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ABSTRACT

We propose Holmex, a method for human-guided spurious correlation detection and
black-box model fixing. Holmex provides a way for humans to be easily involved
in the deep model debugging process, which includes 1) detecting conceptual
spurious correlation in training data and 2) fixing biased black-box models by
white-box models. In the first step, we leverage pre-trained vision-language model
to construct separable vectors for some high-level and meaningful concepts, and we
further propose a novel algorithm based on concept vectors that is more stable than
previous methods. In the second step, unlike previous works, we do not constrain
the original biased model to be interpretable and editable. Instead, Holmex is
compatible with arbitrary black-box models. To this end, we propose transfer
editing, a novel technique that can transfer the revision in interpretable models to the
black-box models to correct their spurious correlations. Extensive experiments on
multiple real-world datasets demonstrate the effectiveness of Holmex in detecting
and fixing spurious correlations. The source code and datasets can be found in
https://anonymous.4open.science/r/Holmex-15DF.

1 INTRODUCTION

Developing effective deep models for real-world problems is non-trivial, especially when the models
make mistakes due to reliance on spurious correlations (Abid et al., 2022; Koh et al., 2020; Yuksek-
gonul et al., 2022). For example, using human face images from the web to classify gender might
lead to a model with the stereotype that a person with long or special hair is more likely to be a
woman. The developer needs to first find out the reason of hairstyle, and then fix it. In the common
procedure, detecting the reason causing such mistake requires careful investigations on the model and
training data, and deep understandings of the task, since the deep model is usually a black box. Thus,
this detecting process is costly and difficult even for developers with rich machine learning expertise.

Moreover, after finding out the reason, fixing these mistakes is also challenging when not enough
complementary data are available, and human knowledge becomes the ground to fix the mistake. This
is the typical situation in the healthcare domain. Consider the scenario where chest X-rays are used to
build a model to predict pneumonia. The model might lean on some spurious features caused by the
data collection process, such as hospital-specific features (Zech et al., 2018). Further collecting data
from another hospital is obstructed due to the high sensitivity of health data, so leveraging medical
knowledge from doctors is necessary here. However, the gap between knowledge from doctors and
the desired behaviors of the model is quite large. Filling the gap requires the developer to first fully
understand medical knowledge and also tune the model very carefully. Overall, involving humans in
the loop of deep model debugging and fixing is both knowledge-intensive and time-consuming.

In this paper, we introduce Holmex to tackle the above two difficulties of detecting and fixing. Holmex
is a method for Human-guided spurious cOrrelation detection and bLack-box ModEl fiXing. The two
steps of detecting and fixing pose two requirements for our method, i.e., interpretability and editability.
Specifically, our method should first detect and present correlations in the dataset to humans in an
understandable and friendly way, and then provide an intuitive and easy-to-use method to fix the
biased model. Note that Holmex aims at enabling humans to easily conduct spurious correlation
detection and model fixing. Thus, humans determine what is a spurious correlation and where fixes
are needed, while Holmex provides a convenient means of detection and fixing for humans.
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For the first requirement about interpretability, we focus on concept-based methods, as they can
provide human-friendly high-level conceptual interpretation. Finding the vector which represents a
concept (e.g. “gender”, “cat”) in the embedding space is key to these methods. Early works (Kim
et al., 2018; Abid et al., 2022) use some auxiliary datasets to build concept vectors, which is inflexible.
Recent work (Yuksekgonul et al., 2022) leverages CLIP (Radford et al., 2021) to obtain concept
vectors by encoding concept texts using CLIP’s text encoder, and then simply use weights of the
linear probe layer as correlations between concepts and labels. We show that raw text embeddings of
concepts are entangled, and the above interpretations via weights of the linear layer are unstable. To
address these issues, we propose a new concept vector by subtracting a vector of a background word.
Also, we design a novel detecting algorithm to stably reveal correlations between concepts and labels.

About model fixing, different from previous works (Koh et al., 2020; Yuksekgonul et al., 2022;
Bontempelli et al., 2023), Holmex does not constrain the original model to be interpretable, and it can
be an arbitrary black-box model which is suitable for the problem. This setting is more practical and
flexible since a large number of eep learning models are not specially designed to be interpretable. To
this end, we propose the Transfer Editing technique that can transfer the revision in white-box models
(i.e., interpretable models) to black-box models. Since those white-box models can be concept-level
models, we can conduct concept-level fixing for black-box models. The contributions of this paper
can be summarized as follows.

• For detecting, we improve the entangled raw text embeddings of concepts by subtracting a vector of
the background word. Besides, we propose a novel detecting algorithm to stably reveal correlations
between concepts and labels.

• For fixing, we propose the transfer editing technique that can transfer the revision made by humans
in white-box models to black-box models, enabling black-box model fixing.

• Extensive experiments on multiple datasets with different biases (i.e., co-occurrence bias, picture
style bias, and class attribute bias) are conducted to show the effectiveness of Holmex.

2 RELATED WORK

Interpretable Deep Models with Concepts Testing with Concept Activation Vectors (Kim et al.,
2018) first proposed to interpret neural network’s representations with high-level human-friendly
concepts, such as “cat”, and “brightness”. Some subsequent research improves concept-based
methods by aligning neurons with concept (Ribeiro et al., 2016; Koh et al., 2020; Chen et al., 2020),
using large language models to generate concepts (Yang et al., 2023; Menon & Vondrick, 2022),
incorporating vision-language model for better interpreting (Oikarinen et al., 2022; Oikarinen &
Weng, 2022). These works focus on building interpretable deep models or explaining black-box
models, while Holmex aims at both detecting and fixing for model development.

Bias/Error Detection Detecting model bias or error is critical for building robust models. Saliency
map(Itti et al., 1998; Petsiuk et al., 2018; Wang et al., 2020; Zhang et al., 2021) is a kind of widely
used visualization tool for explaining model behaviors and can be used for bias or error detection.
This kind of method generally reflects the degree of importance of a pixel. Therefore, they cannot
give high-level interpretations, like concepts. Conceptual Counterfactual Explanation (CCE) (Abid
et al., 2022) combines concepts with counterfactual explanation methods (Wachter et al., 2017;
Laugel et al., 2019; Mothilal et al., 2020), which use counterfactual examples for model interpretation.
CCE interprets by correcting a mistake instance with concept level adjusting. CCE and many other
detection works (Koh & Liang, 2017) are instance-level detection methods and also require instances
in testing data. However, our method leverages human knowledge, which does not need any testing
data and can provide a class-level interpretation.

Model Fixing Model fixing focuses on removing model errors. Some of them are designed to fix inter-
pretable models. Specifically, Concept Bottleneck Model (CBM) (Koh et al., 2020) has a bottleneck
layer where neurons are aligned with concepts. It can be edited by changing weights between concept
bottleneck layer and the final prediction. Besides, prototypical part network (ProtoPNet) (Chen et al.,
2019) focuses on finding prototypical parts and also supports debugging (Bontempelli et al., 2023).
Those editing methods can only be used in their specially designed white-box models, but our method
does not have constraints on the model type.
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Domain adaptation (Farahani et al., 2021) can also be viewed as another branch of work for model
fixing. These methods include invariant risk minimization (Arjovsky et al., 2019), domain adversarial
neural network (Ajakan et al., 2014), gradient matching (Shi et al., 2021), and so on. Besides, instance
reweighting (Amini et al., 2019) is a method that fixes bias by putting low importance on the samples
that contain bias. A more recent work DISC (Wu et al., 2023) is a concept-level debugging method.
However, these methods learn the bias by mining invariant features among different domains and they
cannot help when we only have one domain. In contrast, our method incorporates human knowledge
and is for the scenario when there is only one domain.

3 BACKGROUND

Concept Bottleneck Model (CBM) CBM (Koh et al., 2020) is a kind of interpretable deep model
where one internal layer’s neurons align with human-friendly concepts. CBM maps an input data
x to a concept hidden layer zc = g(x) ∈ Rm and bases predictions on these concept neurons,
y = f(zc). CBM needs the ground truth concept annotations for training. Suppose training data
is {(xi, yi,y

c
i )|i ∈ [n]} where yc ∈ Rm are labels for concepts. Then, its loss function can be

denoted as L = Lp(f(zi), yi) + λLa(zi,y
c
i ), where two terms are for label predicting and concept

hidden layer constructing, respectively. To eliminate the need for concept annotations, a recent work
called Post-hoc CBM (PCBM) (Yuksekgonul et al., 2022) uses a pre-trained vision-language model
(illustrated below) to provide concept vectors.

Contrastive Language-Image Pre-training (CLIP) Pre-trained CLIP model builds the connection
between languages and images, enabling zero-shot transfer to downstream tasks. CLIP has a text
and a vision encoder, and they are optimized via contrastive learning. CLIP predicts the class
label by calculating similarities between the embedding of label texts and images. Suppose there
are k candidate classes like {‘cat’, ‘dog’,..., ‘airplane’}. CLIP maps those label words to some d
dimensional embedding vectors, which are {tcat, tdog, . . . , tairplane}, using its text encoder. For a given
image x, CLIP maps it to an embedding vector z ∈ Rd using the image encoder, and then makes a
prediction as follows.

p(y = cat | z) = exp(t⊤catz)

exp(t⊤catz) + exp(t⊤dogz) + · · ·+ exp(t⊤airplanez)
(1)

Thanks to the large amount of training data and large model that CLIP used, the performance of CLIP
in a zero-shot setting is still quite well, which makes the possible to extract concepts from CLIP.

Figure 1: Illustration of detecting the spurious correlation in training data and black-box model fixing.

4 DETECTING SPURIOUS CORRELATIONS IN TRAINING DATA

In this section, we present how Holmex can help detect the spurious correlation in training data,
which is shown in the left part in Figure 1. Holmex provides interpretable information on correlations
between concepts and each class label. Then, humans can check if some unreasonable concepts have
too strong correlations in the classification model, and thus detect spurious correlations.
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Generally, the detecting process can be divided into two steps, i.e., constructing concept vectors and
revealing the correlations between concepts and labels. They are illustrated in the following two
subsections, respectively. For better understanding, we will discuss our method under a detailed task
shown in Figure 2.

4.1 CONSTRUCTING CONCEPT VECTORS

Figure 2: Samples in training and testing data. The
keyboard images in the training set always contain
a cat, while there is almost no cat appearing in
testing keyboard images. So the concept “cat” is
the spurious concept for the class “keyboard”.

The basic idea is to leverage CLIP to construct
concept vectors. Suppose there is a concept vo-
cabulary that contains m concept words, and let
{t1, t2, . . . , tm} be the CLIP text embeddings
of them. x denotes an image and z ∈ Rd is
the CLIP image embedding of x. The previous
work (Yuksekgonul et al., 2022) uses raw text
embeddings as concept vectors and uses t⊤i z
to indicate the activation of concept i shown in
the image. Following Yuksekgonul et al. (2022),
we also do not apply any prompt like “a photo
of {}”. Since Eq. (1) can be a good classifier
among those concepts, it seems natural to use ti
as the concept vector. However, we shall argue
its issues as follows.

4.1.1 DISADVANTAGES
OF RAW TEXT EMBEDDING

We find that the raw text embedding ti cannot
disentangle those concepts well. As shown in
Figure 3(a), “cat” and “airplane” seem to be two
irrelevant words, while the cosine-similarity be-
tween their text embeddings is about 0.74 which
is quite large. Furthermore, we conduct a model
editing experiment based on raw concept vectors. We train a linear layer after the concept activation
layer composed by t⊤i z, i ∈ [m], and then edit the model via setting weights of the spurious concept
in the linear layer to 0. The experiment details can be found in Appendix A.1 and we report the
average results in Table 1. The performance degeneration after model editing further demonstrates
that the raw text embeddings are not good concept vectors.

4.1.2 SUBTRACTING A BACKGROUND CONCEPT VECTOR

The above issues are alleviated by our proposed concept vectors, which are derived by incorporating
embeddings from CLIP into the method in TCAV (Kim et al., 2018). Concept vectors in TCAV
are obtained by training a binary linear classifier to distinguish between activations produced by a
concept’s example images and other images in the bottleneck layers of a network, and then using the
weight of the linear classifier as the concept vector of the corresponding concept. Here, we leverage
CLIP to build such binary classifier. For instance, if we want to use CLIP to decide whether an image
has the concept “cat”, we should use at least two words, “cat” and a background word. Here, we
discuss more about the background word.

Background word The principle of choosing the background word is that the background word
should not be relevant to any concept words. Thus, we should use a meaningless word that does not
imply any specific entity. We make an ablation study in Appendix B, and we find that using words
like “other”, “a”, “that”, “else” have similar performance on the downstream tasks. In the following
context, we just choose the “other” as the background word.

After we choose a background word, CLIP decides the score of the “cat” concept as follows.

p(y = cat | z) = exp(t⊤catz)

exp(t⊤catz) + exp(t⊤otherz)
= σ((tcat − tother)

⊤z),
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(a) concept vector ci = ti (b) concept vector ci = ti − tother

Figure 3: The cosine-similarity between concept vectors. On the left is the result when we just use
the raw text embedding as the concept vectors, e.g. ccat = tcat. On the right is the result when we use
our purposed concept vectors, e.g. ccat = tcat − tother. The CLIP model we used is ViT-B/32. Similar
results when using different CLIP models are shown in Figure 6.

where σ is the sigmoid function. We notice that σ((tcat − tother)
⊤z) is the classification result for the

bottleneck layer z, and tcat − tother is the classifier weights. Thus, we suggest using tcat − tother as the
concept vector. To illustrate the advantages of our proposed concept vectors, we first show in Figure 3
that our concept vectors have better disentanglement for those concepts that are pretty different from
each other. Second, we conduct the same model editing experiment as the last subsection with our
proposed concept vectors. Results in Table 1 show that by using the subtracted concept vectors, we
can improve model performance by editing.

Table 1: The testing accuracy before and after editing when we use different concept vectors.
Concept vector ci = ti (Ours) ci = ti − tother

Editing before after increase before after increase

Average accuracy 84.17% 71.64% -12.53% 83.62% 84.67% 1.05%

4.2 REVEALING CORRELATIONS BETWEEN CONCEPTS AND LABELS

After obtaining the concept vectors, we use them to reveal correlations between concepts and labels
in data to humans. A straightforward way adopted by Yuksekgonul et al. (2022) is to use the weight
of the linear classifier built in the concept activation layer. Specifically, the concept activation layer
zc ∈ Rm consists of the activations of all concepts zc

i = c⊤i z, i ∈ [m], where z is the embedding
from CLIP image encoder of the input x and ci is the ith concept vector. Then the weight matrix
W ∈ Rk×m in the final softmax function softmax(Wzc) for multiclass classification is considered
as the correlation matrix between class labels and concepts. However, we show that such a method
may not output stable interpretations based on the following facts.

Fact 1 (Multicollinearity of zc) When m is larger than the embedding dimension d, some concept
vectors must be linearly dependent, and zc must be multicollinear (Gujarati & Porter, 2003). Such
multicollinearity makes the learned weight matrix W non-identifiable, which means there exist at
least two different W leading to the same loss when learning softmax(Wzc).

In practice, the embedding dimension d is usually pre-defined1 while we often need to test a large
number of candidate concepts due to potential unknown bias. Thus, it is very common that m > d.

Fact 2 (Invariance to Constant Shift) For any constant vector β ∈ Rm, W and W ′ = W +
[β,β, . . . ,β]⊤ have the same training loss when learning softmax(Wzc).

1In CLIP, the embedding dimensions of ViT-B/32 and ViT-L/14 are 512 and 768, respectively.
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Both Fact 1 and Fact 2 imply that using the learned weight matrix W to reveal correlations between
class labels and concepts may not give us stable interpretations, as there often exists multiple
equivalent weight matrices when learning softmax(Wzc). Note that if we sort concepts for a
specific class label, the importance rank of concepts may vary for two equivalent but different W .

We give two examples in Table 6 and 7 in the Appendix to illustrate the two kinds of instability risks
caused by Fact 1 and Fact 2, respectively.

4.2.1 STABLE DETECTION OF CORRELATIONS

Algorithm 1 Detecting spurious concepts
Require: m concept vectors ci = ti − tother, i ∈ [m]
Require: Training data S = {(xj , yj) | j ∈ [n]}
Require: Embeddings zj = encoder(xj) ∈ Rd

Train linear model:
1: Obtain W ∈ Rk×d by training the multiclass logis-

tic regression model softmax(Wz) on S
Record interpretations:

2: recorder ← {} ▷ a list for recording
3: for i ∈ [m] do ▷ iterate through all concepts
4: ζi ← argmaxl c

⊤
i wl ▷ concept ci correlates

most with class ζi
5: αi ← c⊤i wζi − 1

k

∑k
l=1 c

⊤
i wl ▷ correlation

strength
6: Add tuple (ci, ζi, αi) to recorder
7: end for
8: Let humans check if there are spurious correlations

in recorder

To stabilize the detected correlation between
class labels and concepts, we propose a novel
method shown in Algorithm 1 to address the
above issues. In general, we do not use the con-
cept activation layer zc and the weight of the lin-
ear layer upon it to reflect correlations. Instead,
we directly use the image embedding z as the
feature vector to train a multiclass logistic model
softmax(Wz), and treat wl (the lth row of W )
as the representation of the lth class, similar to
existing methods such as TCAV (Kim et al.,
2018). Then we use c⊤i wl − 1

k

∑k
l′=1 c

⊤
i wl′

as the correlation between concept i and class
label l. The advantages are as follows.

• Using z instead of zc can avoid the multi-
collinearity issue in Fact 1.

• The calculated correlation c⊤i wl −
1
k

∑k
l′=1 c

⊤
i wl′ stays the same even when we

add a constant shift β ∈ Rd to all the wl’s. Therefore, the issue caused by Fact 2 is also resolved.

As human checking may still be costly, for each concept i, we only care about the class label ζi that i
benefits the most (line 2∼7). After figuring out every concept’s most correlated class and correlation
strength, we let human experts check if there are spurious correlations and detect spurious concepts.
For example, if we find the concept “cat” can benefit class “keyboard” with extremely large strength,
then people can detect this spurious concept. An example of the recorder produced by Algorithm 1
for the task in Fig. 2 can be found in Fig. 9 and Fig. 10 in Appendix.

5 BLACK-BOX MODEL FIXING

With spurious correlations detected in the last section, we now present the transfer editing technique,
enabling fixing arbitrary black-box models via transferring the revision in white-box models to
black-box models. This is illustrated in the right part in Figure 1.

5.1 TRANSFER EDITING

As illustrated in Figure 1, transfer editing contains two steps. The first one is building two white-box
models to capture the influence of removing the spurious correlation. The second step is transferring
the difference between the two while-box models to the biased black-box model to fix it.

Step 1: Build unbiased and biased white-box models. The first step is shown in Figure 4. Instead
of achieving good quantitative model performance, our goal in this step is capturing the influence
of removing the bias (spurious correlation). The spurious concept is detected by humans with the
assistance of our detecting process, so the editing direction is guided by humans. The two white-box
models we adopt are built by frozen CLIP backbone and linear function based on concept activation
layers zc. For the white-box model without bias, we only use the class labels as concepts. For
the white-box model with bias, we also include the spurious concept in the concept set. To further
boost our method, we give some practical suggestions on the choices of the two white-box models in
Appendix C.3.
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Figure 4: Illustration of two white-box models used to capture the influence of removing the spurious
correlation in the task shown in Figure 2.

Step 2: Transfer the difference. In the second step, we move the difference in logits of the two
white-box models to the target black-box model. Specifically, let yc(x) and y′c(x) be the output
before the final softmax function, i.e., logits, of the white-box model with bias and without bias,
respectively, and yb(x) be the logits of any black-box model which is also trained on the same training
data. Since those three models are all for the same task, their logits are in the same space and can
be linearly combined. The goal is to transfer the difference between the two white-box models to
the black-box model. Therefore, we simply use ∆ = y′c(x)− yc(x) to capture effect caused by the
spurious correlation. Then, adding ∆ to yb(x), which results in yb(x) + ∆, can remove the effect of
bias in the black-box model.

Why logit space instead of probability space? There are two design principles of modifying yb by
yc and y′c: (1) the output should be a valid probability distribution p = [p1, . . . , pk] where pi ≥ 0, for
i ∈ [k], and

∑
pi = 1; and (2) when y′c = yc, the final output should be the same as the black-box

model’s original output. We have tried several other plans such as operating in the probability space.
However, only the method described in Step 2 of Transfer Editing satisfies those two design principles.
More explanations are put in Appendix C.1.

The scale of logits. Suppose we have two models f(x) and g(x) = cf(x). Then f(x) and g(x) have
the same argmax prediction, while f(x) + ∆ and g(x) + ∆ may have different argmax predictions.
Although f(x) and g(x) have the same argmax prediction, their probability distributions over class
labels are different. Note that the distribution over classes indicates the confidence that a sample
belongs to a specific class. One important intuition is that a normal model should output a proper
probability distribution over class labels. As a result, if the model does not output probabilities too
different from the proper ones, applying yb +∆ should keep logits on the right scale. We discuss this
more in Appendix C.2.

5.2 COMBINING TRANSFER EDITING AND ENSEMBLE

Ensemble is a useful machine learning technique that also combines different models similar to
transfer editing. Here, we first explain their difference, and further provide a way to combine them.
The success of ensemble learning relies on the good performance and diversity of the base models,
while transfer editing works due to bias removal with the help of human prior knowledge. Moreover,
ensemble learning and transfer editing can be combined as follows. We first ensemble the black box
yb(x) and the white box with bias yc(x) by model averaging. Since both yb(x) and yc(x) contain
the spurious correlation in training data, the ensemble of those two models should also remain biased.
Thus, we can further apply transfer editing ∆ to get a better result. In Appendix C.4, we show that
ensemble before and after transfer editing are equivalent.

6 EXPERIMENTS

We test three different types of bias for comprehensive experiments listed below. More details about
the datasets can be found in Appendix D.

Co-occurrence bias. Following Yuksekgonul et al. (2022), we use the Meta-Shift dataset (Liang
& Zou, 2021) and construct eight classification tasks. In each task, there are five classes and one of
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them has spurious co-occurred entities in training data, while testing data contains no bias. Figure 2
shows an example that in each image of “keyboard”, there is always a cat nearby in training data.

Picture style bias. We use the Office-Home (Venkateswara et al., 2017) dataset to build two tasks
containing the bias of picture style. For the first task, in the training set, all the bike’s pictures are in
CLIP art style while the pictures of other classes are real-world images. In the testing set, pictures of
bike return to normal and others are changed to CLIP art style. The second task is also a similar task.

Class attribute bias. We use the Celeb-A (Liu et al., 2015) dataset which contains images of human
faces to build the gender classification task with class attribute bias. We build a task that in the
training set, all males have black hair while females have hair in other colors. In the testing set,
the attribute of hair color is reversed. This task implies a typical stereotype in real-world situations,
where a person with special hair is more likely to be a woman.

6.1 DETECTING SPURIOUS CONCEPTS

In this section, we compare our proposed detection method with other baseline approaches across
eight co-occurrence bias tasks. For all tasks and methods, we utilized the same concept vocabulary
collected from the Chinese college entrance examination English syllabus. We limit our focus to
verbs and nouns, resulting in a total of 1,953 words. The word list can be found in our source code
repository. We now introduce the compared methods and the metrics we used.

Methods in Comparison. The first baseline is PCBM (Yuksekgonul et al., 2022) which is the latest
and SOTA concept-level CLIP-based detection method. In PCBM, a linear model y = Wzc is learned
using training data, and zc ∈ R1953. PCBM uses the weight between the class (e.g. “keyboard”) and
every concept as the correlation strength. The second baseline is PCBM-improve, where after W
in PCBM is obtained, the weight between the concept and class minus the average weight of that
concept is used as the correlation strength. PCBM-improve keeps a consistent interpretation under
W and W + [β, . . . ,β]⊤ for any β ∈ Rm. The third baseline is Ours (raw embedding) which
is the same as ours except the concept vector is raw texting embedding. For all methods, we sort
concepts related to a class (e.g. “keyboard”) by correlation strength and present the sorted concept
list to humans.

Evaluation and Results. We sort the concepts related to a class (e.g. “keyboard”) by the correlation
strength and evaluate the results using the rank of the ground truth bias concept (e.g. “cat”). The
average results across all eight tasks are listed in Table 2. Our detecting method is the best among
all baselines. PCBM-based methods do not perform well since there are 1,953 concepts in this task,
much larger than the dimension of the embedding (i.e., 512). PCBM-improve is better than PCBM as
it addresses the second issue in section 4.2. Using raw embedding as the concept vector also causes
performance degeneration, as we expected.

Table 2: The average result among all eight tasks on detecting the spurious concept. The rank is
smaller, and the method is better. The detailed scores for each class are in Table 12 in the Appendix.

Method PCBM(SOTA) PCBM-improve Ours (raw embedding) Ours

average rank ± std 1128.7±342.7 317.9±326.0 74.4±255.2 16.7±5.4

6.2 FIXING BLACK-BOX MODELS

In this section, we test our proposed transfer editing technique on various black-model fixing tasks.
The experiments are conducted as follows: Initially, black-box models are trained on the training
sets outlined at the beginning of section 6. These models are influenced by spurious correlations, as
the training sets consist of such. Consequently, we train two white-box models and perform transfer
editing on the black-box model to fix it. We then test the accuracy on test sets that do not contain any
spurious correlations. The model details are described as follows.

Model Architectures. We describe model architectures by their backbone and the following classifier.
For all tasks, we used three backbones which are CLIP ViT-L/14, CLIP ViT-B/32 and ImageNet
(Deng et al., 2009) pre-trained Resnet50 (He et al., 2016). All the backbones are frozen and we
only build classifiers on the output embeddings of the backbone. The white-box models we used are
described in section 5.1, while the classifier for black-box models is an MLP.
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Results and Analysis. From the results in Table 3 and Table 4, we have the following findings.

(1) Transfer editing helps. Results show that the performance of yb +∆ is better than the original
black box yb. Table 3 reports results when using different backbones, indicating that transfer editing
remains beneficial regardless of the backbone used. Similar findings can be obtained from results
on tasks with style bias and attribute bias (Table 25 and 26 in Appendix). Besides, we try a fine-
tuned Resnet50 as our black-box model, and in this case, the performance of yb +∆ is still better
than yb, which means transfer editing is also helpful when black-box models are fine-tuned models
(Table 24 in Appendix). Moreover, we check the accuracy of the biased class and find that our method
dramatically increases its accuracy (Appendix D.3). To sum up, those results indicate that transfer
editing can help improve black-box models on various tasks and scenarios.

(2) Transfer editing is different from ensemble. Results show that transfer editing + ensemble
performs best among all methods. We also examine the results if we ensemble by λyb + (1− λ)yc
in Appendix D.5. Although results show λ = 1/2 is of course not always the optimal for different
datasets, we find that no matter which λ is used, the performance of λyb+(1−λ)yc+∆ is consistently
better than λyb + (1− λ)yc. These results indicate that transfer editing is different from ensemble
and can be used together to obtain a better performance. We do not discuss how to find the optimal λ,
since it is beyond the scope of this work. Besides, we also compare our method with zero-shot CLIP,
and it outperforms CLIP by 2% (Appendix D.4). Although zero-shot CLIP does not contain bias, it
cannot utilize the training data either.

Table 3: The testing accuracy for co-occurrence bias tasks when we use different black-box models.
yc y′

c
yb transfer edit transfer edit yb transfer edit transfer edit yb transfer edit transfer editViT-L/14 +ensemble ViT-B/32 +ensemble Resnet50 +ensemble

Average 0.8362 0.8681 0.8369 0.8795 0.8599 0.8271 0.8762 0.8383 0.8175 0.8770 0.8161

Task1 0.8580 0.9026 0.9049 0.9271 0.9249 0.8943 0.9237 0.8994 0.8746 0.9261 0.8880
Task2 0.7787 0.8402 0.7803 0.8435 0.8190 0.7693 0.8389 0.7922 0.7783 0.8492 0.7850
Task3 0.8117 0.8416 0.7872 0.8415 0.8079 0.7837 0.8434 0.8019 0.7781 0.8379 0.7741
Task4 0.8231 0.8289 0.8030 0.8349 0.8059 0.7957 0.8364 0.7943 0.7545 0.8253 0.7583
Task5 0.7911 0.8702 0.8009 0.8914 0.8662 0.7888 0.8816 0.8157 0.7909 0.8860 0.7660
Task6 0.8903 0.8982 0.8998 0.9138 0.9023 0.8734 0.9028 0.8771 0.8645 0.9130 0.8662
Task7 0.8824 0.8926 0.8773 0.9008 0.8873 0.8560 0.9001 0.8649 0.8479 0.8973 0.8519
Task8 0.8544 0.8703 0.8421 0.8831 0.8654 0.8554 0.8823 0.8606 0.8510 0.8812 0.8394

Table 4: Testing accuracy of Picture Style Bias and Class Attribute Bias. The backbone of white-box
and black-box are ViT-B and ViT-L.

yc y′
c yb

transfer edit transfer edit yb+yc
2

yb+y′
c

2

yb+yc+y′
c

3+ensemble

Picture Style Bias 0.9254 0.9458 0.9290 0.9752 0.9518 0.9549 0.9681 0.9551
Class Attribute Bias 0.9732 0.9819 0.9852 0.9883 0.9856 0.9860 0.9876 0.9857

More analytical experiments. (1) When black-box models do not suffer from bias. We conduct
the same experiment where we simply replace the biased training data with another training data that
does not contain spurious correlations. In this case, Transfer Editing fails to improve the black-box
models, so the conclusion is no bias results in no help. This experiment further supports that Transfer
Editing improves the model accuracy in the way of removing bias (see Appendix D.6). (2) When
using less training data for white-box models.Sometimes, accessing the entire training data may be
difficult or time-consuming. Thus, we consider the setting that we can only use 5% training data to
train white-box models. Under such circumstances, the performances of all white-box models are
worse than black-box models and our method can still work (see Appendix D.7). (3) When a part of
the data contains spurious correlations. In this experiment, 90% of the keyboard images have “cat”
as the spurious concept and the other 10% images are unbiased. We find that transfer editing still
works and beats another baseline under this setting. (see Appendix D.8)

7 CONCLUSION

In this paper, we present Holmex which can be helpful for humans in detecting the bias in the training
set and fixing any black-box models. Holmex constructs less entangled concept vectors compared
to previous works, and further employs a novel spurious correlation detecting algorithm that is
stable even when a large number of concepts are utilized. Moreover, we propose the transfer editing
technique that can transfer the revision in interpretable models to black-box models, enabling fixing
arbitrary black-box models. Experiments on real-world datasets well demonstrate that Holmex can
be helpful for deep model debugging and fixing in practical scenarios.
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A ISSUES OF PCBM

In this section, we illustrate issues of PCBM (Yuksekgonul et al., 2022) via some experimental
results.

A.1 ADVANTAGE OF OUR PROPOSED CONCEPT VECTORS

We first show that our proposed concept vectors can perform better than those of PCBM if we edit
CBM by erasing the weights of the spurious concept.

We treat each class label as a concept and we use in total six concepts, including all class labels as
well as the spurious concept. Then we map each image to image embedding by CLIP image encoder
and map the image embedding to six concept neurons by dot-product with those concept vectors. To
further make a classification prediction, we use a linear weight that maps those six concepts to five
classes. Figure 5 shows the weight after training and editing under the task in Figure 2.

(a) concept vector ci = ti − tother, before editing (b) concept vector ci = ti − tother, after editing

(c) concept vector ci = ti, before editing (d) concept vector ci = ti, after editing

Figure 5: Weight matrix before and after editing. We edit the model by setting the weight of the
spurious concept as 0. The y-axis corresponds to classes, and the x-axis corresponds to concepts.
Here we use 6 concepts which are the text of labels and spurious concept cat.

We conduct experiments on eight tasks (the tasks’ information can be found in Table 10) to compare
the model performance before and after we remove the impact of the spurious concept. Table 5 shows
the results, where the model performance always degrades sharply after editing when using concept
vectors of PCBM. However, if we use our proposed concept vectors ci = ti − tother, removing the
impact of the spurious concept only compromise the testing accuracy a little or even can improve the
testing accuracy. Such results demonstrate the advantage of our proposed concept vectors compared
to the concept vectors of PCBM.
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Table 5: The testing accuracy before and after editing when we use different types of concept vectors.
All experiments are averaged on five random seeds. The CLIP model we use is ViT-L/14.

Concept Vector ci = ti − tother ci = ti

editing before after increase before after increase

Average 83.62% 84.67% 1.05% 84.17% 71.64% -12.53%

Task1 85.80% 90.42% 4.62% 85.78% 71.48% -14.30%
Task2 77.87% 81.93% 4.06% 78.78% 69.89% -8.89%
Task3 81.17% 79.38% -1.79% 81.58% 72.13% -9.45%
Task4 82.31% 79.57% -2.74% 82.21% 70.67% -11.54%
Task5 79.11% 83.97% 4.86% 82.15% 71.04% -11.11%
Task6 89.03% 87.94% -1.09% 89.02% 74.67% -14.35%
Task7 88.24% 88.80% 0.56% 88.39% 74.23% -14.16%
Task8 85.44% 85.35% -0.09% 85.44% 69.01% -16.43%

A potential reason for the superiority of our proposed concept vectors is that our concept vectors
can better distinguish between different concepts, as reported in Figure 3. To further verify this, we
adopt another CLIP model to retest the disentanglement of concept vectors and report the results in
Figure 6, which are very similar to Figure 3.

(a) concept vector ci = ti (b) concept vector ci = ti − tother

Figure 6: The cosine-similarity between concept vectors. On the left is the result when we just use
the raw text embedding as the concept vectors, e.g. ccat = tcat. On the right is the result when we use
our purposed concept setting, e.g. ccat = tcat − tother. The CLIP model we use is ViT-L/14.

A.2 UNSTABLE PCBM DETECTION

We give two concrete examples showing that the detection by PCBM can be unstable. Table 6
presents two equivalent (w.r.t. training loss) but different weight matrices due to Fact 1. Table 7 is
an example of two equivalent (w.r.t. training loss) but different weight matrices due to Fact 2. Note
that in both Table 6 and Table 7, the two “equivalent” weight matrices lead to drastically different
interpretations of the importance of concepts to class labels.
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Table 6: An example of two weight matrices having the same training loss due to Fact 1. This
example illustrates the risk of linear dependency under PCBM detecting setting. We use the simplest
linear dependency setting where two concept vectors are identical. Here we assume the concepts
“feline” and “cat” are identical and as a result, the upper weight matrix and the lower weight matrix
have the same training loss. However, these two “equivalent” weight matrices have very different
interpretations. The upper weight matrix under PCBM setting implies that for the class “keyboard”,
the concept “cat” is very important while “feline” is not important at all. The lower weight matrix
indicates the opposite conclusion. Since linear dependency is inevitable when we want to detect
many more concepts, the detecting method in PCBM is not suitable for large concept sets.

Class
Concepts Tab key Fur engine feline cat . . . . . .

Airplane 1 -3 6 . . . . . . . . . . . .
Car 2 -4 8 . . . . . . . . . . . .
Cow -1 2 -3 . . . . . . . . . . . .
Dog 0 9 -1 . . . . . . . . . . . .
keyboard 8 3 1 1 99 . . . . . .

Airplane 1 -3 6 . . . . . . . . . . . .
Car 2 -4 8 . . . . . . . . . . . .
Cow -1 2 -3 . . . . . . . . . . . .
Dog 0 9 -1 . . . . . . . . . . . .
keyboard 8 3 1 99 1 . . . . . .

Table 7: An example of two weight matrices having the same training loss due to Fact 2. The lower
weight matrix is obtained by adding a constant vector β = (−100, 0, 0, . . . , . . . ) to each row of the
upper weight matrix. According to the softmax function, these two matrices have the same training
loss. If we directly use the weight to interpret the importance of a concept to a class label, the two
“equivalent” weight matrices give drastically different interpretations of how important the concept
“Tab key” is to the class “keyboard”, as the weight in the upper matrix is 8 and the weight in the lower
one is -92. This example again shows that directly using the weight for detection can be unstable.

Class
Concepts Tab key Fur engine . . . . . .

Airplane 1 -3 6 . . . . . .
Car 2 -4 8 . . . . . .
Cow -1 2 -3 . . . . . .
Dog 0 9 -1 . . . . . .
keyboard 8 3 1 . . . . . .

Airplane -99 -3 6 . . . . . .
Car -98 -4 8 . . . . . .
Cow -101 2 -3 . . . . . .
Dog -100 9 -1 . . . . . .
keyboard -92 3 1 . . . . . .

B THE BACKGROUND WORD

The principle of choosing the background word is that the background word should be not relevant
to the concept word. Thus we should choose those words that are meaningless. Here we consider
four words which are ‘other’, ‘a’, ‘that’, and ‘else’. We conduct the detection experiments on those
background words. The results in Table 8 shows that there are no dramatic difference between those
four words and they are all better than the case if we do not use any background words.
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Table 8: The performance of different background words. The average rank of spurious concept. The
number is smaller, the background word is better.

background word ‘other’ ‘a’ ‘that’ ‘else’ no background word

rank 16.7 21.9 25.2 16.5 74.4
std 5.4 40.7 46.4 4.6 255.2

We notice that in the segmentation area, (Li et al., 2022) used the background word “other” to perform
semantic segmentation. For example, suppose the three words [‘dog’, ‘tree’, ‘other’] are used, then
the pixels of dogs are assigned to the first class, pixels of trees are assigned to the second class and all
other pixels are assigned to the last class. Thus we choose the background word ‘other’ instead of the
word ‘else’ to keep the same setting as another research region.

Lastly, we also consider using the average embedding as the background word embedding. We
conducted an experiment to test such a background word for detection, where the average embedding
background achieves an average rank of 140 which is worse than “other” with an average rank of
16.7.

C BLACK-BOX MODEL FIXING

C.1 HOW TO COMBINE THE WHITE-BOX MODELS AND BLACK-BOX MODELS

There are two principles when we choose the combination of models.

• First, it should always output a valid probability distribution p = [p1, p2, p3, . . . , pk] where
pi ≥ 0, for i ∈ [k], and

∑k
i=1 pi = 1.

• Second, when y′c = yc, the final output should be the same as that of the black-box model.

Let y be the output in logit space and d = softmax(y) in the probability space. To give a final
probability output, we have the following choices.

1. Let yo = yb + yc′ − yc and we output do = softmax(yo). This method is what we adopt in
the paper and it satisfies both principles.

2. We first convert all model output to probability space and output d = db + dc′ − dc.
This method could not guarantee the first principle. Consider an example db =
(0.50, 0.49, 0.01), dc′ = (0.50, 0.50, 0.00), dc = (0.50, 0.48, 0.02), and d = db + dc′ −
dc = (0.50, 0.51,−0.01).

3. Let ∆ = yc′ − yc and d∆ = softmax(∆), we then output d = db + d∆. This one also
violates the first principle because

∑
pi = 2 in this method.

4. We output d = db+d∆

2 . This one violates the second principle. For example db =
(0.8, 0.1, 0.1),∆ = (0, 0, 0), then

d =
db + d∆

2
=

(0.8, 0.1, 0.1) + (1/3, 1/3, 1/3))

2
= (17/30, 13/60, 13/60) ̸= db

In summary, only the first one satisfies both principles, thus we adopt it.

C.2 THE SCALE OF LOGITS

Suppose we have two models f(x) and g(x) = cf(x), where c > 1. Then f(x) and g(x) have the
same argmax prediction, while f(x) + ∆ and g(x) + ∆ may have different argmax predictions.

Although f(x) and g(x) have the same argmax prediction, it does not mean that they are equivalent to
each other. This is because the probability distributions output by f(x) and g(x) are different. Please
note that the probability distribution indicates the confidence that a sample belongs to a specific class.
Consider a weather forecasting task where we want to output the probability of rainy and sunny.
Suppose f(x) = (0.1, 0), which means the prediction distribution is (0.525, 0.475). This means the
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model actually cannot predict whether it is going to rain or not with a very high confidence level
as the two probabilities are too close to each other. If g(x) = 100f(x) = (10, 0), the prediction
probability distribution becomes (0.999955, 0.000045), which means that the model thinks it is going
to rain with an extremely high confidence. Therefore, it is reasonable that f(x) and g(x) = cf(x)
could make different predictions after removing the effect of bias as the original confidence levels of
the two models are pretty different from each other.

We discuss more about the scale of logit. One important intuition is that a normal model should
output a proper probability distribution over class labels. For example, if there are 80% rainy samples
and 20% sunny samples for the same given input x in the training set, then a normal model will
output a probability distribution similar to (0.8, 0.2). Since the mapping between probabilities
and logits is bijective (if we ignore the constant shift), we can derive that the logits are roughly
(1.375 + constant, 0 + constant) based on the probabilities (0.8, 0.2). Thus, a normal model’s
logits can be roughly decided by the proper probabilities. As a result, if the model does not output
probabilities too different from the proper ones, applying yb +∆ should keep logits on the right scale.

C.3 OUR SUGGESTIONS ON THE TWO WHITE-BOX MODELS

We give some suggestions on the two white-box models for deriving the impact of removing spurious
correlations. Note that the two white-box models in the model fixing stage can be different from
the white-box used in the detection phase. In fact, to better derive the impact of removing spurious
correlations, we suggest using different white-box models in this stage.

Recall Figure 4. Once the white-box model without bias is fixed, the other one with bias is also
fixed. Therefore, the key to choosing two proper white-box models is to figure out a proper white-box
without bias. Note that for a white-box model, the most important feature is the concept set, so our
major job is to choose a good set of concepts. We illustrate two intuitive requirements on the concept
set as follows.

1. The good concepts (all except for the spurious one) should benefit the classification task.

2. The number of good concepts should not be too large as we want to avoid multicollinearity.

Based on the above requirements, a very natural choice is to directly use all class labels as good
concepts, since class labels themselves are the most informative features for classification and the
number of classes is usually not too big. Therefore, in our experiments, we train a new CBM to
obtain the white-box model with bias, where the concept set contains all class labels and the spurious
concept identified in the detection phase. Note that one can use other concept sets as long as the two
requirements above are satisfied.

Once the white-box model with bias is trained, we have two natural ways to obtain the white-box
model without bias. The first choice is to edit the white-box model with bias by zeroing out the
weight of the spurious concept in the layer before the final softmax function. The other way is to
train a new white-box model by setting the concept set as the set of only good concepts. We conduct
experiments to check which way is better. We call the white-box model obtained via the first way
CBM-edit and the one obtained via the second way CBM-clean. Besides the two models, we also
train another CBM on a training set where we replace the images of the corrupted class with another
set of images to make the training set and the testing set follow the same distribution. As such CBM
totally has no spurious correlation issue, its accuracy can be regarded as a rough upper bound of the
effectiveness of any CBM without bias.

The experimental results on the Meta-Shift tasks described in Table 10 are shown in Table 9. We
find that CBM-clean is generally more effective than CBM-edit. Moreover, the performance of
CBM-clean is even very close to that of the CBM trained on the unbiased data, which implies that the
CBM-clean is probably effective enough. Therefore, in our experiments, we adopt CBM-clean as the
white-box model without bias.
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Table 9: Performance of training a new clean CBM and editing on biased CBM. The backbone we
used is CLIP-ViT/14, and all the experiments are run for five random seeds. The concepts are class
labels and the spurious concept. CBM-edit is obtained by setting the weight of the spurious concept
in CBM to zero. CBM-clean is a new model that only uses class labels as concepts, and it is trained
on the original training set from scratch.

CBM trained on unbiased data CBM CBM-edit CBM-clean

Average 86.99% 83.62% 84.67% 86.81%

Task1 90.78% 85.80% 90.42% 90.26%
Task2 84.65% 77.87% 81.93% 84.02%
Task3 83.89% 81.17% 79.38% 84.16%
Task4 83.79% 82.31% 79.57% 82.89%
Task5 87.15% 79.11% 83.97% 87.02%
Task6 89.47% 89.03% 87.94% 89.82%
Task7 89.45% 88.24% 88.80% 89.26%
Task8 86.73% 85.44% 85.35% 87.03%

C.4 ENSEMBLE + TRANSFER EDITING

To combine transfer editing with ensemble learning, we can first ensemble the black box yb(x) and
the white box with bias yc(x). Since both yb(x) and yc(x) contain the bias in training data, the
assembled model of those two models should also have the bias. Thus, we can further apply the
transfer editing ∆ to get a better model.

yb(x)
Ensemble−−−−−→ yb(x) + yc(x)

2

Transfer Editing−−−−−−−−→ yb(x) + yc(x)

2
+ ∆ =

yb(x)

2
+ y′c(x)−

yc(x)

2
Another way to combine transfer editing with ensemble learning is to first apply transfer editing ∆ to
yb(x), and then we ensemble the unbiased model yb(x) + ∆ with the white box without bias y′c(x).
We show below that this leads to the same model as when we do ensemble learning first.

yb(x)
Transfer Editing−−−−−−−−→ yb(x) + ∆

Ensemble−−−−−→ yb(x) + ∆ + y′c(x)

2
=

yb(x)

2
+ y′c(x)−

yc(x)

2
Similarly, those two ways of combination are also the same when we ensemble two models by
weighted sum under the weight (λ, 1− λ).

D MORE DETAILS ON EXPERIMENTS

D.1 DETAILED INFORMATION OF DATASETS

The first task of our study used the Meta-Shift dataset (Liang & Zou, 2021) to present the bias of
co-occurrence of entities. In this co-occurrence bias task, we constructed eight classification tasks. In
each task, there are five classes and one class of data contains a spurious correlation. Every image in
the training data of that class contains the same co-occurring entity, but there is no co-occurrence in
the testing set. Distributions of training data of other classes are the same as the testing data. The
detailed classes and co-occurring entities are listed in Table 10.

Table 10: Information of tasks in the Meta-Shift dataset. The class labels are shown in brackets and
the co-occurring concepts are shown in parentheses.

Task Number Class Label #training sets #testing sets

Task1 [‘airplane’, ‘car’, ‘cow’, ‘dog’, ‘keyboard(cat)’] 665 4000
Task2 [‘bed’, ‘car(snow)’, ‘cat’, ‘computer’, ‘motorcycle’] 980 3000
Task3 [‘airplane’, ‘bed’, ‘bus’, ‘car(America)’, ‘dog’] 380 5000
Task4 [‘airplane’, ‘bed’, ‘cat’, ‘computer’, ‘couch(glasses)’] 680 3000
Task5 [‘bed(cat)’, ‘bird’, ‘computer’, ‘dog’, ‘motorcycle’] 950 3000
Task6 [‘bus’, ‘cat’, ‘computer’, ‘pillow(clock)’, ‘snowboard’] 505 2500
Task7 [‘bus’, ‘cat’, ‘computer’, ‘snowboard’, ‘television(fireplace)’] 520 2750
Task8 [‘airplane’, ‘bed(dog)’, ‘bus’, ‘car’, ‘cow’] 685 4000
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The second task of our study used the Office-Home (Venkateswara et al., 2017) dataset to present
the bias of picture style. We used the Office-Home dataset to build two tasks. Office-Home contains
many classes with different picture styles. For the first task, we selected five classes which are “Alarm
Clock”, “Bike”, “Candles”, “Fan” and “Trash Can”. In the training set, all the bike pictures are in
CLIP art style while the pictures of other classes are real-world images. In the testing set, the styles
of all classes are reversed. Some instances of pictures are shown in Figure 7. The second task is
similar, wherein the training set, images of the class “Backpack” are real-world ones, while images
of class “Bottle”, “Chair”, “Computer” and “Hammer” are in CLIP art style. In the testing set, the
styles are inverse.

Figure 7: Some instances in the task for picture style bias.

The last task of our study focuses on the bias of attributes of classes. For this kind of bias, we
leveraged the Celeb-A dataset (Liu et al., 2015). The goal is gender classification using human face
images. In the training set, all males have black hair while females have other colors of hair. In
the testing set, the attributes of hair color are reversed. There are 40,000 images in the training and
testing set. Some example images of this task are shown in Figure 8. We also show statistics on the
relationship between black hair and gender in the original Celeb-A dataset in Table 11, which implies
that the correlation between black hair and gender does exist.

Figure 8: Some instances in the task for class attribute bias.
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Table 11: Statistical Check on the original Celeb-A dataset. The proportion of black hair in males is
larger than in females.

Hair Color

Gender Black Other Total by Gender

Male 25, 156 59, 278 84, 434
Female 23, 316 94, 849 118, 165

Total by Hair Color 48, 472 154, 127 202, 599

D.2 EXTRA FIGURES AND TABLES IN DETECTION EXPERIMENTS

Here we show some internal results generated by our detection algorithm. Figure 9 shows the different
concepts generated by the algorithm and the class in which they are most helpful, as well as the
correlation strength of that class. In Figure 10, we filter out all the concepts in Figure 9 where the
second column is the “keyboard”, and we can see that the “cat” appears in the first row of Figure 9,
so we can easily detect this spurious concept.

Figure 9: An example record obtained by our detection algorithm for the example task in Figure 2.
Each row contains a tuple. For example, “[‘wing’, ‘airplane’, ‘0.1248’]” means that the term “wing”
is most helpful for the class “airplane” with a correlation strength of 0.1248.
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Figure 10: We select all the tuples which is most helpful for “keyboard” in Figure 9.

Table 12: The detailed results on detecting experiments. The CLIP backbone we used is ViT/B-32.
Method PCBM PCBM-improve Ours (raw embedding) Ours

average rank 1128.7 317.9 74.4 16.7
average std 342.7 326.0 255.2 5.4

Task1 rank 1432.6 5.4 157.6 1.6
Task1 std 391.2 5.0 532.1 0.9

Task2 rank 1703.4 1.0 1.0 1.0
Task2 std 257.9 0.2 0.0 0.0

Task3 rank 146.5 188.0 1.2 1.2
Task3 std 238.4 494.1 0.6 0.5

Task4 rank 783.9 1492.5 182.5 110.9
Task4 std 470.9 762.3 365.3 37.7

Task5 rank 1600.1 1.2 1.0 1.0
Task5 std 323.6 0.4 0.0 0.0

Task6 rank 277.8 631.7 104.6 7.3
Task6 std 306.3 851.9 426.2 2.0

Task7 rank 1462.7 216.2 66.4 8.1
Task7 std 374.9 485.2 333.5 1.4

Task8 rank 1622.4 7.4 80.6 2.8
Task8 std 378.2 8.5 384.1 0.8
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D.3 WORST-GROUP ACCURACY

Table 13 shows the accuracy of the biased class(e.g. class "keyboard" in Figure 2). As you can see
the transfer editing method dramatically increases the accuracy of biased class.

Table 13: The average testing accuracy of biased class.
Worst class Task1 Task2 Task3 Task4 Task5 Task6 Task7 Task8

yb 0.8475 0.3300 0.4080 0.5653 0.3940 0.7628 0.6175 0.8040
yb +∆ 0.9653 0.6737 0.5501 0.6090 0.8750 0.7824 0.7062 0.9418

D.4 ZERO-SHOT CLIP

Table 14 shows the accuracy of zero-shot CLIP and the accuracy of our method(transfer edit +
ensemble). Our method outperforms the zero-shot CLIP by 2%. Although zero-shot CLIP does not
contain bias, it can not utilize the training data either.

Table 14: The average testing accuracy of Zero-shot CLIP and Ours.
Tasks Task1 Task2 Task3 Task4 Task5 Task6 Task7 Task8 Average

Zero-shot CLIP 0.8935 0.8240 0.8272 0.8387 0.8720 0.8780 0.8851 0.8580 0.8596
Ours 0.9271 0.8435 0.8415 0.8349 0.8914 0.9138 0.9008 0.8831 0.8795

D.5 EXPERIMENT WITH DIFFERENT LAMBDA

First, we emphasize that we do not claim that (yb+yc)/2+∆ is the best combination and (yb+yc)/2
is the best ensembling way. This paper is not aiming to find out which λ makes the best ensembling
(λyb+(1−λ)yc), since it is the scope of ensembling literature. What we want to convey in this paper
is that no matter what λ is used to make an ensembling λyb + (1− λ)yc, we can always improve it
by adding ∆. The reason is yb and yc both contain bias and ∆ can remove this bias. Table 15 clearly
shows that under different choices of λ, our transfer editing always helps.

Table 15: The results of task 1 for different λ.
λ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

λyb + (1− λ)yc 85.73 86.79 87.74 88.53 89.24 89.77 90.04 90.25 90.49 90.50 90.49
λyb + (1− λ)yc +∆ 90.25 91.06 91.43 92.06 92.50 92.72 92.88 92.93 92.93 92.78 92.50

improvement 4.53 4.27 3.69 3.53 3.26 2.95 2.84 2.68 2.44 2.28 2.01

We also check the results of λyb + (1− λ)yc′ in Table 16. λyb + (1− λ)yc′ has two part, the second
part (1− λ)yc′ does not contain bias while the first part λyb still has bias. Thus λyb + (1− λ)yc′ can
be always improved by λ(yb +∆) + (1− λ)yc′ . Again, we do not want to discuss how to find the
best ensembling method. Our point is after we have a suitable ensembling result, applying transfer
editing on it will always boost the performance.

Table 16: The results of λyb + (1− λ)yc′ .
λ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(λyb + (1− λ)yc′)/2 90.25 90.92 91.36 91.73 91.69 91.83 91.69 91.64 91.34 90.99 90.49
(λ(yb +∆) + (1− λ)yc′)/2 90.25 91.06 91.43 92.06 92.50 92.72 92.88 92.93 92.93 92.78 92.50

improvement 0.00 0.14 0.07 0.34 0.81 0.89 1.19 1.29 1.60 1.79 2.01

D.6 NO BIAS, NO HELP

We conducted another experiment to show that if the black boxes do not suffer from the bias, then
Transfer Editing will not help. For co-occurrence bias tasks, we replace the images of the biased

22



Under review as a conference paper at ICLR 2024

class with normal images, so that training data have the same distribution as testing data. We further
train the black-box models on the training data to obtain y∗b which do not suffer from bias. Then we
try to use the white-box models trained on original training data to conduct transfer editing for y∗b .
Although white-box models can capture the bias, y∗b is not influenced by the bias. The results shown
in Table 17 illustrate that transfer editing does not help if the black-box model is not influenced by
the bias. Those results further confirm that transfer editing works by removing bias.

Table 17: The average testing accuracy when we use an unbiased training set to train black-box
models. White-box models are still trained by the original training set.

yc y′
c y∗

b transfer edit

Average 0.8362 0.8681 0.8776 0.8542

Task1 0.8580 0.9026 0.9257 0.9208
Task2 0.7787 0.8402 0.8507 0.7989
Task3 0.8117 0.8416 0.8275 0.8099
Task4 0.8231 0.8289 0.8427 0.8268
Task5 0.7911 0.8702 0.8937 0.8137
Task6 0.8903 0.8982 0.9099 0.9097
Task7 0.8824 0.8926 0.9016 0.8939
Task8 0.8544 0.8703 0.8689 0.8595

D.7 LESS TRAINING DATA

In this section, we only use 5% of training data to train white-box models and use CLIP ViT-
B/32 as the backbone of white-box models. Here we first present the result of the keyboard (cat)
experiments(Table 10, task 1) in Table 18.

Table 18: The testing accuracy of task1 when the white-box models are training by 5% training data.

keyboard(cat) yc yc′ yb yb +∆ (yb + yc)/2 (yb + yc)/2 + ∆

accuracy 0.8043 0.8781 0.9049 0.9208 0.9033 0.9261

When the yc and yc′ are weaker than the black-box model yb, the transfer editing method can also
improve the original yb or the simple ensembling (yb + yc)/2. Here we present the result of task 7
"television(fireplace)" in Table 19.

Table 19: The testing accuracy of task7 when the white-box models are training by 5% training data.
television(fireplace) yc yc′ yb yb +∆ (yb + yc)/2 (yb + yc)/2 + ∆

accuracy 0.8095 0.8173 0.8773 0.8810 0.8665 0.8775

In this task, the accuracy of all white-box models yc and yc′ are significantly worse than the black-box
model yb. Thus the ensembling (yb + yc)/2 even hurt the performance and (yb + yc)/2 + ∆ is no
longer be the best. In this case, yb + ∆ becomes the best one. We suggest applying the transfer
editing alone when the black-box model is significantly better than the white-box models, since in
this case, ensembling is not working anymore. Last, we report the average accuracy among all 11
tasks in Table 20.

Table 20: The average testing accuracy of 11 tasks when the white-box models are training by 5%
training data.

Average on all tasks yc yc′ yb yb +∆ (yb + yc)/2 (yb + yc)/2 + ∆

accuracy 0.8034 0.8383 0.8655 0.8806 0.8704 0.8924
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In this less training data setting, the improvement by transfer editing which is yb +∆ is larger than
the performance by ensembling which is (yb + yc)/2.

D.8 MIXED DATA EXPERIMENT

In this experiment, 90% keyboard images have a cat as the spurious concept and the other 10%
images are unbiased. We include another baseline called weighted loss. Specifically, we train a
black-box model where the loss of biased and unbiased data has lower (0.1) and higher (0.9) weights,
respectively. We report the testing accuracy of methods in Table 21. Results show that transfer
editing outperforms weighted loss, demonstrating that transfer editing is more effective in fixing
biased models. Note that transfer editing is designed to handle the more challenging setting where no
unbiased data are available. We also perform detecting experiments in this setting. The average rank
of “cat” is 7 which means our detecting method is also effective in this task.

Table 21: The testing accuracy of methods when using mixed training data.

yc y′
c yb

transfer edit transfer edit Weight Loss+ensemble

Average 0.9004 0.9045 0.9174 0.9273 0.9226 0.9183

Random seed 1234 0.9005 0.9045 0.917 0.9270 0.9235 0.9165
Random seed 2345 0.9005 0.9043 0.9160 0.9270 0.9233 0.9163
Random seed 3456 0.9005 0.9045 0.9180 0.9278 0.9218 0.9225
Random seed 4567 0.9003 0.9045 0.9178 0.9273 0.9215 0.9155
Random seed 5678 0.9003 0.9048 0.9180 0.9273 0.9230 0.9208

D.9 EXTRA FIGURES AND TABLES IN FIXING EXPERIMENT

Table 22 and Table 23 show the performance when we apply transfer editing to meta-shift tasks under
CLIP-ViT-B/32 and CLIP-ViT-L/14 backbones, respectively. No matter which backbone we use,
transfer editing can always help to improve the performance of the black-box model, and transfer
editing + ensemble is the best.

In Table 24, we built a black-box model by fine-tuning an ImageNet pre-trained Resnet50 instead
of training an MLP based on backbone embeddings. Transfer editing always helps, whether we are
using a backbone to obtain a black-box model or fine-tuning a black-box model.

Table 25 and Table 26, performed on image style bias and attribute bias tasks, show that white-box
and black-box models can use different types of backbones and our fixing algorithm still works. This
is because we fix the model by removing the bias, and it does not depend on the backbone we use.

Table 22: The testing accuracy for meta-shift bias tasks. The backbone we used for both white and
black boxes is CLIP-ViT-B/32.

yc y′
c yb

transfer edit transfer edit yb+yc
2

yb+y′
c

2

yb+yc+y′
c

3+ensemble

Average 0.8252 0.8525 0.8271 0.8661 0.8500 0.8420 0.8612 0.8556

Task1 0.8591 0.8926 0.8943 0.9111 0.9058 0.8952 0.9076 0.8982
Task2 0.7638 0.8295 0.7693 0.8443 0.8199 0.7731 0.8302 0.8087
Task3 0.8051 0.8247 0.7837 0.8296 0.8021 0.8041 0.8183 0.8189
Task4 0.8026 0.8117 0.7957 0.8201 0.7963 0.8165 0.8220 0.8247
Task5 0.7897 0.8443 0.7888 0.8723 0.8642 0.8193 0.8665 0.8525
Task6 0.8738 0.8785 0.8734 0.8970 0.8781 0.8904 0.8933 0.8938
Task7 0.8691 0.8810 0.8560 0.8797 0.8688 0.8735 0.8788 0.8791
Task8 0.8381 0.8579 0.8554 0.8745 0.8645 0.8638 0.8728 0.8692
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Table 23: The testing accuracy for meta-shift bias tasks. The backbone we used for both white and
black boxes is CLIP-ViT-L/14.

yc y′
c yb

transfer edit transfer edit yb+yc
2

yb+y′
c

2

yb+yc+y′
c

3+ensemble

Average 0.8362 0.8681 0.8369 0.8795 0.8599 0.8514 0.8735 0.8676

Task1 0.8580 0.9026 0.9049 0.9271 0.9249 0.8978 0.9182 0.9060
Task2 0.7787 0.8402 0.7803 0.8435 0.8190 0.7877 0.8315 0.8185
Task3 0.8117 0.8416 0.7872 0.8415 0.8079 0.8066 0.8303 0.8305
Task4 0.8231 0.8289 0.8030 0.8349 0.8059 0.8295 0.8313 0.8338
Task5 0.7911 0.8702 0.8009 0.8914 0.8662 0.8185 0.8839 0.8655
Task6 0.8903 0.8982 0.8998 0.9138 0.9023 0.9063 0.9097 0.9087
Task7 0.8824 0.8926 0.8773 0.9008 0.8873 0.8937 0.9006 0.8992
Task8 0.8544 0.8703 0.8421 0.8831 0.8654 0.8713 0.8821 0.8784

Table 24: The testing accuracy of Celeb-A task when we used fine-tuning black-box models.
white black

yc y′
c yb

transfer edit transfer edit yb+yc
2

yb+y′
c

2

yb+yc+y′
c

3backbone fine-tune +ensemble

ViT-L/14 Resnet50 0.9792 0.9854 0.8716 0.9709 0.9076 0.9542 0.9657 0.9782
ViT-B/32 Resnet50 0.9732 0.9819 0.8716 0.9534 0.8910 0.9369 0.9465 0.9659

Table 25: The testing accuracy for picture style bias tasks under different backbones.
white black

yc y′
c yb

transfer edit transfer edit yb+yc
2

yb+y′
c

2

yb+yc+y′
c

3backbone backbone +ensemble

Task 9 [Alarm Clock, Bike(Clip Art), Candles, Fan, Trash Can]

ViT-L/14 ViT-L/14 0.9376 0.9520 0.9080 0.9688 0.9208 0.9360 0.9456 0.9472
ViT-B/32 ViT-B/32 0.8984 0.9224 0.8248 0.9296 0.8952 0.8880 0.9048 0.9080
ViT-B/32 ViT-L/14 0.8984 0.9224 0.9080 0.9704 0.9344 0.9368 0.9592 0.9448
ViT-L/14 ViT-B/32 0.9376 0.9520 0.8248 0.9544 0.8600 0.9320 0.9504 0.9392
ViT-L/14 Resnet50 0.9376 0.9520 0.3848 0.9128 0.3984 0.8736 0.9032 0.9400
ViT-B/32 Resnet50 0.8984 0.9224 0.3848 0.8568 0.4480 0.7088 0.7912 0.8848

Task 10 [Backpack(Real World), Bottle, Chair, Computer, Hammer]

ViT-L/14 ViT-L/14 0.9846 0.9885 0.9500 0.9885 0.9800 0.9808 0.9885 0.9885
ViT-B/32 ViT-B/32 0.9523 0.9692 0.8969 0.9569 0.9338 0.9354 0.9454 0.9462
ViT-B/32 ViT-L/14 0.9523 0.9692 0.9500 0.9800 0.9692 0.9731 0.9769 0.9654
ViT-L/14 ViT-B/32 0.9846 0.9885 0.8969 0.9885 0.9515 0.9731 0.9808 0.9846
ViT-L/14 Resnet50 0.9846 0.9885 0.4108 0.9769 0.4346 0.9615 0.9692 0.9808
ViT-B/32 Resnet50 0.9523 0.9692 0.4108 0.9308 0.4469 0.9046 0.9192 0.9377

Table 26: The testing accuracy for the attribute bias task under different backbones.
white black

yc y′
c yb

transfer edit transfer edit yb+yc
2

yb+y′
c

2

yb+yc+y′
c

3backbone backbone +ensemble

ViT-L/14 ViT-L/14 0.9792 0.9854 0.9852 0.9885 0.9843 0.9868 0.9885 0.9875
ViT-B/32 ViT-B/32 0.9732 0.9819 0.9854 0.9874 0.9866 0.9850 0.9868 0.9849
ViT-B/32 ViT-L/14 0.9732 0.9819 0.9852 0.9883 0.9856 0.9860 0.9876 0.9857
ViT-L/14 ViT-B/32 0.9792 0.9854 0.9854 0.9895 0.9860 0.9876 0.9892 0.9881
ViT-L/14 Resnet50 0.9792 0.9854 0.8511 0.9758 0.8953 0.9688 0.9756 0.9835
ViT-B/32 Resnet50 0.9732 0.9819 0.8511 0.9634 0.8817 0.9527 0.9599 0.9745

E BROADER IMPACTS

While Holmex can detect and remove bias from the model for the benefit of society, there is also
the potential for abuse of our editing methods. For example, we could swap the positions of the two
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white-box models in the editing section to achieve the goal of injecting more bias into the black-box
model. Therefore, our method could be misused to create specific biased models, and we suggest that
prevention in this area starts with increased detection of malicious models to avoid biased and unfair
models in society.

F LIMITATIONS

Our method relies on CLIP, but CLIP is not a reliable representation of some specific concepts, such
as some very specialized words in the healthcare domain. To solve this problem, we could perhaps
use some vision-language models constructed for specific domains to overcome this limitation.

We also have some limitations in the white box model selection part of the model fixing. For example,
a concept may be helpful for a particular class A, but harmful for another class B. If we choose to
eliminate the effect of that concept at this point, we will benefit from eliminating the harmful effect
on class B, but we will also eliminate the helpful part of that concept for class A.

G COMPUTE

All the experiments including calculating the image embeddings are conducted on a M1 Pro chip and
the running time for every experiment is less than 1 hour.

H MORE DISCUSSION ON RELATE WORKS

For detecting spurious correlation, we illustrate the difference between our method and setting from
others in Table 27. The first advantage of our method is that we can work for all data containing
spurious correlations. We care about this setting since it is a realistic problem and has not been
considered by those studies of invariant learning. The second advantage is we can conduct class-level
detection instead of instance-level which means we detect a group of images instead of a single one.
In addition, our method can provide high-level conceptual interpretation and does not require test
data.

Method
Presentation of Work for all conduct concept Do not

spurious images contain class-level based need
correlation spurious correlation detection method test data

PCBM, A list of concepts
! ! ! !(Yuksekgonul et al., 2022) with correlations

Ours strength

Saliency Map based A hit map
! % % !(Singla & Feizi, 2022) for a given

(Itti et al., 1998) image

prototypical part A set of
! % % !network(Chen et al., 2019) prototype images

DISC(Wu et al., 2023) Concept’s variance on
% ! ! !different environment

Conceptual the importance

! % ! %
Counterfactual of concepts

Explanation in a
(Abid et al., 2022) given image

Table 27: Methods for Spurious Correlation Detection

For model fixing, we illustrate the difference between our method and setting from others in Table 28.
There are also some advantages of our method. The first one is that our method works for all data
containing spurious correlations. The second advantage is that we can fix any black-box model
without knowing its weight or retraining it. Last but not least, we do not need any test data.
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Method
Fixing Work for all Can fix any Don’t retrain Do not
method images contain black-box black-box need

spurious correlation models models test data

Ours transfer editing ! ! ! !

DISC modify
% ! % !(Wu et al., 2023) training set

Instance reweighing
% ! % !Reweighting based training

(Yaghoobzadeh et al., 2021) data

CBM, PCBM modify the
! % - !(Koh et al., 2020) weights in a

(Yuksekgonul et al., 2022) linear layer

Concept-level

! % - !
debugging of modify the
part-prototype weights in

networks a linear layer
(Bontempelli et al., 2023)

Last re-train

! ! % %
layer the model

re-train with extra
(Kirichenko et al., 2023) data set

Table 28: Methods for Model Fixing
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