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Abstract

Whole-brain circuit mapping yields wiring diagrams of axon bundles, or connectomes, that
improve both scientific understanding and clinical care of brain disorders. However, the lack
of direct, objective metrics to compare disease-relevant connectomes potentially hinders
progress. Here, we introduce early steps towards building such metrics with a parcellation-
free, geometry-aware method for analyzing disease-specific streamline bundles using persis-
tent homology and distributions within bundles. We use persistent homology for multiscale
comparison of streamlines in bundles with Wasserstein distance distributions to characterize
topological distances in disease-specific, or filtered, connectomes. We observed hierarchical
similarity hemisphere < disease < connectome. This measure may serve as a foundation to
guide costly next-generation connectome generation while also optimizing disease-specific
connectome atlases for neural implant design, implantation, and programming.
Keywords: Structural Connectomics, Diffusion MRI, Deep Brain Stimulation, Persistent
Homology, Neural Implants, Neuroengineering

1. Introduction

Detailed maps of the brain are improving our ability to treat neurological and psychiatric
disorders (Smith and Lee, 2022; Horn, 2021; Riva-Posse et al., 2018) (1a). Mapping axon
bundles with diffusion MRI (dMRI) has yielded wiring diagrams that promise to explain
disease (Doe and Wang, 2021), improve medical therapy (Anderson and Chen, 2021), and
advance neural implant engineering more broadly (Kumar and Miller, 2022). Efforts to col-
lect larger-scale connectomes and isolate disease-filtered circuits (Figure 1b), or subatlases,
are growing but expensive - their marginal utility and overall cost-benefit are difficult to as-
sess objectively (Johnson and Patel, 2021). Current approaches to comparing connectomes
assume improved acquisition resolution is better, or rely on indirect assessments through
noisy clinical predictions (Hollunder et al., 2024; Mehta et al., 2025; Johnson and Patel,
2021; Thompson and Rodriguez, 2021). More objective metrics are needed, and topologi-
cal data analyses (TDA) provide approaches that are particularly robust to the sources of
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Persistent Homology Workflow: From Tract to Topology

1. Tract Rendering 2. Point Cloud Estimate 3. Persistent Homology Filtration 4. Persistence Diagram

Figure 1: Disease Subatlas Targeting and Workflow a) Schematic of whole brain
connectome (transparent) and isolated disease-filtered circuit (blue - left, orange - right). b)
Similarities and differences in fibers of subatlas are visualized, but hard to quantify (above).
Different connectomes will filter into different subatlases, but whether these differences
matter when doing DBS targeting (below) is unclear. ¢) Methods workflow for this paper.
(1) Rendering of top 100 streamlines of PETERSEN PD subatlas. (2) Point cloud sampling
of streamlines. (3) Rips filtration of point cloud showing green epsilon balls around each
point, drawing simplicial connections between intersecting balls. (4) Persistence diagram
showing birth-death times of topological features, where distance from diagonal indicates
feature significance.

noise intrinsic to dMRI-based tractography (Bhattacharya et al., 2024). This is especially
important as distinct connectomes implicate distinct fibers for therapeutic neural implants,
like deep brain stimulation (DBS; Figure 1c).

Inspired by previous works in topological data analysis (Petri et al., 2014), we develop a
toolset to compute distance-like metrics on disease-specific streamline sets using topological
data analysis (TDA), with the goal of providing meaningful distributions and summary
statistics that reflect structural shape and topology. We investigate whether persistence
summaries are stable within a connectome, whether they detect disease contrasts, and how
symmetric disease-relevant streamlines are across hemispheres.

2. Methods
2.1. Data and Preprocessing

Template white matter tracts for HCPx were imported from the dipy data repository (). Hu-
man subjects data was derived from publicly available structural connectomes (PETERSEN,
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MGH, HCP) (Petersen et al., 2019; Wang et al., 2021; Van Essen et al., 2013). Briefly, the
PETERSEN is an expert-anatomist drawn connectome. MGH and HCP are dMRI derived,
with MGH coming from a single human subject, and HCP averaged from 985 subjects.

2.2. Fiber Filtering

This method was used to perform fiber filtering on Parkinson’s Disease (PD) and Dystonia
(DYT) DBS clinical improvement data (Hollunder et al., 2024; Horn et al., 2015; Horn,
2021). Briefly, this involved correlating the presence of a streamline inside a simulated
volume of tissue activated under DBS with improvement to clinical scores reflecting disease
state. In some analyses, the volume of tissue activated (VTA) at each hemisphere’s DBS
site is mirrored to the other side and used for fiber filtering, yielding a more symmetric
subatlas for cross-hemisphere comparison.

2.3. Streamline Preprocessing

The .trk files for the top 100 predictive streamlines from fiber filtering—the disease sub-
atlas—were loaded and rendered through the DIPY library (Garyfallidis et al., 2014), with
each connectome represented as a set of streamlines in the MNI common 3D coordinate
system. Only the first 100 streamlines are analysed per bundle/subatlas to avoid cardinal-
ity effects and ensure computational tractability. These streamlines are then converted to
point clouds and systematically downsampled (every 100th point) to balance topological
fidelity with computational efficiency.

2.4. Persistent Homology Computation

We compute persistent homology on the point clouds using a Vietoris—Rips (VR) filtra-
tion under the Euclidean metric, implemented through the GUDHI library (Carlsson, 2009;
Maria et al., 2014). The Rips complex is constructed up to homology dimension 2, capturing
connected components (Hy), loops (Hi), and voids (Hs) (Figure 1d). Persistence diagrams
are computed from the resulting simplex tree, encoding the birth and death scales of topo-
logical features across the filtration (Edelsbrunner et al., 2002). For robustness assessment,
we employ a jackknife resampling strategy (leave one out, no replacement) over streamlines:
100 calculations over all N sets of (N-1) streamlines (Efron, 1992). A persistence diagram
is computed for each jackknife subset, yielding a distribution reflective of bundle properties
and potential outliers.

2.5. Distance, Distributions, and Comparisons

Topological differences between persistence diagrams are quantified using the 2-Wasserstein
distance with standard diagonal matching, implemented via the GUDHI Wasserstein mod-
ule (Maria et al., 2014; Skraba and Turner, 2020). Distances are computed on the full set
of birth-death pairs aggregated across homology dimensions (no dimension-wise separation
and no explicit removal of infinite-death pairs). For each condition, we compute all pair-
wise 2-Wasserstein distances among the 100 jackknife diagrams, producing (100) = 4,950

2
intra-tract distances that characterize within-condition variability. Summary distances are
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Figure 2: Comparison Distributions a) Comparison of PD subatlases in left and right
hemispheres. b) Comparison of right hemispheres for PD and DYT subatlases. ¢) PE-
TERSEN PD Right vs MGH PD Right. d) PETERSEN PD Right vs HCP PD Right .
Dashed red lines mark single-run cross-tract distance.

computed between full (all-100 streamline) persistence diagrams using the 1-in-50 decima-
tion: inter-hemisphere distances compare PD Left and PD Right within a connectome,
inter-disease distances compare PD and DYT within the same site, and inter-connectome
distances compare identical conditions across different sites (e.g., PETERSEN vs MGH
vs HCP). Bundle size (100 streamlines) and filtration settings are held constant across
datasets.

3. Results

Across all comparisons, we observe a consistent ordering of topological separations: hemi-
sphere < disease < connectome. Within PETERSEN, the inter-hemisphere distance between
PD Right and PD Left is modest (41). Disease contrasts within the same connectome are
larger (PETERSEN PD Right vs PETERSEN DY T Mirror Right = 106). As seen in Figure 2,
the largest gaps arise when holding disease and hemisphere fixed but changing connectome
identity (PETERSEN PD Right vs MGH PD Right = 216; PETERSEN PD Right vs HCP
PD Right = 253). In Figure 5, Hemisphere checks show larger left-right distances in HCP
(131) and MGH (155), yet these remain well below the cross-connectome distance (222)
in Figure 6.

4. Discussion

Our persistence-based approach to comparing disease-specific connectomes reveals a consis-
tent ordering of topological separations across datasets and comparison types: hemisphere
< disease < connectome, indicating stability within a site and sensitivity to disease, while
cross-site acquisition/reconstruction imposes dominant fingerprints.

Practically, topological distances offer a parcellation-free, geometry-aware metric for
evaluating disease-targeted bundles and methodological choices. Within a single connec-
tome, small hemisphere differences and tight jackknife distributions support using PH-
derived metrics as internal quality control for acquisition parameters, tractography, and
DBS seeding. In contrast, the marked cross-connectome separations caution against naive
pooling or benchmarking without harmonization. This dominance of acquisition effects
over disease signals implies that unharmonized multi-site analyses risk characterizing scan-
ner artifacts rather than the underlying pathology. For DBS optimization, stable within-site
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topology summaries can validate disease subatlases and compare candidate targets or con-
tacts under a common metric.

Limitations include our use of downsampling for tractability, which may obscure fine-
scale features. Vietoris—Rips filtrations may be sensitive to subsampling density and nu-
merical tolerances, with variability across implementation libraries and subsampling den-
sity.Leakage is possible if disease-informed streamline selection is not strictly segregated
from evaluation.

Further work will build richer representations (e.g., persistence landscapes and higher-
order homology (Bubenik, 2015)) and more stable measures (e.g. Rigorous comparison of
libraries and alternatives to VR filtration - including alpha complexes, witness complexes,
and flood complexes (Graf et al., 2025)). Extended analysis with systematic ablations,
resampling, filtration, and Wasserstein orders will be guided by clinical utility and feedback.
Linking to previously reported clinical outcomes is planned Hollunder et al. (2024) along
with ANN classifiers for clinical tasks and identification of informative PH features. Further
validation with clinical studies will be critical in calibrating our metrics and identifying
clinically optimal connectomes and/or subatlases.
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Persistent Homology filtration

o %

Figure 3: Persistent Homology for Template Fibers. Depiction of persistent homology
filtration at distinct radii. Adapted from (Anand et al., 2020). Example distributions
from various tracts, both matches across hemispheres (top right, bottom left) and across
tracts (bottom right). Distributions represent intra-tract variability, while difference in
distribution moments align with tract identity.

Figure 4: Rendering of PETERSEN PD Top 100 streamlines in Lead-DBS (Horn et al.,
2015).
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Figure 5: Cross-Hemisphere Comparisons. Left: Comparison of PD subatlases in left
and right hemispheres of HCP (131). Right: Comparison of PD subatlases in left and
right hemispheres of MGH (155).
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Figure 6: Cross-Connectome Comparison. MGH PD Right vs HCP PD Right (222).
MGH connectome is from single subject, while HCP is an ensemble average of 900+ subjects.
Further study needed to directly link distributions to connectome properties.
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