompose them into fine-grained signals via MCTS for step-level iterative preference learning.

Self-Training. Self-training uses unlabeled data to improve model training by assigning pseudo labels
from a learned labeler (III, 1965; Yarowsky, 1995; Xie et al., 2020; He et al., 2020; Park et al., 2020;
Zoph et al., 2020). Recent research has explored several alternatives to label the examples. Zelikman
et al. (2022) and Giilgehre et al. (2023) use static reward heuristic to curate high-quality examples, while
Huang et al. (2023) collect high-confidence outputs as training data via chain-of-thought prompting (Wei
et al., 2022) and self-consistency (Wang et al., 2023b). Lee et al. (2023) and Yuan et al. (2024) utilize
the off-the-shelf LLM to reward its generations for preference learning. To mitigate the noise from the
sparse instance-level signals, we further refine the preference labels via stepwise tree search and LLM
self-evaluation.

Preference Learning. The empirical achievements of LLMs have identified the benefits of RL tech-
niques to better align with human preferences (Touvron et al., 2023; Stiennon et al., 2020; Ouyang et al.,
2022; Bai et al., 2022a). The standard preference learning process learns a reward model to provide
feedback in online RL (Schulman et al., 2017). Recently, a variety of studies avoid training separate
reward or value networks by hindsight instruction relabeling (Zhang et al., 2023), direct preference
optimization (Rafailov et al., 2023) and LLM self-evaluation (Ren et al., 2023). We further explore
automatic supervision with MCTS to collect step-level preferences by breaking down outcome correctness
integrated with self-evaluation. Our approach enables the continual collection of better-quality data via
iterative learning, mitigating the limit of preference data when using a frozen reward model or offline
learning algorithms.

Guided Search for Reasoning. Recent works improve the LLM reasoning ability by eliciting the
intermediate reasoning chain (Wei et al., 2022) and breaking it down into multiple steps via searching (Yao
et al., 2023; Hao et al., 2023; Yu et al., 2023a). The decomposition of the reasoning process has also
been shown effective in reinforcement learning. Lightman et al. (2023) and Li et al. (2023) apply
process supervision to train more reliable reward models than outcome supervision in mathematical
reasoning (Uesato et al., 2022). Wang et al. (2023a) reinforce LLMs step-by-step with process supervision
data automatically collected via model sampling and annotation. We leverage the look-ahead ability
of MCTS and integrate it with step-by-step self-evaluation to provide refined process supervision for
reasoning. This improves the generalization ability of our framework to update the policy via real-time
collected preferences iteratively.

B Theoretical Analysis of Online DPO

Our approach can be viewed as an online version of DPO, where we iteratively use the updated policy to
sample preferences via MCTS. In this section, we provide theoretical analysis to interpret the advantages
of our online learning framework compared to the conventional alignment techniques that critically depend
on offline preference data. We review the typical RLHF and DPO paradigms in Appendix B.

Preliminaries. A typical alignment technique begins with a policy 7 (y | ) supervisedly fine-tuned
on high-quality data from the target domain, where x and y are the prompt and the response, respectively.

13



The SFT policy is used to sample pairs of responses (y1,y2) ~ 7st(y | ) with prompts z, which will
be further labeled as pairwise preference data y,, > ¥; | x, where y,, and y; represent the preferred and
dispreferred responses respectively. The standard RLHF paradigm trains a reward model (Ouyang et al.,
2022) on the preference data and employs PPO (Schulman et al., 2017) to optimize the policy 7y with the
feedback provided by the reward model, where 7y is also initialized to 7gg, in practice. DPO avoids fitting
a reward model by optimizing the policy 7y using preferences directly.

Given a reward function r(z,y) and prompt distribution P, RLHF and DPO optimize the KL-
constrained reward maximization objective as follows:

max By yr[r (2, y)] — BDxL[7(y | 2) | 7oy | 2)] ®)

where [ scales the strength of the KL constraint. Let the ground-truth reward function be r*, then Rafailov
et al. (2023) estimate the optimal policy 7* by fitting the Bradley-Terry model (Bradley and Terry, 1952)
on preference data:
P =y o) =o(r(z,p) —r(z,42))
_ 1 (10)
L+ exp (Blog el — log 71 )

Tsft (Y

As the maximum likelihood estimator (MLE) of the optimal policy requires preferences sampled from
the target policy (Liu et al., 2023c), DPO uses a fixed, potentially optimal but unknown policy to collect
preference data of good quality. This discrepancy can be a problem when the sampling policy differs
dramatically from the current policy. Moreover, the absence of a reward model in DPO presents challenges
in learning from additional policy-generated data that lacks explicit preference indicators.

We now consider the following abstract formulation for clean theoretical insights to analyze our
online setting of preference learning. Given a prompt x, there exist n possible suboptimal responses
{#1,...,9Yn} = Y and an optimal outcome y*. As specified in Equation 7, at the i-th iteration, a pair
of responses (y,y') are sampled from some sampling policy 7(*) without replacement so that y # 3/ as
y ~ 7@ (| z)andy ~ 7 (- | z,y). Then, these are labeled to be y,, and y; according to the preference.
Define O be a set of all global optimizers of the preference loss for all M iterations, i.e., for any 6 € O,
¢;(0) = 0foralli € {1,2,---, M}. Similarly, let ) be a parameter vector such that £;(6()) = 0 for all
j€{1,2,---,i—1}fori > 1 whereas #?) is the initial parameter vector.

This abstract formulation covers both the offline and online settings. The offline setting in previous
works is obtained by setting 7)) = 7 for some fixed distribution 7. The online setting is obtained by
setting (%) = Tg(i—1) Where my(i—1) is the latest policy at beginning of the ¢-th iteration.

The following theorem shows that the offline setting can fail with high probability if the sampling
policy ©( differs too much from the current policy To(i—1)"

Theorem B.1 (Offline setting can fail with high probability). Let m be any distribution for which there
exists y € Y such that n(y | ), 7(y | x,y) < eforally € (Y \ y) U{y*} and mpi-1)(y | z) > c for
somei € {1,2,---  M}. Set 70 = 7 foralli € {1,2,---, M}. Then, there exists 0 € O such that with
probability at least 1 — 2¢M (over the samples of 7 = ), the following holds: T,(y* | ) <1 —c.

If the current policy and the sampling policy differ too much, it is possible that e = 0 and ¢ ~ 1.0, for
which Theorem B.1 can conclude 7y (y* | =) ~ 0 with probability 1 for any number of steps /. When
€ # 0, the lower bound of the failure probability decreases towards zero as we increase M. Thus, it is
important to make sure that € # 0 and € is not too low. This is achieved by using the online setting, i.e.,
() = = Ty(i). Therefore, Theorem B.1 motivates us to use the online setting. Theorem B.2 confirms that
we can indeed avoid this failure case in the online setting.

Theorem B.2 (Online setting can avoid offline failure case). Let 7l = Ty(i—1). Then, for any 0 € ©, it
holds that mo(y* | ) = 1if M > n+ 1.

See Appendix B for the proofs of Theorems B.1 and B.2. As suggested by the theorems, a better
sampling policy is to use both the latest policy and the optimal policy for preference sampling. However,
since we cannot access the optimal policy 7* in practice, we adopt online DPO via sampling from the
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latest policy myi:-1). The key insight of our iterative preference learning approach is that online DPO
is proven to enable us to converge to an optimal policy even if it is inaccessible to sample outputs. We
provide further discussion and additional insights in Appendix B.

%

Additional details on labeling outcomes. After a pair of outcomes (y(i), Y ( )) are sampled from some

sampling policy 7(0), these are labeled to be yg) and yl(i) according to some preference density p. That

is, Pr{(w, ") = W@,y )] = p(y@ = yD | 2) and Pr](yly), y”) = (7, yD)] = 1 - p(y)
' @) | ). For simplicity, a preference density is set to be p(y* > 4 | ) = 1 for every optima-suboptimal
pairs (y*, 7) for all § € Y. We do not specify the preference density for other pairs, i.e., p(y > 7' | z) is
arbitrary for (7,7') € Y x Y.

Abstract formulation for both offline and online settings. Our abstract formulation covers both the
offline and online settings. The offline setting in previous papers is obtained by setting 7(?) to be a single
distribution fixed over i € {1,2,--- , M}, e.g., an initial policy, an optimal policy, or an empirical data
distribution of a given preference data. In the case of the empirical data distribution, the preference density
p is set to the function outputting only 0 or 1 to recover the given preference data. The online setting is
obtained by setting 7() = Tgi—1) Where mpyi—1) is the latest policy at the beginning of the ¢-th iteration,
ie., fori> 1,0 satisfies £;(§®)) = 0 for j € {1,2,--- ,i — 1} and §() is the initialization. Thus, we
can analyze both offline and online settings with this abstract framework.

Proof of Theorem B.1.

Proof. The intuition behind the proof of Theorem B.1 is that the current policy my:) may not be corrected
if a fixed sampling policy 7 never samples a suboptimal output 4 € Y whose probability is high for the
current policy 7,.). Let g be the suboptimal output such that 7(y | ) < e and 7y (7 | ) > c for some
i€{1,2,---, M}. Denote preferences sampled by policy 7 as (yg), yl(i)). From the definition of the
logistic function, we can rewrite

® (i)
0;(0) = —logo (ﬁlogm)(ywm —ﬁlogw)

et () | ) et (4 | )
=—1lo 1
8 1+ (ﬁl WO(yl(i)lx) o 61 We(yz(ui)|$) )
D e B O i e P O
T, <1) X
exp(3log o). Hfggzi)"gj))
— log re: w

PO mo(y,” |z
exp(Blog 2L + exp(Blog 7 eyr)

o (ysy|2)°
7T-ref(yl(ij) |g;)6

o [2)8 | mo(y” o)
Wref(yfif)‘x)ﬁ Wref(yl(”‘x)ﬂ

wo(y) | )P
W |z) )8

mo(us | )8 +mo(y” | ) (sl
Te 1

= —log

From this equation, we observe that /;(6) can be minimized to be zero by minimizing 7 (yl(l) | ) to be

zero without maximizing wa(yg) | z). That is, for any 8 > 0, if Wg(yl(i) | z) =0,

mo(ys | z)P

4;(0) = —log :
mo(ys) | )8 40

=—logl=0.

Thus, even if we sample y* with the optimal policy, ¢;(#) can be minimized without maximizing 7, (y* | x)
and minimizing 7, (y|z) for § # yl(z). Thus, if § # yl(z) foralli € {1,2,---, M}, there exists 6 such that
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4;(0) <Oforalli=1,..., M, and
m(y | 2) > ¢,

because of the condition that my(y | ) > ¢ for some i € {1,2,---,M}: ie., mp(y | x) is never
minimized from the i-th iteration while minimizing ¢;(6) arbitrarily well, if § is never sampled.
Therefore, if 4 is never sampled over m iterations, since the probabilities sums up to one, we have

To(y* | ) <1 —my(glz) <1 —c.

Moreover,
Pr[ g being never sampled over m iterations | > (1 — 2¢)™ > 1 — 2em,

where the last line follows Bernoulli’s inequality. By combining the above two equations, it holds that

Primg(y*|z) <1—¢] > 1—2eM.

Proof of Theorem B.2.
Proof. From the proof of Theorem B.1, we have

mo(yts’ | )°
i i et (¥ |2) \ g
mo(uts’ | @)+ molyy” | )P (T

Tref (yl’L) ‘73)

ti(0) = —log

For o« > 0 and 3 > 0, the condition ¢;(8) < « implies that

mo(ys) | )P

~log—3 B REV
mo( | 2) + moy”) | )P (Tl
re 1
(4) B
— mo(yu” | 7) > exp(—a)

% % Tre g) T
molus) | 27 + molyf? | @) (TGl
re 1

(i) h
. . [ Tref\Yw™ | T
s m(yd) | 2) > exp(—a)ma(ul? | 2)7 + exp(-a)mo(yl” | 2)° (f(y()’))
Wref(yl |z)

i mayld) | 2)[1 - exp(—)] = mo(yf | 2)" exp(—a) (”fef(y;‘;) | ””)
7Tlref(yl ‘ x)
(i) | 8 ORPRY: Trot (Y4 | @) ’
= (Y | 2)"[1 —exp(—a)] > m(y,” | x)” exp(—a) @
Wref(yl ‘ l’)

(@)
i TrrefY xz i
= mo(yl) | @)(exp(a) - 1)1/7 <f< - >> > oy | ).
7Tref(yw ‘CC)

Since ﬁg(yg) | z) < 1, this implies that

(4)
i i Tref \Y £
rolu” | 2) < mo(ul? | o) (expla) — /Tl
7"'ref(yw |*75)
)y’ 1 @)

< (exp(a e
Tt (U2 | @)
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Thus, while we can prove a similar statement for a > 0 with this equation, we set @ = 0 for this
theorem for a cleaner insight, yielding the following: the condition ¢;(6) < 0 implies that

We(yl(i) | ) =0.

Since y(i) and ¢/ @ are sampled from 7,.;) without replacement, this means that we have () (yl(l) ]
x) = 0 for all £ > 1 from the definition of 7y): i.e., Ty is the policy such that ¢; (6@ = 0 for all
g =1,...,7—1. Since Ty (i) is then used to sample y® and y’(i)
we will never sample this yl(l) again. Thus, at each iteration, we always sample pairs of i and y such that
these do not include an output judged to be not preferred in a previous iteration. This implies that at each
iteration, we increase the number of suboptimal samples € Y such that m ) (y | ) = 0. In other words,

we have

in the followings iterations for £ > 1,

{yeY |myo(y|z) =0} [=i—1.
Thus,
n
T (U | ) =1=> w75 | 2) =1 w0 (T | ).
j=1 jes

where |S| < n + 1 — 4. Therefore, myq) (y* | ) =1 wheni > n + 1.

Additional discussion. We list the additional insights gained from the theoritical analysis.

* The proofs of Theorems B.1-B.2 suggest that a better sampling policy is to use both the current
policy and the optimal policy at the same time in the preference learning loss, i.e., sample y ~ 7*
and y' ~ my@i-1). This avoids the failure case of Theorem B.1 and improves the convergence speed in
Theorem B.2. However, since we cannot access the optimal policy 7* in practice, Theorems B.1-B.2
motivate online DPO. Online DPO is proven to enable us to converge to an optimal policy even if we
cannot sample outputs from the optimal policy.

The proofs of Theorems B.1-B.2 suggest that if we can sample from the optimal policy, then we
can also use the samples of the optimal policy with the negative log-likelihood loss — log 7y (y* | )
instead of DPO loss to avoid the failure case.

The proofs of Theorems B.1-B.2 suggest that in the online setting, we should minimize the DPO loss
to a certain low degree per iteration, i.e., we should take several rounds of minimization of DPO loss
per online iteration, instead of only taking one round of minimization per iteration. This is because
the proofs of Theorems B.1-B.2 show that we can get into the cyclic situation in the online setting if
the DPO loss is not minimized sufficiently per iteration. For example, we can sample ¢; and ¢» in
one iteration and g2 and %3 in another iteration where j; > ¥ > 3. If the probability of sampling
72 1s not minimized sufficiently in the first iteration, it can be sampled again in the second iteration,
where the probability of sampling ¢ can be increased as o > 3. Then, this can repeat indefinitely.
Thus, it is important to minimize DPO loss with several optimizer iterations per iteration.

C Implementation Details

We use Mistral-7B as our base pre-trained model. The supervised fine-tuning and preference learning
experiments are conducted with a maximum of 4 x 40GB GPUs (NVIDIA A100).

We choose the learning rates 5e-6 and 1le-6 for SFT and DPO training, respectively, with a cosine
learning rate scheduler. The maximum sequence length of models is 512. We train the model with a batch
size of 128 and 32 for SFT and DPO, respectively. For DPO, we follow the DPO paper to set the KL
constraint parameter 5 as 0.1. Each sample in DPO is a set of step-level preference data decomposed by
MCTS. We set the max length for each step as 64. The number of MCTS iterations is set as K = 5 for all
tasks.
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For arithmetic reasoning, we combine the problems in GSM8K and MATH training sets as the prompt
data containing a total of 24K samples for preference learning. For each sample, we conduct MCTS with
an initial breadth of b; = 5 and decrease it to b, = 3 for the subsequent steps, with a maximum search
depth d = 4. It takes about 2 minutes per sample to collect the step-level preferences via MCTS. This
requires about 30 A100 days of compute to train one whole epoch. In practice, we can adopt an early stop
when the performance saturates, which usually only needs 30% of the training data.

For commonsense reasoning, we combine the training data of ARC, AI2Science, OBQA, and CSQA,
which produces a total of 12K samples. As the model generations are more diversified on these tasks,
we set the initial breadth as by = 4 and decrease it to b, = 2 for subsequent steps. As the intermediate
reasoning chains are relatively shorter than those in arithmetic reasoning, we set the maximum search
depth d = 3. Likewise, we also adopt an early stop at around 50% of the training progress where the
performance saturates.

Hyperparameter Tuning of MCTS. We compare the performance in commonsense reasoning when
employing different searching breadths in MCTS. Table 5 shows how different search heuristics impact
learning performance. O2 produces better performance, highlighting the importance of increasing the
search space at the beginning point of MCTS. One can efficiently reduce compute while maintaining good
performance by using a small search space for the subsequent steps. For future work, we will explore the
hyperparameter settings in MCTS, including the search breadth, depth, number of steps, and iteration
time, to probe the cost—performance tradeoff of our MCTS-enhanced iterative learning framework.

APPROACH ARC-E ARC-c AI2Scr-e  AI2Sci-m  OBQA CSQA SciQ
SFT BASELINE 69.2 60.6 74.9 70.9 59.8 54.1 80.8
01 (by =3,b2 =3) 88.4 74.7 92.1 88.5 77.8 73.2 88.3
02 (b1 =4,b2 =2) 88.5 76.4 91.7 88.2 79.2 74.8 88.5

Table 5: Result comparison of using different search breadths in MCTS. For O2, we have a broader spectrum for the
initial step and narrow the search space for the subsequent steps of each path.

Prompt Example. See an example of the evaluation prompt we use for self-evalution in Table 6. For
more details, please refer to our implementation code.

QUESTION: Which of the following is an example of the formation of a mixture? Answer Choices: (A) rust forming on an iron nail
(B) sugar crystals dissolving in water (C) sodium and chlorine forming table salt (D) hydrogen and oxygen reacting to produce water

EXAMPLE ANSWER: The answer is (B) sugar crystals dissolving in water

PROPOSED SOLUTION: The formation of a mixture occurs when two or more substances are combined together without
changing their individual properties. In the given options, rust forming on an iron nail is an example of the formation of a mixture.
The iron nail and the oxygen in the air combine to form iron oxide, which is a mixture. The answer is A.

QUESTION: Evaluate if the proposed solution is logically heading in the correct direction.
Provide an answer of (A) correct or (B) incorrect.

ANSWER: The answer is

Table 6: Evaluation Prompt Template. The text underlined will be replaced with content from different examples.

D Further Analysis

Reward Criteria in MCTS. We probe the effect of different reward guidance of MCTS in terms of
both searching and training. Table 7 shows how different reward signals impact the pass rate of searching.
The guidance of outcome correctness is substantially dominant in eliciting correct outcomes. We see
that MCTS can produce significant improvement across various tasks with the reward signals integrated
of outcome correctness and self-evaluation, increasing the baseline performance from 60.6% to 83.0%
on ARC-C, 70.9% to 90.5% on AI2Sci-M, and 75.9% to 85.8% on GSM8K. We observe a significant
performance gain from learning when using greedy decoding on commonsense reasoning. For example,
learning increases the accuracy to 76.4% (+16.4%) on ARC-C, compared to the increase of 9.1% on
MCTS performance. This suggests a substantial improvement in the model’s policy when applying our

18



MCTS-enhanced iterative learning to tasks that the initial policy is not good at. Furthermore, the ablation
study on the reward components shows consistent improvement brought by self-evaluation to increase
the MCTS performance in both before- and after- learning cases, suggesting the effectiveness of the
integration of self-evaluation in our approach.

DECODING STRATEGY  AFTER LEARNING ARC-C AI2Sci-M GSMS8K

X 60.6 70.9 75.9
GREEDY DECODING v 76.4T16.4 8821175 80.7Ts.

X 82.5 87.3 84.4
MCTS w/o SE v 91.01s.5 96.119.8 89.075.6

X 83.0 90.5 85.8
MCTS v 92.11¢ 1 97.3%6.8 90.214.4

Table 7: Pass Rates when Ablating MCTS Settings. SE represents the guidance from self-evaluation.

Qualitative Analysis on Collected Preferences. We show examples of the result search trees elicited
via MCTS on different tasks in Figures 5-9.

Figures 5 and 6 show the result search trees to answer the same science question using MCTS employed
with different search breadths. We see that MCTS not only figures out the correct answer (i.e., the option
“D”) via broad searching but also serves as a policy improvement optimizer to collect steps along this path
as positive samples for preference learning. For example, the () values of the preference pair at the last
step (at the bottom right of Figure 5) are 0.70838 and —0.45433, compared to the original probability in
the policy generation as 0.37989 and 0.38789. Compared to searching with breadth b; = 4,03 = 2 in
Figure 5, Figure 6 shows that a higher breadth for the subsequent steps can produce an even larger search
tree. However, as we only collect preference pairs alongside the paths leading to correct prediction, these
two search heuristics can result in preference data of similar size.

Figure 7 shows the search tree using the trained policy on commonsense reasoning. Compared to the
one generated by the initial policy in Figure 5, the policy has a higher chance to elicit correct reasoning
chains, as we see more successful predictions of the ground-truth option “D”. We also observe that
the policy tends to generate longer reasoning chains after being motivated to conduct chain-of-thought
reasoning with fine-grained process supervision.

On arithmetic reasoning, we also probe the impact of diversity in model generations using policies
trained for different numbers of epochs in SFT. Figures 8 and 9 show the elicited search trees with data
sampled by policies corresponding to different levels of diversity, where the policy used in Figure 8
has generations with higher diversity. With higher diversity, MCTS can explore more alternatives of
the correct solutions, as there are more paths of correct predictions, as shown in Figure 8 than Figure 9.
Furthermore, higher diversity with reasonable quality also provide more fine-grained supervision signals
as there are more branches alongside the reasoning path of correct predictions.

E Extended Experiments

Loss Function. DPO is one of the reward-model-free loss functions we can use for preference learning.
We now illustrate the generalizability of our approach using another loss function, Identity Preference
Optimization (IPO) (Azar et al., 2023), which addresses the overfitting problem of DPO. Table 8 shows
that IPO achieves similar performance as DPO. In practice, we find that IPO boosts the reasoning on
validation tasks while maintaining a more stable performance on the held-out dataset, as indicated by the
higher accuracy 89.8% obtained on SciQ.

Base Model. We extensively validate the generalizability of our approach on Llama2-13B (Touvron
et al., 2023) on arithmetic reasoning. We employ the same process of SFT on Arithmo and preference
learning with DPO on GSM8K and MATH. This experiment is done on a maximum of 2 x 80GB GPUs
(NVIDIA A100).
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APPROACH ARC-E ARC-c AI2Scil-E  AI2Sci-Mm  OBQA CSQA SciQ
SFT BASELINE 69.2 60.6 74.9 70.9 59.8 54.1 80.8

01 (IPO) 88.1 75.1 92.1 89.6 76.8 74.3 89.8
02 (DPO) 88.5 76.4 91.7 88.2 79.2 74.8 88.5

Table 8: Result comparison of employing our approach with different loss functions.

APPROACH BASE MODEL  GSM8K-CoT GSM8K-PoT MATH-CoT

SFT (ARITHMO) 74.5 62.3 23.8
OURS LLAMA2-13B - 7ggh 67.074 26.17.5

Table 9: Result comparison (accuracy %) for Llama2-13B on arithmetic tasks.
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Figure 5: Example of the result search tree of a science question “An unbalanced equation for the reaction of
methane gas (CH,4) with oxygen is shown below. CH4 + 004 — 2CO2 + 4H,O How many molecules of oxygen
gas (O5) are needed to properly balance this equation? Answer Choices: (A) 1 (B) 2 (C) 3 (D) 4”. The ground
truth answer is “(D) 4”. Here, we set the search breadth as by = 4, b, = 2. The numbers at the beginning of each
sequence indicate the visit count IV of the corresponding node, while the () and P values at the end of the sequence
represent the () values and the sentence probability, respectively.
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Figure 6: Example of the result search tree of the same science question as in Figure 5. Here, we set the search

breadth as by = 3, by = 3.
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Figure 7: Example of the result search tree of the same science question as in Figure 5. Here, we use the policy after
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unsold loave (Q:0.99283)(P:0.99903)

[301They sold 93 loaves in +6= 7a \oaves of
the mor? yg and 39 loaves in bread left. [0] They started with 200 loaves
the aftemo o they-coida (Q:1. 13120)(P 0.80345) and sold 138 loaves, so they
have 138 = 62
131 \oaves o br [2] The grocery store returned 6 oaves-of breadeft. The answer
unsold loaves, so the total number is: 62</5>
Q1443110 8de eaves of bread they did (Q:-0.99298)(P:0.93236)
not seH 2

[1] They baked 200 loaves of bread,
(Q-0. 49559'1? '0.65347) 50 the total number of loaves of

bread they had from the beginning is
200 To-find the gumber of loaves
of bread they hatPleft, we subtract
the number of loaves they did not

sell from the total number of
(Q:-0.07920)(P:0.77642)

1] They had 200 loaves
baked-and sold 132 loaves,
s Bad 200 -

132 = 63 j0aveso [15] The grocery store returned

6 unsold oaves, so they
had 68+ 6 =

74 loaves Sbread left

The answer is: 74</s>

(Q:1.08365)(P:0.98273)

bread left.
(Q:1.14610)(P:0.89809)

Figure 8: Example of the result search tree of a GSM8K question “The bakers at the Beverly Hills Bakery baked
200 loaves of bread on Monday morning. They sold 93 loaves in the morning and 39 loaves in the afternoon. A
grocery store returned 6 unsold loaves. How many loaves of bread did they have left?””. The example solution is
“The Bakery sold 93 + 39 = 132 loaves. The Bakery made 200 loaves and sold 132, leaving 200 - 132 = 68 loaves
remaining. The grocery store returned 6 loaves, so there were 6 + 68 = 74 loaves left.”. The policy we use here is
the one only tuned for 1 epoch on SFT training data. We conduct MCTS with breadth b; = 5, b2 = 3. Duplicate
generations are merged into one node.

[u] 200-132 +
/8 The bakery
20: of bread

[2] They also had 6 loaves returned 1G-1,07053)(p-0. 34111,

by the grocery store. To find out
how many loaves of brea
Ieft, we need to @Bt the \oaves

[1] So, 200 - 132
2 Therefore,

82 loaves of
e answer is:

a number of \Daves baked
(Q:-1.05085)(P:0.79282)

bread left

62</s>
(Q:-1.07033)(P:0.91906)
(0] A grocery store returned 6
unsold loaves, so the total number
of loaves they have leftis

[3] The bakery baked 200 loayesGt
bread on Monday morning. They sold 93
Ioaves in the morning.a

+6
aves
(Q:-0. OZABONP 0.80175)

[0] A grocery store returned 6
unsold loaves, so they had 132
= 126 loaves left

kery had 200 -
126=74 Ioaves of bread

(@ 70.03073NP 0.89432)

loaves.
Q:0.25430)(P:0.93239)

[3] They had 200 - 93

= 107 loaves left after the
[2] They had 68 -
(0:0.00909 MOHing soles gy had 10 6 = 62 loaves of [1] The answer
= ot 2
the afternoon sales. ® y o
r store returned the unsold loaves. (Q:-1.06738)(P:0.99711)
(Q:-0.52703)(P:0.86016) (Q:-1.05568)(P:0.80182)

0] Ater the morning sales, they
[34] After the grocery store

Iﬂaves o read Ieft Afler the returned the loaves, they had (28] The answer
afternoon 5+@ =74 4
39=68 Ioaves of bread loaves of bread left. (Q:0.98327)(P:0.99718)

(Q:1.13097)(P:0.91597)
(Q:1.65898)(P:0.80497)

Figure 9: Example of the result search tree of the same GSMS8K question as in Figure 8 with the same search
breadth. We use the policy tuned after 3 epochs to sample the generations.
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