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Abstract

Graph Neural Networks (GNNs) typically scale with the number of graph edges,
making them well suited for sparse graphs but less efficient on dense graphs, such
as point clouds or molecular interactions. A common remedy is to sparsify the
graph via similarity thresholding or distance pruning, but this forces an arbitrary
choice of a single interaction scale and discards crucial information from other
scales. To overcome this limitation, we introduce a multi-view graph-tuple frame-
work. Instead of a single graph, our graph-tuple framework partitions the graph
into disjoint subgraphs, capturing primary local interactions and weaker, long-
range connections. We then learn multi-view representations from the graph-tuple
via a heterogeneous message-passing architecture inspired by the theory of non-
commuting operators, which we formally prove is strictly more expressive and
guarantees a lower oracle risk compared to single-graph message-passing models.
We instantiate our framework on two scientific domains: molecular property predic-
tion from feature-scarce Coulomb matrices and cosmological parameter inference
from geometric point clouds. On both applications, our multi-view graph-tuple
models demonstrate better performance than single-graph baselines, highlighting
the power and versatility of our multi-view approach.

1 Introduction

Graph neural networks (GNNs) have demonstrated remarkable success in learning from structured
data [1]], achieving state-of-the-art results across diverse fields such as social network analysis,
recommendation systems, drug discovery, and materials science [2-6]. The power of GNNs stems
from their ability to learn rich representations of nodes and entire graphs by iteratively passing and
aggregating messages over a relational structure [5,7]]. This core mechanism endows them with a
strong relational inductive bias [8]: the inherent assumption that an object’s properties are determined
by its connections and local context. This bias is precisely why GNNs are so effective for tasks on
graph-structured data [2].

Computationally, GNNs typically scale with the number of graph edges, making them efficient
for sparse graphs. However, this efficiency degrades as the graphs become denser. This poses a
particular challenge on large, dense graphs such as fully-connected distance graphs derived from
point clouds. To make GNN training efficient on dense graphs, a common way is to sparsify it
by applying similarity thresholding or distance pruning [9]]. Yet, this often reduces information
and results in graph representations based on a single fixed scale of interaction. For example, a
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high threshold applied to a molecule’s Coulomb matrix retains only strong chemical bonds at the
expense of losing important weaker connections. Conversely, a low threshold preserves these weaker
connections, but also introduces significant noise. Alternatively, invariant feature models [10] reduce
the computational cost to linear in the number of points, by exploiting the low-rank structure of the
point cloud and allowing exact reconstruction of the full adjacency matrix from a small submatrix
and anchor points.

A complementary line of works avoids graph sparsification and low-rank assumptions, by decom-
posing a single dense graph into multiple sparser graphs and then learning them in parallel, such as
multi-view methods [11H13] and heterogeneous GNNs [14,[15]. These approaches preserve diverse
interaction ranges while being computationally tractable, yet are typically designed for heterogeneous
graphs with multiple node types or edges types, not directly applicable on homogeneous graphs with
continuous edge features.

To tackle these challenges, we propose a multi-view graph representation that captures both fine-
grained and contextual interactions. Instead of a single graph, we construct a graph tuple over the same
nodes by explicitly partitioning edges according to interaction strength (e.g., distance or Coulomb
energy): a strong-connection graph retaining the strongest local interactions and a complementary
weak-connection graph providing broader context. Inspired by the theoretical insights of the GtNN
framework [[16]], we then explicitly integrate multiple message-passing operations in a single layer:
intra-scale operations (within each graph view) and, crucially, inter-scale operations that model
the distinct operator orderings (across different graph views). This yields an interpretable and
physically grounded mechanism that links local topology to global effects. We prove that under mild
assumptions, this heterogeneous message-passing architecture is more expressive than single-graph
models and guaranteed to achieve a lower or equal oracle prediction risk.

We instantiate our framework on two scientific domains. For molecular property prediction on
the QM7b dataset, we develop GINE-Gt, a specialized architecture that uses the powerful Graph
Isomorphism Network with Edge Features(GINE) [[17] as the backbone. Second, for cosmological
parameter inference from point cloud data, we develop EGNN-Gt based on Equivariant Graph
Neural Network (EGNN) [18]], a powerful GNN architecture that guarantees equivariance to rotations,
translations, and reflections.

The empirical results demonstrate the efficacy of our framework. In QM7b, GINE-Gt outperforms
invariant-feature models and a suite of single-graph GNN baselines in most prediction targets. In
the cosmological simulations from the CAMELS suite, EGNN-Gt demonstrates superior overall
performance over its corresponding single-graph counterparts across a wide range of interaction
radii. These results not only highlights the power of our multi-view strategy but also demonstrates
the potential of our multi-view graph tuple framework for a broader range of applications involving
continuous relational data. The source code is available on Github{]

2 Related Work

Our work lies at the intersection of heterogeneous graph learning that process graphs with different
typed nodes or edges, and multi-view representation learning to extract features from different scales.

Heterogeneous graph learning. Early heterogeneous GNNs such as R-GCN [[14]] and HAN [[15]
demonstrated the benefit of relation-specific message-passing design, but they assume pre-defined,
discrete node and edge types (e.g., knowledge graphs or bibliographic networks). To go beyond
pre-defined relations, Graph Transformer Networks (GTN) [[L1] proposed to softly select relation-
specific adjacency matrices and then generate new graphs by their matrix products. We generalize
this heterogeneous graph learning paradigm to homogeneous graphs, by inducing different relations
via partitioning continuous edge features (e.g., physical distances or chemical interactions).

Multi-view graph learning. A recent line of work constructs multiple relational views from a
single graph, motivated from self-supervising learning (e.g., contrastive multi-view learning [[12]) or
community detection (e.g., variational edge partition model [[19]). In contrast to these prior works,
we are motivated to construct multiple views based on a physical measure of interaction strength
from scientific applications (e.g., the Coulomb matrix in the molecular domain, and the Euclidean
distance matrix in the cosmological applications).
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Multi-scale GNNs. Our approach is architecturally most related to multi-scale GNNs that learn
a hierarchical representation from a graph, such as FraGAT [20] designed for molecular property
prediction,and MultiScale MeshGraphNets [21]] for physics simulation. But these methods typically
build multiple graphs on different node sets (e.g., atoms vs. fragments and fine vs. coarse mesh),
which requires non-trivial cross-level alignment and transfer operators. In contrast, our framework
defines multiple graphs over the same node set by partitioning a continuous interaction strength,
enabling simple and interpretable within- and between-graph message passing.

3 Preliminaries

In this work, we consider graphs denoted as G = (V, £), where V = {v1,..., v, } is a set of n nodes
and £ C V x Vs a set of edges. Each node v; is associated with an initial feature vector, and each
edge (4, 7) with an initial feature vector. Before being processed by any network layers, initial node
and edge features are projected into a hidden space via learnable encoders. For notational simplicity,

we let hgl) denote the encoded feature vector for node ¢ at layer [, and we let e;; denote the encoded
feature for the edge (i, j). We collectively represent all node features at a given layer [ as a matrix

H® and all edge features as a matrix E.

3.1 Graph Isomorphism Network with Edge Features (GINE)

GINE [17] extends Graph Isomorphism Network (GIN) by incorporating edge features into its
message passing procedure:

WY = MLPO((1+ )b + > ReLU (hY +¢) ) 1)
JEN(3)
The entire single-layer update process can then be concisely expressed as:

HU+) — GINEConv (H(l), g, E) )

3.2 Equivariant Graph Neural Networks (EGNN)

Equivariant Graph Neural Networks (EGNNs) [18]] incorporate geometric information by endowing
each node with Euclidean coordinates z-; € R¢. They jointly update node features and coordinates in
a way that is equivariant to node permutations and Euclidean isometries, i.e., translations, rotations
(and reflection). An EGNN convolution layer (EGCL) is defined as follows:

(1 l 1) 1)
¢e( ) h() || ( ( ||2 aij)7 (3)
x§l+1) (l)+C Z (l) (l) ¢z(ng) (4)
FEN(3)
R =g (YN my | ®)
JEN(D)

Here, ¢., ¢, ¢n, are learnable functions (e.g., MLPs), C'is a scalar and a,; represents optional edge
attributes. In this work, we simply use edge features, i.e., a;; = ¢;;. We denote the computation of
the EGNN convolution layer as

(H(l+1),X(l+1)) _ EGCL(H(”,X(Z), 57E). 6)

4 Method

Our work introduces a multi-view graph-tuple framework for learning from complex relational sys-
tems where interactions occur at different scales. The core principle is to model these interactions and
learn how information flows both within and between these scales. This is achieved by decomposing
a graph G into a graph tuple, (G1, G, ..., Gx), that provides distinct yet complementary views of
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Figure 1: An illustration of our heterogeneous message-passing architecture for k& = 2 views.
The node embeddings H;, H, are obtained from message-passing within each graph (with the
corresponding edges and edge features); The node embeddings H_,2, Ho—,1 are computed from
message-passing across views, one for each direction. These embeddings are then aggregated per

the interaction space, representing fine-grained local structures and broader contextual relationships.
This graph-tuple framework can be instantiated using different graph neural network backbones. We
present two such instantiations: an edge-aware model for attributed graphs, GINE-Gt based on [17],
and an equivariant extension for geometric data, EGNN-Gt [18].

4.1 Multi-view Graph-tuple Representation

We begin by decomposing a single graph into multiple views (subgraphs), represented as a graph
tuple G = (G, ..., G). Each graph G; = (V, &;) is defined on the same node set, but with disjoint

edges sets to capture different interaction scales, namely Ule E=Eand ENE; =0 fori # j.
For example, when k£ = 2, we can decompose G (with nonnegative edge weights) into a strong-
connection graph G; containing the largest-magnitude edges (greater than certain threshold 7), and a
weak-connection graph G, capturing the remaining connections. The precise instantiation of these
graphs is detailed in Section [6|and

4.2 Heterogeneous Message-Passing Architecture

To learn the multi-view representations from a graph tuple, we use a heterogeneous message-
passing architecture, where each layer updates node representations by computing and integrating
information from multiple distinct message-passing operations. The final update is defined as a
residual combination of these multi-view representations, governed by learnable scalar weights cg:

k
g =g 4 Zcz‘ -Hi + Z (cij - Himj +cji - Hji) (N
=1 i

where H; denotes the node embeddings from intra-scale message-passing within each graph G;,
and H,;_,;, H;_,; denote the node embeddings from inter-scale message-passing across different
graphs G;, G;. These representations are designed to capture distinct patterns. For example, given
the graph-tuple with a strong-connection graph G; and a weak-connection graph G, the intra-scale
representations (H;, Hs) extract local interactions from G, and broader, long-range information from
G, respectively. Then these representations are fused in H;_, ;, H,_,; via inter-scale message-passing,
which capture relational information that is sensitive to the order of operations.

Figure [I] provides an overview of our framework. We note that if the original edge set £ contains
typed edges, it can be naturally partitioned into homogeneous edge sets, one for each type, as done in
R-GCN [14]]. Our framework extends R-GCN from heterogeneous graphs to homogeneous graphs,
replacing discrete edge types with partitions induced by continuous edge features. The architectures
proposed below also extend the Graph Tuple Neural Network framework from [16].



4.2.1 GINE-Gt

For general graphs with node features and edge attributes, we implement our framework using the
GINE layer [17]. The intra-scale message-passing for i = 1,. .., k are computed as

H; = GINEConv; (H(l), &, E) . 8)

The inter-scale message-passing are then computed by
Hi—)j = GINECOHVZ']' (Hz, 53‘7 EJ) 5 Hj—>i = GINECOHV]'Z' (Hj, gi, Ez) 5 (9)
where i # j. Each GINEConvy, is a distinct function with its own parameter weights, allowing the

model to learn specialized functions for each interaction type.

4.2.2 EGNN-Gt

For geometric data where node features represent point positions in R%, we provide an E(d)-
equivariant implementation of our framework using the EGCL layer [18]]. The overall feature update
follows Eq. [/, while the position feature update is analogously defined as:

k
X(lJrl) = X(l) + Z CZAXZ -+ Z (CijAXi*)j + CjiAXj%i) . (10)
i=1 i#£]

The representations (Hy, AX}), which contain both feature updates and coordinate displacements,
are all computed from a single, shared EGCL layer.

The intra-scale representations are computed as

(Hi, AX;) = EGCL(H(”,X(Z),&-,Ei> . fori=1,... .k (11)

Subsequently, the inter-scale representations are obtained using these intermediate outputs: for i # j,
(Hijs AXi5) = EGCL (Hi, XU + AX:, €,y ) (12)

(i AX; i) = BGCL (H;, XU + AX;, €, By (13)

This formulation allows the EGNN-Gt layer to learn geometrically-aware representations from the
multi-view interaction patterns.

S Expressivity

We analyze our multi-view graph-tuple framework in a simplified linear setting to establish its
expressivity and generalization properties. We consider £ = 2 and define the shift operators S;
and S to be the adjacency matrices G; and Go respectively. We study three classes of linear graph
filters: H;(m) the polynomials of degree m in S1, Hop(m) the polynomials of degree m in S7 + S
the adjacency of the dense graph G, and our multi-view graph-tuple class Hgt(m) of multivariate
polynomials of degree m in (51, S2). See Deﬁnitionin Appendix We show the following (see
proofs in Appendix [A):

Proposition (Expressivity). For any degree bound m, Hy(m) C Hgi(m) and Ho(m) C Hai(m);
if S152 # S2.51 and m > 2, then the latter inclusion is strict. See Proposition[l|in Appendix[A]
Proposition (Oracle risk dominance). For any m, inf cpg, (m) R(g) < infiepym) R(q) and
infyeprg, (m) R(9) < infpep, (m) R(p). Moreover, if the oracle predictor M* lies outside the expres-

sivity of the baseline class Ho(m), the advantage is strict, and the performance gap is a strictly
positive, quantifiable value. See Proposition[2]in Appendix[A]

Proof Sketch. 1t is easy to see that the single operator baseline models correspond to a special case of
the multi-view graph-tuple class for a specific choice of coefficients. The risk dominance is a direct
consequence of this expressivity gap. O



Table 1: Performance comparison of our GINE-Gt with all baselines on the QM7b dataset. The result
report the Mean Absolute Error (MAE) + standard error over ten folds (lower is better). The best
result in each column is highlighted in bold, and the second-best is in italics. Our GINE-Gt is the

top-performing method overall, while GINE-2 is the strongest among the single-graph baselines.

MAE | Atomization Excitation Absorption HOMO LUMO Ist excitation Ionization
PBEO ZINDO ZINDO ZINDO ZINDO ZINDO ZINDO
KRR [22] 9.3 1.83 0.098 0.369 0.361 0.479 0.408
DS-CI 12.849 +0.757 1.776 £ 0.069 0.086 £ 0.003 0.401 + 0.017 0.338 4 0.048 0.492 £ 0.058 0.422 £ 0.012
DTNN [22] 21.5 1.26 0.074 0.192 0.159 0.296 0.214
DS-CI+ 7.650 £0.399 1.045 4+ 0.030 0.069 £ 0.005 0.172 £ 0.009 0.119 +0.005 0.160 = 0.011 0.189 £ 0.011
GINE-0 12.812 +0.372 1.034 & 0.027 0.064 & 0.002 0.197 £ 0.007 0.072 £ 0.002 0.143 £ 0.003 0.212 + 0.005
GINE-0.5 12.171 +0.543 1.030 £ 0.016 0.068 £ 0.002 0.207 £ 0.004 0.080 £ 0.002 0.143 £ 0.006 0.240 % 0.007
GINE-1 11.170 £ 0.337 1.000 & 0.015 0.064 = 0.001 0.177 £ 0.005 0.093 £ 0.005 0.120 £ 0.004 0.200 % 0.005
GINE-2 10.349 +0.590 0.998 & 0.019 0.067 £ 0.002 0.147 £ 0.004 0.063 £ 0.001 0./16 £0.006 0.176 = 0.009
GINE-2.5 11.306 + 0.677 0.969 4+ 0.013 0.067 & 0.001 0.168 £ 0.006 0.066 £ 0.002 0.131 £ 0.004 0.193 % 0.005
GINE-Gt 6.700 £ 0.183 0.955 + 0.011 0.062 £ 0.001 0.131 + 0.005 0.067 4 0.001 0.111 £ 0.003 0.151 + 0.005
MAE | Affinity HOMO LUMO HOMO LUMO Polarizability =~ Polarizability
ZINDO KS KS GW GW
KRR [22] 0.404 0.272 0.239 0.294 0.236 0.225 0.116
DS-CI 0.404 £ 0.047 0.302 & 0.009 0.225 £ 0.010 0.329 £ 0.016 0.213 £0.008 0.255 £ 0.015 0.114 + 0.008
DTNN [22] 0.174 0.155 0.129 0.166 0.139 0.173 0.149
DS-CI+ 0.122 £0.002 0.169 +0.007 0.135 4 0.007 0.183 £ 0.005 0.139 & 0.004 0.139 £ 0.005 0.088 £ 0.004
GINE-0 0.082 £ 0.002 0.184 +0.008 0.109 & 0.005 0.198 £ 0.008 0.116 £ 0.004 0.170 £ 0.006 0.094 %+ 0.003
GINE-0.5  0.087 £0.002 0.207 & 0.007 0.103 £ 0.003 0.234 £ 0.010 0.129 £ 0.007 0.189 £ 0.004 0.102 % 0.002
GINE-1 0.088 £0.003 0.176 +0.005 0.096 & 0.002 0.201 £ 0.004 0.118 £0.003 0.171 £ 0.004 0.104 = 0.003
GINE-2 0.067 + 0.002 0.163 £ 0.006 0.080 + 0.002 0.166 + 0.003 0.106 + 0.002 0.135 £+ 0.003 0.092 £ 0.005
GINE-2.5 0.070 +0.002 0.162 £ 0.006 0.086 £+ 0.004 0.180 + 0.005 0.112 4+ 0.002 0.142 £ 0.004 0.087 + 0.003
GINE-Gt 0.073 £0.002 0.133 +£0.002 0.084 = 0.001 0.148 £ 0.003 0.101 £ 0.002 0.098 + 0.002 0.071 £ 0.002

6 Molecular Property Prediction

We consider the QM7b benchmark [23| 24], which contains 7211 molecules with 14 regression
targets. Each molecule is encoded by a n x n Coulomb matrix X whose entries depend only on
nuclear charges Z; €R and 3D coordinates R; € R3:

05224, i=j

Xij = Z;7; L (14)
o i L F T
R — Ryl

Then we build the graph G = (V, &) with V = {1,...,n} and € = {(4,J) | ¢ # j}, i.e. all atom
pairs are connected while self—loops (i, ) are removed. Notably, since its off-diagonal entries are
computed from inter-atomic distances, the Coulomb matrix is invariant to rotations and translations
(i.e., E(3)-invariant) by construction.

6.1 Graph Construction

Graphs are constructed from the molecule’s Coulomb matrix. The baseline models, denoted GINE-c,
operate on a single graph formed by applying a threshold ¢, where edges are all pairs (4, j) with an
interaction strength X;; > c. This method discards all information below the threshold.

Our main model, GINE-Gt, operates on a multi-view graph tuple (G, G2) derived by partitioning
the interaction space at a boundary of ¢ = 2 selected over a validation set (see Table [T). The
strong-connection graph (G1) is thus composed of edges where X;; > 2, while the weak-connection
graph (G5) comprises all remaining edges. This threshold effectively identifies the primary interaction
backbone for the strong-connection graph (G;) while assigning the remaining contextual interactions
to the weak-connection graph (G-).

The percentage of retained edges, along with full implementation details such as feature construction,
model configurations, and training protocols, are provided in Appendix

6.2 Results and Analysis

Table [I] presents the performance comparison of our GINE-Gt model against multiple baselines.
These include a series of single-graph GINE-c models as well as several non-graph-based methods:
Kernel Ridge Regression (KRR), Deep Tensor Neural Network (DTNN) [25]], and the state-of-the-art
invariant feature model, DS-CI+ [[10]. Results for KRR and DTNN are taken from prior work [22].
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Figure 2: Performance comparison on the CAMELS and CAMELS-SAM datasets for cosmological
parameter prediction. We plot the coefficient of determination (R?, higher is better) for our multi-view
EGNN-Gt model against two single-graph baselines. The left plot in each subfigure compares against
the strong-connection baseline (EGNN-c; ), while the right plot compares against the dense-graph
baseline (EGNN-c3). All results are reported as the mean and standard error over 10 runs.

Our proposed GINE-Gt model is the top-performing method, achieving the best Mean Absolute Error
(MAE) on 11 of the 14 prediction targets. The best single-graph model, GINE-2, demonstrates the
importance of focusing on the strong interactions compared to the full-graph GINE-0. However, our
results suggest that weak interactions are also relevant.

While our multi-view approach GINE-Gt outperforms these baselines, we note that GINE-2 achieves
better performance on three targets. This suggests that these specific properties are predominantly
governed by strong, short-range interactions. In such cases, the global context provided by weaker
interactions offers limited benefit and may introduce a small amount of non-essential information.
This highlights the potential for a more adaptive partitioning mechanism that a flexible, learnable
threshold, rather than our current fixed one, could allow the model to dynamically balance the two
views and further improve the multi-view graph-tuple framework’s performance.

7 Cosmological Parameter Prediction

We evaluate our EGNN-Gt model on the CosmoBench benchmark [9]], specifically using the CAMELS
(TNG) and the CAMELS-SAM cosmological point cloud datasets. Each sample in these datasets is a
cosmological simulation cloud where nodes represent dark matter halos or galaxies. The model input
is the matrix of 3D halo (galaxy) positions representing their present-day configuration, X € RV >3,
where N is the number of halos in the point cloud.

The primary task is a cloud-level regression problem, where the model infer from the present-day
positions X about the cosmological parameters y = (£2,,, os) that control the evolution of halos
(galaxies). The performance on this task is measured using the coefficient of determination (R?),

defined as: N )
Yo (7 —vi)?

where R? evaluates the cosmology parameter prediction and higher R? indicates better model fit.




7.1 Graph Construction

Insights from prior work [9] and our own preliminary experiments suggest that informative halo
interactions typically occur within a radius range approximately from O to 10 Mpc/h. To establish
strong baselines, we evaluated two types of single-graph models. First, we form a series of strong-
connection baseline, EGNN-c; by connecting halos within a cutoff radius ¢;. Second, we create dense-
graph baselines, EGNN-c, using a larger radius co > c;. For our EGNN-Gt model, we implement
the multi-view approach by partitioning the interaction space with two radii: a strong-connection
radius c; and a weak-connection radius cy. To explore the benefits of multi-view processing while
maintaining a simple and interpretable relationship between the two scales, we enforce a fixed ratio by
setting co = 2¢; in all our experiments. This allows the model to simultaneously capture immediate
local neighborhoods (G;) and broader, second-order contextual regions (G2). The specific ranges for
the systematic search over c; for each task, along with full implementation details, are provided in

Appendix [B.2]
7.2 Results and Analysis

Using the search ranges for c; established in our experimental setup, we present the performance of
our multi-view EGNN-Gt model in Figure with all results shown as mean R? values with standard
errors. Each row corresponds to a dataset, and each column to a target cosmological parameter.
The plots in each subfigure provide a direct comparison: the left plot shows the performance of our
multi-view model, EGNN-(c1, ¢2), against its corresponding strong-connection baseline, EGNN-¢;,
as a function of the radius c;. The right plot shows a similar comparison against the dense-graph
baseline EGNN-c5 as a function of the radius c5.

Across both datasets and target parameters, our multi-view EGNN-Gt model achieve better perfor-
mance than single-graph baselines in most cases. Specifically, on the CAMELS dataset (Figures 23]
and [2b), our multi-view method EGNN-Gt outperforms the corresponding single-graph baselines,
i.e., strong-connection and dense-graph baselines (blue and green lines) at nearly every tested radius,
with performance being, at worst, comparable in very few instances.

On the CAMELS-SAM dataset (Figures [2¢| and [2d), our EGNN-Gt model still exhibits better
performance at most tested radius. However, there are instances where the single-graph baselines
achieve better results. This does not indicate a failure of the multi-view method. Instead, we attribute
this to the constraint of our fixed ratio, c; = 2¢;. The number of edges in a radius graph grows
non-linearly with the radius (approximately as R> in 3D space). Therefore, a simple linear scaling
between the two radii may not always capture the optimal balance of information density from the
strong- and weak-connection graphs. This suggests that exploring adaptive or non-linear relationships
between c; and cs is a promising direction for future work.

A second key design parameter is the number of partitions in the graph-tuple. In this work we
intentionally instantiate the graph-tuple with k& = 2 views corresponding to the strong and weak
graphs. This two-scale design already captures the main separation between primary and contextual
interactions in our dense graphs, while keeping the number of intra- and inter-scale message-passing
paths manageable. Allowing more than two partitions would increase computational and tuning
complexity by introducing additional operators and paths, but it could provide greater flexibility to
capture diverse interactions. Beyond multi-scale analysis, our framework is also naturally suited
to heterogeneous graphs, where each of the k£ views may correspond to a distinct relation type.
Systematically exploring these higher-order, multi-relational graph-tuples is another promising
avenue for future research.

8 Conclusion

In this work, we introduced the multi-view graph-tuple framework to address a fundamental challenge
of applying GNNs to data with continuous relationships. Standard single-graph approaches face a
difficult trade-off: either constructing a weak-connection graph via thresholding, which inevitably
discards contextual information, or using the full-graph (complete) graph, which often incurs higher
computational costs. Our framework resolves this limitation by explicitly partitioning the interaction
space into a graph tuple, comprising a strong-connection graph for primary interactions and a weak-
connection graph for global context, and performing (heterogenous) message-passing in parallel



to maintain efficiency. We theoretically show the expressivity improvements of our multi-view
graph-tuple model over the single-graph models. We also empirically validate our framework through
experiments on molecular property prediction and cosmological parameter prediction, showing that
our multi-view approach can achieve an overall better performance against single-graph baselines.

As a proof of concept, we create multiple graph views using a fixed partitioning strategy depending
on the edge feature values, which may be sub-optimal, as observed in the cosmological parameter
prediction experiments. Future work could explore adaptive mechanisms, such as a learnable threshold
or flexible relationships between scales, to allow the multi-view graph-tuple framework to tailor its
structure to the specific task and data. Another interesting direction is to apply our framework for
other dense-graph applications, such as brain connectomes and combinatorial optimization problems.
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A Full Details for Theoretical Analysis

This section provides the complete definitions, lemmas, and proofs for the theoretical results presented
in Section

A.1 Setup and Model Classes

Let S1,S2 € R™*™ be two graph shift operators on a common node set, representing two different
connection strenghts (e.g., strong and weak). We also define a dense-graph operator Sgense = S1+ 52
which includes both the strong and weak connections. For a fixed polynomial degree bound m € N,
we consider three classes of linear graph filters.

Definition 1 (Filter Classes). The strong-connection (S1-based), dense-graph, and multi-view graph
tuple filter classes are defined as:

mym) = {p(5) = > st ).
k=0

m

Ho(m) = { a(Saense) = > be(S1 + 52)" },

k=0

Heu(m) = { 9(51,5) = > cow(S1,5)
WEW<

where Wx, is the set of all words of length up to m formed from the symbols {1, 2}, and w(S1, S2) =

T1}) S,

Remark 1 (Degrees of Freedom). The classes Hi(m) and Ho(m) are defined by m + 1 free
parameters each. In contrast, the multi-view graph-tuple class Hgy(m) is defined by 2™ — 1
parameters, reflecting its ability to assign an independent coefficient to every possible path of length
up to m.

A.2 Expressivity and Risk Dominance

Our analysis is grounded in a standard linear data model and the corresponding prediction risk.

Assumption 1 (Data model and risk). The input x € R"™ is zero-mean with covariance 3 - 0. For a
linear predictor M € R™*" and target y*, we define the risk as

R(M) =E[||Mz —y*3].

We assume y* = M*x + € with Ele | ] = 0 for some oracle predictor M* € Hg(m), where

Hgi(m) is the closure of Hgt(m).

For matrices A, B € R"*", we define the weighted inner product, Frobenius norm, and the corre-
sponding distance:

(A4,B)s =tx(BTAY),  ||A|}p=(AA)s,  dists(4,B) = A~ Blx.r.
We use dists; (M, C) = inf e disty (M, M’) to denote the distance from a matrix M to a set C.

Our analysis relies on two lemmas. The first recasts the prediction risk as a best approximation
problem in a matrix space, and the second provides a combinatorial expansion.

Lemma 1 (Risk Decomposition). Under Assumption (I} for any predictor M, the risk can be
decomposed as R(M) = R(M*) + | M — M*|3, .

Proof. By definition, R(M) = E[||(M — M*)z — ¢||3]. Expanding this and taking the expectation,
the cross-term E[((M — M*)x, €)] vanishes due to the condition E[¢|z] = 0. The remaining terms
are E[||(M — M*)z|]35] = ||[M — M*|[3, p and E[||e]|5] = R(M*), which yields the result. O

Lemma 2 (Noncommutative Binomial Expansion). For any integer k > 0, we have (S1 + Sg)k =
> wew, W(S1,52), where W, is the set of words of length k.

11



These lemmas allow us to establish our main theoretical results concerning the expressivity and risk
of the multi-view graph-tuple class.

Proposition 1 (Expressivity). For any m > 0, the multi-view graph-tuple class contains the strong-
connection and dense-graph classes: Hi(m) C Hgy(m) and Ho(m) C Hgy(m). If the operators
do not commute, i.e., [S1,Ss] = S152 — 5251 # 0, and m > 2, this latter inclusion is strict:
Hy(m) € Hae(m).

Proof. The inclusion Hyi(m) C Hg¢(m) is trivial by construction. The inclusion Hy(m) C Hgi(m)
follows from Lemma [2] which shows that any polynomial in Sgepse 1S @ sum over words with
coefficients tied according to their length (¢, = by,,|). The inclusion is strict under non-commutativity
because an element like the commutator [S1, S2] is in Hg¢(m) but not in Hy(m), as the latter requires
the coefficients of S7.55 and 55.57 to be equal. ]

Remark 2 (The Commuting Case). Even if [S1,S2] = 0, Ho(m) generally remains a proper subset
of Hat(m) unless Sy and Sz are algebraically dependent (e.g., So = ¢S1), because Ho(m) still
enforces coefficient tying across all same-degree terms.

The greater expressivity of the multi-view graph-tuple class can translate into improved generalization
performance.

Proposition 2 (Oracle risk dominance). Let U (m) = Hg(m) and V(m) = Ho(m) be the closures
of the multi-view graph-tuple and dense-graph classes. If m > 2 and the oracle predictor M™* has a
non-zero component in the orthogonal complement of V(m) within U(m) (i.e., Ty ()0 (M*) # 0),
then the multi-view graph-tuple class achieves a strictly lower oracle risk. The performance gap is
given precisely by:

inf R(q)— inf R(g) = [Ty (M*)||% 5 > 0.
gEHo(m) (@) gE€Hat(m) (@)= W( )L( )”Z,F

Proof. By Lemma |1} the minimum risk for a closed class C is infyec R(M) = R(M*) +
dists (M*,C)?. Subtracting the expressions for C = U (m) and C = V(m) yields the risk gap:

inf R(g)— inf R(g) = dists(M*,V(m))? — dists(M*,U(m))>.
(9) (9) =(M*,V(m)) =(M?,
gE€Hy(m) gEHg(m)
Since M* € U(m) by assumption, dists (M™*,U(m)) is zero. Since the shortest distance from M* to
the subspace V() is the norm of its component in the orthogonal complement, dists (M*, V(m))? =
[Ty~ (M*)||3, - Substituting this gives the claimed result. As the proposition’s premise is that
this projection is non-zero, the squared norm is strictly positive. O

Corollary 1 (Sufficient Condition for Strict Improvement). The condition for strict risk dominance
in Proposition is satisfied if m > 2, the operators do not commute, [S1, S2] # 0, and the degree-2
component of M* contains a non-zero multiple of the commutator S, Sa].

Proof. This follows because, as established in the proof of Proposition[l] the commutator [S1, S|
is an element of the orthogonal complement V(m)*. If M* contains a non-zero multiple of this
element, its projection onto this subspace, ITy,(,,,y+ (M*), must be non-zero. O

In summary, the ability of our multi-view graph-tuple framework to assign distinct weights to distinct
interaction paths makes it more expressive than models constrained to polynomials of a single
operator. This greater expressivity guarantees a lower or equal modeling risk for target functions that
satisfies our modeling assumptions: the oracle predictor M* that is expressible within our framework

(i.e., M* € Hgi(m) in Assumption .

These theoretical results directly apply to the linear backbone of the GNNs used in our experiments.
Specifically, our analysis focuses on these linear operators and does not consider the nonlinear
activation functions applied to their outputs. While a full characterization of the nonlinearities is more
complex, our analysis provides a clean conceptual baseline: any nonlinear architecture built upon
this backbone inherits the fundamental expressivity gap between the underlying operator classes.
Extending such guarantees to fully nonlinear settings is an interesting but technically nontrivial
direction that we leave for future work.
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B Implementation Details

B.1 Molecular Property Prediction

B.1.1 Feature Construction.

Since the QM7b dataset is feature-scarce, we first construct node and edge features from the
molecule’s Coulomb matrix, X. Following prior work [[10]], we derive initial features directly
from the Coulomb matrix entries. Specifically, we apply a "binary expansion" technique to expand
the scalar diagonal entries (X;;) and off-diagonal entries (X;;) into 100-dimensional vectors, which
serve as the initial node and edge features, respectively. These raw scalar values are then projected
into a 100-dimensional hidden space by learnable encoders.

Table 2: Percentage of remaining strong edges under different Coulomb thresholds (c).
Threshold (c) 0 0.5 1 2 2.5

Remaining Edges (%) 100.00 68.02 50.10 25.89 24.90

B.1.2 Model Architecture and Training.

All GNN models are constructed with two GNN layers and a hidden dimension of 100. The MLPs
within each GINEConv layer consist of two linear layers separated by a ReL.U activation. The
edge encoders within each path of the GINE-Gt model are implemented as single linear layers. For
graph-level prediction, we apply a global mean pooling to the node features of the final GNN layer,
and the resulting graph vector is passed through a 3-layer MLP with a ReL.U activation to produce
the final output.

For training, all models use a batch size of 128. We train the models by minimizing the L1 Loss
(Mean Absolute Error) using the Adam optimizer [26] with an initial learning rate of 5 x 10~2 and
weight decay of 1075, A cosine—plateau scheduler reduces the learning rate by a factor of 0.8 after
five epochs without validation improvement (minimum 10~°). Early stopping is triggered after 20
idle epochs or when the run reaches a maximum of 1000 epochs.

B.1.3 Evaluation Protocol and Environment.

To ensure a robust evaluation, we employ a stratified ten-fold cross-validation scheme. For each
fold, we reserve 10% of the data for testing, while the remainder is split into a 9:1 train/validation
ratio. Then we report the mean and standard error of the Mean Absolute Error (MAE) across the ten
test set folds. These experiments were performed on a MacBook Air (15-inch, 2023) featuring an
Apple M2 processor and 16 GB of unified memory, running macOS Ventura (13.4). All models were
implemented in PyTorch.

B.2 Cosmological Parameter Inference
B.2.1 Feature Construction.

For all constructed graphs, since the dark matter halos are treated as identical particles, the initial

feature for each node is set to a 1-dimensional unit vector (hgo) = [1]). This vector is then projected
into the model’s hidden dimension by an embedding layer. Edge attributes are dynamically generated
by expanding the Euclidean distance between halos into a 32-dimensional feature vector using a
Radial Basis Function (RBF) encoding.

B.2.2 Model Architecture and Training.

Our EGNN-Gt models are constructed with 3 layers and a hidden dimension of 96. The MLPs
within each EGCL operator use the SiLU activation function. For the primary task of cosmological
parameter prediction, a global mean pooling is applied to the final node features, and the resulting
graph-level representation is passed through a 2-layer MLP to produce the output. We train all models
for a maximum of 300 epochs by minimizing the Mean Squared Error (MSE) loss, using a batch size
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Table 3: Search space for the strong-connection cutoff radius (c;) for different datasets and target
parameters. The search for c; is performed with a step of 0.5. The weak-connection radius (c2) is
always set to 2cy, so its corresponding search is performed with a step of 1.0.

Dataset Target Parameter c; Values (Mpc/h) co Values (Mpc/h)
CAMELS (TNG) Qo 0.5,1.0,...,3.5 1.0,2.0,...,7.0
CAMELS (TNG) os 1.5,2.0,...,5.0 3.0,4.0,...,10.0
CAMELS-SAM Qo 0.5,1.0,...,3.5 1.0,2.0,...,7.0
CAMELS-SAM os 1.0,1.5,...,4.0 2.0,3.0,...,8.0

of 8. The AdamW optimizer is used with an initial learning rate of 5 x 10~% and a weight decay of
1 x 1075, The learning rate is dynamically adjusted using a ReduceLROnPlateau scheduler, which
reduces it by a factor of 0.7 if the validation loss does not improve for 5 consecutive epochs, down to
a minimum of 1 x 107>,

B.2.3 Evaluation Protocol and Environment.

The datasets are randomly partitioned into training (60%), validation (20%), and test (20%) sets. To
ensure the robustness of our findings, each experiment is repeated 10 times with different random
seeds, and we report the mean and standard error of the performance metrics on the test set. All
experiments were conducted on a single NVIDIA RTX 6000 Ada Generation GPU, equipped with 48
GB of VRAM.
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