
Published as a conference paper at ICLR 2025

SYNTHESIS AND VERIFICATION OF STRING STABLE
CONTROL FOR INTERCONNECTED SYSTEMS VIA NEU-
RAL SISS CERTIFICATE

Jingyuan Zhou1 Haoze Wu2, Longhao Yan1, Kaidi Yang1∗

National University of Singapore1, Amherst College2

jingyuanzhou@u.nus.edu, hwu@amherst.edu,
longhao.yan@u.nus.edu, kaidi.yang@nus.edu.sg

ABSTRACT

Large-scale interconnected systems require robust control strategies to ensure
string stability, which is crucial for system safety and efficiency. Although
learning-based controllers such as reinforcement learning (RL) have demonstrated
significant potential in managing complex control scenarios, the lack of inter-
pretability makes it difficult to provide formal string stability guarantees. To
address this gap, we propose a novel verification and synthesis framework that
integrates scalable input-to-state string stability (sISS) with neural network ver-
ification to formally guarantee string stability in interconnected systems. Our
contributions are three-fold: (1) we reformulate the string stability analysis as a
neural network verification problem by incorporating neural sISS certificates; (2)
we develop a counterexample-guided training framework that synthesizes neu-
ral network-based controllers satisfying sISS constraints with minimal degrada-
tion in control performance; and (3) we validate our approach in an RL-based
mixed-autonomy vehicle platooning scenario. Numerical simulations show that
the refined RL controller guarantees sISS while preserving the RL policy’s perfor-
mance.

1 INTRODUCTION

With the rapid development of sensing, communication, and control technologies, large-scale in-
terconnected systems have found wide applications in fields such as power systems (Gurrala &
Sen, 2010), intelligent transportation systems (Zhou et al., 2024b; Zhou & Yang, 2024; Zhou et al.,
2024a), and industrial process control systems (Zhu & Henson, 2002). A critical challenge in these
applications is ensuring string stability, which prevents local disturbances from propagating or am-
plifying throughout the network (Feng et al., 2019). For instance, in vehicle platooning or multi-
robot formations, a loss of string stability can lead to significant performance degradation and even
safety risks.

Control strategies for interconnected systems can be divided into model-based and learning-based
approaches. Model-based controllers, such as linear feedback control (Wang et al., 2021), model
predictive control (Gratzer et al., 2022), and sliding mode control (Guo et al., 2016), enable direct
analysis of string stability using time-domain (Lyapunov-based) or frequency-domain (transfer func-
tion) techniques (Feng et al., 2019). However, these model-based methods often rely on accurate
system models and can become less effective or overly conservative when dealing with complex or
uncertain dynamics in large-scale interconnected systems. To address these limitations, learning-
based controllers, in particular, neural network-based controllers, have gained increasing popularity
due to their ability to handle complex dynamics and uncertain environments in interconnected sys-
tems (Cheng et al., 2019; Li et al., 2021; Zhou et al., 2024b). However, due to the black-box nature
of neural networks, it is challenging to provide formal guarantees for string stability. For existing
neural network-based controllers, string stability is often treated as a soft constraint in the training
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process (e.g., incorporated into the loss or reward function) without offering a rigorous theoretical
guarantee.

To the best of our knowledge, few studies have addressed the challenge of verifying and ensuring
string stability in neural network-based controllers. The only notable attempt is the Estimation-
Approximation-Derivation-Calculation framework proposed by Zhang et al. (2024) that approx-
imates learning-based car-following controllers as linear models and then uses transfer function
analysis to assess string stability. However, this approach suffers from significant approximation
errors, making it unsuitable for rigorous string stability verification. It is worth noting that several
works seek to provide formal guarantees for local stability rather than string stability. For instance,
Dai et al. (2021) proposes a Lyapunov-based approach to ensure local stability by designing neu-
ral network controllers with a verifiable Lyapunov certificate. Building on this, Yang et al. (2024)
introduces a framework for verifying neural control under both state and output feedback, further ex-
tending Lyapunov-based guarantees. Moreover, Mandal et al. (2024a;b) leverage Lyapunov barrier
certificates to formally verify deep reinforcement learning controllers, demonstrating safe and reli-
able training for aerospace applications. However, these works on local stability cannot be readily
extended to ensure string stability in interconnected systems. Local stability guarantees that small
perturbations around an equilibrium for an individual agent decay, whereas string stability ensures
that disturbances do not amplify as they propagate along a chain of agents. Thus, local stability
alone is insufficient for analyzing the cumulative effects of inter-agent disturbance propagation in-
herent in string stability. Consequently, formally guaranteeing string stability within interconnected
systems with neural network controllers remains an open and challenging problem.

Statement of Contribution. To bridge the research gap, we propose a verification and synthesis
framework for learning a neural controller with a formal string stability guarantee. Our contribu-
tions are three-fold. First, we formulate the string stability analysis for heterogeneous interconnected
systems with learning-based controllers as a neural network verification problem, whereby a notable
notion for string stability, i.e., scalable input-to-state string stability (sISS) (Silva et al., 2024; Qiu
et al., 2024), is verified. To the best of our knowledge, this is the first work that formally verifies
string stability for interconnected systems under neural network-based control. Second, we syn-
thesize a neural network-based controller with a formal sISS guarantee through a counterexample-
guided training process, where a controller is initially trained with Reinforcement Learning (RL)
algorithms and then fine-tuned using the counterexamples identified by the verification framework.
This approach ensures the satisfaction of sISS constraints with minimum degradation in the con-
trol performance of the original RL-based policy. Third, we validate our framework in a vehicle
platooning scenario. Simulation results show that the refined neural controller achieves sISS while
preserving the RL control performance.

2 PROBLEM STATEMENT

Consider an interconnected system of N agents, indexed by the set N = {1, . . . , N}. The topology
of agents is represented by an adjacency matrix G ∈ {0, 1}N×N , where each element Gi,j = 1 if
agent j is coupled to agent i and Gi,j = 0 otherwise. Let Ni = {j | Gi,j = 1} ⊆ N denote the set
of neighbors of agent i. The state of agent i ∈ N updates according to the dynamics

ẋi = fi
(
xi, {xj}j∈Ni , ui, di

)
, (1)

where xi ∈ Rni is the state of agent i, and di is the external disturbance affecting agent i. The control
input for agent i is determined by a neural network-based controller trained from RL, written as:

ui = πi

(
xi, {xj}j∈Ni

)
. (2)

The overarching goal of this work is to design and verify controllers for such an interconnected
system so that string stability, as defined in Def. 1, is guaranteed. Intuitively, string stability requires
that any disturbance does not amplify as it propagates through the remaining agents.

Definition 1 (Scalable Input-to-State Stability (Silva et al., 2024)) The system Eq. (1) is sISS if
there exists a class-KL function β and a class-K∞ function γ such that, for any N ∈ N, any initial
conditions xi(0), and any disturbance di, the inequality

max
i∈N

|xi(t)|2 ≤ β
(
max
i∈N

|xi(t0)|2, t− t0

)
+ γ

(
max
i∈N

∥di∥L∞

)
(3)
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is verified for any t ≥ 0 and i ∈ N .

Def. 1 quantifies how local disturbances and initial errors are attenuated in time by providing an
upper bound for the disturbances of each agent. The first term on the right-hand side (RHS) captures
the transient behavior of the system’s response over time, where class-KL function β is a function
that is a class-K function in its first argument (i.e., strictly increasing and zero at origin) and decays
to zero as its second argument tends to infinity. The second term of the RHS captures the impact of
the magnitude of the disturbance on the system’s state, where class-K∞ function γ is an unbounded
strictly increasing function with γ(0) = 0.

A sufficient condition for the sISS is given in Theorem 1 (Silva et al., 2024) as follows.

Theorem 1 (sISS Vector Lyapunov Functions (Silva et al., 2024)) Consider an interconnected
system in the form of Eq. (1). Assume that for each agent i ∈ N , there exists a local positive
definite function Vi : Rni → R+, which verifies α1

(
∥xi∥2

)
< Vi(xi) < α2

(
∥xi∥2

)
for some

class-K∞ functions α1, α2. For all states
{
xj

}
j∈Ni

∈
∏

j∈Ni
Rnj , the inequality

V̇i(xi) = ∇xi
Vi

(
xi(t)

)⊤
ẋi(t) ≤ − ai,i Vi(xi) +

∑
j∈Ni

ai,j Vj(xj) + hi |di|2 (4)

holds for any trajectory consistent for Eq. (1) with ai,i > 0, ai,j ≥ 0, where hi ∈ R repre-
sents the weight for the external disturbance applied to the i-th system. If for some c > 0, matrix
A ∈ R(N+1)×(N+1) collecting the constants ai,i and ai,j satisfies the negative diagonal dominance
condition, i.e.,

−ai,i +
∑
j∈Ni

ai,j ≤ −c < 0 , (5)

then the equilibrium point of Eq. (1) satisfies sISS (see Definition 1), and V = [V1, . . . , Vn ]
⊤ is an

sISS vector Lyapunov function.

The sufficient condition represented by Theorem 1 can be used to verify the sISS property of an
interconnected system with neural network-based controllers. Specifically, we aim to construct an
sISS vector Lyapunov function such that each local function Vi is bounded by class-K∞ functions,
as in Eq. (4), where the local coupling coefficients ai,j (with i, j ∈ {0, 1, . . . , N}) captures the
influence of subsystem j on subsystem i. To this end, in the next section, we propose a verification
and synthesis framework to learn an sISS-guaranteed neural network-based controller that satisfies
this condition.

3 METHODOLOGY

Fig.1 demonstrates our verification and synthesis framework for learning a neural network-based
controller with a formal sISS guarantee. This framework consists of two components: (i) a verifica-
tion component that verifies the sufficient condition for sISS as stated in Theorem 1 (see Section 3.1),
and (ii) a synthesis component that utilizes the counterexamples identified during verification to fine-
tune a neural network-based controller, originally trained by RL, to ensure sISS (see Section 3.2).

3.1 VERIFICATION FORMULATION

In this subsection, we certify sISS for interconnected systems with neural network-based controllers
via neural network verification. Specifically, we first characterize the system dynamics and Lya-
punov functions with neural networks and then verify the sufficient conditions for sISS as stated in
Theorem 1.

Since each agent i ∈ N is trained with an actor-critic RL algorithm, we characterize its system
dynamics, control policy characterized by the Actor Network, Q function characterized by the Critic
Network, and Lyapunov function in discrete-time settings as neural networks ϕdyn,i, ϕπi , ϕQi ,ϕVi ,
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Figure 1: Framework of string stability verification for the interconnected system.

respectively, written as:

xt+1,i = fi
(
xt,i, ut,i, dt,i

)
= ϕdyn,i

(
xt,i, ut,i, dt,i

)
, (6)

ut,i = πi

(
xi, {xj}j∈Ni

)
= clamp

(
ϕπi

(
xi, {xj}j∈Ni

)
, umin, umax

)
, (7)

Qi (xt,i, πi(xt,i)) = ϕQi
(xt,i, πi) (8)

Vi

(
xt,i

)
= ϕVi

(
xt,i

)
− ϕVi

(
x∗
t,i

)
, (9)

where x∗ represents the equilibrium state, umin and umax are the controller bounds, the clamp func-
tion ensures that the output of ϕπi is restricted within the range [umin, umax], and the Q-function
Qi (xt,i, πi) evaluates control performance, where a higher Q-value corresponds to a better cumu-
lative reward. Moreover, we represent the pre-trained RL policy, which requires further verification
and fine-tuning, as πi,ori.

According to Theorem 1, we aim to verify the following sISS sufficient conditions:

Vi

(
xt,i

)
≥ β, xt,i ̸= x∗

i , ∀i ∈ N , ∀t (10)

Vi

(
xt+1,i

)
− Vi

(
xt,i

)
+ ai,i Vi

(
xt,i

)
−

∑
j∈Ni

ai,j Vj

(
xt,j

)
− hi|dt,i|2 ≤ 0, ∀i ∈ N , ∀t. (11)

In our distributed verification scheme, each agent i ∈ N independently verifies that both Eq. (10)
and Eq. (11) hold. The global sISS certificate is then constructed as:∧

i∈N

[
Eq. (10) ∧ Eq. (11)

]
. (12)

This distributed formulation enables us to identify counterexamples for each agent’s controller using
verification tools such as Marabou (Wu et al., 2024) in parallel, thereby facilitating scalable and
efficient verification of large-scale interconnected systems.
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3.2 SYNTHESIS OF SISS GUARANTEED CONTROLLERS

This subsection presents a counterexample-guided training process for the synthesis of sISS-
guaranteed neural network-based controllers in interconnected systems. This training process lever-
ages the counterexamples found in Section 3.1 to fine-tune the neural network-based controller while
simultaneously identifying the Lyapunov function candidates that satisfy sISS conditions.

As Eq. (3) serves as a sufficient condition for sISS with any coupling matrix A satisfying Eq. (5), we
simultaneously search for the coupling matrix and vector Lyapunov candidates to facilitate training.
Such a treatment expands the search space and thus can increase the probability of successfully
identifying a valid vector Lyapunov function. To this end, we represent the coupling matrix A by
combining a learnable matrix Apure and adjacency matrix G:

A = ReLU(Apure) ◦G, (13)
where the elementwise product ◦ ensures that ai,j = 0 when Gi,j = 0, and the ReLU activation
guarantees ai,j ≥ 0. The matrix Apure is then trained together with Lyapunov functions and con-
trollers to identify matrix A. Moreover, to ensure string stability as stated in Theorem 1, we require
the negative diagonal dominance condition Eq. (5) for matrix A, which is integrated into the loss
function.

Then, we formulate the training process of the coupling matrix, the vector Lyapunov function, and
the RL-based controller as the following optimization problem:

min
{πi}i∈N ,{Vi}i∈N ,A

∑
i

σo,1∥πi(xt,i)− πi,ori(xt,i)∥2+

σo,2 (Qi (xt,i, πi,ori(xt,i))−Qi (xt,i, πi(xt,i))) (14)

s.t. Vi

(
xt,i

)
≥ β, xt,i ̸= x∗

i , (15)

Vi

(
xt+1,i

)
− Vi

(
xt,i

)
≤ −ai,i Vi

(
xt,i

)
+

∑
j∈Ni

ai,j Vj

(
xt,j

)
+ hi|dt,i|2, (16)

− ai,i +
∑
j∈Ni

ai,j ≤ −c, (17)

∀i ∈ N ,∀xt,i ∈ R (18)

where the term ∥πi(xt,i)−πi,ori(xt,i)∥2 in the objective function ensures that the output of the newly
synthesized controller πi(xt,i) remains close to that of the original RL-trained controller πi,ori(xt,i),
and the term (Qi (xt,i, πi,ori(xt,i))−Qi (xt,i, πi(xt,i))) encourages the new controller to achieve
higher Q-values, thereby implicitly enhancing control performance. The coefficients σo,1 and σo,2
are the weighting coefficients. Constraints Eq. (15) and Eq. (16) enforce the sISS conditions, while
constraint Eq. (17) imposes the coupling matrix requirement derived from the negative diagonal
dominance condition. R is reachable set for all the agents.

Since the optimization problem cannot be solved in closed form, we reformulate it using the follow-
ing loss function:

Lo,1 =

∑
i∈N ∥πi(xt,i)− πi,ori(xt,i)∥2

|N |
, (19)

Lo,2 =

∑
i∈N ReLU (Qi (xt,i, πi,ori(xt,i))−Qi (xt,i, πi(xt,i)) + ϵo,2)

|N |
, (20)

Lp =

∑
i∈N ReLU (β − Vi(xt,i) + ϵp)

|N |
, (21)

Ld =

∑
i∈N ReLU

(
Vi

(
xt+1,i

)
− Vi

(
xt,i

)
+ ai,iVi

(
xt,i

)
−
∑

j∈Ni
ai,j Vj

(
xt,j

)
− hi|dt,i|2 + ϵd

)
|N |

,

(22)

Lv =

∑
i∈N ReLU

(
−ai,i +

∑
j∈Ni

ai,j + c+ ϵv

)
|N |

, (23)

L(A, π, V ) = σo,1Lo,1 + σo,2Lo,2 + σpLp + σdLd + σvLv (24)
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where the coefficients σo,1, σo,2, σp, σd, σv are weighting factors that balance the different objectives
in the loss function. The values ϵp, ϵo,2, ϵd and ϵv act as margins to ensure that we can adopt a more
conservative policy to satisfy the sISS conditions.

With the training and verification formulation, we use a counterexample-guided inductive synthesis
(CEGIS) loop to obtain a fully verified controller, coupling matrix, and certificate as in Algorithm 1.
At each CEGIS iteration, we jointly train {Vi}i∈N , {πi}i∈N , and A until the loss Eq. (24) converges
and then use a neural network verifier (e.g. Marabou (Wu et al., 2024)) to identify counterexamples.
If the verifier identifies counterexamples violating constraints Eq. (10) or Eq. (11), we sample points
in the proximity of the counterexample and use these to augment the training data. By sampling
multiple nearby points, we learn smooth behavior for a localized neighborhood instead of overfitting
to a specific point. This process is repeated iteratively until no counterexamples are found, at which
point we are guaranteed to have produced a fully verified controller, coupling matrix, and Lyapunov
certificates.

Algorithm 1 Counterexample-Guided Inductive Synthesis Loop for sISS Certificate

Require: Initial controller parameters {πi}i∈N , initial dataset D containing state-action pairs, Lya-
punov function parameters {Vi}i∈N , an initial coupling matrix A, and a neural verifier (e.g.,
Marabou).

Ensure: Verified controllers {πi}i∈N , Lyapunov functions {Vi}i∈N , and coupling matrix A ensur-
ing stability conditions.

1: Initialize: Load controller parameters, initialize Lyapunov function parameters, and set an ini-
tial coupling matrix.

2: repeat
3: Train controllers {πi}i∈N , coupling matrix A and Lyapunov functions {Vi}i∈N by mini-

mizing the loss function Eq. (24) using gradient descent.
4: Evaluate the stability conditions by verifying the sISS constraints Eq. (10) and Eq. (11)

using the neural verifier (Marabou).
5: if counterexamples violating the constraints are found then
6: Identify the violating states and generate new samples in their proximity to refine train-

ing.
7: Augment dataset D with these new samples and retrain the controllers and Lyapunov

functions.
8: else
9: Terminate as the obtained controllers, Lyapunov functions, and coupling matrix satisfy

the stability conditions.
10: end if
11: until no counterexamples are found after verification.
12: return Verified controllers {πi}i∈N , Lyapunov functions {Vi}i∈N , and coupling matrix A en-

suring system stability.

4 NUMERICAL SIMULATION

In this section, we present numerical simulations to evaluate the performance of the proposed control
framework. Section 4.1 introduces the training setting of the proposed method. Section 4.2 presents
the simulation results.

4.1 TRAINING SETTING

We evaluate our proposed method in a mixed-autonomy platoon environment (Zhou et al., 2024b),
where there are one leading vehicle, one connected and automated vehicle (CAV), and one follow-
ing human-driven vehicle (HDV). The details of the scenario are described in Appendix A. The
parameters of the training are given in Table 1.

Figure 2 and Table 2 show the training results. Figure 2 depicts the training loss for each iteration,
each initialized with the policy from the previous iteration. The losses converge to lower values
as iterations progress, indicating improved policy performance. Table 2 shows that the number of
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Table 1: Parameter setting

c ϵo,2 ϵp ϵd ϵv β σo,1 σo,2 σp σd σv

0.05 -10 1e-2 1e-2 1e-4 0.01 5e-4 1e-4 10 5 100

counterexamples drops significantly across the three iterations and ultimately to zero, indicating that
each refinement step successfully integrates discovered counterexamples and reduces violations.
The calculation time also slightly decreases (37s to 30s) because verifying a more robust policy
involves fewer search steps for potential violations.
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Figure 2: Training Loss over Time

Table 2: Number of Counter Examples and Cal-
culation Time per Iteration

Iteration 1 2 3

# Counter Examples 21 9 0
Time (s) 37 32 30

4.2 SIMULATION RESULTS

We present the simulation results for string stability verified by the sISS certificate and control
performance.

String stability analysis: Figure 3 provides a visualization of the Lyapunov function for both CAV
and HDV. The contour plots (a) and (b) offer a top-down view of the Lyapunov functions, where
darker (lower) values cluster around the equilibrium point. These results demonstrate that the con-
troller’s learned Lyapunov function remains strictly positive away from equilibrium and decreases as
the states approach it. This empirically validates the string stability of the mixed-autonomy platoon.
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Figure 3: Lyapunov Function Visualization

Control performance analysis: Figure 4 (a) illustrates the response of both the CAV and the HDV
to the leading vehicle’s velocity disturbance under the fine-tuned CAV controller. The vehicle tra-
jectories show that the CAV and HDV achieve stable spacing and velocity profiles over time and the
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system effectively mitigates disturbance propagation. Meanwhile, Figure 4 (b) displays a contour
plot of the Q-value differences between the refined and original controllers across various spac-
ing–velocity pairs. Notably, the region around the equilibrium exhibits higher Q-values for the
refined controller, indicating its better performance as evaluated by the Q function in that critical
area.

Overall, these results confirm that our approach not only rigorously verifies string stability through
the learned Lyapunov function but also maintains robust control performance, ensuring both stability
and efficiency in mixed-autonomy platoons.
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Figure 4: Control performance analysis.

5 CONCLUSION

In this work, we present a novel verification and synthesis framework that formally guarantees string
stability for interconnected systems with neural network-based controllers. By reformulating string
stability analysis as a neural network verification problem and incorporating scalable input-to-state
string stability (sISS) certificates, our approach addresses the limitations of traditional methods that
only ensure local stability. We further develop a counterexample-guided training process that fine-
tunes an RL-based controller to satisfy sISS constraints with minimal performance degradation.
Validation in a mixed-autonomy vehicle platooning scenario demonstrates that the refined controller
not only preserves the control performance of the original RL policy but also rigorously mitigates
disturbance propagation, ensuring system string stability and efficiency. Future work will apply this
string stability analysis framework to a broader range of scenarios, such as power system networks,
multi-robot formations, and industrial process control systems.
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Guilherme Fróes Silva, Alejandro Donaire, Richard Middleton, Aaron McFadyen, and Jason Ford.
Scalable input-to-state stability of nonlinear interconnected systems. IEEE Transactions on Au-
tomatic Control, 2024.

Jiawei Wang, Yang Zheng, Chaoyi Chen, Qing Xu, and Keqiang Li. Leading cruise control in
mixed traffic flow: System modeling, controllability, and string stability. IEEE Transactions on
Intelligent Transportation Systems, 23(8):12861–12876, 2021.
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A SYSTEM DYNAMICS OF MIXED-AUTONOMY PLATOONS

We consider a mixed-autonomy platoon consisting of both CAVs in the set ΩC and HDVs in the set
ΩH. Let n = |ΩC ∪ΩH| be the total number of vehicles, and m = |ΩC | denote the number of CAVs,
with | · | representing the cardinality of a set.

Each vehicle’s dynamic is described by second-order ordinary differentiable equations:

ṡi(t) = vi−1(t)− vi(t), i ∈ Ω (25)

v̇i(t) =

{
ui(t), i ∈ ΩC

Fi (si(t), vi(t), vi−1(t)) , i ∈ ΩH
(26)

where si(t) and vi(t) represent the spacing and velocity of vehicle i, respectively. For an HDV
i ∈ ΩH, the acceleration is governed by an unknown car-following model Fi(·), which depends on
the spacing si(t), the HDV’s own velocity vi(t), and the preceding vehicle’s velocity vi−1(t).

We then rewrite the longitudinal dynamics of the mixed-autonomy platoon Eq. (25)-Eq. (26) into
the matrix form as:

ẋ(t) = f(x(t), v0(t)) +Bu(t), (27)

where x(t) =
[
s1(t), v1(t), . . . , sn(t), vn(t)

]⊤ ∈ R2n represents the states of all n vehicles. The
function f(·) encompasses the dynamics of both HDVs and CAVs, while v0(t) denotes the speed of
the leading vehicle. The matrix B ∈ R2n×m incorporates the CAV inputs u(t) ∈ Rm, where e2i2n is
a vector of length 2n with 1 in the 2i-th position and 0 elsewhere.

Figure 5: Mixed-autonomy platoon environment

We next introduce the adjacency matrix G, which encodes how vehicles share information. HDVs
rely on onboard sensors to measure the states of preceding vehicles, whereas CAVs can also commu-
nicate with surrounding vehicles. As in Figure 5, in our mixed-autonomy platoon with one leading
vehicle, one CAV, and one following HDV, the adjacency matrix G ∈ {0, 1}3×3 is specified as:

G =

[
0 0 0
1 1 1
0 1 1

]
, (28)

where Gi,j = 1 means that vehicle j directly provides information to vehicle i. In this example,
G2,3 = 1 indicates that the HDV (vehicle 3) influences the CAV (vehicle 2), aligning with the CAV’s
V2V communication links.
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