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Abstract
Modeling the time-dependent evolution of electron density is essential for un-
derstanding quantum mechanical behaviors of condensed matter and enabling
predictive simulations in spectroscopy, photochemistry, and ultrafast science. Yet,
while machine learning methods have advanced static density prediction, model-
ing its spatiotemporal dynamics remains largely unexplored. In this work, we
introduce a generative framework that combines a 3D convolutional autoencoder
with a latent diffusion model (LDM) to learn electron density trajectories from
ab-initio molecular dynamics (AIMD) simulations. Our method encodes electron
densities into a compact latent space and predicts their future states by sampling
from the learned conditional distribution, enabling stable long-horizon rollouts
without drift or collapse. To preserve statistical fidelity, we incorporate a scaled
Jensen-Shannon divergence regularization that aligns generated and reference
density distributions. On AIMD trajectories of liquid lithium at 800 K, our
model accurately captures both the spatial correlations and the log-normal-like
statistical structure of the density. The proposed framework has the potential to
accelerate the simulation of quantum dynamics and overcome key challenges
faced by current spatiotemporal machine learning methods as surrogates of quan-
tum mechanical simulators.

1 Introduction
The theoretical description of electrons and nuclei forms the cornerstone of understanding the physical
and chemical properties of matter, yet it remains one of the most challenging frontiers of modern
quantum mechanics. Electronic structure calculations, while offering a pathway to predict the ground
and excited states of quantum many-body systems, are computationally expensive, with costs scaling
steeply with the number of electrons.

In fact, full configuration interaction (FCI), although providing the exact solution to the time-
independent Schrödinger equation, scales as O(n!) with respect to the number of molecular orbitals
and basis set size. Coupled-cluster theory, while mitigating this issue through an exponential ansatz,
still suffers from steep scaling: for a maximum excitation order r, the cost is O(n2r+2), where
n is the number of basis functions. The gold-standard CCSDT method (coupled cluster singles,
doubles, and full triples) scales as O(n8), restricting its application to systems of at most tens to
hundreds of atoms. Even Kohn–Sham density functional theory (KS-DFT), widely regarded as a
computationally affordable alternative, typically scales as O(n3), which becomes prohibitive for
large-scale simulations or for repeated evaluations in dynamical settings.
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Figure 1: Illustration of latent space generative process to emulate the dynamics of electron density
through the combination of autoencoder and latent diffusion model. At each physical time step τ , the
model conditions the latent denoiser with the current latent state z0(τ) to predict the next latent state
z0(τ +∆τ). The decoder maps the latent state back to physical space s̃(τ +∆τ) = D(z0(τ +∆τ)).

A promising strategy to accelerate such calculations is to provide a high-quality initial guess for
the electron density or wavefunctions [1–4], which can significantly speed up convergence in self-
consistent field (SCF) iterations. While most machine learning approaches to date have focused on
predicting static electron densities from molecular geometries [5–8], far fewer address the dynamical
evolution of the electron density. However, this dynamical information is essential: the time-
dependent electron density encodes rich physical observables, such as the dynamic structure factor,
excitation energies, and transition moments, and underpins many applications in spectroscopy,
photochemistry, and ultrafast science.

Previous works on electron density modeling often rely on graph-based neural networks, where atoms
are treated as nodes and bonds or spatial cutoffs define edges. While powerful, this approach imposes
an atomic representation that may be less natural for modeling the volumetric nature of the electron
density in a continuous space. By contrast, volumetric representations preserve translational and
rotational structure more directly, enable direct operator learning in physical space, and can better
capture delocalized electrons, charge density waves or excitations.

In this work, we propose a framework that combines a 3D convolutional autoencoder with a latent
diffusion model (LDM) [9] to learn and evolve the electron density in a compressed latent space.
The autoencoder first encodes volumetric electron density fields into a compact latent representation,
preserving intrinsic spatial and physical structure while reducing dimensionality. The LDM then learns
the conditional distribution of the next latent state given the current state, enabling autoregressive
probabilistic generation of full electron density trajectories. Our formulation efficiently compresses
the high-dimensional observed space into low-dimensional manifold while enabling the robust,
long-horizon sampling without commonly seen drifting, collapse, or state stagnation problems.

2 Generative Latent Space Dynamics of Electron Density

Our framework models the dynamics of electron density using a two-stage generative process, as
illustrated in Figure 1. The methodology consists of density normalization and state representation,
a compression stage using a 3D convolutional autoencoder, and a temporal evolution stage using a
conditional latent diffusion model. We provide the detailed methodology in Appendix A and related
work in Appendix B.

Dataset and state representation. We generate an ab-initio molecular dynamics (AIMD) simula-
tion of 32 liquid lithium atoms at 800K (appendix A.1). We observe that the electron density values
are approximately log-normally distributed (fig. S1). To leverage this property and naturally enforce
positivity, we apply a log-transform followed by standardization to the density field ρ(r, τ), yielding
a normalized field ρ̃(r, τ) as described in eq. (S6). The full state representation s(τ) at each physical
timestep τ consists of this normalized density ρ̃ and its time derivative ˙̃ρ (eq. (S8)).
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Figure 2: Autoregressive trajectories. LDM generates and evolves electron density qualitatively
consistent with unseen test trajectory of Li atoms at 800K. The model trained with sJSD loss has
less delocalized electron distribution similar to the ground truth. 2D slices at the middle plane along
x direction are shown. The grid values presented are normalized pseudo charge density ρ̃ (eq. (S6),
fig. S1). See Figure 3 for probability density and structure factor comparison.

Model architecture. A 3D convolutional autoencoder (AE) provides a low-dimensional manifold
for learning the dynamics. The encoder E maps the high-dimensional state s(τ) to a compact latent
vector z(τ) using a sequence of residual blocks and strided convolutions, with an average pooling
layer to enforce translation invariance. The decoder D then reconstructs the physical state s̃(τ) from
the latent vector.

The temporal evolution is learned in the latent space by a conditional latent diffusion model (LDM).
The LDM is trained to approximate the transition probability p(z(τ+∆τ)|z(τ)). During inference, it
autoregressively predicts the next state by sampling from the learned conditional distribution, enabling
the generation of long-horizon trajectories. This is achieved by conditioning the denoising network
ϵθ on the current latent state z(τ) to predict the noise in the corrupted future state zt(τ +∆τ).

Training and regularization. To ensure the generated electron densities retain the statistical
fidelity of the ground truth, we augment the standard reconstruction and denoising losses. We
introduce a scaled Jensen-Shannon Divergence (LsJSD) term, as defined in eq. (S14), which penalizes
mismatches between the value distributions of the reconstructed and target densities. This loss is
made differentiable by computing probabilities via a soft histogram with Gaussian kernels. The full
training objective (eq. (S15)) is a weighted sum of the AE reconstruction, LDM denoising (eq. (S12)),
and sJSD (eq. (S14)) losses.

Experiments. We found that for electron density prediction, the ML model could still achieve low
reconstruction error with average prediction on most of the grid points, as only a few of them have
concentrated electron density. In such cases, the model learns only the fuzzy average of the input
distribution and could not preserve the distributional attributes of the electron densities. Therefore,
we apply sJSD loss eq. (S14) on the reconstructed electron densities, with λ1 = 0.1 and λ2 = 10 in
eq. (S15) used.

Figure 2 presents the generated autoregressive traejctories on two models, with and without sJSD
losses. Generally, the model with sJSD regularization generates electron densities with visual
characteristics closer to the ground-truth test trajectory. Figure 3 further compares the distributional
similarity between two generated and ground-truth, log-normal like distributions. The model trained
with sJSD loss clearly demonstrates more similar distribution to test trajectory than the one without
sJSD regularization, which overemphasizes the population around 0.05Å

−3
. See Figure S2 for

training loss comparison.
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Figure 3: Statistical consistency of generated trajectories. Probability distribution and static
structure factor S(q) of test-set (ground-truth) and generated (forecast) electron densities. The LDM
model trained with sJSD loss outperforms the model without sJSD. The static structure factor is
obtained by averaging over the unrolled trajectory frames. The detailed S(q) calculation can be found
in Appendix C.

To ensure the model also generates correct spatial distribution as well, we further compare the structure
factor S(q) of the three trajectories in Figure 3. It can be seen that convolutional autoencoder, while
highly constrained in design, is able to robustly preserve the correct spatial correlation as the dynamics
evolves. The model with sJSD loss aligns better with ground truth in low q, long wavelength regime,
demonstrating better ability to capture long-range spatial correlation of electron density. This is,
however, at the expense of the high q, short wavelength regime, but the difference is orders of
magnitude smaller. The kink near q = 4 is consistent with the atomic radius of a lithium atom
(≈ 1.52Å):

q =
2π

a
= 4, a ≈ 1.57.

3 Discussion
Learning in Fourier space. Fourier representation of electron density, while efficient for dimension
reduction, struggles to form meaningful latent spaces due to translation symmetry and phase-shift
ambiguity. Our preliminary experiments show that multi-layer perceptron (MLP) autoencoders overfit
to Fourier features and extrapolate poorly. Although FNOs have shown strong success in weather
forecasting and PDEs [10, 11], our test of FNO [10] revealed pronounced drift and instability during
rollout. In contrast, the average pooling bottleneck in our encoder enforces translation invariance
and stabilizes trajectories without noticeable shift. Future work should explore models equivariant to
phase shifts and robust to translation.

Another bitter lesson. In our preliminary tests, direct enforcement of physics-informed neural
network (PINN) loss on FNO and MLP AEs fails to learn latent representations that can reliably roll
out dynamics. Autoencoders trained with PINN loss on charge conservation and spatial gradients
easily overfit, and when entering unseen latent regions, the decoder either drifts or freezes due to
inactive neurons. We show that a small CNN with average pooling bottleneck and sJSD loss, despite
having fewer parameters than MLP AEs, transformers, and neural operators, generalizes better to
unseen AIMD trajectories and reliably rolls out without drift or freezing. This contrasts with recent
efforts favoring larger models for PDE solving, likely because the expressive models easily overfit
high-dimensional noise (483 = 110, 592 per frame in our case), and the quantum-mechanical system
is far more discontinuous than the continuum problems routinely solved.

Limitations and opportunities. Since ions move classically here, our experiments can be boot-
strapped by machine-learning interatomic potentials [12] and electron density prediction models in
alternating steps. Still, our framework could extend to more demanding calculations such as time-
dependent DFT (TD-DFT) [13] and equation-of-motion coupled cluster (EOM-CC) [14], where data
is scarcer and time dependence is crucial. The current simulations are based on Born-Oppenheimer
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molecular dynamics and thus can be replaced with more expensive methods to include nuclear quan-
tum effects, such as path-integral MD (PIMD), multicomponent DFT (MDFT) [15], nuclear-electron
orbital (NEO) method [16] and its constrained variant (CNEO) [17]. The ionic positions are not
explicitly encoded but learned implicitly in our current approach. Future work to simultaneously learn
the ionic and electronic dynamics, potentially through shared embedding, will be interesting. We
also aim to generalize to multiple atomic species for practical DFT use—whether for initial guesses
or density optimization, akin to orbital-free DFT and variants [18–20]. A complementary path is
integrating with the data-driven finite element method (DD-FEM) [21], which could reduce the cost
of generating high-fidelity electron density data while retaining interpretability by learning operators
on element scales. Such approaches could extend generative latent dynamics models toward practical,
multiscale applications in spectroscopy, photochemistry, and ultrafast science.
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A Methodology Details
A.1 Ab-initio Molecular Dynamics (AIMD)

Theory. The time evolution of a many-electron system is, in principle, governed by the time-
dependent many-body Schrödinger equation for all electrons and nuclei. In practice, this is compu-
tationally intractable beyond hundreds of atoms, and for weakly correlated systems the adiabatic
Born–Oppenheimer (BO) approximation can be employed: the electronic and nuclear degrees of
freedom are decoupled, and the nuclei move classically on the potential energy surface (PES) of the
electronic ground state. For a fixed configuration of nuclei {RI}, the ground-state PES and electron
number density ρ(r) are obtained from a self-consistent field (SCF) solution of the Kohn–Sham (KS)
equations, (

− ℏ2

2me
∇2 + Veff(r)

)
ψi(r) = εiψi(r), (S1)

ρ(r) =
∑
i

|ψi(r)|2 , (S2)

E = min
ρ
E [ρ] , (S3)

where Veff(r) is the effective external potential parameterized by {RI} and E [ρ] is the energy
functional of the electron density. After the SCF calculation is converged, the time evolution of atomic
nuclei can be integrated from forces (and additional terms for ensembles other than microcanonical
ensemble)

MIR̈I = −∇RI
E, (S4)

where −∇RI
E is the Hellmann–Feynman force evaluated by the derivative of ground-state KS

Hamiltonian and electron orbitals: FI = −
〈
ψo

∣∣∣ ∂ĤKS
∂RI

∣∣∣ψo

〉
.

Dataset. We generated a electron density trajectory of 32 Li atoms from isochoric-isothermal NVT
AIMD simulation at 800K. For each ionic step, KS-DFT calculation is performed with generalized
gradient approximation to search for the ground state electron density. Perdew-Burke-Ernzerhof
(PBE) functional was used to describe exchange-correlation energy. The electron wave functions
are expanded in plane-wave bases, with maximum energy cutoff 680 eV. The AIMD trajectory was
performed for 10 ps at the timestep of 2 fs, where the first 8 ps was used for training and the last
2 ps as test set. The AIMD and electron density trajectories were performed using GPAW [22] and
ASE [23]. We recorded both total and pseudo electron densities for each frame. Nonetheless, only
the pseudo electron density is variationally optimized and contains rich bonding information in the
projected-augmented wave formalism [24, 25]. We use pseudo electron density as model learning
objective and hereafter denote the pseudo electron number density as electron density throughout the
work.

We analyzed the distribution of electron density in Figure S1 and found that the value is roughly
log-normally distributed for our toy system. We describe the observation below.
Proposition 1 (Log-normal distribution of ρ). The electron (number) density ρ(r, τ) from an equili-
brated AIMD trajectory is approximately log-normally distributed in the space-time dimensions

ln ρ(r, τ) ∼ N
(
µ, σ2

)
(S5)

, where µ and σ2 is the mean and variance of the Gaussian distribution.

To leverage this nice property, we therefore normalize our electron density data by logarithm and
shift-scale transformation

ρ̃ =
ln ρ− µ

σ
, (S6)

where µ = −2.911 and σ = 0.271 are the mean and standard deviation of ln ρ in training set. The
probability density of ρ̃(r, τ) is thereby close to standard normal distribution N (0, 1), as shown in the
bottom panel of Figure S1. This transformation allows flexible reconstruction space for the decoder
and diffusion models, and naturally enforces positivity with inverse relation exp (σρ̃+ µ) > 0.
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Figure S1: Data distribu-
tion. Pseudo electron den-
sity distribution of Li32 tra-
jectory approximately follows
single log-normal distribution
with µ = −2.911, σ = 0.271.
Only training set is visualized.

State representation. The state space of the classical atomistic
system is determined by atomic positions and velocities. Similarly,
in order to be complete, the state of the electron density should be
at least described by both number density and its time derivative,
as the time derivative of number density is linked to charge current
density j(r, τ) by the continuity equation: ρ̇(r, τ) = −∇j(r, τ). We
formally specify each frame at the physical time τ with the state as:

s(τ) = (A(τ), ρ(r, τ), ρ̇(r, τ))

∈ R3×3 × RN1×N2×N3

≥0 × RN1×N2×N3 , (S7)

where A = [a1,a2,a3] is unit cell matrix of three lattice vectors,
R, Ṙ are the ionic positions and velocities, and Ni are the number
of grid points along three dimensions. Since we have lifted the
positivity constraint on electron density by eq. (S6) and fixed the
cubic cell geometry under NVT ensemble, the state representation
reduces to

s(τ) =
(
L, ρ̃(r, τ), ˙̃ρ(r, τ)

)
∈ R× RN1×N2×N3 × RN1×N2×N3 , (S8)

where L is the lattice constant (the length of cubic cell vector). We
further leave L out from the state representation in this work as the
volume is fixed throughout the AIMD trajectory. In principle, the
lattice parameters could be easily placed back by concatenation in
the latent space.

A.2 Latent Diffusion Model for 3D Scalar Field

Model architecture. Our model is conceptually inspired by latent
diffusion model (LDM) [9], but has undergone multiple major modifications to suit our spatiotemporal
forecasting setting. Whereas the original LDM was designed for 2D image synthesis, inpainting,
and related computer vision tasks, we generalize the learning task from 2D pixels to 3D voxel grids
and recast the temporal prediction task as conditional probabilistic generation in the latent space
(Figure 1).

The encoder E maps the initial physical state s ∈ R2×N1×N2×N3 into a compact 1D latent vector
z = E(s) ∈ Rc via a sequence of 3D convolutional layers [26–28], residual blocks [29] with ELU
activation [30], and circular padding to respect periodic boundaries. Downsampling is performed
using strided convolutions, progressively increasing channel depth while reducing spatial resolution,
followed by an average global pooling to produce a 1D fixed-size latent representation. The decoder
D starts from a learned projection of the latent vector into a low-resolution 3D feature map, and then
successively applies upsampling, residual blocks, and a final convolution to recover the voxel field
s̃ = D(z).

The diffusion process happens in the latent space. To not confuse diffusion timestep t with physical
time τ , we denote forward and inverse diffusion steps as subscripts. In the forward diffusion process,
Gaussian noise is gradually added to the sampled latents z0 in T steps with linear variance schedule
β1:T , producing an array of corrupted samples z0:T :

q(zt|zt−1) = N (zt;
√
1− βtzt−1, βtI), q(z1:T |z0) =

T∏
t=1

q(zt|zt−1). (S9)

The corrupted samples gradually lose their distinguishable features as diffusion step increases and
approach Gaussian distribution. To recover the samples from the Gaussian, our goal is to learn a
denoising predictor pθ that approximates the conditional probabilities in the reverse diffusion process
starting from a Gaussian at p(zT ) = N (xT ;0, I):

pθ(z0:T ) = p(zT )

T∏
t=1

pθ(zt−1|zt), pθ(zt−1|zt) = N (zt−1;µθ(zt, t),Σθ(zt, t)). (S10)

10
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The learning objective [9, 31] is to train a noise predictor ϵθ for the corrupted sample zt = E(st) on
the variation bound resembling denoising score matching [32]

LLDM := Et∼[0,T ],E(s0),ϵ∼N (0,I)

[
∥ϵ− ϵθ (zt, t) ∥2

]
(S11)

with step uniformly sampled t ∼ [1, T ]. As the latents have been compressed into 1D vectors, our
denoising network ϵθ adopts a simple multi-layer perceptron (MLP) conditioned by time embeddings
with sinusoidal positional encoding. In this study, we use 32 dimensions for the latent embeddings,
and 128 dimensions for the diffusion time embeddings. The number of diffusion steps is set as 1,000.

Conditional generation. To recast a generative model into an autoregressive model, we condition
the denoising network ϵθ on the latent representation of the current state z(τ) = E(s(τ)) to reconstruct
the next state z(τ +∆τ). Formally, it is achieved by concatenating the current latent state z0(τ) in
the input:

LLDM := Et,zt(τ),zt(τ+∆τ),ϵ

[
∥ϵ− ϵθ (zt(τ +∆τ), t, z0(τ)) ∥2

]
, (S12)

where we denote physical time as τ and diffusion step as t here. At the inference time, the model
generates the next state by denoising from Gaussian distribution on the condition of current state
s(τ).

Loss and regularization. To ensure that the statistical distribution of the generated electron density
matches the ground truth, we incorporate a smooth, differentiable version of the Jensen-Shannon
Divergence (JSD) as a loss term. Standard histograms are non-differentiable due to their discrete
binning process, making them unsuitable for gradient-based optimization. To overcome this, we
implement a soft histogram where each data point contributes to multiple bins, weighted by a
Gaussian kernel based on its proximity to the bin centers. This creates a smooth and differentiable
approximation of probability distribution. We compute two such distributions, P for the model’s
reconstruction and Q for the target data, and then calculate the JSD between them. The JSD is a
symmetric and smoothed measure of similarity between two probability distributions, defined as the
average of the Kullback-Leibler (KL) divergences from each distribution to their midpoint average,
providing a stable and robust loss signal for training.

The process is formalized by first calculating the soft probability distribution P for a set of data
points {xi} and bins with centers {bj}:

πP (j) =

∑
i exp

(
− (clip(xi,bmin,bmax)−bj)

2

2σ2

)
∑

k

∑
i exp

(
− (clip(xi,bmin,bmax)−bk)2

2σ2

) . (S13)

Inspired by the previous work on generalized JSD loss [33], our empirical test shows that the scaled
JSD by a constant factor Z = −(1− πQ) ln (1− πQ) achieves better alignment between generated
and target distributions. Given the distribution P from the reconstructed data and Q from the ground
truth data, the scaled JSD loss LsJSD is estimated from two probabilistic densities πP ∼ P, πQ ∼ Q:

LsJSD =
1

Z
DJS(P ∥Q) =

1

2Z
[DKL(P ∥M) +DKL(Q ∥M)] , where M =

P +Q

2
. (S14)

The total training objective adds the additional reconstruction loss from CNN autoencoder LAE and
the denoising loss from LDM LLDM:

L = LAE + λ1LLDM + λ2LsJSD, (S15)

where λ1 and λ2 are tunable weights.

B Related Work
Electron density prediction. Early ML approaches to electron density prediction focused on
mapping molecular geometries to ground-state densities using kernel methods or feedforward net-
works. More recent works leverage equivariant graph neural networks (GNNs) [6–8] or symmetry-
preserving neural architectures [5, 6] to capture both local and long-range correlations. However,
these methods typically predict static, ground-state densities, with limited exploration of dynamical
or time-dependent behavior.
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Dimensionality reduction. Compressing high-dimensional electron density data into a lower-
dimensional latent space could potentially facilitate efficient learning and simulation. The possible
techniques range from classical approaches (e.g. principal component analysis, proper orthogonal
decomposition [34–42], multi-dimensional scaling [43]) to more modern, non-linear approaches (e.g.
autoencoder [44–52], kernel PCA, Isomap [53]) to manifold learning [54].

Operator learning. Neural operator frameworks, such as the Fourier Neural Operator (FNO)
[10], Factorized Fourier Neural Operators [55], DeepONet [56], and among others, have emerged
as powerful tools for learning solution operators to partial differential equations (PDEs). Physics-
informed operator learning has also been applied to dynamical fields, with methods like DISCO [57]
enabling spatiotemporal prediction from sparse observations. Relatedly, Koopman operator theory
[58] offers foundation for obtaining the linear embedding for nonlinear dynamical systems. Recently,
diffusion models have been also adopted to learn the dynamics of molecular simulations [59] and
PDE solutions [60].

Neural ODE/PDE solvers. Neural Ordinary Differential Equation (Neural ODE) and Partial
Differential Equation (Neural PDE) solvers leverage deep learning to model governing equations in
function space, bypassing the need for explicit discretization. Neural ODEs, introduced by Chen et al.
[61], parameterize the derivative of a system with a neural network and integrate it using numerical
ODE solvers, enabling adaptive time-stepping and memory-efficient training via adjoint methods.
Neural PDE solvers extend this idea to spatially extended systems, often combining neural operators
or physics-informed neural networks (PINNs) with domain knowledge to learn solutions across space
and time [46, 62, 63]. These approaches are particularly powerful for modeling high-dimensional,
nonlinear, or multiscale systems where traditional solvers may be computationally expensive, offering
mesh-free generalization and the ability to learn from sparse or noisy data.

C Structure factor S(q) calculation
We compute the complex structure factor directly from the electron density field ρ(r) defined on
a uniform grid with spacings ∆x,∆y,∆z and voxel volume ∆V = ∆x∆y∆z. Using the FFT
convention, the forward and inverse relations are

F (q) =
∑
r

ρ(r) e−iq·r ∆V, ρ(r) =
1

V

∑
q

F (q) e+iq·r, (S16)

where V = NxNyNz ∆V is the total volume. In our implementation we compute F (q) via an FFT
of ρ(r) and multiply by ∆V to be consistent with the continuous-transform normalization. We then
form the amplitude spectrum (not intensity) by taking the complex modulus,

|F (q)| =
∣∣F{ρ(r)}

∣∣. (S17)

To obtain a rotationally invariant one-dimensional curve, we spherically average this amplitude over
shells of constant q = |q|:

S(q) ≡ ⟨|F (q)|⟩|q|=q =
1

N(q)

∑
q∈[q−∆q/2, q+∆q/2]

|F (q)|, (S18)

where N(q) is the number of reciprocal-grid points in the shell. In practice, reciprocal vectors
are constructed from FFT frequencies as qx = 2πnx/Lx, qy = 2πny/Ly, qz = 2πnz/Lz with
Lα = Nα∆α. The q = 0 mode is set to zero to remove the mean density contribution.
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Figure S2: Mean square error (MSE) of autoencoder reconstruction for training set at each optimiza-
tion step.
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