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Abstract001

We introduce an approach aimed at enhanc-002
ing the reasoning capabilities of Large Lan-003
guage Models (LLMs) through an iterative pref-004
erence learning process inspired by the success-005
ful strategy employed by AlphaZero. Our work006
leverages Monte Carlo Tree Search (MCTS) to007
iteratively collect preference data, utilizing its008
look-ahead ability to break down instance-level009
rewards into more granular step-level signals.010
To enhance consistency in intermediate steps,011
we combine outcome validation and stepwise012
self-evaluation, continually updating the qual-013
ity assessment of newly generated data. The014
proposed algorithm employs Direct Preference015
Optimization (DPO) to update the LLM pol-016
icy using this newly generated step-level pref-017
erence data. Theoretical analysis reveals the018
importance of using on-policy sampled data for019
successful self-improving. Extensive evalua-020
tions on various arithmetic and commonsense021
reasoning tasks demonstrate remarkable perfor-022
mance improvements over existing models. For023
instance, our approach outperforms the Mistral-024
7B Supervised Fine-Tuning (SFT) baseline on025
GSM8K, MATH, and ARC-C, with substan-026
tial increases in accuracy to 81.8% (+5.9%),027
34.7% (+5.8%), and 76.4% (+15.8%), respec-028
tively. Additionally, our research delves into029
the training and inference compute tradeoff,030
providing insights into how our method effec-031
tively maximizes performance gains.032

1 Introduction033

Development of Large Language Models (LLMs),034

has seen a pivotal shift towards aligning these mod-035

els more closely with human values and prefer-036

ences (Stiennon et al., 2020; Ouyang et al., 2022;037

Bai et al., 2022a). A critical aspect of this process038

involves the utilization of preference data. There039

are two prevailing methodologies for incorporat-040

ing this data: the first entails the construction of041

a reward model based on preferences, which is042

then integrated into a Reinforcement Learning (RL)043

framework to update the policy (Christiano et al., 044

2017; Bai et al., 2022b); the second, more stable 045

and scalable method, directly applies preferences 046

to update the model’s policy (Rafailov et al., 2023). 047

In this context, the concept of “iterative” devel- 048

opment is a key, especially when contrasted with 049

the conventional Reinforcement Learning from Hu- 050

man Feedback (RLHF) paradigm (Christiano et al., 051

2017; Stiennon et al., 2020; Ouyang et al., 2022; 052

Bai et al., 2022a), where the reward model is of- 053

ten trained offline and remains static. An iterative 054

approach proposes a dynamic and continuous re- 055

finement process (Zelikman et al., 2022; Gülçehre 056

et al., 2023; Huang et al., 2023; Yuan et al., 2024). 057

It involves a cycle that begins with the current pol- 058

icy, progresses through the collection and analysis 059

of data to generate new preference data, and uses 060

this data to update the policy. This approach un- 061

derlines the importance of ongoing adaptation in 062

LLMs, highlighting the potential for these mod- 063

els to become more attuned to the complexities of 064

human decision-making and reasoning. 065

A compelling illustration of the success of such 066

an iterative approach can be seen in the case of Alp- 067

haZero (Silver et al., 2017) for its superhuman per- 068

formance across various domains, which combines 069

the strengths of neural networks, RL techniques, 070

and Monte Carlo Tree Search (MCTS) (Coulom, 071

2006; Kocsis and Szepesvári, 2006). The integra- 072

tion of MCTS as a policy improvement operator 073

that transforms the current policy into an improved 074

policy (Grill et al., 2020). The effectiveness of 075

AlphaZero underscores the potential of combining 076

these advanced techniques in LLMs. By integrating 077

MCTS into the iterative process of policy develop- 078

ment, it is plausible to achieve significant strides in 079

LLMs, particularly in the realm of reasoning and 080

decision-making aligned with human-like prefer- 081

ences (Zhu et al., 2023; Hao et al., 2023). 082

The integration of MCTS in collecting prefer- 083

ence data to improve the current policy iteratively 084
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Figure 1: Monte Carlo Tree Search (MCTS) boosts model performance via iterative preference learning. Each
iteration of our framework (on the left) consists of two stages: MCTS to collect step-level preferences and preference
learning to update the policy. Specifically, we use action values Q estimated by MCTS to assign the preferences,
where steps of higher and lower Q values will be labeled as positive and negative data, respectively. The scale of
Q is visualized in the colormap. We show the advantage of the online manner in our iterative learning framework
using the validation accuracy curves as training progresses on the right. The performance of ARC-C validation
illustrates the effectiveness and efficiency of our proposed method compared to its offline variant.

is nuanced and demands careful consideration. One085

primary challenge lies in determining the appropri-086

ate granularity for applying MCTS. Convention-087

ally, preference data is collected at the instance088

level. The instance-level approach employs sparse089

supervision, which can lose important information090

and may not optimally leverage the potential of091

MCTS in improving the LLMs (Wu et al., 2023).092

Another challenge is the reliance of MCTS on a093

critic or a learned reward function. This function094

is crucial for providing meaningful feedback on095

different rollouts generated by MCTS, thus guiding096

the policy improvement process (Liu et al., 2023a).097

Addressing this granularity issue, evidence from098

LLM research indicates the superiority of process-099

level or stepwise evaluations over instance-level100

ones (Lightman et al., 2023; Li et al., 2023; Xie101

et al., 2023; Yao et al., 2023). Our approach utilizes102

MCTS rollouts for step-level guidance, aligning103

with a more granular application of MCTS. More-104

over, we employ self-evaluation, where the model105

assesses its outputs, fostering a more efficient pol-106

icy improvement pipeline by acting as both policy107

and critic (Kadavath et al., 2022; Xie et al., 2023).108

This method streamlines the process and ensures109

more cohesive policy updates, aligning with the110

iterative nature of policy enhancement and poten-111

tially leading to more robust and aligned LLMs.112

To summarize, we propose an algorithm based113

on Monte Carlo Tree Search (MCTS) that breaks114

down the instance-level preference signals into115

step-level. MCTS allows us to use the current116

LLM policy to generate preference data instead117

of a predetermined set of human preference data,118

enabling the LLM to receive real-time training119

signals. During training, we generate sequences120

of text on the fly and label the preference via 121

MCTS based on feedback from self-evaluation 122

(Figure 1). To update the LLM policy using the 123

preference data, we use Direct Preference Opti- 124

mization (DPO) (Rafailov et al., 2023). We ex- 125

tensively evaluate the proposed approach on vari- 126

ous arithmetic and commonsense reasoning tasks 127

and observe significant performance improvements. 128

For instance, the proposed approach outperforms 129

the Mistral-7B SFT baseline by 81.8% (+5.9%), 130

34.7% (+5.8%), and 76.4% (+15.8%) on GSM8K, 131

MATH, and SciQ, respectively. Further analysis 132

of the training and test compute tradeoff shows 133

that our method can effectively push the perfor- 134

mance gains in a more efficient way compared to 135

sampling-only approaches. 136

2 MCTS-Enhanced Iterative Preference 137

Learning 138

In this paper, we introduce an approach for improv- 139

ing LLM reasoning, centered around an iterative 140

preference learning process. The proposed method 141

begins with an initial policy πθ(0) , and a dataset of 142

prompts DP . Each iteration i involves selecting a 143

batch of prompts from DP , from which the model, 144

guided by its current policy πθ(i−1) , generates po- 145

tential responses for each prompt. We then apply 146

a set of dynamically evolving reward criteria to 147

extract preference data Di from these responses. 148

The model’s policy is subsequently tuned using 149

this preference data, leading to an updated policy 150

πθ(i) , for the next iteration. This cycle of sam- 151

pling, response generation, preference extraction, 152

and policy tuning is repeated, allowing for continu- 153

ous self-improvement and alignment with evolving 154

preferences. In addressing the critical aspects of 155
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this methodology, two key challenges emerge: the156

effective collection of preference data and the pro-157

cess of updating the policy post-collection.158

We draw upon the concept that MCTS can act159

as an approximate policy improvement operator,160

transforming the current policy into an improved161

one. Our work leverages MCTS to iteratively col-162

lect preference data, utilizing its look-ahead ability163

to break down instance-level rewards into more164

granular step-level signals. To enhance consistency165

in intermediate steps, we incorporate stepwise self-166

evaluation, continually updating the quality assess-167

ment of newly generated data. This process, as168

depicted in Figure 1, enables MCTS to balance169

quality exploitation and diversity exploration dur-170

ing preference data sampling at each iteration. De-171

tailed in section 2.1, our approach utilizes MCTS172

for step-level preference data collection. Once this173

data is collected, the policy is updated using DPO,174

as outlined in section 2.2. Our method can be175

viewed as an online version of DPO, where the176

updated policy is iteratively employed to collect177

preferences via MCTS. Our methodology, thus, not178

only addresses the challenges in preference data179

collection and policy updating but also introduces180

a dynamic, iterative framework that significantly181

enhances LLM reasoning.182

2.1 MCTS for Step-Level Preference183

To transform instance-level rewards into granular,184

step-level signals, we dissect the reasoning process185

into discrete steps, each represented by a token se-186

quence. We define the state at step t, st, as the187

prefix of the reasoning chain, with the addition of188

a new reasoning step a transitioning the state to189

st+1, where st+1 is the concatenation of st and a.190

Utilizing the model’s current policy πθ, we sam-191

ple candidate steps from its probability distribu-192

tion πθ(a | x, st)1, with x being the task’s input193

prompt. MCTS serves as an approximate policy194

improvement operator by leveraging its look-ahead195

capability to predict the expected future reward.196

This prediction is refined through stepwise self-197

evaluation (Kadavath et al., 2022; Xie et al., 2023),198

enhancing process consistency and decision accu-199

racy. The tree-structured search supports a balance200

between exploring diverse possibilities and exploit-201

ing promising paths, essential for navigating the202

1For tasks (e.g., MATH) where the initial policy performs
poorly, we also include the ground-truth reasoning steps for
training. We detail the step definition for different tasks with
examples in Appendices C and D.

vast search space in LLM reasoning. 203

The MCTS process begins from a root node, s0, 204

as the sentence start or incomplete response, and 205

unfolds in three iterative stages: selection, expan- 206

sion, and backup, which we detail further. 207

Select. The objective of this phase is to identify 208

nodes that balance search quality and computa- 209

tional efficiency. The selection is guided by two 210

key variables: Q(st, a), the value of taking action 211

a in state st, and N(st), the visitation frequency of 212

state st. These variables are crucial for updating 213

the search strategy, as explained in the backup sec- 214

tion. To navigate the trade-off between exploring 215

new nodes and exploiting visited ones, we employ 216

the Predictor + Upper Confidence bounds applied 217

to Trees (PUCT) (Rosin, 2011). At node st, the 218

choice of the subsequent node follows the formula: 219

st+1
∗ = argmax

st

[
Q(st, a)

+ cpuct · p(a | st)
√
N(st)

1 +N(st+1)

] (1) 220

where p(a | st) = πθ(a | x, st)/|a|λ denotes the 221

policy πθ’s probability distribution for generating 222

a step a, adjusted by a λ-weighted length penalty 223

to prevent overly long reasoning chains. 224

Expand. Expansion occurs at a leaf node dur- 225

ing the selection process to integrate new nodes 226

and assess rewards. The reward r(st, a) for exe- 227

cuting step a in state st is quantified by the reward 228

difference between states R(st) and R(st+1), high- 229

lighting the advantage of action a at st. As defined 230

in Eq. (2), reward computation merges outcome 231

correctness O with self-evaluation C. We assign 232

the outcome correctness to be 1, −1, and 0 for cor- 233

rect terminal, incorrect terminal, and unfinished 234

intermediate states, respectively. Following Xie 235

et al. (2023), we define self-evaluation as Eq. (3), 236

where A denotes the confidence score in token- 237

level probability for the option indicating correct- 238

ness2. Future rewards are anticipated by simulating 239

upcoming scenarios through roll-outs, following 240

the selection and expansion process until reaching 241

a terminal state3. 242

R(st) = O(st) + C(st) (2) 243
244

C(st) = πθ(A | prompteval, x, st) (3) 245
2We show an example of evaluation prompt in Table 6.
3The terminal state is reached when the whole response is

complete or exceeds the maximum length.
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Algorithm 1 . MCTS-Enhanced Iterative Preference Learning. Given an initial policy πθ(0) = πsft,
our algorithm iteratively conducts step-level preference data sampling via MCTS and preference learning
via DPO to update the policy.

Input: DP : prompt dataset; q(· | x): MCTS sampling strategy that constructs a tree-structured set of possible responses given
a prompt x, where qπ represents that the strategy is based on the policy π for both response generation and self-evaluation;
ℓi(x, yw, yl; θ): loss function of preference learning at the i-th iteration, where the corresponding sampling policy is π(i); M :
number of iterations; B: number of samples per iteration; T : average number of steps per sample
Train πθ on DP using step-level preference learning.
for i = 1 to M do

π(i) ← πθ ← πθ(i−1)

Sample a batch of B samples from DP as D(i)
P .

/* MCTS for Step-Level Preference Data Collection */
For each x ∈ D(i)

P , elicit a search tree of depth T via qπθ (· | x).
Collect a batch of preferences Di = { {(xj , y

(j,t)
l , y

(j,t)
l )|Tt=1}|Bj=1 s.t. xj ∼ D(i)

P , y
(j,t)
w ̸= y

(j,t)
w ∼ qπθ (· | x

j) }, where
y
(j,t)
w and y

(j,t)
l is the nodes at depth t, with the highest and lowest Q values, respectively, among all the children nodes of

their parent node.
/* Preference Learning for Policy Improvement */
Optimize θ by minimizing J(θ) = E(x,yw,yl)∼Di

ℓi(x, yw, yl; θ).
Obtain the updated policy πθ(i)

end for
πθ ← πθ(M)

Output: Policy πθ

Backup. Once a terminal state is reached, we246

carry out a bottom-up update from the terminal247

node back to the root. We update the visit count N ,248

the state value V , and the transition value Q:249

Q(st, a)← r(st, a) + γV (st+1) (4)250

251

V (st)←
∑
a

N(st+1)Q(st, a)/
∑
a

N(st+1)

(5)252253

N(st)← N(st) + 1 (6)254

where γ is the discount for future state values.255

For each step in the response generation, we con-256

duct K iterations of MCTS to construct the search257

tree while updating Q values and visit counts N . To258

balance the diversity, quality, and efficiency of the259

tree construction, we initialize the search breadth260

as b1 and anneal it to be a smaller b2 < b1 for the261

subsequent steps. We use the result Q value cor-262

responding to each candidate step to label its pref-263

erence, where higher Q values indicate preferred264

next steps. For a result search tree of depth T , we265

obtain T pairs of step-level preference data. Specif-266

ically, we select the candidate steps of highest and267

lowest Q values as positive and negative samples268

at each tree depth, respectively. The parent node269

selected at each tree depth has the highest value270

calculated by multiplying its visit count and the271

range of its children nodes’ visit counts, indicating272

both the quality and diversity of the generations.273

2.2 Iterative Preference Learning 274

Given the step-level preferences collected via 275

MCTS, we tune the policy via DPO (Rafailov et al., 276

2023). Considering the noise in the preference la- 277

bels determined by Q values, we employ the conser- 278

vative version of DPO (Mitchell, 2023) and use the 279

visit counts simulated in MCTS to apply adaptive 280

label smoothing on each preference pair. Using the 281

shorthand hyw,yl
πθ = log πθ(yw|x)

πref(yw|x) − log πθ(yl|x)
πref(yl|x) , 282

at the i-th iteration, given a batch of preference 283

data Di sampled with the latest policy πθ(i−1) , we 284

denote the policy objective ℓi(θ) as follows: 285

ℓi(θ) =− E(x,yw,yl)∼Di

[
(1− αx,yw,yl) log σ(β hyw,yl

πθ

)
+αx,yw,yl log σ(−βh

yw,yl
πθ

)
]

(7) 286

where yw and yl represent the step-level preferred 287

and dispreferred responses, respectively, and the 288

hyperparameter β scales the KL constraint. Here, 289

αx,yw,yl is a label smoothing variable calculated 290

using the visit counts at the corresponding states of 291

the preference data yw, yl in the search tree: 292

αx,yw,yl =
1

N(x, yw)/N(x, yl) + 1
(8) 293

where N(x, yw) and N(x, yl) represent the states 294

taking the actions of generating yw and yl, respec- 295

tively, from their previous state as input x. 296

After optimization, we obtain the updated policy 297

πθ(i) and repeat the data collection process in Sec- 298

tion 2.1 to iteratively update the LLM policy. We 299
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outline the full algorithm of our MCTS-enhanced300

Iterative Preference Learning in Algorithm 1.301

3 Experiments302

We evaluate the effectiveness of MCTS-enhanced303

iterative preference learning on arithmetic and com-304

monsense reasoning tasks. We employ Mistral-305

7B (Jiang et al., 2023) as the base pre-trained model.306

We conduct supervised training using Arithmo 4307

which comprises approximately 540K mathemat-308

ical and coding problems. Detailed information309

regarding the task formats, specific implementation310

procedures, and parameter settings of our experi-311

ments can be found in Appendix C.312

Datasets. We aim to demonstrate the effective-313

ness and versatility of our approach by focusing314

on two types of reasoning: arithmetic and com-315

monsense reasoning. For arithmetic reasoning,316

we utilize two datasets: GSM8K (Cobbe et al.,317

2021), which consists of grade school math word318

problems, and MATH (Hendrycks et al., 2021),319

featuring challenging competition math problems.320

Specifically, in the GSM8K dataset, we assess both321

chain-of-thought (CoT) and program-of-thought322

(PoT) reasoning abilities. We integrate the train-323

ing data from GSM8K and MATH to construct324

the prompt data for our preference learning frame-325

work, aligning with a subset of the Arithmo data326

used for Supervised Fine-Tuning (SFT). This ap-327

proach allows us to evaluate whether our method328

enhances reasoning abilities on specific arithmetic329

tasks. For commonsense reasoning, we use four330

multiple-choice datasets: ARC (easy and chal-331

lenge splits) (Clark et al., 2018), focusing on sci-332

ence exams; AI2Science (elementary and mid-333

dle splits) (Clark et al., 2018), containing science334

questions from student assessments; OpenBookQA335

(OBQA) (Mihaylov et al., 2018), which involves336

open book exams requiring broad common knowl-337

edge; and CommonSenseQA (CSQA) (Talmor338

et al., 2019), featuring commonsense questions ne-339

cessitating prior world knowledge. The diversity340

of these datasets, with different splits representing341

various grade levels, enables a comprehensive as-342

sessment of our method’s generalizability in learn-343

ing various reasoning tasks through self-distillation.344

Performance evaluation is conducted using the cor-345

responding validation sets of each dataset. Further-346

more, we employ an unseen evaluation using the347

4https://huggingface.co/datasets/akjindal53244/Arithmo-
Data

validation set of an additional dataset, SciQ (Welbl 348

et al., 2017), following the approach of Liu et al. 349

(2023b), to further test our model’s ability to gen- 350

eralize to novel reasoning contexts. 351

Baselines. Our study involves a comparative 352

evaluation of our method against several promi- 353

nent approaches and fair comparison against vari- 354

ants including instance-level iterative preference 355

learning and offline MCTS-enhanced learning. We 356

use instance-level sampling as a counterpart of 357

step-level preference collection via MCTS. For a 358

fair comparison, we also apply self-evaluation and 359

correctness assessment and control the number of 360

samples under a comparable compute budget with 361

MCTS in instance-level sampling. The offline ver- 362

sion uses the initial policy for sampling rather than 363

the updated one at each iteration. 364

We contrast our approach with the Self-Taught 365

Reasoner (STaR)(Zelikman et al., 2022), an iter- 366

ated learning model based on instance-level ratio- 367

nale generation, and Crystal(Liu et al., 2023b), an 368

RL-tuned model with a focus on knowledge intro- 369

spection in commonsense reasoning. Considering 370

the variation in base models used by these methods, 371

we include comparisons with Direct Tuning, which 372

entails fine-tuning base models directly bypassing 373

chain-of-thought reasoning. In the context of arith- 374

metic reasoning tasks, our analysis includes Lan- 375

guage Model Self-Improvement (LMSI)(Huang 376

et al., 2023), a self-training method using self- 377

consistency to gather positive data, and Math- 378

Shepherd(Wang et al., 2023a), which integrates 379

process supervision within Proximal Policy Opti- 380

mization (PPO). To account for differences in base 381

models and experimental setups across these meth- 382

ods, we also present result performance of SFT 383

models as baselines for each respective approach. 384

3.1 Main Results 385

Arithmetic Reasoning. In Table 1, we present a 386

comparative analysis of performance gains in arith- 387

metic reasoning tasks. Our method demonstrates 388

substantial improvements, notably on GSM8K, in- 389

creasing from 75.9% → 81.8%, and on MATH, 390

enhancing from 28.9% → 34.7%. When com- 391

pared to Math-Shepherd, which also utilizes pro- 392

cess supervision in preference learning, our ap- 393

proach achieves similar performance enhancements 394

without the necessity of training separate reward 395

or value networks. This suggests the potential of 396

integrating trained reward model signals into our 397

MCTS stage to further augment performance. On 398
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Approach Base Model Conceptual Comparison GSM8K MATH
NR OG OF NS

LMSI PaLM-540B ✓ ✓ ✗ ✗ 73.5 −
SFT (MetaMath) Mistral-7B − − − − 77.7 28.2
Math-Shepherd ✗ ✓ ✗ ✓ 84.1↑6.4 33.0↑4.8
SFT (Arithmo)

Mistral-7B

− − − − 75.9 28.9
MCTS Offline-DPO ✓ ✗ ✗ ✓ 79.9 31.9
Instance-level Online-DPO ✓ ✓ ✓ ✓ 79.9 31.9
Ours ✓ ✓ ✓ ✓ 80.7 32.2
Ours (w/ G.T.) ✓ ✓ ✓ ✓ 81.8↑5.9 34.7↑5.8

Table 1: Result comparison (accuracy %) on arithmetic tasks. We super-
vised fine-tune the base model Mistral-7B on Arithmo data, while Math-
Shepherd (Wang et al., 2023a) use MetaMATH (Yu et al., 2023b) for SFT.
We highlight the advantages of our approach via conceptual comparison with
other methods, where NR, OG, OF, and NS represent “w/o Reward Model”,
“On-policy Generation”, “Online Feedback”, and “w/ Negative Samples”.
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Figure 2: Performance on the valida-
tion set of ARC-C via training with
different settings.

Approach Base Model Conceptual Comparison ARC-c AI2Sci-m CSQA SciQ Train Data Used (%)
NR OG OF NS

CoT Tuning GPT-3-curie (6.7B) ✓ ✗ ✗ ✗ − − 56.8 − 100
Direct Tuning GPT-J (6B) ✓ ✗ ✗ ✗ − − 60.0 − 100
STaR ✓ ✓ ✓ ✗ − − 72.5 − 86.7
Direct TUning T5-11B ✓ ✗ ✗ ✗ 72.9 84.0 82.0 83.2 100
Crystal ✗ ✓ ✓ ✓ 73.2 84.8 82.3 85.3 100
SFT Base (Arithmo)

Mistral-7B

− − − − 60.6 70.9 54.1 80.8 −
Direct Tuning ✓ ✗ ✗ ✗ 73.9 85.2 79.3 86.4 100
MCTS Offline-DPO ✓ ✗ ✗ ✓ 70.8 82.6 68.5 87.4 19.2
Instance-level Online-DPO ✓ ✓ ✓ ✓ 75.3 87.3 63.1 87.6 45.6
Ours ✓ ✓ ✓ ✓ 76.4↑15.8 88.2↑17.3 74.8↑19.3 88.5↑7.7 47.8

Table 2: Result comparisons (accuracy %) on commonsense reasoning tasks. The results based on GPT-3-
curie (Brown et al., 2020) and T5 (Raffel et al., 2020) are reported from Liu et al. (2023b). For CSQA, we also
include the GPT-J (Wang and Komatsuzaki, 2021) results reported by Zelikman et al. (2022). We follow Liu et al.
(2023b) to combine the training data of ARC, AI2Sci, OBQA, and CSQA for training , while STaR (Zelikman et al.,
2022) only use CSQA for training.

the other hand, we observe significant performance399

gain on MATH when incorporating the ground-400

truth solutions in the MCTS process for preference401

data collection, illustrating an effective way to re-402

fine the preference data quality with G.T. guidance.403

Commonsense Reasoning. In Table 2, we404

report the performance on commonsense reason-405

ing tasks, where our method shows consistent im-406

provements. Notably, we achieve absolute accu-407

racy increases of 2.5%, 3.0%, and 2.1% on ARC-408

Challenge (ARC-C), AI2Sci-Middle (AI2Sci-M),409

and SciQ, respectively, surpassing the results of410

direct tuning. However, in tasks like OBQA and411

CSQA, our method, focusing on intermediate rea-412

soning refinement, is less efficient compared to413

direct tuning. Despite significant improvements414

over the Supervised Fine-Tuning (SFT) baseline415

(for instance, from 59.8% to 79.2% on OBQA, and416

from 54.1% to 74.8% on CSQA), the gains are417

modest relative to direct tuning.418

This discrepancy could be attributed to the base419

model’s lack of specific knowledge, where eliciting420

intermediate reasoning chains may introduce in-421

creased uncertainty in model generations, leading422

to incorrect predictions. We delve deeper into this423

issue of hallucination and its implications in our424

qualitative analysis, as detailed in Section 3.2.425

3.2 Further Analysis 426

Training- vs. Test- Time Compute Scaling. Our 427

method integrates MCTS with preference learning, 428

aiming to enhance both preference quality and pol- 429

icy reasoning via step-level alignment. We analyze 430

the impact of training-time compute scaling versus 431

increased inference-time sampling. 432

We measure success by the pass rate, indicat- 433

ing the percentage of correctly elicited answers. 434

Figure 3 displays the cumulative pass rate at 435

each checkpoint, aggregating the pass rates up 436

to that point. For test-time scaling, we increase 437

the number of sampled reasoning chains. Addi- 438

tionally, we compare the inference performance 439

of our checkpoints with a sampling-only method, 440

self-consistency, to assess their potential perfor- 441

mance ceilings. The pass rate curves on ARC-C, 442

SciQ, and MATH datasets reveal that our MCTS- 443

enhanced approach yields a higher training com- 444

pute scaling exponent. This effect is particularly 445

pronounced on the unseen SciQ dataset, highlight- 446

ing our method’s efficiency and effectiveness in 447

enhancing specific reasoning abilities with broad 448

applicability. Inference-time performance analy- 449

sis shows higher performance upper bounds of 450

our method on ARC-C and SciQ. For instance, 451
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Figure 3: Training- vs. Test- Time Compute Scaling on ARC-C, SciQ, and MATH evaluation sets. The cumulative
pass rate of our iterative learning method can be seen as the pass rate of an ensemble of different model checkpoints.
We use greedy decoding to obtain the inference time performance of our method of iterative learning.

Approach GSM8K MATH ARC-C

AUC Accuracy AUC Accuracy AUC Accuracy
w/ example answer 74.7 72.5 76.6 48.8 65.2 57.5
w/o example answer 62.0 69.5 48.1 42.3 55.8 48.4

Table 3: Ablation of “EXAMPLE ANSWER” in self-evaluation on GSM8K, MATH, and ARC-C. We report both
AUC score and accuracy (%) to compare the discriminative abilities of self-evaluation scores.

while self-consistency on SciQ plateaus at around452

84%, our framework pushes performance to 88.6%.453

However, on MATH, the sampling-only approach454

outperforms training compute scaling: more sam-455

pling consistently enhances performance beyond456

35%, whereas post-training performance hovers457

around 32.2%. This observation suggests that in-458

domain SFT already aligns the model well with459

task-specific requirements.460

Functions of Self-Evaluation Mechanism. As461

illustrated in Section 2.1, the self-evaluation score462

inherently revises the Q value estimation for sub-463

sequent preference data collection. In practice, we464

find that the ground-truth information, i.e., the “EX-465

AMPLE ANSWER” in Table 6, is crucial to ensure466

the reliability of self-evaluation. We now compare467

the score distribution and discriminative abilities468

when including v.s. excluding this ground-truth469

information in Table 3. With this information , the470

accuracy of self-evaluation significantly improves471

across GSM8K, MATH, and ARC-C datasets.472

Ablation Study. We ablate the impact of step-473

level supervision signals and the online learning as-474

pect of our MCTS-based approach. Tables 1 and 2475

shows performance comparisons across common-476

sense and arithmetic reasoning tasks under different477

settings. Our method, focusing on step-level online478

preference learning, consistently outperforms both 479

instance-level and offline approaches in common- 480

sense reasoning. For example, we achieve 76.4% 481

on ARC-C and 88.5% on SciQ, surpassing 70.8% 482

and 87.4% of the offline variant, and 75.3% and 483

87.6% of the instance-level approach. 484

In arithmetic reasoning, performance differences 485

among settings are less pronounced for challenging 486

task such as MATH without the incorporation of 487

ground-truth solutions (e.g., 32.2% for our method 488

(w/o G.T.) vs. 31.9% and 32.9% for offline and 489

instance-level on MATH). The comparable perfor- 490

mance of offline learning aligns with our theoreti- 491

cal analysis that offline approaches can be effective 492

when the initial policy is already well-tuned with 493

high-quality, in-domain data. We further interpret 494

how G.T. guidance integration to enhance the effec- 495

tiveness of our framework in Figure 4. With G.T. 496

supervision, the accuracy of training signals im- 497

prove significantly from 81.2% to 97.9%, leading 498

to substantial performance gain on model perfor- 499

mance. This also explains the similar performance 500

(w/o G.T.) between corresponding using step- and 501

instance-level supervision, where our step-level ap- 502

proach shows effectiveness in narrowing the gap 503

between accuracies of corresponding supervisions. 504

Training Dynamics in Iterative Learning. As 505

shown in Figure 2, online learning exhibits cyclic 506
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Figure 4: Abltation study on step- vs. instance-level supervision, online vs. offline learning, and w/ vs. w/o G.T.
supervision. We also compare the accuracy of the training signals collected via MCTS or instance-level sampling.

Task Inputs and Outputs Answer

OBQA

Question: As the rain forest is deforested the atmosphere will increase with:

(C)

Answer Choices: (A) oxygen (B) nitrogen (C) carbon (D) rain
SFT Baseline: As the rain forest is deforested the atmosphere will increase with carbon. The answer is C.
Ours: When trees are cut down, the carbon stored in the trees is released into the atmosphere as carbon dioxide. This carbon dioxide then increases the carbon
content of the atmosphere. Since carbon is the main ingredient in plant life, the increased carbon content of the atmosphere will lead to increased plant growth,
which will lead to increased photosynthesis, which will lead to increased oxygen production. Therefore, oxygen is the gas that will increase in the atmosphere
as the rain forest is deforested. The answer is: A.

AI2Sci

Question: Which pair of instruments can be used to measure wind chill?

(D)

Answer Choices: (A) barometer and wind vane (B) wind vane and anemometer (C) thermometer and barometer (D) anemometer and thermometer
SFT Baseline: Wind chill is the effect of wind on the apparent temperature, it is the temperature that the human body feels due to the movement of air. It is an
index of the discomfort felt by the human body due to low temperature and high wind speed. It is measured by an instrument called wind chill meter.
The answer is B
Ours: To measure wind chill, you would need an anemometer and a thermometer. The anemometer measures the wind speed, and the thermometer measures
the temperature. Together, these two instruments can be used to calculate the wind chill factor. The answer is: D

MATH

Question: Let f(x) = x7 + ax3 + cx If f(5) = 3, then find f(−5).

-3

SFT Baseline: We know that f(5) = 57 + 5a + 5c = 3. We want to find f(−5), which is (−5)7 + (−5a) + (−5c). Since (−5)7 = −57

= −3, we have f(−5) = −3 − 5a − 5c. We can rewrite this as f(−5) = −3 − 5(−3) − 5c = −3 + 15 − 5c = 12 − 5c .

Ours: We know that f(5) = 57 + 5a + 5c = 3. Since f(x) is a polynomial, we can use the fact that f(−5) = (−5)7 − 5a − 5c = −3 .

Table 4: Qualitative Analysis of model outputs on OBQA, AI2Sci, and MATH. We highlight correct and incorrect
keywords. The predicted answers on MATH are boxed , where our method solves the complex problem while SFT
baseline failed to elicit a complete reasoning chain.

performance fluctuations, with validation perfor-507

mance peaking before dipping. We conduct theoret-508

ical analysis on this in Appendix B and shows that509

continuous policy updates with the latest models510

can lead to periodic knowledge loss due to insuffi-511

cient optimization in iterative updates. We further512

probe these phenomena qualitatively next.513

Qualitative Analysis. Our qualitative analysis in514

Table 4 examines the impact of step-level supervi-515

sion on intermediate reasoning correctness across516

different tasks. In OBQA, the implementation of517

MCTS, as discussed in Section 3.1, often leads to518

longer reasoning chains. This can introduce errors519

in commonsense reasoning tasks, as seen in our520

OBQA example, where an extended chain results521

in an incorrect final prediction. Conversely, in the522

MATH dataset, our approach successfully guides523

the model to rectify mistakes and formulates ac-524

curate, extended reasoning chains, demonstrating525

its effectiveness in complex math word problems.526

This analysis underscores the need to balance rea-527

soning chain length and logical coherence, par-528

ticularly in tasks with higher uncertainty, such as529

commonsense reasoning.530

4 Related Work531

Various studies focus on self-improvement to ex-532

ploit the model’s capability. One line of work fo-533

cuses on collecting high-quality positive data from 534

model generations guided by static reward heuris- 535

tic (Zelikman et al., 2022; Gülçehre et al., 2023; 536

Polu et al., 2023). Recently, Yuan et al. (2024) uti- 537

lize the continuously updated LLM self-rewarding 538

to collect both positive and negative data for pref- 539

erence learning. Different from prior works at 540

instance-level alignment, we leverage MCTS as 541

a policy improvement operator to iteratively facil- 542

itate step-level preference learning. We discuss 543

additional related work in Appendix A. 544

5 Conclusion 545

In this paper, we propose MCTS-enhanced itera- 546

tive preference learning, utilizing MCTS as a policy 547

improvement operator to enhance LLM alignment 548

via step-level preference learning. MCTS balances 549

quality exploitation and diversity exploration to 550

produce high-quality training data, pushing the 551

ceiling performance of the LLM on various rea- 552

soning tasks. We hope our proposed approach can 553

inspire future research on LLM alignment from 554

both data-centric and algorithm-improving aspects: 555

to explore searching strategies and utilization of 556

history data and policies to augment and diversify 557

training examples; to employ offline-online trade- 558

off to address the problem of cyclic performance 559

change of the online learning framework. 560
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Limitations561

The main limitations of this work is the consider-562

ation regarding computational cost as the MCTS563

process is bottlenecked by LLM inference time.564

While automatic data generation and labeling via565

MCTS illustrates an efficient way than human pref-566

erence annotation, the increasing cost and time567

from sampling may constrain the scalability of our568

framework. On the other hand, the work only fo-569

cuses on the application of MCTS in the context of570

LLM reasoning. We leave it to future work in ex-571

ploring the generalizability of our MCTS-enhanced572

iterative preference learning approach across more573

general tasks and models.574

Ethics Statement575

This paper mainly focuses on improving LLM rea-576

soning via MCTS-enhanced Iterative Preference577

Learning. There are many potential societal conse-578

quences of our work, none of which we feel must579

be specifically highlighted regarding the ethical580

concern here.581
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A Related Work 944

945

Iterated Learning. Typical iterated learning operates in a multi-agent scenario, consisting of a loop 946

where an apprentice self-plays, learns from expert feedback, and replaces the current expert for the new 947

iteration (Anthony et al., 2017). Polu et al. (2023) apply expert iteration on formal mathematical reasoning 948

to conduct proof search interleaved with learning. Zelikman et al. (2022) avoid the need for training a 949

separate value function by directly assessing the final outcomes of reasoning to filter generated examples 950

for iterated learning. Recently, Yuan et al. (2024) leverage the technique of LLM-as-a-Judge (Zheng 951

et al., 2023) and introduce self-rewarding language models to improve LLM alignment with self-feedback. 952

Differently, we combine the feedback of outcome assessment and LLM self-evaluation and further 953

decompose them into fine-grained signals via MCTS for step-level iterative preference learning. 954

Self-Training. Self-training uses unlabeled data to improve model training by assigning pseudo labels 955

from a learned labeler (III, 1965; Yarowsky, 1995; Xie et al., 2020; He et al., 2020; Park et al., 2020; 956

Zoph et al., 2020). Recent research has explored several alternatives to label the examples. Zelikman 957

et al. (2022) and Gülçehre et al. (2023) use static reward heuristic to curate high-quality examples, while 958

Huang et al. (2023) collect high-confidence outputs as training data via chain-of-thought prompting (Wei 959

et al., 2022) and self-consistency (Wang et al., 2023b). Lee et al. (2023) and Yuan et al. (2024) utilize 960

the off-the-shelf LLM to reward its generations for preference learning. To mitigate the noise from the 961

sparse instance-level signals, we further refine the preference labels via stepwise tree search and LLM 962

self-evaluation. 963

Preference Learning. The empirical achievements of LLMs have identified the benefits of RL tech- 964

niques to better align with human preferences (Touvron et al., 2023; Stiennon et al., 2020; Ouyang et al., 965

2022; Bai et al., 2022a). The standard preference learning process learns a reward model to provide 966

feedback in online RL (Schulman et al., 2017). Recently, a variety of studies avoid training separate 967

reward or value networks by hindsight instruction relabeling (Zhang et al., 2023), direct preference 968

optimization (Rafailov et al., 2023) and LLM self-evaluation (Ren et al., 2023). We further explore 969

automatic supervision with MCTS to collect step-level preferences by breaking down outcome correctness 970

integrated with self-evaluation. Our approach enables the continual collection of better-quality data via 971

iterative learning, mitigating the limit of preference data when using a frozen reward model or offline 972

learning algorithms. 973

Guided Search for Reasoning. Recent works improve the LLM reasoning ability by eliciting the 974

intermediate reasoning chain (Wei et al., 2022) and breaking it down into multiple steps via searching (Yao 975

et al., 2023; Hao et al., 2023; Yu et al., 2023a). The decomposition of the reasoning process has also 976

been shown effective in reinforcement learning. Lightman et al. (2023) and Li et al. (2023) apply 977

process supervision to train more reliable reward models than outcome supervision in mathematical 978

reasoning (Uesato et al., 2022). Wang et al. (2023a) reinforce LLMs step-by-step with process supervision 979

data automatically collected via model sampling and annotation. We leverage the look-ahead ability 980

of MCTS and integrate it with step-by-step self-evaluation to provide refined process supervision for 981

reasoning. This improves the generalization ability of our framework to update the policy via real-time 982

collected preferences iteratively. 983

B Theoretical Analysis of Online DPO 984

Our approach can be viewed as an online version of DPO, where we iteratively use the updated policy to 985

sample preferences via MCTS. In this section, we provide theoretical analysis to interpret the advantages 986

of our online learning framework compared to the conventional alignment techniques that critically depend 987

on offline preference data. We review the typical RLHF and DPO paradigms in Appendix B. 988

Preliminaries. A typical alignment technique begins with a policy πsft(y | x) supervisedly fine-tuned 989

on high-quality data from the target domain, where x and y are the prompt and the response, respectively. 990
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The SFT policy is used to sample pairs of responses (y1, y2) ∼ πsft(y | x) with prompts x, which will991

be further labeled as pairwise preference data yw ≻ yl | x, where yw and yl represent the preferred and992

dispreferred responses respectively. The standard RLHF paradigm trains a reward model (Ouyang et al.,993

2022) on the preference data and employs PPO (Schulman et al., 2017) to optimize the policy πθ with the994

feedback provided by the reward model, where πθ is also initialized to πsft in practice. DPO avoids fitting995

a reward model by optimizing the policy πθ using preferences directly.996

Given a reward function r(x, y) and prompt distribution P , RLHF and DPO optimize the KL-997

constrained reward maximization objective as follows:998

max
π

Ex∼P,y∼π[r(x, y)]− βDKL[π(y | x) ∥ πsft(y | x)] (9)999

where β scales the strength of the KL constraint. Let the ground-truth reward function be r∗, then Rafailov1000

et al. (2023) estimate the optimal policy π∗ by fitting the Bradley-Terry model (Bradley and Terry, 1952)1001

on preference data:1002

p∗(y1 ≻ y1 | x) = σ(r∗(x, y1)− r∗(x, y2))

=
1

1 + exp
(
β log π∗(y2|x)

πsft(y2|x) − β log π∗(y1|x)
πsft(y1|x)

) (10)1003

As the maximum likelihood estimator (MLE) of the optimal policy requires preferences sampled from1004

the target policy (Liu et al., 2023c), DPO uses a fixed, potentially optimal but unknown policy to collect1005

preference data of good quality. This discrepancy can be a problem when the sampling policy differs1006

dramatically from the current policy. Moreover, the absence of a reward model in DPO presents challenges1007

in learning from additional policy-generated data that lacks explicit preference indicators.1008

We now consider the following abstract formulation for clean theoretical insights to analyze our1009

online setting of preference learning. Given a prompt x, there exist n possible suboptimal responses1010

{ȳ1, . . . , ȳn} = Y and an optimal outcome y∗. As specified in Equation 7, at the i-th iteration, a pair1011

of responses (y, y′) are sampled from some sampling policy π(i) without replacement so that y ̸= y′ as1012

y ∼ π(i)(· | x) and y′ ∼ π(i)(· | x, y). Then, these are labeled to be yw and yl according to the preference.1013

Define Θ be a set of all global optimizers of the preference loss for all M iterations, i.e., for any θ ∈ Θ,1014

ℓi(θ) = 0 for all i ∈ {1, 2, · · · ,M}. Similarly, let θ(i) be a parameter vector such that ℓj(θ(i)) = 0 for all1015

j ∈ {1, 2, · · · , i− 1} for i ≥ 1 whereas θ(0) is the initial parameter vector.1016

This abstract formulation covers both the offline and online settings. The offline setting in previous1017

works is obtained by setting π(i) = π for some fixed distribution π. The online setting is obtained by1018

setting π(i) = πθ(i−1) where πθ(i−1) is the latest policy at beginning of the i-th iteration.1019

The following theorem shows that the offline setting can fail with high probability if the sampling1020

policy π(i) differs too much from the current policy πθ(i−1) :1021

Theorem B.1 (Offline setting can fail with high probability). Let π be any distribution for which there1022

exists ȳ ∈ Y such that π(ȳ | x), π(ȳ | x, y) ≤ ϵ for all y ∈ (Y \ ȳ) ∪ {y∗} and πθ(i−1)(ȳ | x) ≥ c for1023

some i ∈ {1, 2, · · · ,M}. Set π(i) = π for all i ∈ {1, 2, · · · ,M}. Then, there exists θ ∈ Θ such that with1024

probability at least 1− 2ϵM (over the samples of π(i) = π), the following holds: πθ(y
∗ | x) ≤ 1− c.1025

If the current policy and the sampling policy differ too much, it is possible that ϵ = 0 and c ≈ 1.0, for1026

which Theorem B.1 can conclude πθ(y
∗ | x) ≈ 0 with probability 1 for any number of steps M . When1027

ϵ ̸= 0, the lower bound of the failure probability decreases towards zero as we increase M . Thus, it is1028

important to make sure that ϵ ̸= 0 and ϵ is not too low. This is achieved by using the online setting, i.e.,1029

π(i) = πθ(i) . Therefore, Theorem B.1 motivates us to use the online setting. Theorem B.2 confirms that1030

we can indeed avoid this failure case in the online setting.1031

Theorem B.2 (Online setting can avoid offline failure case). Let π(i) = πθ(i−1) . Then, for any θ ∈ Θ, it1032

holds that πθ(y∗ | x) = 1 if M ≥ n+ 1.1033

See Appendix B for the proofs of Theorems B.1 and B.2. As suggested by the theorems, a better1034

sampling policy is to use both the latest policy and the optimal policy for preference sampling. However,1035

since we cannot access the optimal policy π∗ in practice, we adopt online DPO via sampling from the1036
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latest policy πθ(i−1) . The key insight of our iterative preference learning approach is that online DPO 1037

is proven to enable us to converge to an optimal policy even if it is inaccessible to sample outputs. We 1038

provide further discussion and additional insights in Appendix B. 1039

Additional details on labeling outcomes. After a pair of outcomes (y(i), y′(i)) are sampled from some 1040

sampling policy π(i), these are labeled to be y
(i)
w and y

(i)
l according to some preference density p. That 1041

is, Pr[(y(i)w , y
(i)
l ) = (y(i), y′(i))] = p(y(i) ≻ y′(i) | x) and Pr[(y

(i)
w , y

(i)
l ) = (y′(i), y(i))] = 1 − p(y(i) ≻ 1042

y′(i) | x). For simplicity, a preference density is set to be p(y∗ ≻ ȳ | x) = 1 for every optima-suboptimal 1043

pairs (y∗, ȳ) for all ȳ ∈ Y . We do not specify the preference density for other pairs, i.e., p(ȳ ≻ ȳ′ | x) is 1044

arbitrary for (ȳ, ȳ′) ∈ Y × Y . 1045

Abstract formulation for both offline and online settings. Our abstract formulation covers both the 1046

offline and online settings. The offline setting in previous papers is obtained by setting π(i) to be a single 1047

distribution fixed over i ∈ {1, 2, · · · ,M}, e.g., an initial policy, an optimal policy, or an empirical data 1048

distribution of a given preference data. In the case of the empirical data distribution, the preference density 1049

p is set to the function outputting only 0 or 1 to recover the given preference data. The online setting is 1050

obtained by setting π(i) = πθ(i−1) where πθ(i−1) is the latest policy at the beginning of the i-th iteration, 1051

i.e., for i ≥ 1, θ(i) satisfies ℓj(θ(i)) = 0 for j ∈ {1, 2, · · · , i− 1} and θ(0) is the initialization. Thus, we 1052

can analyze both offline and online settings with this abstract framework. 1053

Proof of Theorem B.1. 1054

Proof. The intuition behind the proof of Theorem B.1 is that the current policy πθ(i) may not be corrected 1055

if a fixed sampling policy π never samples a suboptimal output ȳ ∈ Y whose probability is high for the 1056

current policy πθ(i) . Let ȳ be the suboptimal output such that π(ȳ | x) ≤ ϵ and πθ(i)(ȳ | x) ≥ c for some 1057

i ∈ {1, 2, · · · ,M}. Denote preferences sampled by policy π(i) as (y(i)w , y
(i)
l ). From the definition of the 1058

logistic function, we can rewrite 1059

ℓi(θ) = − log σ

(
β log

πθ(y
(i)
w | x)

πref(y
(i)
w | x)

− β log
πθ(y

(i)
l | x)

πref(y
(i)
l | x)

)
1060

= − log
1

1 + exp(β log
πθ(y

(i)
l |x)

πref(y
(i)
l |x)

− β log πθ(y
(i)
w |x)

πref(y
(i)
w |x)

)

1061

= − log
exp(β log πθ(y

(i)
w |x)

πref(y
(i)
w |x)

)

exp(β log πθ(y
(i)
w |x)

πref(y
(i)
w |x)

) + exp(β log
πθ(y

(i)
l |x)

πref(y
(i)
l |x)

)

1062

= − log

πθ(y
(i)
w |x)β

πref(y
(i)
w |x)β

πθ(y
(i)
w |x)β

πref(y
(i)
w |x)β

+
πθ(y

(i)
l |x)β

πref(y
(i)
l |x)β

1063

= − log
πθ(y

(i)
w | x)β

πθ(y
(i)
w | x)β + πθ(y

(i)
l | x)β(

πref(y
(i)
w |x)

πref(y
(i)
l |x)

)β
. 1064

From this equation, we observe that ℓi(θ) can be minimized to be zero by minimizing πθ(y
(i)
l | x) to be

zero without maximizing πθ(y
(i)
w | x). That is, for any β > 0, if πθ(y

(i)
l | x) = 0,

ℓi(θ) = − log
πθ(y

(i)
w | x)β

πθ(y
(i)
w | x)β + 0

= − log 1 = 0.

Thus, even if we sample y∗ with the optimal policy, ℓi(θ) can be minimized without maximizing πθ(y
∗ | x)

and minimizing πθ(ȳ|x) for ȳ ̸= y
(i)
l . Thus, if ȳ ̸= y

(i)
l for all i ∈ {1, 2, · · · ,M}, there exists θ such that
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ℓi(θ) ≤ 0 for all i = 1, . . . ,M , and
πθ(ȳ | x) ≥ c,

because of the condition that πθ(ȳ | x) ≥ c for some i ∈ {1, 2, · · · ,M}: i.e., πθ(ȳ | x) is never1065

minimized from the i-th iteration while minimizing ℓi(θ) arbitrarily well, if ȳ is never sampled.1066

Therefore, if ȳ is never sampled over m iterations, since the probabilities sums up to one, we have

πθ(y
∗ | x) ≤ 1− πθ(ȳ|x) ≤ 1− c.

Moreover,
Pr[ ȳ being never sampled over m iterations ] ≥ (1− 2ϵ)m ≥ 1− 2ϵm,

where the last line follows Bernoulli’s inequality. By combining the above two equations, it holds that

Pr[πθ(y
∗|x) ≤ 1− c] ≥ 1− 2ϵM.

1067

Proof of Theorem B.2.1068

Proof. From the proof of Theorem B.1, we have

ℓi(θ) = − log
πθ(y

(i)
w | x)β

πθ(y
(i)
w | x)β + πθ(y

(i)
l | x)β(

πref(y
(i)
w |x)

πref(y
(i)
l |x)

)β
.

For α ≥ 0 and β > 0, the condition ℓi(θ) ≤ α implies that1069

− log
πθ(y

(i)
w | x)β

πθ(y
(i)
w | x)β + πθ(y

(i)
l | x)β(

πref(y
(i)
w |x)

πref(y
(i)
l |x)

)β
≤ α1070

⇐⇒ πθ(y
(i)
w | x)β

πθ(y
(i)
w | x)β + πθ(y

(i)
l | x)β(

πref(y
(i)
w |x)

πref(y
(i)
l |x)

)β
≥ exp(−α)1071

⇐⇒ πθ(y
(i)
w | x)β ≥ exp(−α)πθ(y(i)w | x)β + exp(−α)πθ(y

(i)
l | x)

β

(
πref(y

(i)
w | x)

πref(y
(i)
l |x)

)β

1072

⇐⇒ πθ(y
(i)
w | x)β[1− exp(−α)] ≥ πθ(y

(i)
l | x)

β exp(−α)

(
πref(y

(i)
w | x)

πref(y
(i)
l | x)

)β

1073

⇐⇒ πθ(y
(i)
w | x)β[1− exp(−α)] ≥ πθ(y

(i)
l | x)

β exp(−α)

(
πref(y

(i)
w | x)

πref(y
(i)
l | x)

)β

1074

⇐⇒ πθ(y
(i)
w | x)(exp(α)− 1)1/β

(
πref(y

(i)
l | x)

πref(y
(i)
w | x)

)
≥ πθ(y

(i)
l | x).1075

Since πθ(y
(i)
w | x) ≤ 1, this implies that1076

πθ(y
(i)
l | x) ≤ πθ(y

(i)
w | x)(exp(α)− 1)1/β

πref(y
(i)
l | x)

πref(y
(i)
w | x)

1077

≤ (exp(α)− 1)1/β
πref(y

(i)
l | x)

πref(y
(i)
w | x)

.1078
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Thus, while we can prove a similar statement for α > 0 with this equation, we set α = 0 for this
theorem for a cleaner insight, yielding the following: the condition ℓi(θ) ≤ 0 implies that

πθ(y
(i)
l | x) = 0.

Since y(i) and y′(i) are sampled from πθ(i) without replacement, this means that we have πθ(i+k)(y
(i)
l |

x) = 0 for all k ≥ 1 from the definition of πθ(i) : i.e., πθ(i) is the policy such that ℓj(θ(i)) = 0 for all
j = 1, . . . , i− 1. Since π

θ(i+k) is then used to sample y(i) and y′(i) in the followings iterations for k ≥ 1,

we will never sample this y(i)l again. Thus, at each iteration, we always sample pairs of y and y′ such that
these do not include an output judged to be not preferred in a previous iteration. This implies that at each
iteration, we increase the number of suboptimal samples ȳ ∈ Y such that πθ(i)(ȳ | x) = 0. In other words,
we have

|{ȳ ∈ Y | πθ(i)(ȳ | x) = 0} |≥ i− 1.

Thus,

πθ(i)(y
∗ | x) = 1−

n∑
j=1

πθ(i)(ȳj | x) = 1−
∑
j∈S

πθ(i)(ȳj | x).

where |S| ≤ n+ 1− i. Therefore, πθ(i)(y
∗ | x) = 1 when i ≥ n+ 1. 1079

1080

Additional discussion. We list the additional insights gained from the theoritical analysis. 1081

• The proofs of Theorems B.1–B.2 suggest that a better sampling policy is to use both the current 1082

policy and the optimal policy at the same time in the preference learning loss, i.e., sample y ∼ π∗ 1083

and y′ ∼ πθ(i−1) . This avoids the failure case of Theorem B.1 and improves the convergence speed in 1084

Theorem B.2. However, since we cannot access the optimal policy π∗ in practice, Theorems B.1–B.2 1085

motivate online DPO. Online DPO is proven to enable us to converge to an optimal policy even if we 1086

cannot sample outputs from the optimal policy. 1087

• The proofs of Theorems B.1–B.2 suggest that if we can sample from the optimal policy, then we 1088

can also use the samples of the optimal policy with the negative log-likelihood loss − log πθ(y
∗ | x) 1089

instead of DPO loss to avoid the failure case. 1090

• The proofs of Theorems B.1–B.2 suggest that in the online setting, we should minimize the DPO loss 1091

to a certain low degree per iteration, i.e., we should take several rounds of minimization of DPO loss 1092

per online iteration, instead of only taking one round of minimization per iteration. This is because 1093

the proofs of Theorems B.1–B.2 show that we can get into the cyclic situation in the online setting if 1094

the DPO loss is not minimized sufficiently per iteration. For example, we can sample ȳ1 and ȳ2 in 1095

one iteration and ȳ2 and ȳ3 in another iteration where ȳ1 ≻ ȳ2 ≻ ȳ3. If the probability of sampling 1096

ȳ2 is not minimized sufficiently in the first iteration, it can be sampled again in the second iteration, 1097

where the probability of sampling ȳ2 can be increased as ȳ2 ≻ ȳ3. Then, this can repeat indefinitely. 1098

Thus, it is important to minimize DPO loss with several optimizer iterations per iteration. 1099

C Implementation Details 1100

We use Mistral-7B as our base pre-trained model. The supervised fine-tuning and preference learning 1101

experiments are conducted with a maximum of 4× 40GB GPUs (NVIDIA A100). 1102

We choose the learning rates 5e-6 and 1e-6 for SFT and DPO training, respectively, with a cosine 1103

learning rate scheduler. The maximum sequence length of models is 512. We train the model with a batch 1104

size of 128 and 32 for SFT and DPO, respectively. For DPO, we follow the DPO paper to set the KL 1105

constraint parameter β as 0.1. Each sample in DPO is a set of step-level preference data decomposed by 1106

MCTS. We set the max length for each step as 64. The number of MCTS iterations is set as K = 5 for all 1107

tasks. 1108
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For arithmetic reasoning, we combine the problems in GSM8K and MATH training sets as the prompt1109

data containing a total of 24K samples for preference learning. For each sample, we conduct MCTS with1110

an initial breadth of b1 = 5 and decrease it to b2 = 3 for the subsequent steps, with a maximum search1111

depth d = 4. It takes about 2 minutes per sample to collect the step-level preferences via MCTS. This1112

requires about 30 A100 days of compute to train one whole epoch. In practice, we can adopt an early stop1113

when the performance saturates, which usually only needs 30% of the training data.1114

For commonsense reasoning, we combine the training data of ARC, AI2Science, OBQA, and CSQA,1115

which produces a total of 12K samples. As the model generations are more diversified on these tasks,1116

we set the initial breadth as b1 = 4 and decrease it to b2 = 2 for subsequent steps. As the intermediate1117

reasoning chains are relatively shorter than those in arithmetic reasoning, we set the maximum search1118

depth d = 3. Likewise, we also adopt an early stop at around 50% of the training progress where the1119

performance saturates.1120

Hyperparameter Tuning of MCTS. We compare the performance in commonsense reasoning when1121

employing different searching breadths in MCTS. Table 5 shows how different search heuristics impact1122

learning performance. O2 produces better performance, highlighting the importance of increasing the1123

search space at the beginning point of MCTS. One can efficiently reduce compute while maintaining good1124

performance by using a small search space for the subsequent steps. For future work, we will explore the1125

hyperparameter settings in MCTS, including the search breadth, depth, number of steps, and iteration1126

time, to probe the cost–performance tradeoff of our MCTS-enhanced iterative learning framework.

APPROACH ARC-E ARC-C AI2SCI-E AI2SCI-M OBQA CSQA SCIQ

SFT BASELINE 69.2 60.6 74.9 70.9 59.8 54.1 80.8

O1 (b1 = 3, b2 = 3) 88.4 74.7 92.1 88.5 77.8 73.2 88.3
O2 (b1 = 4, b2 = 2) 88.5 76.4 91.7 88.2 79.2 74.8 88.5

Table 5: Result comparison of using different search breadths in MCTS. For O2, we have a broader spectrum for the
initial step and narrow the search space for the subsequent steps of each path.

1127

Prompt Example. See an example of the evaluation prompt we use for self-evalution in Table 6. For1128

more details, please refer to our implementation code.

QUESTION: Which of the following is an example of the formation of a mixture? Answer Choices: (A) rust forming on an iron nail
(B) sugar crystals dissolving in water (C) sodium and chlorine forming table salt (D) hydrogen and oxygen reacting to produce water

EXAMPLE ANSWER: The answer is (B) sugar crystals dissolving in water

PROPOSED SOLUTION: The formation of a mixture occurs when two or more substances are combined together without
changing their individual properties. In the given options, rust forming on an iron nail is an example of the formation of a mixture.
The iron nail and the oxygen in the air combine to form iron oxide, which is a mixture. The answer is A.

QUESTION: Evaluate if the proposed solution is logically heading in the correct direction.
Provide an answer of (A) correct or (B) incorrect.

ANSWER: The answer is

Table 6: Evaluation Prompt Template. The text underlined will be replaced with content from different examples.
1129

D Further Analysis1130

Reward Criteria in MCTS. We probe the effect of different reward guidance of MCTS in terms of1131

both searching and training. Table 7 shows how different reward signals impact the pass rate of searching.1132

The guidance of outcome correctness is substantially dominant in eliciting correct outcomes. We see1133

that MCTS can produce significant improvement across various tasks with the reward signals integrated1134

of outcome correctness and self-evaluation, increasing the baseline performance from 60.6% to 83.0%1135

on ARC-C, 70.9% to 90.5% on AI2Sci-M, and 75.9% to 85.8% on GSM8K. We observe a significant1136

performance gain from learning when using greedy decoding on commonsense reasoning. For example,1137

learning increases the accuracy to 76.4% (+16.4%) on ARC-C, compared to the increase of 9.1% on1138

MCTS performance. This suggests a substantial improvement in the model’s policy when applying our1139
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MCTS-enhanced iterative learning to tasks that the initial policy is not good at. Furthermore, the ablation 1140

study on the reward components shows consistent improvement brought by self-evaluation to increase 1141

the MCTS performance in both before- and after- learning cases, suggesting the effectiveness of the 1142

integration of self-evaluation in our approach.

DECODING STRATEGY AFTER LEARNING ARC-C AI2SCI-M GSM8K

GREEDY DECODING
✗ 60.6 70.9 75.9
✓ 76.4↑16.4 88.2↑17.3 80.7↑5.2

MCTS W/O SE ✗ 82.5 87.3 84.4
✓ 91.0↑8.5 96.1↑9.8 89.0↑5.6

MCTS ✗ 83.0 90.5 85.8
✓ 92.1↑9.1 97.3↑6.8 90.2↑4.4

Table 7: Pass Rates when Ablating MCTS Settings. SE represents the guidance from self-evaluation.

1143

Qualitative Analysis on Collected Preferences. We show examples of the result search trees elicited 1144

via MCTS on different tasks in Figures 5–9. 1145

Figures 5 and 6 show the result search trees to answer the same science question using MCTS employed 1146

with different search breadths. We see that MCTS not only figures out the correct answer (i.e., the option 1147

“D”) via broad searching but also serves as a policy improvement optimizer to collect steps along this path 1148

as positive samples for preference learning. For example, the Q values of the preference pair at the last 1149

step (at the bottom right of Figure 5) are 0.70838 and −0.45433, compared to the original probability in 1150

the policy generation as 0.37989 and 0.38789. Compared to searching with breadth b1 = 4, b2 = 2 in 1151

Figure 5, Figure 6 shows that a higher breadth for the subsequent steps can produce an even larger search 1152

tree. However, as we only collect preference pairs alongside the paths leading to correct prediction, these 1153

two search heuristics can result in preference data of similar size. 1154

Figure 7 shows the search tree using the trained policy on commonsense reasoning. Compared to the 1155

one generated by the initial policy in Figure 5, the policy has a higher chance to elicit correct reasoning 1156

chains, as we see more successful predictions of the ground-truth option “D”. We also observe that 1157

the policy tends to generate longer reasoning chains after being motivated to conduct chain-of-thought 1158

reasoning with fine-grained process supervision. 1159

On arithmetic reasoning, we also probe the impact of diversity in model generations using policies 1160

trained for different numbers of epochs in SFT. Figures 8 and 9 show the elicited search trees with data 1161

sampled by policies corresponding to different levels of diversity, where the policy used in Figure 8 1162

has generations with higher diversity. With higher diversity, MCTS can explore more alternatives of 1163

the correct solutions, as there are more paths of correct predictions, as shown in Figure 8 than Figure 9. 1164

Furthermore, higher diversity with reasonable quality also provide more fine-grained supervision signals 1165

as there are more branches alongside the reasoning path of correct predictions. 1166

E Extended Experiments 1167

Loss Function. DPO is one of the reward-model-free loss functions we can use for preference learning. 1168

We now illustrate the generalizability of our approach using another loss function, Identity Preference 1169

Optimization (IPO) (Azar et al., 2023), which addresses the overfitting problem of DPO. Table 8 shows 1170

that IPO achieves similar performance as DPO. In practice, we find that IPO boosts the reasoning on 1171

validation tasks while maintaining a more stable performance on the held-out dataset, as indicated by the 1172

higher accuracy 89.8% obtained on SciQ. 1173

Base Model. We extensively validate the generalizability of our approach on Llama2-13B (Touvron 1174

et al., 2023) on arithmetic reasoning. We employ the same process of SFT on Arithmo and preference 1175

learning with DPO on GSM8K and MATH. This experiment is done on a maximum of 2× 80GB GPUs 1176

(NVIDIA A100). 1177
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APPROACH ARC-E ARC-C AI2SCI-E AI2SCI-M OBQA CSQA SCIQ

SFT BASELINE 69.2 60.6 74.9 70.9 59.8 54.1 80.8

O1 (IPO) 88.1 75.1 92.1 89.6 76.8 74.3 89.8
O2 (DPO) 88.5 76.4 91.7 88.2 79.2 74.8 88.5

Table 8: Result comparison of employing our approach with different loss functions.

APPROACH BASE MODEL GSM8K-COT GSM8K-POT MATH-COT

SFT (ARITHMO) LLAMA2-13B 74.5 62.3 23.8
OURS 78.9↑4.4 67.0↑4.7 26.1↑2.3

Table 9: Result comparison (accuracy %) for Llama2-13B on arithmetic tasks.

[51] <s>
(Q:0.00000)(P:-1.00000)

[5] . When 1 CH4
molecule reacts 2 O2 molecules

are needed with 2 Co2
molecules and 4 H2O molecules

formed.
(Q:-0.14156)(P:0.36265)

[2] Since CH4 + (2
O2) > 2 CO2 +

4 H2O So CH4 +
O2 + O2 > 2

CO2 + 4 H2O...
(Q:-1.10341)(P:0.35997)

[0] Thus O2 is
the missing molecule. The

answer is option A</s>
(Q:-1.07136)(P:0.26702)

[1] So 2 O2
are needed to balance

O2. The answer is
B</s>

(Q:-1.06490)(P:0.51277)

[2] So 2
molecules of O2

are required
(Q:-1.00626)(P:0.40928)

[1] . The answer
is B The answer

is B</s>
(Q:-1.02341)(P:0.35482)

[0] to balance this
reaction The answer is

B B</s>
(Q:-1.01727)(P:0.27444)

[5] . CH4 + O2 -> 2CO2
+ 4H2O By looking at Answer choices

We can see that we need to
find a multiple of O2. If we

take 2 O2. Then we can have
2 CO2.

(Q:-0.28709)(P:0.33311)

[2] CH4 + 2
O2 -> 2CO2 +

4H2O So we need
2 O2.

(Q:-1.45947)(P:0.63279)
[1] The answer

is B</s>
(Q:-1.44929)(P:0.89721)

[2] So Answer
is 2. Hence

B.
(Q:-1.02474)(P:0.43360)

[1] </s>
(Q:-1.00000)(P:0.60447)

[3] . The overall reaction is 24
in H, 32 in C, and 0

in O, so it's clearly a hydrocarbon
combustion. Balancing the overall equation is not

very clear. This unbalanced equation can be
balanced to show the oxygen requirement.

(Q:-0.02361)(P:0.15714)

[2] So answer is
2. CH4 + 2
O2  2 CO2

+ 2 H2O
(Q:-1.41080)(P:0.52668)

[1] 24 in H, 32 in C,
and 0 in O and it is

already balanced, so the overall balanced is:
CH4 + xO2 > 2 CO2 +

2 H2O The answer is 2. ANSWER:
B</s>

(Q:-1.39894)(P:0.33174)

[0] The total number of oxygen required is
given in the balanced equation but the unbalanced

CH4 + 2 O2 -> 2 CO2 +
2 H2O shows a balanced molecular ratio of

4 elements - H = 4; C =
2; O = 4 as compared to the

un
(Q:-0.03713)(P:0.20969)

[29] . CH4 + O2 ->
2CO2 + 4H2O, On the RHS,

2CO2 combines with water to form
carboxylic acid. Hence, the number of

water molecules should be 2
(Q:1.02593)(P:0.36184)

[2] . Hence, the Equation should
be CH4 + 2 O2 ->

2CO2 + 4H2O. Now, the number
of H on either side of

the equation should be equal. On
the LHS: H4 C

(Q:-1.10386)(P:0.34391)

[1] 4 On the RHS: H2
O2 Hence, the number of O2

should be 2 . The balanced equation
is CH4 + 2 O2 ->

2CO2 + 2H2O. The answer is
Option B</s>

(Q:-1.11003)(P:0.53874)

[0] CH4 On the RHS: H4
O 2H4 O2 (4 H's in

H2O) Thus, H2O has to undergo
the reaction 2H2O -> H4O2. The

answer is B</s>
(Q:-1.13745)(P:0.30599)

[32] CO2
.

(Q:0.21432)(P:0.04583)

[29] 2 H2O -> 4 H2O Now,
the RHS has 4 water molecules and

4 O atoms but the LHS has
only 2 water molecules and 1 O

atom. Hence, Both water molecules should have
2 O atoms each , hence
(Q:0.37176)(P:0.33691)

[4] 2 water molecules have 2 X
4 = 8 O atoms 1 water
molecule has 1 X 2 = 2
O atoms Hence, 8 - 2 =
6 O atoms are still left. 6

O atoms come from O2 molecules Answer
(Q:-0.45433)(P:0.37989)

[1] CH4 + O2 -> 2CO2
+ 4H2O 2x( H ) +
1x( O ) + 1x( O
) -> 2x( O ) +

4x( H ) + 4x( O
) H2O + O ->

(Q:-0.00086)(P:0.48775)

[0] O2 The correct
answer is B hence

B</s>
(Q:-1.05593)(P:0.18124)

[12] , total 4 O
atoms. So O2 is needed

to balance the equation The
answer is D</s>

(Q:0.70838)(P:0.38789)[7] 2H2O -> CO2x2H2 On the
RHS, 2CO2 x 2H2O -> CO2x2H2O2

On the LHS, CH4 : C1
H4 - C1 H1 On the

LHS, CH4 -
(Q:-0.06057)(P:0.30056)

Tree Visualization

Figure 5: Example of the result search tree of a science question “An unbalanced equation for the reaction of
methane gas (CH4) with oxygen is shown below. CH4 +2O2 → 2CO2 + 4H2O How many molecules of oxygen
gas (O2) are needed to properly balance this equation? Answer Choices: (A) 1 (B) 2 (C) 3 (D) 4”. The ground
truth answer is “(D) 4”. Here, we set the search breadth as b1 = 4, b2 = 2. The numbers at the beginning of each
sequence indicate the visit count N of the corresponding node, while the Q and P values at the end of the sequence
represent the Q values and the sentence probability, respectively.
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[50] <s>
(Q:0.00000)(P:-1.00000)

[5] . When 1 CH4
molecule reacts 2 O2 molecules

are needed with 2 Co2
molecules and 4 H2O molecules

formed.
(Q:0.16088)(P:0.36265)

[0] Balance the equation by writing
the correct equation above and then
subtracting each part from both in

the following: New equation: 2CH4 +
4 O2 -> 4Co2 + 8

H2O
(Q:0.01167)(P:0.22393)

[2] Balanced Equation: CH4
+ 2 O2 ->
2 CO2 + 4

H2O
(Q:-0.72269)(P:0.76063)

[1] Hence 'excess' O2 molecules need to
be formed to form the H2O needed

to completely balance the oxygen formed. 2
O2 molecules will form 2 H2O molecules
that exactly balance the 2 O2 molecules

that were formed. Thus there is NO
(Q:-0.03828)(P:0.18065)

[0] Therefore 2 oxygen
molecules are needed. The

answer is B</s>
(Q:-1.07299)(P:0.57110)

[0] O2 is a
di molecular gas so

2. The answer is
B</s>

(Q:-1.07995)(P:0.13073)
[2] So, 2/2 O2/1 CH4 =>

1 O2 for 1 CH4 In
the unbalanced equation 1 CH4 +

1 O2 -> 2 CO2 +
2 H2O So 1 O2 would

balance the given equation.
(Q:-1.16414)(P:0.37983)

[1] The answer
is A</s>

(Q:-1.09599)(P:0.92723)

[0] ( For a balanced equation
Number of atoms of same element

on the two sides should be
equal ) Correct Answer The correct

answer is A</s>
(Q:-1.10798)(P:0.23028)

[5] . CH4 + O2 -> 2CO2
+ 4H2O By looking at Answer choices

We can see that we need to
find a multiple of O2. If we

take 2 O2. Then we can have
2 CO2.

(Q:0.00566)(P:0.33311)

[2] That means we need 2
to balance answer. The next one
would be 4 CO2. For Balancing,

We need 4 as well. The
choice is 2.

(Q:-1.36182)(P:0.21155)

[0] The answer
is B 2

O2.</s>
(Q:-1.32715)(P:0.42094)

[0] The answer
is 2 ANSWER:B</s>

(Q:-1.39801)(P:0.59756)

[1] The answer
is B</s>

(Q:-1.29846)(P:0.91250)

[0] Hence
Answer.

(Q:-0.01028)(P:0.35430)

[2] Thus Balanced Equation, CH4 +
2 O2 -> 2 CO2 +

4H2O Take 1 O2. Then we
need only 1 CO2. Thus, Take

2 CO2.
(Q:-1.00641)(P:0.44905)

[1] Thus the Balanced Equation, CH4
+ 1 O2 -> 2 CO2

+ 4H2O Thus the Balanced Equation,
CH4 + 1 O2 -> 2

CO2 + 4H2O The equation gets
balanced by having Two
(Q:-0.00585)(P:0.54334)

[0] We need only 1 O2.
So Answer is O2. Therefore, Take
2 O2. The Equation is Balanced.

Take 2 O2 The answer is
Option B</s>

(Q:-1.55572)(P:0.35634)

[0] And then we need
O2. Total Answer, CH4 +

O2 -> 2CO2 + 4H2O
Hence 1 Mole of The

answer is A</s>
(Q:-1.37009)(P:0.35589)

[31] . The overall reaction is 24
in H, 32 in C, and 0

in O, so it's clearly a hydrocarbon
combustion. Balancing the overall equation is not

very clear. This unbalanced equation can be
balanced to show the oxygen requirement.

(Q:1.18694)(P:0.15714)

[2] CH4 + O2 -> CO2
+ H2O The total oxygen requirement

should be 2. The ratio CH4
to O2 is 1 to 1,

suggesting oxygen demand is 1 to
2.

(Q:-1.43110)(P:0.23469)

[0] CH4 + 2 O2 ->
2 CO2 + 2 H2O Therefore,

2 molecules of oxygen gas are
needed to balance the equation The

answer is B</s>
(Q:-1.41782)(P:0.63130)

[0] The answer
is B</s>

(Q:-1.43029)(P:0.65357)

[1] CH4 + 2
O2 -> 2 CO2
+ 2 H2O. The

answer is B</s>
(Q:-1.40455)(P:0.66416)

[31] 2C +2 H_2O + O2 ->
2CO2 + 2 H2O The balanced equation

uses more oxygen, because now it shows
that one molecule of each element on

either side is balanced by two molecules
of each element.

(Q:0.33569)(P:0.20021)

[4] Oxygen is not the limiting
reagent, because hydrogen is. 2C +2

H_2O + O2 -> 2CO2 +
2 H2O 1+2+1 -2 = 6
3+2+1 -4 = 4 Total 6

for
(Q:0.02011)(P:0.27802)

[0] both sides with the balanced equation. Now
look at the oxygen. Before it was 2,

and then it was 4, a doubling of
oxygen requirement. If a tripling of oxygen requirement

is needed to balance the equation, then it
will be 8. If 3 is needed, then

it goes
(Q:0.03925)(P:0.18201)

[1] left side, 4 for right
side; not balanced -- H2O is

limiting, only 2 more are needed.
2+2+1 -2 = 6 3+2+1 -6

= 2 Answer ; H2O is
limiting; needs two more molecules.

(Q:0.06306)(P:0.22207)[18] The answer
is D</s>

(Q:0.68647)(P:0.46097)

[3] That balances the equation and the two
waters from the combustion are now together. The

new equation is balanced (because the number next
to each element is balanced by the number

of times it appears on the other side
of the equation) and clearly requires two molecules

of O2. Final The answer is
(Q:-1.19775)(P:0.19619)

[1] B</s>
(Q:-0.54880)(P:0.78020)

[0] B</s>
(Q:-0.97030)(P:0.71450)

[3] Here 22C+240H+260(total molecular
weight) Then Both sides

are divided by 2.
1/212C+1/240H+1/4600(total molecular weight)

(Q:-0.02526)(P:0.14846)

[1] Now Since 2O2 is
required for 4600*1/4. 2O2 is

needed for overall equation. 212C+240H+2600(total
molecular weight) 1/212C+1/240

(Q:0.02280)(P:0.33173)

[1] 1/21 + 1/4 +
1/4600 = 1/4600(total molecular weight)

46 + 0 + 0
= 46 2(46+260)2(46) Therefore, you

(Q:0.03093)(P:0.29965)

[0] The total molecular weight represents
the amount of oxygen gas required

when the 12C is completely combusted.
(12C+16H+260) Hence 1 mole (1 *

64) of oxygen gas need 12C,
16H, and

(Q:0.03317)(P:0.17285)

Tree Visualization

Figure 6: Example of the result search tree of the same science question as in Figure 5. Here, we set the search
breadth as b1 = 3, b2 = 3.
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[50] <s>
(Q:0.00000)(P:-1.00000)

[3] . Looking at the products of
the reaction we can see that there

are 4 O atoms on the right
side. 4 atoms of either oxygen or

hydrogen must come from the left side
to balance.

(Q:0.81835)(P:0.21888)

[2] Since there are two hydrogen atoms
for every one carbon atom, we know
there must be twice as many carbon
atoms as hydrogen atoms on the left

side of the equation. We can write
CH4 as C H 2.

(Q:0.29309)(P:0.42767)

[1] With two hydrogen atoms,
we would need 2 *
2 = 4 to balance

the oxygen. The answer is
D.</s>

(Q:1.20966)(P:0.42097)

[0] To balance the oxygen atoms
we need to add one oxygen

atom for each carbon atom. Therefore
we need 2 oxygen atoms to

balance this equation. The answer is
B.</s>

(Q:-0.83019)(P:0.50695)[0] Since there are 2 hydrogen
atoms in methane (CH4), 2 hydrogen

atoms are converted to 2 water
molecules (2 H2O) that yield 2

oxygen atoms in the process. Balance
equation:

(Q:0.01158)(P:0.32396)

[3] . When an equation is unbalance,
we have to add the same molecule
to both sides so they will balance.

In this case, we need to add
equal number of oxygen atoms to both

sides. The overall reaction is:
(Q:0.53122)(P:0.24138)

[0] CH_{4} + 2CO_{2}
+ 4 H_{2}O, This

now balances the equation.
(Q:0.01760)(P:0.25560)

[2] CH_{4} + /Box O_{2}
-> 2CO_{2} + 4H_{2}O Since,
CH_{4} has 4 Hydrogen and

1 Carbon atoms. Hence,
(Q:-0.27509)(P:0.59783)

[1] carbon atom reacts with 4
oxygen atoms. Therefore, 2CO_{2} will have

4 oxygen atoms. So equation will
be: CH_{4} + 4 O_{2} ->

2CO_{2} + 4H_{2}O The answer is
D.

(Q:0.19991)(P:0.49764)

[0] it will need 2
Oxygen atoms just to balance

the O atoms. The answer
is B</s>

(Q:-0.84370)(P:0.32001)

[29] . First, we need to
check which element is missing on

both sides of the equation. We
know that oxygen (O) is missing

on the left side.
(Q:1.73437)(P:0.39171)

[2] We figure this out because
on the right side, 2(CO2) means

4(O) and 4(H2O) means 8(O), which
is more oxygen than what is
needed to fulfill the 2(CO2).

(Q:0.17238)(P:0.33288)

[0] Therefore, the left uses 1(O) twice, for
a total of 2(O). Second, we must find

out how many oxygen molecules are needed to
get a balanced equation. We balance by adding

the same thing to both sides that can
be multiplied the same on each side. In

this
(Q:0.03162)(P:0.23481)

[1] Next, we need to determine if CH4
is a limiting reagent. A limiting reagent is
the reactant that is mostly likely to run
out before all of the products can be

made. This is important because we need to
find out how many times we need to

multiply the number of moles of oxygen
(Q:-0.01939)(P:0.38211)

[33] So we need to find
the number of oxygen atoms we

can get from the right side
and place that many on the

left side.
(Q:1.16743)(P:0.35560)

[22] 2CO2 has a total of 4
oxygen atoms. So, we can place 4
oxygen atoms on the left side and

balance the equation. The equation is now:
CH4 + 4O2 -> 2CO2 + 4H2O.

The answer is D.</s>
(Q:1.17833)(P:0.63351)

[5] On the right side, we have
2 molecules of carbon dioxide (CO2) and

4 molecules of water (H2O). Each molecule
of carbon dioxide has 2 oxygen atoms,

so 2 x 2 = 4 oxygen
atoms from the carbon dioxide

(Q:0.05621)(P:0.76038)

[2] . Each molecule of water has 1
oxygen atom, so 4 x 1 = 4

oxygen atoms from the water. So, we can
place 4 oxygen atoms from the right side

on the left side. Now, we have a
balanced equation on the left side, which means

we have the right
(Q:0.28120)(P:0.57643)

[1] number of elements with the right
atomic weights. So, we can add 4

molecules of oxygen gas (O2) on the
left side. The final equation is: CH4

+ 4O2 -> 2CO2 + 4H2O The
answer is D.</s>

(Q:1.30184)(P:0.55775)

[0] number of each element on
both sides. The left side has
4 oxygen atoms, so we need

2 molecules of oxygen gas (O2)
to complete the reaction. The answer

is B.</s>
(Q:-0.74346)(P:0.58410)

[0] . Each molecule of water has 2
hydrogen atoms and 1 oxygen atom, so 4

x 1 = 4 oxygen atoms from water.
A total of 4 oxygen atoms is available
from the right side. Now, we need to
place 2 oxygen atoms on the left side

of the equation
(Q:-0.08359)(P:0.63161)

[5] . The chemical formula for
methane gas is CH4. The chemical

formula for oxygen gas is O2.
The chemical formula for carbon dioxide

is CO2. The chemical formula for
water is H2O.

(Q:0.31012)(P:0.81115)

[2] To balance this equation, we need
to determine the ratio of the number

of molecules of O2 to the number
of molecules of CO2 and H2O. On
the left side of the equation, we
have 1 molecule of CH4 and x

molecules of O2.
(Q:0.09074)(P:0.80392)

[1] On the right side of the
equation, we have 2 molecules of CO2

and 4 molecules of H2O. To balance
the number of molecules, we need to

have 2 molecules of CO2 for every
1 molecule of CH4, and we need

to have
(Q:-0.02205)(P:0.81702)

[0] On the right side of the
equation, we have 2 molecules of CO2

and 4 molecules of H2O. Since the
coefficient of CO2 is 2 and the

coefficient of H2O is 4, the ratio
of the number of molecules of O2

to the number of
(Q:-0.04654)(P:0.79002)[2] To balance this equation, we need

to compare the number of oxygen atoms
on the two sides. There are 4

oxygen atoms on the right side of
the equation. Therefore, we need 4 oxygen

atoms on the left side of the
equation to properly balance the equation.

(Q:-0.71715)(P:0.59589)

[0] Since each oxygen molecule
contains 2 oxygen atoms, we

need 2 O2 molecules. The
answer is B.</s>

(Q:-0.76463)(P:0.71485)

[1] Since each oxygen atom
consists of 2 atoms (O2),
we need 2 molecules of

oxygen gas (O2). The answer
is B.</s>

(Q:-0.77903)(P:0.74965)

Tree Visualization

Figure 7: Example of the result search tree of the same science question as in Figure 5. Here, we use the policy after
preference learning and set the search breadth as b1 = 4, b2 = 2.
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[49] <s>
(Q:0.00000)(P:-1.00000)

[6] The bakers baked 200 loaves
of bread in total. They sold

93 loaves in the morning and
39 loaves in the afternoon, so

they sold 93 + 39 =
132 loaves.

(Q:0.74724)(P:0.87045)

[0] A grocery store returned
6 unsold loaves, so they

have 200 - 132 +
6 = 78 loaves left.

(Q:0.02081)(P:0.79960)

[2] They also returned 6
unsold loaves, so they had

132 - 6 = 126
loaves left.

(Q:-0.88117)(P:0.89317)

[1] Therefore, they had
126 loaves of bread
left. The answer is:

126</s>
(Q:-0.89611)(P:0.95100)

[0] The answer
is: 126</s>

(Q:-0.90947)(P:0.96013)
[3] After selling, they had 200

- 132 = 68 loaves of
bread left. The grocery store returned

6 unsold loaves, so they had
68 + 6 = 74 loaves

of bread left.
(Q:1.18816)(P:0.89653)

[2] The answer
is: 74</s>

(Q:1.06829)(P:0.99951)

[3] The bacon factory produced
200 - 93 = 107

loaves on Monday. Then they
produced 200 - 39 =

161 loaves on Tuesday.
(Q:-0.06717)(P:0.47814)

[0] So the company baked
a total of 107 +

161 = 268 loaves of
bread.

(Q:0.00192)(P:0.62347)

[0] They had 161 +
107 - 6 = 252

- 6 = 246 loaves
on hand They have 246

loaves of bread left.
(Q:-0.01176)(P:0.51426)

[2] They have 107
+ 161 - 6

= 254 loaves left.
(Q:-1.01392)(P:0.71103)

[1] The answer
is 254</s>

(Q:-1.00238)(P:0.99992)

[30] They sold 93 loaves in
the morning and 39 loaves in
the afternoon, so they sold a

total of 93 + 39 =
132 loaves of bread.

(Q:1.44411)(P:0.84845)

[11] So, they have 200 -
132 = 68 loaves of bread

left. The grocery store returned 6
unsold loaves, so they have 68

+ 6 = 74 loaves of
bread left.

(Q:1.13120)(P:0.80345)

[10] The answer
is: 74</s>

(Q:0.99283)(P:0.99903)

[2] The grocery store returned 6
unsold loaves, so the total number

of loaves of bread they did
not sell is 132 + 6

= 138 loaves.
(Q:-0.49569)(P:0.65347)

[0] They started with 200 loaves
and sold 138 loaves, so they

have 200 - 138 = 62
loaves of bread left. The answer

is: 62</s>
(Q:-0.99298)(P:0.93236)

[1] They baked 200 loaves of bread,
so the total number of loaves of

bread they had from the beginning is
200. To find the number of loaves
of bread they had left, we subtract
the number of loaves they did not

sell from the total number of
(Q:-0.07920)(P:0.77642)

[21] They had 200 loaves
baked and sold 132 loaves,

so they had 200 -
132 = 68 loaves of

bread left.
(Q:1.14610)(P:0.89809)

[15] The grocery store returned
6 unsold loaves, so they

had 68 + 6 =
74 loaves of bread left.
The answer is: 74</s>
(Q:1.08365)(P:0.98273)

Tree Visualization

Figure 8: Example of the result search tree of a GSM8K question “The bakers at the Beverly Hills Bakery baked
200 loaves of bread on Monday morning. They sold 93 loaves in the morning and 39 loaves in the afternoon. A
grocery store returned 6 unsold loaves. How many loaves of bread did they have left?”. The example solution is
“The Bakery sold 93 + 39 = 132 loaves. The Bakery made 200 loaves and sold 132, leaving 200 - 132 = 68 loaves
remaining. The grocery store returned 6 loaves, so there were 6 + 68 = 74 loaves left.”. The policy we use here is
the one only tuned for 1 epoch on SFT training data. We conduct MCTS with breadth b1 = 5, b2 = 3. Duplicate
generations are merged into one node.

[46] <s>
(Q:0.00000)(P:-1.00000)

[3] The bakery baked 200 loaves of
bread on Monday morning. They sold 93

loaves in the morning and 39 loaves
in the afternoon, so they sold a

total of 93 + 39 = 132
loaves.

(Q:0.25430)(P:0.93239)

[2] They also had 6 loaves returned
by the grocery store. To find out

how many loaves of bread they have
left, we need to subtract the loaves

they sold and the returned loaves from
the total number of loaves baked.

(Q:-1.05085)(P:0.79282)

[0] 200 - 132 +
6 = 78 The bakery

has 78 loaves of bread
left. The answer is: 78</s>

(Q:-1.07053)(P:0.84111)

[1] So, 200 - 132
- 6 = 62 Therefore,

they have 62 loaves of
bread left. The answer is:

62</s>
(Q:-1.07033)(P:0.91906)

[0] A grocery store returned 6
unsold loaves, so the total number

of loaves they have left is
200 - 132 + 6 =

88 loaves.
(Q:-0.02430)(P:0.80175)

[0] A grocery store returned 6
unsold loaves, so they had 132

- 6 = 126 loaves left.
Therefore, the bakery had 200 -

126 = 74 loaves of bread
left.

(Q:-0.03073)(P:0.89432)

[3] They had 200 - 93
= 107 loaves left after the

morning sales. They had 107 -
39 = 68 loaves left after

the afternoon sales.
(Q:-0.52703)(P:0.86016)

[2] They had 68 -
6 = 62 loaves of

bread left after the grocery
store returned the unsold loaves.

(Q:-1.05568)(P:0.80182)

[1] The answer
is 62</s>

(Q:-1.06738)(P:0.99711)

[30] After the morning sales, they
had 200 - 93 = 107

loaves of bread left. After the
afternoon sales, they had 107 -

39 = 68 loaves of bread
left.

(Q:1.65898)(P:0.80497)

[34] After the grocery store
returned the loaves, they had

68 + 6 = 74
loaves of bread left.

(Q:1.13097)(P:0.91597)

[28] The answer
is 74</s>

(Q:0.98327)(P:0.99718)

Tree Visualization

Figure 9: Example of the result search tree of the same GSM8K question as in Figure 8 with the same search
breadth. We use the policy tuned after 3 epochs to sample the generations.
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