
An Optimization-based Motion Planner for Safe
Autonomous Driving

Francisco Eiras∗, Majd Hawasly∗, Stefano V. Albrecht∗†, Subramanian Ramamoorthy∗†
∗FiveAI Ltd, UK, {first.last}@five.ai †School of Informatics, University of Edinburgh, UK

Abstract—Guaranteeing safety in motion planning is a crucial
bottleneck on the path towards wider adoption of autonomous
driving technology. A promising direction is to pose safety
requirements as planning constraints in nonlinear optimization
problems of motion synthesis. However, many implementations
of this approach are hindered by uncertain convergence and local
optimality of the solutions, affecting the planner’s overall robust-
ness. In this paper, we propose a novel two-stage optimization
framework: we first find the solution to a Mixed-Integer Linear
Programming (MILP) approximation of the motion synthesis
problem, which in turn initializes a second Nonlinear Program-
ming (NLP) formulation. We show that initializing the NLP stage
with the MILP solution leads to better convergence, lower costs,
and outperforms a state-of-the-art Nonlinear Model Predictive
Control baseline in both progress and comfort metrics.

I. INTRODUCTION

The multi-dimensional objective of safe motion planning in
autonomous driving is inherently hierarchical in its require-
ments [6]: the core concern of collision avoidance with road
users and obstacles is an inviolable hard constraint, while
other desired qualities, such as progress towards a destination
or passenger comfort, imply softer constraints. In Schwarting
et al. [10], motion planning is formulated as a constrained
optimization problem in a Nonlinear Model Predictive Control
(NMPC) scheme, producing kinematically feasible, safe and
smooth trajectories when the MPC stages converge. However,
as the authors note, uncertain, locally-optimal convergence is
a challenge even when using state-of-the-art solvers [10].

We propose a two-stage optimization method that preserves
the prioritization of constraints while mitigating these issues
in particular. Specifically, we pose the problem in terms of
a first stage modeled as a Mixed-Integer Linear Program
(MILP), the output of which initializes a second Nonlinear
Programming (NLP) stage. The informed initialization offered
by the first stage is an approximate, globally ε-optimal solution
to the linearized problem [3, 7] (up to solver tolerances and a
user-defined receding horizon). This facilitates the task of the
subsequent stage to produce a safe, smooth and kinematically-
feasible trajectory. While our framework is similar to [10] in
the formulation of the nonlinear problem, we solve two opti-
mization problems at each planning time instead of utilizing
an NMPC scheme, initializing the NLP solver with the MILP
solution.

II. TWO-STAGE MOTION PLANNING

At each planning time t0, we aim to produce a plan of
N steps over a horizon of N∆t for the ego vehicle, where

(c) Nonlinear(b) Linearized

T

<latexit sha1_base64="Trl04Corczb24Cj9modot/Qt6es=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqsxIRZdFNy4r9AXToWTSTBuaSYYkI5Shn+HGhSJu/Rp3/o2ZdhbaeiBwOOdecu4JE860cd1vp7SxubW9U96t7O0fHB5Vj0+6WqaK0A6RXKp+iDXlTNCOYYbTfqIojkNOe+H0Pvd7T1RpJkXbzBIaxHgsWMQINlbyBzE2E4J51p4PqzW37i6A1olXkBoUaA2rX4ORJGlMhSEca+17bmKCDCvDCKfzyiDVNMFkisfUt1TgmOogW0SeowurjFAklX3CoIX6eyPDsdazOLSTeUS96uXif56fmug2yJhIUkMFWX4UpRwZifL70YgpSgyfWYKJYjYrIhOsMDG2pYotwVs9eZ10r+peo3792Kg174o6ynAG53AJHtxAEx6gBR0gIOEZXuHNMc6L8+58LEdLTrFzCn/gfP4Aj8WRcg==</latexit>

T �1

<latexit sha1_base64="3ShH00+Fy0ml/SCmigKpcc8ThKc=">AAAB+XicbVDLSsNAFL3xWesr6tLNYBHcWBKp6LLoxmWFvqCNZTKdtEMnkzAzKZSQP3HjQhG3/ok7/8ZJm4W2Hhg4nHMv98zxY86Udpxva219Y3Nru7RT3t3bPzi0j47bKkokoS0S8Uh2fawoZ4K2NNOcdmNJcehz2vEn97nfmVKpWCSaehZTL8QjwQJGsDbSwLb7IdZjgnnazJ7SSzcb2BWn6syBVolbkAoUaAzsr/4wIklIhSYcK9VznVh7KZaaEU6zcj9RNMZkgke0Z6jAIVVeOk+eoXOjDFEQSfOERnP190aKQ6VmoW8m85xq2cvF/7xeooNbL2UiTjQVZHEoSDjSEcprQEMmKdF8ZggmkpmsiIyxxESbssqmBHf5y6ukfVV1a9Xrx1qlflfUUYJTOIMLcOEG6vAADWgBgSk8wyu8Wan1Yr1bH4vRNavYOYE/sD5/AG+Pk4k=</latexit>

Two-Stage
Optimization Planner

(a) (d)

MILP NLP

Fig. 1: Two-Stage optimization: (a) from an initial scene, a
transform T yields the planner’s input in the reference path
representation. The MILP stage (b) solves a linearized version
of the problem, which seeds (c) the nonlinear, kinematically-
feasible NLP stage. Then, T −1 transforms the output back to
a trajectory in the world coordinate frame (d).

∆t is the timestep, such that tk = t0 + k∆t (step k for
shorthand). The input to the planning problem is a scene s
in the world coordinate frame (Fig. 1(a)) which comprises
the ego configuration at t0, road boundaries, timed sequences
of posterior distributions of road user poses (parameterized
by their expected positions and covariances), and a reference
path the ego should follow and progress on, Pref. The output
of the planner is a sequence of ego states X1:N that attempts
to track and progress along Pref (Fig. 1(d)). To simplify the
planning problem, we project the world coordinate frame using
an invertible transform T to a Pref-based frame of reference:
T (s) = (x0,B,S1:n

1:N) where x0 ∈ X is the nominal initial
ego state, B ⊂ R2 is the driveable surface where it is safe to
drive based on the topology of the layout, and S1:n

1:N ⊂ R2×N

are unions of elliptical areas that encompass the n road users,
S1:n
k , for timesteps k ∈ {1, ..., N}. Fig. 1(c) shows the initial

timestep after the transform. Then, for a plan x1:N ∈ XN

in the nominal Pref coordinate frame (the dark blue trajectory
in Fig. 1(c)), we have T −1(x1:N) = X1:N , a trajectory in the
world coordinate frame (Fig. 1(d)).

To define the planning problem, we consider a discrete
dynamic system xk+1 = f∆t(xk,uk), where xk is ego state
and uk ∈ U is control (acceleration and steering) applied to
the ego at time k. We denote the area the ego occupies at k
with E(xk) ⊂ R2, and define the cost J : XN × UN → R as
a linear combination of quadratic terms of comfort (reduced
acceleration and jerk) and progress (longitudinal and lateral
tracking of the reference path, as well as speed). The motion

(a) t = 0.0s (b) t = 3.2s (c) Simulator view (t = 3.6s) (d) t = 5.2s

Fig. 2: Residential driving example (a), (b) and (d) showing the planner view with ego (blue), static obstacles (orange),
oncoming vehicle (red) and ego’s plan (dark blue) at different times t; (c) shows our simulator rendering of the situation at
t = 3.6s. A video of this and other situations are available at https://sites.google.com/view/safe-planning/.

planning problem is then defined as:

argmin
x1:N ,u0:N−1

J(x1:N ,u0:N−1)

s.t. xk+1 = f∆t(xk,uk)

E(xk) ∩
([
R2 \ B

]
∪ S1:n

k

)
= ∅, ∀k

(1)

For the vehicle dynamics we consider a kinematic bycicle
model, and we approximate the ego’s area E(xk) by its
corners, so that the intersection with the driveable surface -
delimited by its borders which we define as C2 functions -
and road user ellipses can be computed in closed form (similar
to [10]).

Eq. (1) is a highly-nonlinear, non-convex optimization prob-
lem, and attempting to solve it without a warm start can
lead to uncertain convergence and locally-optimal solutions
[10, 8, 2, 3]. To mitigate these issues, we first solve a MILP
version of the problem by considering a linear dynamical
system xk = F∆t(xk,uk) under a nonholonomic vehicle
model and mixed-integer collision avoidance constraints. In
this linear problem 1) borders are approximated by piecewise-
linear functions, and 2) ellipses of road users are encompassed
by axis-aligned boxes (Fig. 1(b)), both of which can be
enforced using the big-M encoding [13, 9]. Similarly, instead
of the quadratic terms, the cost function is approximated
by the | · | operator, which can also be implemented in the
big-M encoding. While MILP algorithms have been shown
to guarantee global ε-optimality [3, 7], in practice modern
solvers may fail to do so due to rounding errors and built-
in tolerances [7]. Furthermore, due to the complexity of this
MILP problem, it must be solved in a receding horizon of
K < N steps, introducing suboptimality [1, 4]. Nonetheless,
a solution close to the global optimum at each receding
horizon step acts as a proxy towards a MILP output that
is close to the global optimum of the linearized problem,
potentially improving the quality of the NLP output, as we
show empirically.

III. EXPERIMENTS

We evaluate our two-stage method by considering 1) alterna-
tive heuristic initializations to the NLP stage and 2) an NMPC
method similar to [10] in which each MPC stage is initialized
by a shifted previous result. We use a dataset of 4000 situations
similar to the one in Fig. 2 with a varying number of vehicles,
positions and speeds, and base our modeling of other dynamic
agents on the Intelligent Driver Model [11].

% Solved ∆NLP
OURSCost (%) ∆NLP

OURS Runtime (%)

ZEROS 96.18 11.62 85.36
CT. VEL 64.02 4.11 37.97
CT. ACC 39.98 -0.65 29.73
CT. DEC 93.82 9.64 21.47
OURS (MILP) 97.99 - -

TABLE I: Initialization Ablation: percentage of problems NLP
solves when initialized with a heuristic [no initialization; con-
stant velocity; constant acceleration; constant deceleration],
compared to our MILP initialization, and average improvement
in NLP cost/runtime over heuristic in examples solved by both.

% Solved P@8s (m) v (m/s) |ȧ| (m/s3)

NMPC 87.79 40.93 5.76 0.50
OURS 98.32 52.07 6.74 0.44

TABLE II: NMPC Comparison: percentage solved, averages
of progress after 8s (higher is better), speed (closer to 8m/s
target is better), and absolute jerk value (lower is better).

As Tab. I shows, our MILP initialization outperforms al-
ternative heuristic choices in the number of problems solved,
and results in lower costs and faster convergence in general.
Furthermore, as shown in Tab. II, our two-stage method
outperforms an NMPC approach (similar to [10]), attempting
to optimize the same cost function, in the number of solved
examples and in metrics of progress (distance measured along
the reference path), velocity tracking and absolute jerk.

While our initial implementation that uses off-the-shelf
solvers (Gurobi [5] for MILP and IPOPT [12] for NLP) is
slower than an NMPC implementation that utilizes specialized
solvers, around ∼87.5% of the examples in our experiments
were solved in at most 1s for an 8s horizon, making our
framework suitable for deployment in environments such as
residential driving.

IV. CONCLUSION

We introduced an optimization framework for autonomous
driving where a linearized version of the planning problem is
first solved to initialize a second nonlinear optimization stage.
We show that our MILP initialization leads on average to a
higher percentage of solved examples, lower cost, and better
solving time for the NLP stage when compared to alterna-
tive initializations. Additionally, we show that the two-stage
formulation solves more examples than an NMPC baseline,
outperforming it in terms of progress and comfort metrics.

https://sites.google.com/view/safe-planning/

REFERENCES

[1] Xiaojun Geng and Yugeng Xi. Suboptimality analysis of
receding horizon predictive control with terminal con-
straints. IFAC Proceedings Volumes, 32(2):2984–2988,
1999.

[2] Philip E Gill, Walter Murray, and Michael A Saunders.
Snopt: An SQP algorithm for large-scale constrained
optimization. SIAM Review, 47(1):99–131, 2005.

[3] Ignacio E Grossmann, VT Voudouris, and Omar Ghattas.
Mixed-integer linear programming reformuilations for
some nonlinear discrete design optimization problems.
Technical Report, Carnegie Mellon University, 1991.

[4] Lars Grune and Anders Rantzer. On the infinite horizon
performance of receding horizon controllers. IEEE
Transactions on Automatic Control, 53(9):2100–2111,
2008.

[5] LLC Gurobi Optimization. Gurobi optimizer reference
manual, 2019. URL http://www.gurobi.com.

[6] Nancy Leveson. Are you sure your software will not
kill anyone? Communications of the ACM, 63(2):25–28,
2020.

[7] Arnold Neumaier. Complete search in continuous global
optimization and constraint satisfaction. Acta Numerica,
13:271–369, 2004.

[8] Jorge Nocedal and Stephen Wright. Numerical optimiza-
tion. Springer Science & Business Media, 2006.

[9] Jérémy Omer and Jean-Loup Farges. Hybridization of
nonlinear and mixed-integer linear programming for air-
craft separation with trajectory recovery. IEEE Transac-
tions on Intelligent Transportation Systems, 14(3):1218–
1230, 2013.

[10] Wilko Schwarting, Javier Alonso-Mora, Liam Paull, Ser-
tac Karaman, and Daniela Rus. Safe nonlinear trajectory
generation for parallel autonomy with a dynamic vehicle
model. IEEE Transactions on Intelligent Transportation
Systems, 19(99), 2017.

[11] Martin Treiber, Ansgar Hennecke, and Dirk Helbing.
Congested traffic states in empirical observations and
microscopic simulations. Physical Review E, 62(2):1805,
2000.

[12] Andreas Wächter and Lorenz T Biegler. On the imple-
mentation of an interior-point filter line-search algorithm
for large-scale nonlinear programming. Mathematical
Programming, 106(1):25–57, 2006.

[13] H Paul Williams. Model building in mathematical
programming. John Wiley & Sons, 2013.

http://www.gurobi.com

	Introduction
	Two-Stage Motion Planning
	Experiments
	Conclusion

