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Knowledge Graphs

ABSTRACT
Modern Knowledge Graphs (KGs) are inevitably noisy due to the
nature of their construction process. Such noise could significantly
impair the performance of link prediction over KGs. Existing ro-
bust learning techniques for noisy KGs mostly focus on triple facts,
where the fact-wise confidence is straightforward to evaluate. How-
ever, hyper-relational facts, where an arbitrary number of key-value
pairs are associated with a base triplet, have become increasingly
popular in modern KGs, but significantly complicate the confidence
assessment of the fact. Against this background, we study the prob-
lem of robust link prediction over noisy hyper-relational KGs, and
propose NYLON, a Noise-resistant hYper-reLatiONal link predic-
tion technique via active crowd learning. Specifically, beyond the
traditional fact-wise confidence, we first introduce element-wise
confidence measuring the fine-grained confidence of each entity or
relation of a hyper-relational fact. We connect the element- and fact-
wise confidences via a “least confidence” principle to allow efficient
crowd labeling. NYLON is then designed to systematically integrate
three key components, where a hyper-relational link predictor uses
the fact-wise confidence for robust prediction, a cross-grained con-
fidence evaluator predicts both element- and fact-wise confidences,
and an effort-efficient active labeler selects informative facts for
crowd annotators to label using an efficient labeling mechanism
guided by the element-wise confidence under the “least confidence”
principle and further followed by data augmentation. We evaluate
NYLON on three real-world KG datasets against a sizeable collec-
tion of baselines. Results show that NYLON achieves superior and
robust performance in both link prediction and error detection
tasks on noisy KGs, and outperforms best baselines by 2.42-10.93%
and 3.46-10.65% in the two tasks, respectively.
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1 INTRODUCTION
Knowledge Graphs (KGs) have been widely used to build various
Web applications ranging from Web search [62] to recommenda-
tion systems [68]. Traditionally, KGs are represented as a set of
triplets, where each triplet (head, relation, tail), or (h,r,t) for short,
represents a fact that encodes a relation connecting a head entity
to a tail entity, such as (Apple Inc., headquarter location, Cupertino).
To better describe the rich information of the complex facts in real-
world scenarios, modern KGs often contain hyper-relational facts
[11, 20, 21, 32, 41, 60, 70], where a base triplet (ℎ, 𝑟, 𝑡) is further
associated with an arbitrary number of key-value (𝑘, 𝑣) pairs de-
scribing additional information about the base triplet, represented
as (ℎ, 𝑟, 𝑡, 𝑘1, 𝑣1, ...). For example, a hyper-relational fact on Wiki-
data1 (Apple Inc., industry, software industry, in the scope of, computer
program, in the scope of, operating system) involves a base triplet
(Apple Inc., industry, software industry), and key-value pairs2 (in the
scope of, computer program) and (in the scope of, operating system)
further describing the detailed information about the scope of the
software industry that Apple Inc. is in. To effectively make use of
such KGs, link prediction tasks [2, 55] have been widely adopted
to solve KG completion and reasoning problems, such as (ℎ, 𝑟, ?)
or (ℎ, ?, 𝑡, 𝑘1, 𝑣1, ...), where the question mark indicates the missing
element (entity or relation) to be predicted. Existing approaches to
this problem usually design KG embedding models [55] learning
to capture the structural information of the KG for predicting the
missing element.

Despite the wide adoption of KGs in various domains, modern
KGs often contain inevitable noises, which could significantly im-
pair the performance of the downstream applications. Specifically,
modern KGs usually contain millions of entities with billions of
facts connecting them; such a large scale makes it infeasible for
manual knowledge extraction and curation by human experts. Sub-
sequently, existing KGs are either automatically extracted from
large Web corpora using heuristic algorithms such as NELL [9] and
YAGO [49], or collectively built in a crowdsourcing manner such as
Wikidata [52], where both approaches intrinsically result in noisy
KGs. On one hand, the automatic extraction approach suffers from
noisy source corpora and imperfect extraction techniques. For ex-
ample, NELL reports an estimated precision of 74%, corresponding
to around 0.6 million noisy triplets [9]; YAGO reports an accuracy
of 95%, corresponding to around 7.5 million noisy triplets [52]. On
the other hand, the crowdsourcing approach is sensitive to partic-
ipants’ motivation and vulnerable to malicious participants. For
example, Wikidata has been vandalized frequently as its facts can
be freely edited by anyone [24]. Such noises could be very harmful
to downstream applications [66].

To tackle the noise problem in KGs, existing work focuses either
on noisy triplet detection (a.k.a. error detection) [69] predicting the
erroneous triplets, or on robust link prediction over noisy KGs [61]

1https://www.wikidata.org/wiki/Q312
2Note that in a (𝑘, 𝑣) pair, 𝑘 and 𝑣 are indeed a relation and an entity, respectively.
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predicting the confidence of triplets which are then used to improve
the downstream link prediction performance. In both approaches,
the core problem of confidence assessment of triplets is usually
addressed using KG topology [61] and KG embeddings [23], as well
as using additional information beyond the noisy KG itself such as
KG schematic rules [26], Web corpora [29], third-party clean KGs
[19], KG editing history [36], pre-trained large language models [3],
or crowdsourcing [19]. Although these existing works propose ro-
bust learning solutions to handle noisy KGs, they all focus on triple
facts only, which have been shown to oversimplify the complex
nature of the real-world facts [41]. However, different from a triple
fact that is easy to check its correctness, a hyper-relational fact is
much more complex to be checked. More precisely, it is straight-
forward to check the correctness of a triplet (ℎ, 𝑟, 𝑡) by assessing
whether the entity ℎ and 𝑡 should be connected via the relation 𝑟

(i.e., triple confidence [61]). In contrast, for a hyper-relational fact
(ℎ, 𝑟, 𝑡, 𝑘1, 𝑣1, ...), its correctness depends on the compatibility of
all its contained elements. This significantly complicates the confi-
dence assessment of the fact, which hinders the application of many
existing confidence assessment techniques. For example, a widely
adopted relation-path-based approach [61] shows suboptimal per-
formance on hyper-relational KGs (evidenced by our experiments
below), as it fails to consider the hyper-relationality of the facts.

In this context, confidence assessment by humans via crowd-
sourcing becomes a promising solution. However, due to the expen-
sive cost of crowd annotators, how to effectively integrate crowd-
sourcing into hyper-relational link prediction techniques while
maximally benefiting from the limited human labeling budget is
still a non-trivial task. On one hand, as a hyper-relational fact could
contain an arbitrary number of key-value pairs associated with the
base triplet, crowd annotators may need to spend much effort in
checking those facts containing a large number of elements (enti-
ties and relations), such as the largest hyper-relational fact in our
experiment dataset containing 67 entities and 66 relations. It is thus
important to design technical solutions to assist crowd annotators
in the checking process. On the other hand, the tremendous number
of facts contained in modern KGs often largely exceeds the label-
ing capacity of crowd annotators, where only a few representative
facts could be labeled. Subsequently, it is critical to not only select
the most informative samples for confidence assessment, but also
design an efficient labeling mechanism boosting the confidence
prediction performance on other unlabeled facts, so as to improve
the ultimate hyper-relational link prediction performance.

Against this background, we propose NYLON, a Noise-resistant
hYper-reLatiONal link prediction technique via active crowd learn-
ing. Specifically, different from existing confidence assessment tech-
niques that only evaluate the confidence of a whole fact (i.e., fact-
wise confidence), we further introduce so-called element-wise confi-
dence, which measures the fine-grained confidence of each element
(entity or relation) of a hyper-relational fact, which can be used
to significantly reduce the effort of crowd annotators in the noise
labeling process. More precisely, we connect the element- and fact-
wise confidences using a “least confidence” principle, where the
confidence of a fact is determined by the least confidence of all its
elements; in other words, if one element in a fact is labeled as incor-
rect, the whole fact is incorrect. Subsequently, this principle allows
that for a noisy fact, the crowd annotators may only need to check

part of its elements until an incorrect element is found. Following
this principle, NYLON is designed to efficiently and effectively eval-
uate the confidence of hyper-relational facts for the ultimate goal of
resolving hyper-relational link prediction tasks. It consists of three
components. First, a hyper-relational link predictor is built on top
of self-attention networks with a masked training process, where
each learning hyper-relational fact is weighted by its fact-wise con-
fidence. Second, a cross-grained confidence evaluator learns from a
small set of noise-labeled facts to predict both element- and fact-
wise confidences. Third, an effort-efficient active labeler iteratively
selects informative hyper-relational facts for crowd annotators to
label according to the fact-wise confidence. To reduce the labeling
effort of crowd annotators, element-wise confidence is used to guide
crowd annotators to check the elements of a hyper-relational fact
according to the ascending order of their element-wise confidence
(where the top ones are most probably incorrect), and terminate the
labeling process until one incorrect element is found, following the
“least confidence” principle. Moreover, the labeler further augments
the human-labeled facts by generating pseudo-labeled facts having
the same label ratio, which are together regarded as noise-labeled
facts to better train the confidence evaluator. In summary, we make
the following key contributions:
• We study the problem of robust link prediction over noisy hyper-
relational KGs, which is, to the best of our knowledge, the first
work on robust learning over noisy hyper-relational KGs.

• We introduce element-wise confidence beyond the traditional
fact-wise confidence for hyper-relational facts, and bridge the
gap between them using the “least confidence” principle, which
could significantly reduce the labeling effort of crowd annotators.

• We design NYLON, a Noise-resistant hYper-reLatiONal link pre-
diction technique via active crowd learning. Following the “least
confidence” principle, it integrates a hyper-relational link pre-
dictor using the fact-wise confidence for robust prediction, a
cross-grained confidence evaluator predicting both element- and
fact-wise confidences, and an effort-efficient active labeler se-
lecting informative facts for crowd annotators to label via an
efficient labeling mechanism followed by data augmentation.

• We conduct a thorough evaluation of NYLON compared to a
sizable collection of baselines on three KG datasets. Results show
that NYLON outperforms baselines in both link prediction tasks
by 2.42-10.93%, and error detection tasks by 3.46-10.65%. It also
achieves the best Pareto frontier when trading off the task per-
formance and crowdsourcing labeling effort.

2 RELATEDWORK
2.1 Link Prediction on Hyper-Relational KGs
Hyper-relational KGs encode rich informationwith hyper-relational
facts, where each fact contains multiple relations and entities [22,
41]. Some existing work adopted an n-ary representation for hyper-
relational facts, i.e., a set of key-value (relation-entity) pairs [22,
32, 60, 70]. As a typical example in [20, 22], a hyper-relational fact
(ℎ, 𝑟, 𝑡) with (𝑘, 𝑣) is transformed into {𝑟ℎ :ℎ, 𝑟𝑡 :𝑡 , 𝑘 :𝑣 } by converting
the relation 𝑟 into two keys 𝑟ℎ and 𝑟𝑡 , associated with head ℎ and
tail 𝑡 , respectively. Using such n-ary representations, these tech-
niques learn either the relatedness between entity-relation pairs
[20, 22], or relatedness among all entities in a fact [32, 60, 70] for



Robust Link Prediction over Noisy Hyper-Relational
Knowledge Graphs Conference acronym ’XX, June 03–05, 2023, Woodstock, NY

link prediction. However, recent studies [21, 41] revealed that the
base triplets (ℎ, 𝑟, 𝑡) serve as the fundamental data structure in the
KGs and preserve the essential information for link prediction, and
suggested learning directly from the hyper-relational facts repre-
sented as (ℎ, 𝑟, 𝑡, 𝑘1, 𝑣1, ...). Following this direction, HINGE [41]
and NeuInfer [21] design two different feature extraction pipelines
for the base triplets and key-value pairs, respectively; StarE [18],
Hy-Transformer [67], GRAN [56], and QUAD [47] design Graph
Neural Networks (GNNs) to encode the base triplets together with
key-value pairs using transformer networks [51] for link prediction.

However, these existing works all assume that the input KG is
clean where all facts are correct and noise-free, which is often an
unrealistic assumption for real-world large-scale KGs that are either
automatically extracted from Web corpora [9, 49] or collectively
built in a crowdsourcing manner [52].

2.2 Robust Learning on Noisy KGs
To tackle noisy KGs, robust learning techniques are widely studied,
which can be classified into two categories according to whether
additional information beyond KG facts is used.

The first category relies on facts of KGs only, evaluating the
confidence of facts using the topology/structure/paths of a KG and
mostly together with the entity/relation embeddings of the KG. For
example, CKRL [61] combines local triple confidence measured by
the link prediction score and global path confidence measured by
the reliability and semantic closeness of the relation path connect-
ing two entities of a triplet; CKRL has been later extended using
convolutional neural networks [65] and transformers [63]; KGTtm
[31] estimates the confidence of triplets under a PageRank-like re-
source allocation mechanism; FEA [39] aggregates the embeddings
of semantically relevant paths from a head entity for KG error detec-
tion; SUKE [54] combines KG structural and knowledge uncertain
information for fact confidence prediction; Neil et al. [33] used link-
specific learnable bias for robust learning on noisy KGs; Reform
[57] designs an error mitigation technique using GNNs for confi-
dence prediction; GEDet [23] combines graph data augmentation
and generative adversarial networks for erroneous entity detection;
CAGED [69] uses contrastive learning in KG embedding models
for KG error detection by focusing on nontrivial erroneous triplets;
IDKG [27] combines entity embedding similarity with relation path
confidence to detect noisy facts.

Besides the information from the KG, additional data have also
been used to design noise-resistant learning techniques. One of
the primary pieces of information in this context is the KG schema
[25], which is usually formulated as a set of schematic rules for
confidence evaluation or error detection [5, 63, 65, 71]. For example,
RUGE [26] proposes a schema-rule-based KG cleaning technique
to filter out schematically incorrect triplets to improve the qual-
ity of KG embeddings; Cheng et al. [10] proposed a rule-based
KG repairing method with graph repairing rules, which are gen-
erated by AMIE algorithm [17]; Pellissier et al. [37] proposed to
use (in-)completeness meta-information to assess the quality of
rules learned from incomplete KGs; DSKRL [45] proposes a triple
dissimilarity measure based on entity type hierarchy and relation
path information for both KG error detection and completion tasks.
Besides KG schema, other data sources have also been used. For

example, CrossVal [59] uses an external KG to validate facts in a tar-
get KG via cross-graph representation learning; TKGC [29] jointly
performs fact extraction tasks and noisy fact cleaning using open
Web data; Bass [38] uses KG edit history and a set of constraints,
to automatically correct constraint violations of facts; Arnaout et
al. [3] exploited pre-trained large language model probes for KG
repairing; Knowledge Vault [13] is a Web-scale probabilistic knowl-
edge base where noisy facts are detected and corrected using prior
models built from already-cataloged knowledge.

These existing robust learning methods all focus on triple facts
only, which have been shown to oversimplify the complex nature of
real-world facts [41]. However, hyper-relational KGs significantly
complicate the confidence assessment of hyper-relational facts,
which hinders the application of many existing confidence assess-
ment techniques. Therefore, we propose NYLON for noise-resistant
hyper-relational link prediction via active crowd learning.

2.3 Crowdsourcing for KGs
Crowdsourcing techniques have been widely adopted for KG con-
struction [30, 40, 50] and KG alignment [7, 28, 72]. A few existing
works also leverage crowdsourcing for cleaning noisy KGs. For
example, Acosta et al.[1] adopted a Find-Fix-Verify mechanism [6]
to directly fix incorrect/incomplete object values, data types, and
links in KGs; WhoKnows [53] proposes a strategy to generate ques-
tionnaires for KG data cleaning; KGClean [19] uses a pre-trained
clean KG embedding model combined with crowdsourcing to detect
and repair a noisy KG; KAEL [12] integrates crowdsourcing with
ensemble learning for KG noise detection. In this context, various
active learning sampling strategies, such as uncertainty sampling
[43] selecting the most confusing samples to a classifier or Farthest-
Traversa [48] selecting the most distant samples to the labeled
samples in a latent space, could be integrated with crowdsourcing.
However, these prior works have not looked into crowdsourcing
for noisy hyper-relational KGs work. Our work fills this gap.

A slighted related line of work can be found on addressing the
human side of issues in the crowdsourcing literature, for example,
various human biases affected by cognitive [15], cultural and de-
mographic [14, 42] factors. Methods for dealing with these biases
[4, 64] are orthogonal to our work, in the sense that they can be
considered in our problem but are not the focus of our work. Like
prior work in KGs [12, 19], our work focuses on the computational
challenges in tackling the noise issue in KGs, through automatic,
robust link prediction and computing mechanisms for reducing
human annotation effort by NYLON.

3 NYLON
In this section, we present NYLON, a noise-resistant hyper-relational
link prediction technique via active crowd learning. Specifically,
beyond the traditional fact-wise confidence that is widely used to
evaluate the confidence of a fact as a whole, we introduce element-
wise confidence measuring the fine-grained confidence of each ele-
ment (entity or relation) of a hyper-relational fact. We connect the
element-wise confidence to the fact-wise confidence using a “least
confidence” principle, which states that the confidence of a fact
is determined by the least confidence of all its elements. Following
this principle, we design NYLON integrating three components as
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Figure 1: Overview of NYLON with three components: 1) Hyper-Relational Link Predictor; 2) Cross-Grained Confidence
Evaluator; 3) Effort-Efficient Active Labeler. Three training pipelines are shown as arrows in three different colors, respectively.

shown in Figure 1: 1) a hyper-relational link predictor built on top
of a hyper-relational fact encoder based on self-attention networks
with amasked training process, where each training fact is weighted
by its predicted fact-wise confidence; 2) a cross-grained confidence
evaluator trained on a small set of noise-labeled hyper-relational
facts obtained via crowdsourcing, so as to predict both element-
and fact-wise confidences while following the “least confidence”
principle; 3) an effort-efficient active labeler selecting informative
hyper-relational facts for crowd annotators to label according to
the fact-wise confidence, guiding the labeling process using the
element-wise confidence to reduce the labeling effort of crowd anno-
tators, and also augmenting the human-labeled facts by generating
pseudo-labeled facts which are together regarded as noise-labeled
facts to better train the confidence evaluator. We present the detail
of each component below, followed by the model training process.

3.1 Hyper-Relational Link Predictor
The hyper-relational link predictor is designed to predict a missing
element (entity or relation) in a hyper-relational fact. It is built
on top of a hyper-relational fact encoder with a masked train-
ing process. Specifically, inspired by [56], our encoder adopts a
self-attention network with learnable edge biases discriminating
connections between different elements in the hyper-relational
fact, so as to capture the correlation between entities and relations
both in the base triplet and the key-value pairs. We present a sin-
gle self-attention layer below. For an input hyper-relational fact

(ℎ, 𝑟, [𝑚𝑎𝑠𝑘] , 𝑘1, 𝑣1, ...) (with a missing element masked for predic-
tion), it is fed into a self-attention layer [51]. For each element 𝑢𝑖 ∈
(ℎ, 𝑟, [𝑚𝑎𝑠𝑘] , 𝑘1, 𝑣1, ...), its embedding ®𝑢𝑖 ∈ R𝑑 is first projected
into attention query, key and value3 W𝑄 ®𝑢𝑖 ,W𝐾 ®𝑢𝑖 ,W𝑉 ®𝑢𝑖 ∈ R𝑑
by linear transformation parameters W𝑄 ,W𝐾 ,W𝑉 ∈ R𝑑×𝑑 . The
pair-wise similarity between elements is computed as:

𝛽𝑖 𝑗 =

(
W𝑄 ®𝑢𝑖

)⊤ (
W𝐾 ®𝑢 𝑗 + ®𝑐𝐾

𝑖 𝑗

)
√
𝑑

(1)

where ®𝑐𝐾
𝑖 𝑗

(and also ®𝑐𝑉
𝑖 𝑗

below) refers to learnable edge biases on
attention key (and value)3 [46, 56]. In the self-attention layer, a
hyper-relational fact is viewed as a fully-connected graph with edge
biases specifying the type of edges connecting different elements
in the hyper-relational fact. Five types of undirected edges are
considered, namely (ℎ, 𝑟 ), (𝑡, 𝑟 ), (𝑟, 𝑘), (𝑘, 𝑣) and others not included
in the categories above, which is shown as an adjacency matrix in
Figure 1. Afterward, a softmax function is used to normalize the
similarity score 𝛽𝑖 𝑗 , and the edge biases ®𝑐𝑉

𝑖 𝑗
on the attention value3

is also added when updating the embedding of element ®𝑢𝑖 :

®𝑢
′
𝑖 =

𝑁∑︁
𝑗=1

exp
(
𝛽𝑖 𝑗

)∑𝑁
𝑘=1 exp (𝛽𝑖𝑘 )

(
W𝑉 ®𝑢 𝑗 + ®𝑐𝑉𝑖 𝑗

)
(2)

3Note that attention key and value are completely irrelevant to the key-value pairs in
a hyper-relational fact.
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where 𝑁 represents the number of elements in the hyper-relational
fact. We stack a number of 𝐿𝐻 self-attention layers with learnable
edge biases to generate the embedding of the [MASK] token, de-
noted as ®𝑥𝑀 . To predict the missing element, a single layer of a
linear transformation with a softmax function is used:

®𝑝 = softmax
(
W𝑀 ®𝑥𝑀 + ®𝑏𝑀

)
(3)

where W𝑀 is the weight matrix of the input embedding layer of
entities and ®𝑏𝑀 is a learnable entity bias, as the missing element is
an entity in the above example. For predicting a missing relation,
the learnable parametersW𝑀 and ®𝑏𝑀 in Eq. (3) correspond to the
weight matrices of the input embedding layer of relation and re-
lation bias, respectively. The final output of our hyper-relational
link predictor is a probability distribution ®𝑝 over all entities (or re-
lations), and we compute the cross-entropy loss against the ground
truth entity (or relation), denoted as ®𝑦𝑙 . To consider the confidence
of an input fact, we re-scale its loss according to its predicted fact-
wise confidence 𝜏𝑓 (which we introduce in the next subsection), to
form a so-called noise-resistant link prediction 𝑙𝑜𝑠𝑠𝐿 as follows:

𝑙𝑜𝑠𝑠𝐿 = CELoss( ®𝑝, ®𝑦𝑙 ) · 𝜏𝑓 (4)

Subsequently, for a fact with low confidence, our noisy-resistant link
prediction loss can weaken its importance in the training process.
The detailed training process will be presented in Section 3.4 below.

3.2 Cross-Grained Confidence Evaluator
The cross-grained confidence evaluator is designed to predict both
element- and fact-wise confidences while following the “least confi-
dence” principle. Due to the expensive cost of crowd annotators, it
is trained on a small set of noise-labeled hyper-relational facts ob-
tained via our effort-efficient active labeler. First, the cross-grained
confidence evaluator shares the same hyper-relational fact encoder
used by the hyper-relational link predictor, due to the following
two reasons. On one hand, the encoder generates informative em-
beddings by learning the complex correlation between elements
in a hyper-relational fact, which could then be used to effectively
support different downstream tasks including link prediction and
confidence prediction, as these two tasks both require learning
the correlation and compatibility of elements in the fact. On the
other hand, as the small set of noise-labeled hyper-relational facts
is often insufficient to train a high-quality encoder for the confi-
dence prediction task, the shared hyper-relational factor encoder
could benefit from the large training set for the link prediction
task (as evidenced by our ablation study later). Second, based on
the embeddings generated by the encoder for all elements in a
hyper-relational fact, we adopt a feed-forward network with 𝐿𝑐
fully connected layers, noted as 𝐹𝐹𝑁 , to predict the element-wise
confidence ®𝜏𝑒 of the fact.

®𝜏𝑒 = sigmoid (𝐹𝐹𝑁 ( [ ®𝑥ℎ, ®𝑥𝑟 , ®𝑥𝑡 . . . ])) (5)

where the sigmoid function bounds the confidence ®𝜏𝑒 ∈ (0, 1). For
the fact-wise confidence, following the “least confidence” principle
which states that the confidence of a fact is determined by the least
confidence of all its elements, we utilize a min-pooling layer to
generate the fact-wise confidence 𝜏𝑓 :

𝜏𝑓 = min ( ®𝜏𝑒 ) (6)

We train our cross-grained confidence evaluator by defining a loss
combining both element-wise confidence 𝑙𝑜𝑠𝑠𝑒 and fact-wise confi-
dence 𝑙𝑜𝑠𝑠𝑓 , which are both computed using BCELoss as follows:

𝑙𝑜𝑠𝑠𝑒 =
1

| | ®𝑚𝑒 | |0
BCELoss ( ®𝜏𝑒 ⊙ ®𝑚𝑒 , ®𝑦𝑒 ⊙ ®𝑚𝑒 ) (7)

𝑙𝑜𝑠𝑠𝑓 = BCELoss(𝜏𝑓 , 𝑦𝑓 ) (8)
where 𝑦𝑓 ∈ {0, 1} is the fact-wise confidence label, while ®𝑦𝑒 is the
element-wise confidence label vector (each entry of ®𝑦𝑒 refers to the
confidence label of the corresponding element). Note that ®𝑦𝑒 could
be partially labeled, as our “least confidence” principle suggests the
labeling process could be terminated until one incorrect element
is found, so as to reduce the crowd labeling effort (see Section 3.3
below for more detail). Subsequently, we introduce a binary mask
vector ®𝑚𝑒 to discount the impact of unlabeled elements in the loss,
where an entry of 1 in ®𝑚𝑒 indicates the corresponding element
is actually labeled, 0 otherwise; ⊙ is the Hadamard product, and
| | ®𝑚𝑒 | |0 is the L0-norm (the number of non-zero values) of ®𝑚𝑒 for
normalization. The overall confidence prediction 𝑙𝑜𝑠𝑠𝐶 combines
both element- and fact-wise confidence losses as follows:

𝑙𝑜𝑠𝑠𝐶 = 𝑙𝑜𝑠𝑠𝑒 + 𝑙𝑜𝑠𝑠𝑓 (9)

3.3 Effort-Efficient Active Labeler
The effort-efficient active labeler is designed on one hand for ac-
tively selecting a small set of informative hyper-relational facts for
crowd annotators to label, while on the other hand for reducing the
labeling effort of crowd annotators via an effort-efficient labeling
mechanism, followed by label-ratio-compliant data augmentation.

3.3.1 Uncertainty sampling for active learning. To select the most
informative facts to train the confidence evaluator, we follow the
idea of uncertainty sampling [43] for active learning to pick the
most uncertain facts. To this end, we select the facts whose fact-
wise confidence is most close to 0.5 (which our confidence evaluator
is most uncertain of) as follows:

𝑓 ∗ = argmin
𝑓 ∈D

��𝜏𝑓 − 0.5
�� (10)

where D denotes a set of training facts. In practice, for each active
learning iteration, we pick the top uncertain and unlabeled facts as
query facts for labeling, under a crowdsourcing budget constraint
(see Section 3.4 below for more detail).

3.3.2 Effort-efficient labeling mechanism. To reduce the labeling
effort of crowd annotators, we follow the “least confidence” prin-
ciple to design an effort-efficient labeling mechanism. Specifically,
we use the element-wise confidence of each query fact to guide
crowd annotators to check the elements of the fact according to the
ascending order of their element-wise confidence (where the top
elements are most probably incorrect), and terminate the labeling
process until one incorrect element is found, as shown in Figure
1. Subsequently, for a noisy fact, the crowd annotators need to
check only part of its elements until an incorrect element is found,
thus reducing the labeling effort of crowd annotators. Note that
the unlabeled elements do not affect the training process of the
cross-grained confidence evaluator, as the unlabeled elements are
marked by the binary mask vector ®𝑚𝑒 as 0, which eliminates the
loss of unlabeled element from the learning objective using Eq. 7.
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3.3.3 Label-ratio-compliant data augmentation. Based on the above
human-labeled facts, we perform label-ratio-compliant data aug-
mentation, which is particularly beneficial when learning from very
limited human-labeled facts, as evidenced by our ablation study
later. Specifically, following thewidely adopted “cluster assumption”
[58, 73] in semi-supervised learning, we first generate 𝑘 pseudo-
labeled positive facts from each human-labeled positive fact, i.e.,
its top 𝑘 closest unlabeled facts in the fact embedding space under
L2-distance, where fact embeddings are the concatenated output of
our the hyper-relational fact encoder

[−→𝑥 ℎ,−→𝑥 𝑟 ,−→𝑥 𝑡 , . . . ] . Afterward,
from each pseudo-labeled positive fact, we generate one pseudo-
labeled negative fact via negative sampling by randomly corrupting
its element. Then, we perform label-ratio-compliant drop-off on
these pseudo-labeled facts so as to ensure their positive/negative
ratio is consistent with the ratio of human-labeled facts. Finally,
the pseudo-labeled facts and the human-labeled facts are together
regarded as noise-labeled facts for training the confidence evaluator.

3.4 Training Process
3.4.1 Overall training process. The training process of NYLON
consists of three pipelines as shown in Figure 1. For each training
epoch, the three pipelines alternate as follows. First, we start by
training our cross-grained confidence evaluator on a small set of
noise-labeled training facts (randomly selected in the first epoch,
and then generated by our active labeler in the following epochs)
under a crowdsourcing budget 𝑏, to minimize the overall confi-
dence loss integrating both element- and fact-wise confidences
using Eq. 9. Second, we train our hyper-relational link predictor
using all training facts. Specifically, each training fact is fed both to
the hyper-relational link predictor to perform the masked training
process obtaining its cross-entropy loss for link prediction, and
to the cross-grained confidence evaluator to obtain the element-
and fact-wise confidences (which are cached for active labeler later
for efficiency purposes). The obtained link prediction loss and the
fact-wise confidence are finally combined as the noise-resistant link
prediction loss using Eq. 4, which is optimized via backpropagation.
Third, our effort-efficient active labeler uses the cached element-
and fact-wise confidence to select the top uncertain and unlabeled
facts as query facts for human labeling (under the given crowd-
sourcing budget 𝑏), which are then augmented to noise-labeled
facts. We repeat the training pipelines until convergence.

3.4.2 Incremental training of confidence evaluator via meta-learning.
In the above training process, the amount of noise-labeled training
facts increases over epochs. Here we adopt an incremental train-
ing scheme using meta-learning [16, 34] to efficiently train our
cross-grained confidence evaluator. Specifically, we follow a similar
incremental training scheme for active learning as introduced by
[35], where we regard the set of noise-labeled training facts T𝑖 in
the epoch 𝑖 as one meta-learning task, and set the meta-goal as
generalizing the model to the latest𝑤 sets of noise-labeled training
facts, i.e, {T𝑙 |max(𝑖 − 𝑤, 1) < 𝑙 ≤ 𝑖}, where the max operation
implies that when the current epoch 𝑖 is less than the defined win-
dow size𝑤 , we use all existing sets of noise-labeled training facts
{T𝑙 |1 < 𝑙 ≤ 𝑖}. We use the first-order meta-learning algorithm
Reptile [34] for efficient parameter updating.

Appendix A.1 summarizes the NYLON training algorithm.

Table 1: Statistics of the datasets

Dataset JF17K WikiPeople WD50K
#Entities / #Relations 28,645 / 501 34,825 / 178 47,109 / 531
#Training facts 76,379 294,439 166,345
Triple+Hyper (%) 57.9%+42.1% 97.4%+2.6% 86.2%+13.8%
#Test tuples 6,144 9,472 46,139
Triple+Hyper (%) 42.4%+57.6% 97.2%+2.8% 86.9%+13.1%

4 EXPERIMENTS
4.1 Experimental Setup
4.1.1 Dataset. Weevaluate NYLONon three commonly used hyper-
relational KG datasets JF17K [70], WikiPeople [22] and WD50K
[18]. The training/validation/test datasets are already split by the
data providers. Table 1 shows the dataset statistics.

As there are no explicitly labeled noisy facts in these datasets,
we follow a commonly adopted strategy [19, 61, 63] to generate
a certain number of noisy facts and insert them into our dataset
to form a noisy KG. Specifically, different from the existing noisy
fact generation method that randomly corrupts one element (entity
or relation) in a positive triple fact to generate a noisy fact, we
extend it to a two-step approach for hyper-relational facts. First, for
a hyper-relation fact of 𝑛 elements, we randomly choose 𝑞 (𝑞 ∈ N
and 1 ≤ 𝑞 ≤ 𝑛

2 ) elements to corrupt, to ensure the number of
corrupt elements is not greater than half of the total elements in
the fact. Second, we corrupt each chosen element (an entity or a
relation) by a randomly picked entity or relation, respectively. Note
that for a triple fact where 𝑛 = 3, our approach randomly corrupts
𝑞 = 1 (as 1 ≤ 𝑞 ≤ 3

2 ) element, which is equivalent to existing noisy
fact generation methods for triple facts [19, 61, 63]. To evaluate the
robustness of our method against different levels of noise, following
the setting in [61], we generate and insert different percentages of
noisy facts compared to the number of positive facts. Specifically,
we consider the cases of noisy facts being 2%, 5%, 10%, 20%, 40%,
60%, 80%, and 100% of the positive facts in our experiments.

4.1.2 Baselines. We compare NYLON against a sizeable collection
of state-of-the-art techniques from the following three categories.
First, hyper-relational link prediction techniqueswithout considering
noisy facts include GRAN [56], StarE [18], Hy-Transformer [67]
andQUAD [47]. Second, robust learning techniques for both error de-
tection and link prediction over noisy KGs include CKRL [61] and
our improved version CKRL-Fix (by adapting to hyper-relational
KGs), KGTtm [31], and IDKG [27]. Third, active crowd learning
techniques consider two specific settings for selecting informative
data samples to label via crowdsourcing. On one hand, following
the setting of the error detection techniques [27, 31], we regard the
output of the binary classifier for error detection as the fact-wise
confidence which is then used for active learning and crowdsourc-
ing; these methods are denoted as CKRL-Fix (AL), KGTtm (AL),
and IDKG (AL). On the other hand, we also consider active learning
sampling strategies based on learnt embeddings, Farthest-Traversa
(FT) [48] and Density-Weighted Methods (DWM) [44], which are
integrated with our NYLON by replacing our uncertainty sampling
method, denoted as NYLON-FT and NYLON-DWM, respectively;
we refer to them together with our NYLON as the NYLON fam-
ily. The detailed description and settings of the baselines and our
NYLON are presented in the Appendix A.2.
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Table 2: Overall link prediction performance (*StarE, Hy-Transformer, and QUAD are designed to only predict heads/tails; they
cannot be applied for relation prediction (marked as N/A), and their results on entity prediction also exclude value prediction.

Method
JF17K WikiPeople WD50K

Entity Relation Entity Relation Entity Relation
MRR Hit@1 MRR Hit@1 MRR Hit@1 MRR Hit@1 MRR Hit@1 MRR Hit@1

Hyper-
relational
link
prediction

GRAN 0.4910 0.4063 0.9902 0.9851 0.4259 0.3132 0.9490 0.9211 0.2804 0.2171 0.8951 0.8545
StarE* 0.4322 0.3449 N/A N/A 0.3457 0.2149 N/A N/A 0.2372 0.1669 N/A N/A
Hy-Transformer* 0.4705 0.3848 N/A N/A 0.3825 0.2612 N/A N/A 0.2631 0.1924 N/A N/A
QUAD* 0.3869 0.2888 N/A N/A 0.3167 0.1891 N/A N/A 0.2362 0.1693 N/A N/A

Robust
learning

CKRL 0.4764 0.3952 0.9896 0.9842 0.4398 0.3502 0.9256 0.8915 0.2726 0.2094 0.8934 0.8528
CKRL-Fix 0.4870 0.4013 0.9905 0.9858 0.4328 0.3208 0.9480 0.9210 0.2815 0.2177 0.8969 0.8561
KGTtm 0.4744 0.3921 0.9877 0.9820 0.4153 0.3012 0.9487 0.9217 0.2654 0.2047 0.8860 0.8431
IDKG 0.4875 0.4045 0.9893 0.9840 0.4570 0.3685 0.9454 0.9186 0.2732 0.2167 0.8796 0.8353

Active
crowd
learning

CKRL-Fix (AL) 0.4839 0.4048 0.9871 0.9802 0.3832 0.2900 0.9333 0.9045 0.2750 0.2178 0.8771 0.8331
KGTtm (AL) 0.4776 0.3991 0.9851 0.9773 0.3788 0.2846 0.9350 0.9053 0.2716 0.2150 0.8753 0.8302
IDKG (AL) 0.4894 0.4044 0.9899 0.9849 0.4258 0.3139 0.9470 0.9179 0.2799 0.2164 0.8940 0.8533

NYLON
family

NYLON-FT 0.5122 0.4265 0.9917 0.9877 0.4732 0.3795 0.9457 0.9234 0.3064 0.2454 0.9014 0.8641
NYLON-DWM 0.5082 0.4253 0.9905 0.9862 0.4721 0.3847 0.9452 0.9236 0.3035 0.2422 0.8938 0.8561
NYLON 0.5349 0.4476 0.9929 0.9894 0.5019 0.4151 0.9607 0.9436 0.3285 0.2649 0.9162 0.8838

4.1.3 Evaluation Protocol. We consider hyper-relational link pre-
diction as our primary evaluation task. It predicts a missing element
in a hyper-relational fact, such as (ℎ, 𝑟, ?, 𝑘1, 𝑣1, ...) or (ℎ, ?, 𝑡, 𝑘1, 𝑣1, ...)
where the missing element is an entity or a relation, respectively.
We generate a ranking list of entities or relations using each method
and report two commonly used metrics, i.e., Mean Reciprocal Rank
(MRR) and Hits@1, for link prediction tasks on entities and rela-
tions separately. Moreover, we also evaluate confidence prediction
as a binary classification task, which is also known as error detec-
tion tasks [31], classifying whether a fact is a noisy fact; we report
Accuracy as the evaluation metric. In addition, as our method NY-
LON can also predict element-wise confidence beyond the fact-wise
confidence, we thus report element-wise accuracy when applicable.

To evaluate the efficiency of our proposed labeling mechanism,
we consider different crowdsourcing labeling budgets𝑏. Specifically,
following our element-wise confidence, we define the 𝑏 as the
number of elements to be labeled in each active learning iteration.
To discount the impact of the different numbers of facts across
datasets, we define 𝑏 as a percentage of elements (over the number
of all elements of all facts in a dataset) to be labeled and consider
the following values: 0.025%, 0.05%, 0.1%, 0.15%, 0.2%, and 0.25%.
The default budget is set to 0.25% if not specified otherwise.

4.2 Link Prediction Performance
We compare NYLON with all baselines on hyper-relational link pre-
diction performance. Table 2 shows the results with the dataset set-
ting of 100% noise level, which is the highest noisy level and thus the
most difficult dataset setting (results with 40% noise level are also
shown in Appendix A.3). Figure 2 further shows the performance
of the best-performing techniques (per category of techniques on
each dataset) across different noise levels.

We observe that NYLON consistently achieves the best link pre-
diction performance compared to all baselines in Table 2. Specifi-
cally, NYLON outperforms the best-performing baselines (from all
categories except the NYLON family) by 4.93%, 6.52%, and 10.93%
on JF17K, WikiPeople, and WD50K, respectively. Moreover, we
also observe in Figure 2 that NYLON is much more robust than

(a) MRR for Entity on JF17K (b) MRR for Relation on JF17K

Figure 2: Performance comparison with the best-performing
baselines (per category of techniques) on JF17K (results on
other datasets shown in Appendix A.4).

baseline techniques against different levels of noise. When increas-
ing the level of noise, the performance of NYLON decreases much
slower than baseline techniques or even retains its performance in
some cases. Finally, compared to the best baseline in NYLON family
NYLON-FT, NYLON yields 2.42%, 4.81%, and 4.77% improvement
(on average) on the three respective datasets, showing the advan-
tage of our uncertainty sampling technique based on the confidence
predicted by our cross-grained confidence evaluator.

Interestingly, we observe that the existing robust learning tech-
niques designed for noisy triple facts sometimes yield little im-
provement on noisy hyper-relational KGs. For example, in Table
2, compared to the best hyper-relational link prediction method
GRAN, the best robust learning method IDKG shows comparable
results on JF17K and WD50K, but a clear improvement on WikiPeo-
ple. Because triple facts dominate the WikiPeople dataset (over 97%
as shown in Table 1), which is not the case in the other two datasets.

4.3 Error Detection Performance
We evaluate NYLON on the error detection task, which applies
to all active crowd learning techniques learning a binary classi-
fier to predict the probability of a fact being fake. Table 3 shows
the results with 100% noise level (results with 40% noise level are
shown in Appendix A.3). We observe that NYLON significantly
outperforms all baselines in this task, yielding 10.65% and 3.46%
improvement (on average over datasets) on fact- and element-wise
error detection, respectively, over the best baselines. We also find
that the methods using hand-crafted features/confidences for triple
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Table 3: Error detection performance (in accuracy)

Method JF17K WikiPeople WD50K
Fact Element Fact Element Fact Element

CKRL-Fix (AL) 0.5022 N/A 0.5029 N/A 0.5014 N/A
KGTtm (AL) 0.5172 N/A 0.6409 N/A 0.5308 N/A
IDKG (AL) 0.7571 N/A 0.7965 N/A 0.7806 N/A
NYLON-FT 0.8104 0.9166 0.8722 0.9337 0.8511 0.9358
NYLON-DWM 0.8407 0.9332 0.8565 0.9265 0.7102 0.8568
NYLON 0.9606 0.9791 0.9528 0.9661 0.9231 0.9543

Table 4: Ablation study on link prediction (in MRR)

Method JF17K WikiPeople WD50K
Entity Relation Entity Relation Entity Relation

NYLON (noSE) 0.5194 0.9906 0.4825 0.9485 0.3122 0.9004
NYLON (noUS) 0.5224 0.9917 0.4908 0.9591 0.3160 0.9061
NYLON (noEEL) 0.5299 0.9926 0.5018 0.9587 0.3238 0.9112
NYLON 0.5349 0.9929 0.5019 0.9607 0.3285 0.9162

Table 5: Ablation study on error detection (in accuracy)

Method JF17K WikiPeople WD50K
Fact Element Fact Element Fact Element

NYLON (noSE) 0.8556 0.9307 0.9078 0.9455 0.8185 0.9158
NYLON (noUS) 0.9283 0.9700 0.9284 0.9596 0.8861 0.9451
NYLON (noEEL) 0.9480 0.9776 0.9390 0.9651 0.9070 0.9528
NYLON 0.9606 0.9791 0.9528 0.9661 0.9231 0.9543

facts, i.e., CKRL-Fix (AL), KGTtm (AL), and IDKG (AL), show much
worse results than the NYLON family. Because these heuristic fea-
tures/confidences for triple facts, such as the widely used relation
path reliability, fail to consider the hyper-relationality of our facts.
On the WikiPeople dataset dominated by triple facts, these meth-
ods indeed achieve a slightly higher accuracy in general, which,
however, is still much lower than our NYLON.

4.4 Ablation Study
We consider the following variation of NYLON in the ablation
study. NYLON (noSE) does not use the Share hyper-relational fact
Encoder between the hyper-relational link predictor and the cross-
grained confidence evaluator; instead, it uses two separate encoders
for the two respective components. NYLON (noUS) does not use
the Uncertainty Sampling technique; instead, it randomly samples
facts to be labeled. NYLON (noEEL) removes the Effort-Efficient
Labeling mechanism, where the element-wise confidence is not
used and crowd annotators are required to label all elements for
each query fact. Table 4 and 5 show the results on 100% noise level.

4.4.1 Impact of the shared hyper-relational fact encoder. We ob-
serve that NYLON significantly outperforms NYLON (noSE) by
2.58% and 6.93% (on average over datasets) on link prediction and
error detection tasks, respectively. This verifies our design choice
of using the shared hyper-relational fact encoder, which indeed
benefits both link prediction and confidence evaluation.

4.4.2 Impact of the uncertainty sampling. We observe that NYLON
outperforms NYLON (noUS) by 1.67% and 2.14% (on average over
datasets) on link prediction and error detection tasks, respectively,
which shows the effectiveness of our uncertainty sampling, where
we select the facts whose fact-wise confidence is closest to 0.5 (the
case that our confidence evaluator is most uncertain of).

(a) Link prediction on JF17K (b) Error detection on JF17K

Figure 3: Tradeoff between performance and labeling budget
on JF17K (results on other datasets shown in Appendix A.5)

4.4.3 Effort-Efficient Labeling Performance. We observe that NY-
LON consistently outperforms NYLON (noEEL), showing the effec-
tiveness of our effort-efficient labeling mechanism, where crowd
annotators are only required to label elements until an incorrect
one is found. In other words, given the same crowdsourcing bud-
get 𝑏 (i.e., the number of elements to be checked), our mechanism
designed under the “least confidence” principle obtains more but
partially labeled facts, while NYLON (noEEL), which requires crowd
annotators to label all elements for each query fact, obtains less
but fully-labeled facts. NYLON can effectively learn from the larger
number of partially labeled facts for confidence evaluation.

Moreover, we show the tradeoff between the performance and
the labeling budget in Figure 3. Here we also study the impact
of our data augmentation by comparing the number of pseudo-
labeled facts 𝑘 = 0 and the 𝑏𝑒𝑠𝑡 𝑘 searched over {1, 2, 5, 10}. First,
the performance on both link prediction and error detection tasks
increaseswhen increasing the labeling budget, andNYLON achieves
a better Pareto frontier than NYLON (noEEL). Furthermore, we see
that our data augmentation can effectively boost performance in
the case of a small labeling budget. This utility decreases when
increasing the labeling budget, and even leads to negative effects
for a large budget. Because with enough human-labeled facts for
training the confidence evaluator, the pseudo-labeled facts could
introduce additional noise. Therefore, 𝑘 is suggested to be tuned
according to the specific labeling budget on each dataset. A detailed
parameter sensitivity study of 𝑘 can be found in Appendix A.6.

5 CONCLUSION
In this paper, we study the problem of robust link prediction over
noisy hyper-relational facts, and propose NYLON, a Noise-resistant
hYper-reLatiONal link prediction technique via active crowd learn-
ing. We first introduce the element-wise confidence beyond the tra-
ditional fact-wise confidence for hyper-relational facts, and bridge
the gap between them using the “least confidence” principle. Fol-
lowing this principle, NYLON systematically integrates a hyper-
relational link predictor using the fact-wise confidence for robust
prediction, a cross-grained confidence evaluator predicting both
element- and fact-wise confidences, and an effort-efficient active
labeler selecting informative facts for crowd annotators to label
via an efficient labeling mechanism with label-ratio-compliant data
augmentation. We evaluate NYLON on three KG datasets against a
sizeable collection of baselines. Results show that NYLON achieves
superior and robust performance in both link prediction and error
detection tasks, and outperforms best baselines by 2.42-10.93% and
3.46-10.65% in the two tasks, respectively.

In the future, we plan to incorporate KG schemas to further assist
the labeling process of crowd annotators.
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A APPENDIX
A.1 NYLON Training Algorithm
Algorithm 1 summarizes the overall training process. After initial-
izing the first set of noisy-labeled training facts (Line 1), we repeat

Algorithm 1: NYLON Training Algorithm
Input: The set of hyper-relational facts G, the window size 𝑤, the

crowdsourcing budget 𝑏 for each iteration, and the
maximum number of iterations 𝐼𝑡𝑒𝑟

1 Initialize the set of noisy-labeled training facts {T1} under the
crowdsourcing budget 𝑏;

2 for 𝑖 = 1; 𝑖 ≤ 𝐼𝑡𝑒𝑟 ; 𝑖 + + do
3 Incrementally train the cross-grained confidence evaluator on

{T𝑙 |max(𝑖 − 𝑤, 1) < 𝑙 ≤ 𝑖 } to minimize 𝑙𝑜𝑠𝑠𝐶 in Eq. 9;
4 Train the hyper-relational link predictor on G to minimize

𝑙𝑜𝑠𝑠𝐿 in Eq. 4, and cache the confidence of all facts;
5 Get a new set of noisy-labeled training facts {T𝑖+1} under the

budget 𝑏 using the cached confidence via the effort-efficient
active labeler.

6 if 𝑙𝑜𝑠𝑠𝐿 has converged then
7 break;

the three training pipelines: incrementally train the cross-grained
confidence evaluator using meta-learning (Line 3), train the hyper-
relational link predictor (Line 4) and get a new set of noisy-labeled
training facts via the effort-efficient active labeler (Line 5). As our
ultimate goal is for robust link prediction over noisy KGs, we use
the link prediction loss for the convergence criterion (Line 6). Our
code and datasets are available here4.

A.2 Baselines and Settings
The three categories of baselines included in our experiments are
as follows:
• Hyper-relational link prediction techniques, where they do not
consider the confidence of noisy facts. GRAN [56] represents a
hyper-relational fact as a heterogeneous graph and proposes a
transformer-based network adopting an edge-biased self-attention
mechanism to capture different types of connections in the graph.
StarE [18] represents a hyper-relational fact as a directed hetero-
geneous graph and designs a customized message-passing mech-
anism to extract the inter-vertex interaction using a graph neural
network. Hy-Transformer [67] extends StarE by replacing the
message-passing mechanism with a lightweight entity/relation
embedding module and adding a qualifier-oriented auxiliary
training task. QUAD [47] also extends StarE by adopting two
separate aggregators to encode the primary entity-typed triplets
and associated key-type pairs, respectively. We do not include
NaLP [22], HINGE [41], and NeuInfer [21] here, as they have
been shown to underperform the methods above [56].

• Robust learning techniques for both error detection and link pre-
diction over noisy KGs. CKRL [61] is a robust link prediction
technique over noisy KGs. It evaluates the confidence of a fact
combining a local triple confidence score computed using an
energy function and a global path confidence score computed
via the relation path reliability; it is originally proposed for triple
facts only and uses TransE [8] as its link predictor. To handle
hyper-relational link prediction tasks, we replace TransEwith our
hyper-relational link predictor and use its loss as the energy score.
Moreover, we use the base triplets of hyper-relational facts to
compute the global path confidence. CKRL-Fix is our improved

4Github link removed for double-blind review.
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version of CKRL [61] by re-designing the local triple confidence
to fit the energy score (loss) output by our hyper-relational link
predictor. Specifically, CKRL designs a mechanism to reinforce
the confidence of facts with high energy scores (greater than a
threshold) and punish the confidence of facts with low energy
scores (less than the threshold). This threshold is defined as a
margin-based distance function, which fits well with the margin-
based training strategy of TransE, as pointed out in the paper.
However, when replacing TransE with our hyper-relational link
predictor, the thresholding mechanism does not fit our cross-
entropy loss. Therefore, we propose a ranking-based mechanism
to reinforce the confidence of facts whose loss is the top half
minimum and punish the confidence of facts whose loss is the
bottom half minimum, which can indeed improve the link pre-
diction performance as evidenced by our experiments below.
KGTtm [31] is an error detection technique for noisy triplets. It
integrates confidence scores measured at the entity level using
energy scores, at the relationship level via resource allocation,
and at the KG global level via reachable paths inference, which
are then used to output the probability of an input fact being
fake. As KGTtm is originally designed for error detection tasks
trained on a fixed dataset without active crowd learning, we thus
integrate it with our hyper-relational link predictor by simply av-
eraging the confidence scores at the three levels (without training
the binary classifier) as the fact-wise confidence, and combine it
with our hyper-relational link predictor using our noisy-resistant
link prediction loss. IDKG [27] is another error detection tech-
nique, which combines resource-allocation-based entity semantic
representation confidence scores and relation path confidence
scores. Similar to KGTtm, IDKG also uses a classifier to output the
probability of an input fact being fake. Subsequently, we adopt
the same setting above (as for KGTtm) to integrate IDKG with
our hyper-relational link predictor, i.e., combining the averaged
confidence scores with our hyper-relational link predictor using
our noisy-resistant link prediction loss.

• Active crowd learning techniques for selecting informative data
samples to label via crowdsourcing.
– First, following the setting of the error detection techniques
[27, 31], the confidence scores can be used as features to learn
a binary classifier for predicting the probability of a fact being
fake. We can thus regard the output of this classifier as the
fact-wise confidence which is then used for active learning and
crowdsourcing. In other words, we replace our cross-grained
confidence evaluator with this classifier, and keep our link pre-
dictor and active labeler. Note that as these classifiers cannot
output element-wise confidence, our effort-efficient labeling
mechanism is not used. We implement this setting for CKRL-
Fix, KGTtm, and IDKG, denoted as CKRL-Fix (AL), KGTtm
(AL), and IDKG (AL), respectively; we keep only the improved
version of CKRL here.

– Second, we also consider sample selection techniques for ac-
tive learning based on learnt embeddings, and integrate these
techniques with our NYLON by replacing our uncertainty sam-
pling in Eq 10. Specifically, Farthest-Traversa [48] (FT) selects
the facts with the largest embedding distance from the cen-
ter embedding of all facts. Density-Weighted Methods [44]
(DWM) utilizes the fact embedding distance from the center

embedding of all facts to re-scale our fact-level confidence. We
use the output of our hyper-relational fact encoder as the fact
embedding and compute the center embedding as the average
of embeddings of all facts. Note that these sample selection
techniques can only be applied to the fact-wise confidence, for
a fair comparison, we still use our cross-grained confidence
evaluator to predict both element- and fact-wise confidence
and apply these baseline techniques to our predicted fact-wise
confidence. Meanwhile, our effort-efficient active labeler re-
mains fully functional. As these two techniques re-use most
of the components of our proposed NYLON, we thus denote
them as NYLON-FT and NYLON-DWM, respectively. We
also refer to them together with our NYLON as the NYLON
family in our experiments.

In our experiments, NYLON is set with the number of self-
attention layers in the shared hyper-relational fact encoder 𝐿𝐻 = 12
with attention head 4 and embedding size 256, the number of lin-
ear layers in our cross-grained confidence evaluator 𝐿𝐶 = 4, the
window size for incremental learning 𝑤 = 10, and the maximum
number of iterations 𝐼𝑡𝑒𝑟 = 100. We search the best value for the
number of pseudo-labeled facts generated for data augmentation 𝑘
within {0, 1, 2, 5, 10}.

A.3 Performance with 40% noise level
Following the setting in the [61], we also show the results with
the noise level of 40% on JF17K, WikiPeople, and WD50K. Table 6
and 7 show the link prediction performance and error detection
performance, respectively. The results are similar to the case of 100%
noise level. Specifically, we observe that our NYLON outperforms
the best-performing baselines by 2.12%, 3.38%, and 4.33% on link
prediction performance, and by 9.36%, 10.34%, and 13.94% on fact-
wise error detection performance, over JF17K, WikiPeople and
WD50K, respectively.

A.4 Performance across different noise levels
on WikiPeople and WD50K

Figure 4 shows the performance comparisonwith the best-performing
baselines (per category of techniques) across different noise levels
on WikiPeople and WD50K. Similar to the results on JF17K, we see
that NYLON is significantly more robust than baseline techniques
against different levels of noise. When increasing the level of noise,
the performance of NYLON decreases much slower than baseline
techniques or even retains its performance sometimes.

A.5 Tradeoff between model performance and
labeling budget on WikiPeople and WD50K

Figure 5 shows the tradeoff between model performance and la-
beling budget on WikiPeople and WD50K. Similar to the results
on JF17K, we see that NYLON consistently outperforms NYLON
(noEEL) by achieving a better Pareto frontier. Moreover, the im-
provement of NYLON (best k) over NYLON (k=0) also decreases
when increasing the labeling budgets; sometimes NYLON (best k)
even underperforms NYLON (k=0) for a large labeling budget. To
further study this issue, we present below a parameter sensitivity
study of the number of pseudo-labeled facts 𝑘 .
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Table 6: Overall link prediction performance with 40% noise level

Method
JF17K WikiPeople WD50K

Entity Relation Entity Relation Entity Relation
MRR Hit@1 MRR Hit@1 MRR Hit@1 MRR Hit@1 MRR Hit@1 MRR Hit@1

Hyper-
relational
link
prediction

GRAN 0.5079 0.4235 0.9916 0.9876 0.4563 0.3634 0.9621 0.9389 0.3062 0.2448 0.9190 0.8842
StarE* 0.4222 0.3312 N/A N/A 0.3496 0.2184 N/A N/A 0.2531 0.1792 N/A N/A
Hy-Transformer* 0.4854 0.3941 N/A N/A 0.3904 0.2667 N/A N/A 0.2800 0.2071 N/A N/A
QUAD* 0.3959 0.2930 N/A N/A 0.3280 0.1987 N/A N/A 0.2435 0.1724 N/A N/A

Robust
learning

CKRL 0.4872 0.4022 0.9907 0.9860 0.4661 0.3712 0.9535 0.9304 0.2982 0.2361 0.8963 0.8569
CKRL-Fix 0.5075 0.4250 0.9891 0.9834 0.4639 0.3745 0.9531 0.9306 0.3068 0.2452 0.9012 0.8640
KGTtm 0.4784 0.3923 0.9833 0.9756 0.4493 0.3559 0.9516 0.9252 0.2966 0.2362 0.8932 0.8539
IDKG 0.5069 0.4247 0.9900 0.9848 0.4786 0.3906 0.9558 0.9340 0.3041 0.2430 0.9021 0.8655

Active
crowd
learning

CKRL-Fix (AL) 0.5145 0.4296 0.9895 0.9843 0.4667 0.3770 0.9550 0.9335 0.3105 0.2486 0.9022 0.8658
KGTtm (AL) 0.5076 0.4227 0.9892 0.9833 0.4577 0.3658 0.9522 0.9295 0.3072 0.2460 0.9003 0.8635
IDKG (AL) 0.5079 0.4253 0.9888 0.9833 0.4606 0.3712 0.9538 0.9317 0.3063 0.2451 0.9001 0.8632

NYLON
family

NYLON-FT 0.5242 0.4377 0.9919 0.9882 0.4945 0.4066 0.9594 0.9418 0.3241 0.2608 0.9119 0.8796
NYLON-DWM 0.5205 0.4349 0.9918 0.9879 0.4926 0.4018 0.9576 0.9377 0.3235 0.2601 0.9109 0.8769
NYLON 0.5349 0.4482 0.9924 0.9888 0.5035 0.4169 0.9667 0.9493 0.3348 0.2707 0.9201 0.8886

(a) MRR for Entity on WikiPeople (b) MRR for Relation on WikiPeople

(c) MRR for Entity on WD50K (d) MRR for Relation on WD50K

Figure 4: Performance comparison with the best-performing
baselines (per category of techniques) on WikiPeople and
WD50K

(a) Link prediction on WikiPeople (b) Error detection on WikiPeople

(c) Link prediction on WD50K (d) Error detection on WD50K

Figure 5: Tradeoff between model performance and labeling
budget on WikiPeople and WD50K

Table 7: Error detection performance (in accuracy) with 40%
noise level

Method JF17K WikiPeople WD50K
Fact Element Fact Element Fact Element

CKRL-Fix (AL) 0.4957 N/A 0.4995 N/A 0.4999 N/A
KGTtm (AL) 0.5001 N/A 0.6876 N/A 0.5801 N/A
IDKG (AL) 0.6890 N/A 0.7512 N/A 0.6597 N/A
NYLON-FT 0.8784 0.9472 0.8635 0.9281 0.8102 0.8965
NYLON-DWM 0.8325 0.9292 0.7754 0.8821 0.7577 0.8747
NYLON 0.9606 0.9791 0.9528 0.9661 0.9231 0.9543

(a) Link prediction on JF17K (b) Error detection on JF17K

Figure 6: Impact of augmentation amount

A.6 Parameter sensitivity study of the number
of pseudo-labeled facts 𝑘

We study the impact of the number of pseudo-labeled facts gener-
ated for data augmentation 𝑘 ∈ {0, 1, 2, 5, 10}. Figure 6 shows the
results on JF17K.We observe that in the case of a very small labeling
budget (e.g., 0.025%), a larger 𝑘 yields better performance in general.
Because given very limited human-labeled facts, the pseudo-labeled
facts can effectively help train the confidence evaluator. However,
this utility decreases when increasing the labeling budget. In the
case of a large labeling budget (e.g., 0.25%), a larger 𝑘 yields even
worse performance. Because when the amount of human-labeled
facts is enough to train the confidence evaluator, the pseudo-labeled
facts could introduce additional noise. Therefore, 𝑘 is suggested to
be tuned according to the specific labeling budget on each dataset.
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