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ABSTRACT

The lifting-based framework has dominated the field of monocular 3D human pose
estimation by leveraging the well-detected 2D pose as an intermediate represen-
tation. However, it neglects different initial states between 2D pose and per-joint
depth. The initial state of the 2D pose is well-detected, but the per-joint depth
is unknown and needs to be learned from scratch. The lifting-based framework
encodes the well-detected 2D pose and unknown per-joint depth in an entangled
feature space, explicitly introducing depth uncertainty to the well-detected 2D
pose. To address this limitation, we present a progressive multi-task learning pose
estimation framework named PrML. First, PrML introduces two task branches to
refine the well-detected 2D pose features and to learn the per-joint depth features.
This dual-branch design reduces the explicit influence of uncertain depth features
on 2D pose features. Second, PrML employs a task-aware decoder to indirectly
supplement the complementary information between the refined 2D pose features
and learned per-joint depth features. This step establishes the connection between
2D pose and per-joint depth, compensating for the lack of interaction caused by the
dual-branch design. We conduct theoretical analysis from the perspective of mutual
information and arrive at a loss to supervise this feature complementary process.
Finally, we use two regression heads to regress the 2D pose and per-joint depth,
respectively, and concatenate them to obtain the final 3D pose. Extensive experi-
ments show that PrML outperforms the conventional lifting-based framework with
fewer parameters on two widely used datasets: Human3.6M and MPI-INF-3DHP.
Code is available at ht tps://anonymous.4open.science/r/PrML.

1 INTORDUCTION

Monocular 3D human pose estimation has been a crucial problem in computer vision, which aims
to locate the 3D joint positions of a human body (Moon & Lee, 2020; Pavlakos et al., 2018; Chen
et al., 2021). Nowadays, monocular 3D human pose estimation finds widespread applications in
various scenarios, including motion prediction (Liu et al., 2021b; 2022b), action recognition (Zhang
et al., 2022a), and human-robot interaction (Gong et al., 2022; Ye et al., 2021). Existing monocular
3D human pose estimation methods can be categorized as the end-to-end manner and lifting-based
manner. The end-to-end approaches (Kanazawa et al., 2018; Pavlakos et al., 2017; Sun et al., 2018)
directly estimate the 3D pose from the input image without the intermediate 2D pose representation.
Different from the end-to-end manner, lifting-based methods (Martinez et al., 2017; Liu et al., 2020)
first obtain 2D pose using 2D pose detector (Newell et al., 2016; Chen et al., 2018) and then lift
the 2D pose in image coordinate to the 3D pose in camera coordinate. These lifting-based methods
usually outperform the end-to-end manner and dominate the monocular 3D human pose estimation.

Recent lifting-based methods (Zheng et al., 2021; Li et al., 2022b; Zhang et al., 2022b; Yu et al., 2023;
Zhu et al., 2023; Peng et al., 2024) for monocular 3D human pose estimation focus on designing
various spatio-temporal encoders. As shown in Figure 1 left, they project the 2D pose into an
entangled feature space and regress the 3D pose from it. This lifting process neglects the different
initial states of 2D pose and per-joint depth. It encodes the well-detected 2D pose and unknown
per-joint depth in an entangled feature space, which introduces a main limitation: the high
uncertainty of the per-joint depth may erode the 2D pose. It is well-known that the monocular 3D
human pose estimation task is an ill-posed problem and inherently suffers from depth ambiguity (Li
et al., 2022b; Ma et al., 2021b; Wehrbein et al., 2021). One 2D pose possibly corresponds to multiple
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Figure 1: Given a 2D pose in the image coordinate, we aim to estimate the 3D pose in the camera
coordinate. Left: Conventional lifting-based framework directly projects the 2D pose in an entangled
feature space and regression the 3D pose from it. Right: Our proposed progressive multi-task learning
framework. The 2D pose and per-joint depth features are learned separately in the first step. In the
second step, we perform feature interaction to supplement the complementary information. Finally,
we regress the 2D pose and per-joint depth and concatenate them to obtain the final 3D pose.
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Figure 2: Qualitative Comparison of 2D Pose (Ground Truth, Input, MotionBERT (Zhu et al., 2023)
and Ours). We project the 2D pose in the camera coordinate (part of the output 3D pose) back to the
image coordinate for comparison. The powerful lifting-based method MotionBERT gets a 2D pose
worse than the input, which contradicts our intuition. In contrast, our framework obtains a 2D pose
better than the input. Please refer to Appendix F for more qualitative and quantitative comparisons.

3D poses, where the lifting process is inherently ambiguous (Yu et al., 2021). To validate the impact
of depth uncertainty on the 2D pose, we project the 2D pose in the camera coordinate (part of output
3D pose) back to the image coordinate and compare it with the ground truth 2D pose and input 2D
pose. As shown in Figure 2, despite learning through multiple spatio-temporal encoders, the 2D pose
of the powerful lifting method MotionBERT (Zhu et al., 2023) is even worse than the original input
2D pose. This observation provides empirical evidence that directly encoding the well-detected 2D
pose features and the unknown per-joint depth features in an entangled feature space will inevitably
introduce explicit uncertainty to the 2D pose and cause erosion. To provide more empirical support
for the high uncertainty of per-joint depth, we conduct quantitative comparisons of Mean Per Joint
Position Error (MPJPE) across different axes for different hard actions (Zeng et al., 2021) with
MotionBERT (Zhu et al., 2023), GLA-GCN (Yu et al., 2023) and KTPFormer (Peng et al., 2024). As
shown in Figure 3, the MPJPE of per-joint depth is significantly higher than the MPJPE of 2D pose
and accounts for the majority of the overall MPJPE. These quantitative findings highlight the high
uncertainty of per-joint depth compared to the well-detected 2D pose.

Motivated by these qualitative and quantitative observations, we propose a progressive multi-task
learning pose estimation framework named PrML to address this limitation. As shown in Figure 1
right, the first step of PrML introduces two task branches: refining the well-detected 2D pose features
and learning the per-joint depth features. The dual-branch design brings two benefits. First, learning
the features of the 2D pose and per-joint depth separately avoids the explicit impact of uncertain depth
features on the 2D pose. Second, the model parameters are not shared across two task branches, which
makes the training more targeted. After dual-branch learning, we obtain the refined 2D pose features
and learned depth features, mitigating the uncertainty of depth features. In light of this, the second
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Figure 3: Quantitative Comparison of Mean Per Joint Position Error (MPJPE) of different axes for all
actions and three hard actions (Zeng et al., 2021) with lifting-based methods (Zhu et al., 2023; Yu
et al., 2023; Peng et al., 2024). The MPJPE of the Z-axis (per-joint depth) is significantly higher than
the X-Y axes (2D pose) and accounts for the majority of the overall (3D pose) MPJPE. Our proposed
framework achieves better results across different axes than the lifting-based framework.

step of PrML employs a task-aware decoder to indirectly supplement the complementary information
between the refined 2D pose features and the learned per-joint depth features. This step compensates
for the information loss caused by the dual-branch structure and establishes the connection between
2D pose and per-joint depth. We also conduct theoretical analysis from the perspective of mutual
information (Becker, 1996) and arrive at a loss to supervise this feature complementary process.
Finally, we regress the 2D pose and per-joint depth, respectively, and concatenate them to obtain the
final 3D pose. As shown in Figure 2, our framework could reduce the erosion of the 2D pose caused
by depth uncertainty. The quantitative results in Figure 3 also demonstrate our framework performs
favorably across different parts (2D pose and per-joint depth) of the 3D pose. Extensive experiments
on two widely used monocular 3D human pose estimation benchmarks (i.e., Human3.6M (Ionescu
et al., 2013) and MPI-INF-3DHP (Mehta et al., 2017)) demonstrate that the proposed progressive
multi-task learning framework outperforms conventional lifting-based framework in terms of accuracy
and robustness with fewer parameters. The key contributions of this paper are as follows:

» We tackle an overlooked different initial states between the well-detected 2D pose and the unknown
per-joint depth of the lifting-based framework and present a novel progressive multi-task learning
pose estimation framework named PrML to address it.

* We propose a task-aware decoder to indirectly supplement the complementary information between
2D pose and per-joint depth after task learning. We also conduct theoretical analysis from the
perspective of mutual information to explicitly supervise this feature complementary process.

* Our framework achieves state-of-the-art results on Human3.6M and MPI-INF-3DHP datasets with
fewer parameters. These results demonstrate the potential of the progressive multi-task learning
framework for future monocular 3D human pose estimation research.

2 RELATED WORK

Monocular 3D Human Pose Estimation. Existing methods for monocular 3D human pose estimation
can be categorized as end-to-end and lifting-based. End-to-end approaches (Kanazawa et al., 2018;
Pavlakos et al., 2017; Sun et al., 2018) directly estimate the 3D pose from the input image without the
intermediate 2D pose representation. With the reliable achievement of 2D human pose detectors (Chen
et al., 2018; Newell et al., 2016; Sun et al., 2019), lifting-based methods (Fang et al., 2018; Martinez
et al., 2017; Zhao et al., 2019; Liu et al., 2020) first obtain 2D pose representations in the image
and then lift the 2D joint coordinates to 3D space. Recently, Transformers (Vaswani et al., 2017)
have been applied to various visual tasks (Dosovitskiy et al., 2021; Carion et al., 2020). For the
monocular 3D human pose estimation task, PoseFormer (Zheng et al., 2021) introduces transformer
architecture to leverage spatial and temporal dependency. MHFormer (Li et al., 2022b) addresses
the depth ambiguity by learning multiple pose hypotheses and MixSTE (Zhang et al., 2022b)
constructs a mixed spatiotemporal transformer to capture the temporal motion of different body
joints. STCFormer (Tang et al., 2023) decomposed spatio-temporal attention and integrated the
structure-enhanced positional embedding. On the other hand, MotionBERT (Zhu et al., 2023) trains
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a unified model for multiple downstream tasks. In (Peng et al., 2024), KTPFormer uses two prior
attention modules to facilitate pose estimation. Moreover, MotionAGFormer (Soroush Mehraban,
2024) using two parallel transformer and GCNFormer streams to better learn the underlying 3D
structure. However, these methods are developed within the conventional lifting-based framework. In
contrast, we propose a progressive multi-task learning framework to estimate 3D human pose.

Multi-Task Learning. Multi-Task Learning (MTL) (Caruana, 1997) is a learning paradigm in
machine learning, and it aims to leverage useful information contained in multiple related tasks to
help improve the generalization performance of all the tasks (Zhang & Yang, 2021). Numerous models
have been explored (Vandenhende et al., 2020; Briiggemann et al., 2021) within the MTL framework.
Moreover, existing approaches analyze the optimization of multi-task learning by designing multi-task
loss (Liu et al., 2021a; Li et al., 2022a) or gradient manipulations (Yu et al., 2020; Wang et al., 2020).
MTL has been widely used in computer vision, such as image classification (Rebuffi et al., 2017),
semantic segmentation (Hoyer et al., 2021; Li et al., 2023), and dense prediction (Proesmans et al.,
2022; Hoyer et al., 2021). In (Igbal et al., 2018), they introduce a novel scale and translation invariant
2.5D pose representation contain 2D pose and depth. Our approach is motivated by these former
attempts but from the perspective of decomposing the single 3D human pose estimation task into two
sub-tasks and learning them in a progressive manner, which is a novel and unexplored question.

Mutual Information. Mutual Information plays an important role in the representation learning.
As the pioneering work among mutual information methods, Linsker (Linsker, 1988) proposes to
maximize mutual information between the input and output. Designing optimization objectives based
on mutual information maximization has been extensively studied (Becker, 1992; Wiskott & Se-
jnowski, 2002). For human pose estimation, CV-MIM (Zhao et al., 2021) introduces a representation
learning method to disentangle pose-dependent and view-dependent factors from 2D human poses.
FAMI-Pose (Liu et al., 2022a) designs a mutual information loss to maximize the complementary
information between temporal frames. TDMI (Feng et al., 2023) proposes to minimize the mutual
information between useful and noisy constituents of the raw features. To the best of our knowledge,
we are the first to introduce mutual information loss to the monocular 3D human pose estimation task.

3 RETHINKING LIFTING-BASED MONOCULAR 3D HUMAN POSE ESTIMATION

Since SimpleBaseline (Martinez et al., 2017) proposes the 2D-to-3D lifting framework, numerous
methods (Pavllo et al., 2019; Zhang et al., 2022b; Li et al., 2022b; Shan et al., 2022; Zhao et al.,
2023b; Shan et al., 2023; Zhu et al., 2023; Tang et al., 2023; Peng et al., 2024; Mehraban et al., 2024)
have been developed within this framework. These lifting-based methods usually outperform the
end-to-end manner (Kanazawa et al., 2018; Pavlakos et al., 2017; Sun et al., 2018) and have been the
dominant paradigm in monocular 3D human pose estimation for a long time.

The ensuing question is why lifting-based methods perform better than end-to-end approaches. We
argue that this is mainly attributed to leveraging the 2D pose as an intermediate representation. First,
there exists a high relevance between 2D pose and 3D pose. Regressing 3D pose directly from
raw images is a highly nonlinear and challenging problem (Pavlakos et al., 2017). This difficulty
also exists in 2D human pose estimation (Pfister et al., 2015; Tompson et al., 2014). In contrast,
with the widespread usage of 2D human pose detectors (Chen et al., 2018; He et al., 2017; Newell
et al., 2016; Sun et al., 2019), lifting-based methods could leverage the well-detected 2D pose,
which contributes to its 3D counterpart and make network training easy. Second, the 2D pose is
exceptionally lightweight regarding memory cost compared to raw image. This property enables
lifting-based methods to leverage long-term temporal clues to address the occlusion and achieve
advanced accuracy. (e.g., 243 frames for MixSTE (Zhang et al., 2022b), MotionBERT (Zhu et al.,
2023), and KTPFormer (Peng et al., 2024); large as 351 frames for MHFormer (Li et al., 2022b))

Once we have a well-detected 2D pose, lifting it directly to 3D space is natural and simple. However,
these lifting-based methods neglect different initial states between 2D pose and per-joint depth and
encode the well-detected 2D pose features and unknown per-joint depth features in an entangled
feature space. This leads to the fact that despite these methods (Zhu et al., 2023; Peng et al., 2024; Li
et al., 2022b) striving to design various encoders to leverage the well-detected 2D pose, the 2D pose
itself is inevitably eroded by the uncertainty of depth features (see Figure 2). This paper presents a
progressive multi-task learning framework that addresses the different initial states between 2D pose
and per-joint depth and provides a new choice for future monocular 3D human pose estimation.
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Figure 4: Overview of the proposed progressive multi-task learning framework PrML, which com-
prises a shared bottom, a 2D pose branch, a depth branch, and a task-aware decoder.

4 METHODOLOGY

4.1 PROBLEM FORMULATION

Given a 2D pose sequence X € | RT*J/*Cn_ the goal of monocular 3D human pose estimation is to
estimate the 3D pose sequence Y € RT*/*Cu Here, T refers to the number of input frames, and .J
refers to the number of joints. C, and Cy, denote the dimension of the input and output.

4.2 MULTI-TASK LEARNING BRANCH

One of the widely used multi-task learning models is proposed by Caruana (Caruana, 1997; 1993),
which has a shared-bottom model structure that substantially reduces the risk of overfitting (Ma et al.,
2018). We first use a linear embedding layer to project the 2D pose sequence into high-dimensional
features. Then, we employ the DSTFormer block proposed by MotionBERT (Zhu et al., 2023) as
our shared bottom to extract general features F' € RT*/*¢ The DSTFormer block is composed of
spatial-temporal and temporal-spatial branches. The outputs of two branches are adaptively fused by
an attention regressor. Next, we add the learnable 2D pose position embedding and per-joint depth
position embedding to F' to obtain the 2D pose features Fop € R7*7/*C and the per-joint depth
features Fp € RT*7*C respectively. C denotes the feature dimension. Subsequently, the 2D pose
branch and depth branch repeat the temporal transformer encoder (7'Fr) and spatial transformer
encoder (T'Fs) for N times to refine the 2D pose features and learn depth features separately as:

Fyn =TFs(TFEr(Fy5Y)) Fp=TFs(TFr(F5') n=1...N (1)

4.3 TASK-AWARE DECODER

Coarse Alignment. We first use a fully connected layer Fr¢(-) and softmax function Softmax(-)
to compute the coarse alignment parameters © = (61, 03) € RT*7*2 (o project the 2D pose features
and per-joint depth features into a shared feature space and obtain the shared features Fig € RT*/*C
This coarse alignment operation mitigates the uncertainty erosion by avoiding direct interaction
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between the 2D pose feature and the per-joint depth feature and can be expressed as follows:

FN
Fs = Softmaz(Frc(Fd, @ FY)) ( FN > =0,F, + 0. F) 2)

Feature Complement. The shared features Fs obtained after coarse alignment have the 2D pose
and per-joint depth features but lack precise and targeted support information. Thus, we introduce
the learnable 2D pose bias Bop € R”*7*C and per-joint depth bias Bp € RT*7*¢ to address this
issue. We concatenate the task bias Bop and Bp with the shared features Fg to obtain the 2D pose
support features Sop € RT*/*2C and depth support features Sp € RT*/*2¢ Then, we utilize
Multi-Head Cross-Attention (Vaswani et al., 2017) (T'F¢) with the original features acting as the
query and the support features serving as the key and value for feature supplementation. Technically,

we get the enhanced 2D pose features F,p and enhanced depth features Fp as follows:

Fyp = TFo(Fy),,Sap)  Fp = TFo(FR, Sp) 3)

4.4 MUTUAL INFORMATION OBJECTIVE

Mutual Information. Mutual information (MI) is an important measurement to quantify the statistical
dependency of two random variables. Given two random variables x and y, p(z, y) represents the joint
probability distribution between x and y, while p(x) and p(y) represent their marginal distributions.
The mutual information between two random variables x and y is defined as:

76 = [ [ ptawton (L7520 )y @

Mutual Information Loss. Within the task-aware decoder, our goal is to explicitly supervise the
feature complementary process. This mutual information objective can be formulated as follows:

max [I(YéD; Sap | Bap) +Z(Yp; Sp | BD)} ®)

where Y>p and Y denote the 2D pose and per-joint depth of the 3D pose label. Intuitively, optimizing
this objective will maximize the mutual information between the support feature and the label to
ehance the feature complementary. Due to the notorious difficulty of the conditional MI computations
especially in neural networks (Hjelm et al., 2018; Tian et al., 2021), we factorize Equation 5 as:

Z(Yp; Sp | Bp) =Z(Yp; Sp) —Z(Sp; Bp) + | Drr(Pisp.Bp)vo I Psplvo Peplyn) APy
Yp

KL Divergence > 0
> I(Yp; Sp) — Z(Sp; Bp) (©6)

Since both Z(Yp; Sp) and Z(Sp; Bp) are non-negative, the Z(Yp; Sp) — Z(Sp; Bp) will result
in negative values during training. This will yield negative values during training, leading to
vanishing gradients problem and preventing training from converging. Therefore, we simplified the
implementation of mutual information by calculating only the first term Z(Yp; Sp). Finally, we
obtain two simplified mutual information optimization objectives as follows:

Lyt = A2pZ(Yap; Sap) + ApZ(Yp; Sp) @)
The A\op and A p serve as hyper-parameters in our framework to balance different objects.

4.5 REGRESSION HEAD AND L0OSS FUNCTION

We use two regression heads (MLP) to regress the 2D pose Yap € RT*7*2 and per-joint depth
Y p € RTXI*1 respectively and concatenate them to generate the 3D pose sequence Y. Losses are
independently calculated for 2D pose and per-joint depth as Equation 8. For the 2D pose, we use L2
loss to minimize the errors between predictions and ground truth. For the per-joint depth, we use
mean absolute error loss to minimize the errors between the estimated per-joint depth and label.

1 J T 1 J T
it Lty
Lop=—= E:HY”—Y H+—§ ) ’YJ’—Y ‘ ®)
JT . 2D 2D 9 JT . D D
j=1t=1 j=1t=1
2D Pose Optimization Objective Depth Optimization Objective
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Where Ygg and Yg’t are the 2D pose and per-joint depth of 3D pose label. ?3;,3 and ?{{; are the
predicted results of the j-th joint in ¢-th frame. In addition, the temporal consistency loss L7 from

(Hossain & Little, 2018) is introduced to produce smooth poses. The total loss L is defined as follows:
L=Lsp+ALr+AurLmr )

where A\ and Ay are hyper-parameters to balance the ratio of different loss terms.

5 EXPERIMENTS

5.1 EXPERIMENT SETTING

We evaluate our model on two large-scale monocular 3D human pose estimation datasets: Hu-
man3.6M (Ionescu et al., 2013) and MPI-INF-3DHP (Mehta et al., 2017). For the Human3.6M
dataset, we report the MPJPE (Mean Per Joint Position Error) and P-MPJPE (Procrustes-MPJPE)
as evaluation metrics as prior methods (Li et al., 2022b; Zhu et al., 2023; Zhang et al., 2022b; Zhao
et al., 2023b). For the MPI-INF-3DHP dataset, similar to existing approaches (Shan et al., 2022;
Tang et al., 2023; Chen et al., 2023; Zhu et al., 2023), we use ground truth 2D pose as input and
report MPJPE, Percentage of Correct Keypoint (PCK) with the threshold of 150mm, and Area Under
Curve (AUC) as the evaluation metrics. Please refer to Appendix B for implementation details.

Table 1: Results on Human3.6M in millimeters (mm) under MPJPE using 2D pose detected by
SH (Newell et al., 2016) following MotionBERT (Zhu et al., 2023). T is the length of the input 2D
pose sequence. The best result is shown in bold, and the second-best result is underlined.

MPJPE | T | Dir Disc. Eat Greet Phone Photo Pose Pur Sit SitD. Smoke Wait WalkD. Walk WalkT. | Avg
MHFormer (Li et al., 2022b) 81 - - - - - - - - - - - - - - - 445
MixSTE (Zhang et al., 2022b) 81 | 398 430 386 40.1 434 506 406 414 522 567 438 408 439 294 303 | 424
P-STMO (Shan et al., 2022) 81 | 417 445 410 429 46.0 513 428 413 549 618 45.1 42.8 43.8 30.8 30.7 44.1
PoseFormerV2 (Zhao et al., 2023b) 81 - - - - - - - - - - - - - - - 46.0
STCFormer (Tang et al., 2023) 81 | 406 430 383 402 435 526 403 401 S1.8 577 428 398 423 280 295 | 42.0
GLA-GCN (Yu et al., 2023) 81 - - - - - - - - - - - - - - -

MotionBERT (Zhu e 2023) 81 - - - - - - - - - - - - - - - -

KTPFormer (Peng et al., 81 [ 391 419 373 401 440 513 398 410 514 560 430 410 426 288 295 | 418
MotionAGFormer (Soroush Mchraban, 2024) | 81 | 41.9 427 404 37.6 456 513 410 380 541 588 455 404 398 294 310 | 425
PrML (Ours) 81 | 397 414 394 355 431 507 400 372 511 560 437 405 391 287 288 | 41.0
MHFormer (Li et al., 2022b) 351 | 392 431 40.1 409 449 512 406 413 535 603 437 4Ll 43.8 29.8 306 | 43.0
MixSTE (Zhang e 243 | 376 409 373 397 423 499 401 398 517 550 421 398 410 279 279 | 409
P-STMO (Shan et al., 2022) 243 | 389 427 404 411 456 497 409 399 555 594 449 422 427 294 294 | 428
PoseFormerV2 (Zhao et al., 2023b) 243 - - - - - - - - - - - - - - - 45.2
STCFormer (Tang et al., 2023) 243 | 39.6 416 374 388 431 511 391 397 514 574 418 385 407 27.1 286 | 41.0
GLA-GCN (Yu et al., 2023) 243 | 413 443 408 418 459 541 421 415 578 629 450 428 459 294 299 | 444
MotionBERT (Zhu e 243 | 363 387 386 336 421 50.1 362 357 501 566 413 374 377 256 265 | 392
KTPFormer (Peng et al., 2024) 243 | 373 392 359 376 425 482 386 390 514 559 416 390 400 270 274 | 401
MotionAGFormer (Soroush Mehraban, 2024) | 243 | 36.8 38.5 359 33.0 41.1 48.6 380 348 490 514 403 374 36.3 27.2 27.2 384
PrML (Ours) 243 | 360 382 373 335 404 469 375 346 489 529 407 366 367 261 261 | 382

Table 2: Results on Human3.6M in millimeters (mm) under MPJPE using ground truth 2D pose. T is
the number of input frames. Seq2seq refers to estimating 3D pose sequences rather than only the
center frame. MACs/frames represents multiply-accumulate operations for each output frame. The
best result is shown in bold, and the second-best result is underlined.

Method Venue \ Framework Seq2Seq T \ Parameter MACs MACs/frame MPIPE
MHFormer (Li et al., 2022b) CVPR’22 Lifting-Based X 351 30.9M 7.1G 7096M 30.5
MixSTE (Zhang et al., 2022b) CVPR’22 Lifting-Based v 243 33.6M 139.0G 572M 21.6
P-STMO (Shan et al., 2022) ECCV’22 Lifting-Based X 243 6.2M 0.7G 740M 29.3
PoseFormerV2 (Zhao et al., 2023b) CVPR’23 Lifting-Based x 243 14.3M 0.5G 528M -
STCFormer (Tang et al., 2023) CVPR’23 Lifting-Based v 243 47M 19.6G 80M 21.3
GLA-GCN (Yu et al., 2023) ICCV’23 Lifting-Based X 243 1.3M 1.5G 1556M 21.0
MotionBERT (Zhu et al., 2023) ICCV’23 Lifting-Based v 243 42.5M 174.7G 719M 17.8
KTPFormer (Peng et al., 2024) CVPR’24 Lifting-Based v 243 33.7M 69.5G 286M 19.0
MotionAGFormer (Soroush Mehraban, 2024)  WACV’24 Lifting-Based v 243 19.0M 78.3G 322M 17.3
PrML (Ours) - Multi-Task Learning v 243 13.0M 49.3G 203M 17.2

5.2 COMPARISON WITH STATE-OF-THE-ART METHODS

Human3.6M. We compare our method with several state-of-the-art techniques on the Human3.6M
dataset. For fair comparisons, only the results of models without extra pre-training on additional
data are included. Table 1 summarizes the performance comparisons in terms of MPJPE of all 15
actions, and the number of the input frames T is also given for each method. Our method achieved
state-of-the-art performance with an MPJPE of 38.2mm with T = 243. It is worth noting that our
method in the case of T = 81 input frames still achieves state-of-the-art performance with an MPJPE
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error of 41.0mm and even surpasses the performance of several methods with a higher number of input
frames. For example, this result outperforms P-STMO (Shan et al., 2022) (41.0mm v.s. 42.8mm),
PoseformerV2 (Zhao et al., 2023b) (41.0mm v.s. 45.2mm) with 243 frames, and MHFormer (Li et al.,
2022b) even with 351 frames (41.0mm v.s. 43.0mm). These results demonstrate the effectiveness of
PrML. To further validate the effectiveness of the multi-task learning framework, we also report the
model parameters, MACs (Multiply—Accumulate Operations), and MPJPE using 2D ground truth
as input. As shown in Table 2, our method with T = 243 achieves the best performance with an
MPIJPE of 17.2mm, which outperforms the lifting-based framework with faster inference speed. For
example, this result outperforms MotionBERT (Zhu et al., 2023) (17.2mm v.s. 17.8mm). Due to
space limitations, we present the results of P-MPJPE (Procrustes-MPJPE) in Appendix C.

MPI-INF-3DHP. To demonstrate Table 3: Results on MPI-INF-3DHP dataset under PCK, AUC,
the generalization capability of our and MPJPE using ground truth 2D pose as input. T is the
model, we also evaluate our model number of input frames. Seq2seq refers to estimating 3D pose
on the challenging MPI-INF-3DHP sequence. (*) indicate our re-implementation.

dataset, which includes more com-

Method | T | Seq2Seq | PCKT AUCT MPIPE|
plex scenes and motions. Following ~ MHFormer (Lietal., 2022b) 9 x 938 633 580
. . MixSTE (Zhang et al., 2022b) 27 v 94.4 66.5 54.9
previous works (Zheng et al., 2021; P-STMO (Shan et al., 2022) 81 x 979 758 322
Zhang et al., 2022b; Shan et al., 2022; PoseFormerV2 (Zhao et al., 2023b) 81 x 979 788 278
’ [ ” ’ GLA-GCN (Yu et al., 2023) 81 X 985  79.1 27.8
Tang et al., 2023; Li et al., 2022b; STCFormer (Tang et al., 2023) 81 v 987 839 231
MotionBERT* (Zhu et al., 2023) 81 v 98.7 85.6 16.5
2024), we use ground truth 2D pose KTPFormer (Peng ct al., 2024) 81 v 989 859 16.7
as input and set the number Of input MotionAGFormer (Soroush Mehraban, 2024) | 81 v 98.2 85.3 16.2
PrML (Ours) 9 v 98.1 822 233
frames as 9, 27, or 81. As observed PrML (Ours) 7| v 98.6 858  I8.1
in Table 3, our method with T =81  _PMLOu sl 7 1% 89 157

achieves the best performance with

the PCK of 98.9%, AUC of 86.9%, and MPJPE of 15.7mm. Similar to the previous findings, our
method with T =9, 27 input frames still outperforms the previous state-of-the-art methods and
achieves the MPJPE of 23.3mm and 18.1mm, respectively. More remarkably, our method with T =9
input frames outperforms the GLA-GCN (Yu et al., 2023) with T = 81 input frames, despite having
only one-ninth of the input frames (23.3mm v.s. 27.8mm, 9 frames vs. 81 frames).

Robustness to Noisy 2D Pose. Benefiting from the 2D pose branch, our method not only preserves
well-detected 2D pose features but also allows us to handle noisy 2D pose input. To demonstrate that
the inclusion of the 2D pose branch helps improve the robustness of the proposed method, we make
the pose estimation task more challenging by adding zero-mean Gaussian noise to the ground-truth
2D pose on the Human3.6M (lonescu et al., 2013) and MPI-INF-3DHP (Mehta et al., 2017). As
shown in Figure 5, the experimental evidence reveals that our proposed PrML suffers from less
performance drop as the standard deviation of Gaussian noise (sigma) increases compared with the
powerful lifting-based method MotionBERT (Zhu et al., 2023) while being more efficient.

(a) Comparisons of PrML and MotionBERT in terms of robustness to noise on Human3.6M. (b) Comparisons of PrML and MotionBERT in terms of robustness to noise on MPI-INF-3DHP.
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Figure 5: Comparisons of PrML and MotionBERT (Zhu et al., 2023) in terms of robustness to noise
on Human3.6M and MPI-INF-3DHP datasets. Zero-mean Gaussian noise of standard deviation sigma
is added to ground truth 2D pose, and we show their performance drop ( A MPJPE, in millimeters)
as sigma increases. The size of markers indicates the computational cost of models.

5.3 ABLATION STUDY

We perform extensive ablation studies focused on analyzing the contribution of each component in
our proposed PrML. Experiments are conducted on the Human3.6M (Ionescu et al., 2013) dataset
with T = 243 as the number of input frames and MPJPE is used as the evaluation metric.
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Analysis on Effectiveness of Components. The results in Section 5.2 have demonstrated that our
framework achieves better results compared to the conventional lifting-based framework in terms
of accuracy and robustness with fewer parameters. In this section, we show how to construct our
proposed progressive multi-task learning pose estimation framework step by step.

» Baseline: Most multi-task learning models have a shared-bottom model structure following (Caru-
ana, 1997) which substantially reduces the risk of overfitting (Ma et al., 2018). We follow this
design and use the DSTFormer block from MotionBERT (Zhu et al., 2023) as the shared bottom.
As shown in Table 4, this structure achieves 50.6mm MPJPE and serves as our baseline.

* Multi-Task Branch: To reduce the explicit influence of uncertain depth features on the well-
detected 2D pose features, we introduce the multi-task branch design to refine the 2D pose features
and learn the depth features separately. Based on the shared bottom, we incorporate the 2D pose
branch and depth branch respectively bringing 6.2mm and 9.0mm error reduction (see also Table 4).
With both 2D pose and depth branches, we achieve the MPJPE of 39.1mm.

* Task-Aware Decoder: As shown in Table 4, we achieve a reduction in MPJPE from 50.6mm to
46.2mm by adding task-aware decoder to the shared bottom. The performance is further improved
to 38.6mm when task-aware decoder is introduced in conjunction with the multi-task branch.

* PrML: By introducing the mutual information loss to explicitly supervise the feature complement
and the learning of bias, our TAD module further resulted in a 2.2mm error reduction (from 46.2mm
to 44.0mm). After incorporating all components, we obtain the complete version of our PrML,
which achieves the best performance with an MPJPE of 38.2mm.

Table 4: Analysis of the effectiveness of each component within PrML.

. Shared 2D Pose Depth Task-Aware Mutual
Model Setting Bottom Branch Branch Decoder Information MPJPE |
Baseline (Shared Bottom) v - - - - 50.6
+ 2D Pose Branch Only v v - - - 44.4 (-6.2)
+ Depth Branch Only v - v - - 41.6 (-9.0)
+ TAD Only v - - v - 46.2 (-4.4)
+ TAD + MI Loss v - - v v 44.0 (-6.6)
+ Multi-Task Branch v v v - - 39.1 (-11.5)
+ Multi-Task Branch + TAD v v v v - 38.6 (-12.0)
PrML v v v v v 38.2(-12.4)

Analysis on Task-Aware Decoder (TAD). We first analyze the effectiveness of each operation in
TAD and report performance in Table 5. By incorporating coarse alignment and task bias separately,
we achieve the results of 39.5mm and 39.1mm. When both of them are incorporated, we obtain the
best performance with an MPJPE of 38.2mm. We also examine the impact of different task biases
within TAD. As shown in Table 6, the best results are achieved when both the 2D pose bias and
per-joint bias are introduced and made learnable during the training process.

Table 5: Analysis of various designs within TAD. Table 6: Analysis of task biases within TAD.

Step | Feature Complement ~Coarse Alignment ~ Task Bias | MPJPE Step | 2D Pose Bias ~ Per-Joint Depth Bias ~ Learnable | MPJPE

1 ' - - 395 1 v - ' 38.7
2 v v 39.1 2 - v v 385
3 v - v 38.7 3 v v - 385
TAD v v v 382 TAD v v v 382

Multi-Task Learning for Lifting- Table 7: Analysis on the generalization of multi-task learning
Based Methods. An alternative to framework. (*) denotes our re-implementation.

our framework is to directly copy a  “yfehod | Framework | MPIPE |
branch from the lifting-based meth-

MixSTE* (Zhang et al., 2022b) | Lifting-Based 40.9

st to construct the muni'ta.Sk learn- + Two Regression Heads Multi-Task Learning | 40.0 (-0.9)
ing framework. However, this would ~ MotionBERT* (Zhu et al., 2023) | Lifting-Based 39.8
increase the number of parameters + Two Regression Heads Multi-Task Learning | 38.9 (-0.9)
. . CA-PF* (Zhao et al., 2023a) ‘ Lifting-Based 41.4
SUbStamlauy and lead to an unfair + Two Regression Heads Multi-Task Learning | 40.2 (-1.2)

comparison. In light of this, we per-
form an embarrassingly simple transformation: replacing the original single regression head of
the lifting-based framework with two regression heads. This replacement transforms the lifting-
based framework into a hard parameter sharing multi-task learning framework (Ruder, 2017). As
shown in Table 7, such simple modification leads to performance improvement in both multi-frames
(MixSTE (Zhang et al., 2022b), MotionBERT (Zhu et al., 2023)) and single-frame (CA-PF (Zhao et al.,
2023a)) lifting-based methods. Due to space limitations, we present more details in Appendix C.1.
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5.4 VISUALIZATION

Feature Distribution Visualization. To further analyze the difference between the 2D pose features
and per-joint features, we utilize t-SNE (Van der Maaten & Hinton, 2008) to visualize their feature
distributions. We select samples from Human3.6M (Ionescu et al., 2013) and visualize the features
before regression heads (i.e., F»p and F'p). As shown in Figure 6, the distributions of the 2D features
and depth features are different across various situations. These qualitative results provide strong
evidence that we should not simply encode the 2D pose features and per-joint depth features in an
entangled feature space. Due to space limitations, we present more visualization in our Appendix F.

(a) Feature distributions of all 17 joints (b) Feature distributions of joint: left knee (c) Feature distributions of all 17 joints (d) Feature distributions of joint: left knee
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Figure 6: Feature distributions visualization of 2D features (green) and depth features (purple) using
t-SNE (Van der Maaten & Hinton, 2008) method on Human3.6M (Ionescu et al., 2013) dataset. The
distributions of the 2D features and depth features are different across various situations.

3D Human Pose Estimation Visualization. We present 3D human pose estimation results by our
proposed PrML and MotionBERT (Zhu et al., 2023). As shown in Figure 7, our method generalizes
well to in-the-wild videos including self-occlusion and fast motion.
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Figure 7: Qualitative comparisons of PrML with MotionBERT (Zhu et al., 2023). The green cycle
indicates locations where our method achieves better results. See Appendix F for more comparison.

6 CONCLUSION

This work presents a novel progressive multi-task learning framework named PrML for monocular
3D human pose estimation. Our framework addresses the limitation of the lifting-based framework
that neglects different initial states between a well-detected 2D pose and an unknown per-joint depth.
PrML first learns 2D pose features and per-joint depth features separately by multi-task branch design
and then employs a task-aware decoder to indirectly supplement information between the refined
2D pose features and the learned per-joint depth features. We also propose a mutual information
loss to supervise the feature complementary process. Extensive quantitative experimental results on
the Human3.6M and MPI-INF-3DHP datasets show that our PrML outperforms the conventional
lifting-based framework in terms of accuracy and robustness with fewer parameters.

Future Work. The core contribution of our work is providing a new framework for monocular 3D
human pose estimation. To this end, we use the widely used spatial and temporal transformer as our
encoder to ensure a fair comparison with the lifting-based framework. It will be novel and interesting
to design specific encoders for different tasks to extend our framework in future research.

10
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A APPENDIX

The Appendix is organized as follows:

» Section B: Experiment Setting

 Section C: Additional Experiment Analysis

* Section D: Limitation

* Section E: Additional Analysis of Mutual Information

e Section F: Additional Visualization

B EXPERIMENT SETTING

B.1 DATASETS AND EVALUATION METRICS

Human3.6M (lonescu et al., 2013) is the most popular benchmark for indoor 3D human pose
estimation, which contains approximately 3.6 million frames captured by 4 cameras at different views.
This dataset contains 11 subjects performing 15 typical actions (e.g., walking and sitting). To ensure
a fair comparison, we follow previous methods (Zheng et al., 2021; Zhang et al., 2022b; Tang et al.,
2023; Zhu et al., 2023) by using subjects 1, 5, 6, 7, and 8 for model training and subjects 9 and 11 for
evaluation.

MPI-INF-3DHP (Mehta et al., 2017) is a recently proposed large-scale challenging dataset with both
indoor and outdoor scenes. The training set comprises 8 subjects, covering 8 activities, ranging from
walking and sitting to complex exercise poses and dynamic actions. The test set covers 7 activities,
containing three scenes: green screen, non-green screen, and outdoor environments. It complements
existing test sets with more diverse motions (standing/walking, sitting/reclining, exercise, sports
(dynamic poses), on the floor, dancing/miscellaneous).

Evaluation Metrics. For the Human3.6M dataset, we use two common evaluation metrics: MPJPE
and P-MPJPE. MPJPE (Mean Per Joint Position Error) is computed as the mean Euclidean distance
between the estimated joints and the ground truth in millimeters after aligning their root joints (hip).
P-MPJPE (Procrustes-MPJPE) is the MPJPE after the estimated joints align to the ground truth via a
rigid transformation. For the MPI-INF-3DHP dataset, following previous works (Shan et al., 2022;
Tang et al., 2023; Chen et al., 2023; Zhu et al., 2023), we use ground truth 2D pose as input and
report MPJPE, Percentage of Correct Keypoint (PCK) with the threshold of 150mm, and Area Under
Curve (AUC) as the evaluation metrics.

B.2 IMPLEMENTATION DETAILS

Our model is implemented using PyTorch and executed on a server equipped with 2 NVIDIA 3090
GPUs. We apply horizontal flipping augmentation for both training and testing following (Tang
etal., 2023; Zhu et al., 2023; Foo et al., 2023; Zhao et al., 2023a). For model training, we set each
mini-batch as 16 sequences. The network parameters are optimized using AdamW (Loshchilov &
Hutter, 2017) optimizer over 90 epochs with a weight decay of 0.01. The initial learning rate is set to
Se-4 with an exponential learning rate decay schedule and the decay factor is 0.99. In the experiments
on Human3.6M, two kinds of input are utilized, including the 2D ground truth and the Stacked
Hourglass (Newell et al., 2016) 2D pose detection, following (Zhu et al., 2023; Ci et al., 2019). For
MPI-INF-3DHP, 2D ground truth is used following previous works (Zheng et al., 2021; Zhang et al.,
2022b; Shan et al., 2022; Zhu et al., 2023). While our proposed framework is capable of adapting to
input sequences of any length, to be fair, we choose specific input sequence lengths (denoted as T") for
two datasets to compare our method with other approaches that have a certain 2D input length (Zheng
et al., 2021; Zhang et al., 2022b; Shan et al., 2022; Tang et al., 2023): Human3.6M (T = 81, 243),
MPI-INF-3DHP (T = 9, 27, 81).
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Figure 8: Previous pipeline (MixSTE (Zhang et al., 2022b) or MotionBERT (Zhu et al., 2023)):
Using a single regression head to directly estimate the 3D pose. Improved pipeline: Replacing the
original single regression head with two regression heads to transform the existing lifting framework
into a hard parameter sharing multi-task learning framework (Ruder, 2017).

C ADDITIONAL EXPERIMENT ANALYSIS

C.1

As shown in Figure 8, the 2D-to-
3D lifting process employs a sin-
gle regression head to directly es-
timate the 3D pose after extracting
spatio-temporal information. We
transform the existing 2D-to-3D lift-
ing framework into a hard parame-
ter sharing multi-task learning frame-
work (Ruder, 2017) by replacing the
original single regression head with
two regression heads. We regress the

MULTI-TASK LEARNING FOR LIFTING-BASED METHODS.

Table 8: Analysis on the generalization of multi-task learning
framework. (*) denotes our re-implementation.

Method | Framework | MPIPE
MixSTE* (Zhang et al., 2022b) Lifting-Based 40.9

+ Two Regression Heads Multi-Task Learning | 40.0 ] 0.9
MotionBERT* (Zhu et al., 2023) | Lifting-Based 39.8

+ Two Regression Heads Multi-Task Learning | 38.9 | 0.9
CA-PF* (Zhao et al., 2023a) Lifting-Based 414

+ Two Regression Heads Multi-Task Learning | 40.2 | 1.2

2D pose and per-joint depth separately. Then, we concatenate them together to obtain the 3D pose. As
shown in Table 8, such simple modification leads to improvement in multi-frames (MixSTE (Zhang
et al., 2022b), MotionBERT (Zhu et al., 2023)) and single-frame (CA-PF (Zhao et al., 2023a))

lifting-based methods.

Table 9: Analysis on the initial distribution of Task
Bias within Task-Aware Decoder. G and L represent
Gaussian distribution and Laplacian distribution re-

spectively.
Step | 2D Pose Bias  Per-Joint Depth Bias | MPJPE
1 L G 38.9
2 G L 38.6
3 L L 38.4
Ours G G 38.2

Table 10: Analysis on various micro de-
signs within transformer block. S and T’
denote Spatial Transformer and Temporal

Transformer.
Step ‘ S T T-S S—»T T-S ‘ MPJPE
1 v 40.6
2 N 39.6
3 v 39.0
4 v 38.3
Ours v 38.2

C.2 ANALYSIS ON TASK BIAS WITHIN TASK-AWARE DECODER.

In this section, we investigate the impact of different initial distributions of task bias on the model.
As shown in Table 9, we use Gaussian or Laplace distribution as our initial distributions. We
achieve a result of 38.9mm when initializing the 2D pose bias with Laplace distribution and the
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per-joint depth with Gaussian distribution. The MPJPE decreased from 38.9mm to 38.6mm when
we initialized the 2D pose bias with Gaussian distribution and the per-joint depth with Laplace
distribution. Experimental results revealed that employing Gaussian distribution for both biases
yielded the best performance.

C.3 ANALYSIS ON STRUCTURE DESIGN OF TRANSFORMER BLOCK.

We conducted experiments on Human3.6M for five different types, including S, 7,5 — T, 5 — T,
T — S in the Transformer layer, where S and T" denote Spatial Transformer Encoder and Temporal
Transformer Encoder, respectively. S — 7' is a two-stream layer that uses Spatial Transformer and
Temporal Transformer Encoder simultaneously. S — 7" means Spatial Transformer first and then
Temporal Transformer; the same goes for T — S. The results in Table 10 show that the ' — S
variant has improved by 2.4mm (from 40.6mm to 38.2mm), 1.4mm (from 39.6mm to 38.2mm),
0.8mm (from 39.0mm to 38.2mm), and 0.1mm (from 38.3mm to 38.2mm), respectively, compared to
the other four variants.

C.4 ANALYSIS ON HYPERPARAMETER SETTING.

We consider the dimension C' of hidden feature, and the
weight \p/; of mutual information loss as free parameters.
Table 11 shows the results of different hyperparameter

Table 11: Analysis on the hyperparame-
ter setting.

settings. We divide the configurations into 2 groups by Dimension (C) ~ Anrz | MPJPE
row, and allocate different values for one hyperparameter 64 0.01 404
in each group, while keeping the other hyperparameter 96 0.01 39.3
fixed, to evaluate the impact of each configuration. The 128 001 382
best results were obtained when the C was 128 and A\, 32 011 ggg
was 0.01. Based on the results shown in the table, we 128 0.01 382
chose the combination of C = 128, and A\;;7 = 0.01 as our

configuration.

C.5 ADDITIONAL QUANTITATIVE RESULTS.

In this section, we provide the results of P-MPJPE on the Human3.6M (Ionescu et al., 2013) dataset.
As shown in Table 12, our proposed PrML achieved the best performance with the MPJPE of 38.2mm
and the third-best results with the P-MPJPE of 32.3mm.

Table 12: Results on Human3.6M in millimeters (mm) under MPJPE. T is the number of input frames.
Seq2seq refers to estimating 3D pose sequences rather than only the center frame. MACs/frames
represents multiply-accumulate operations for each output frame. The best result is shown in bold,
and the second-best result is underlined.

Method Venue | Framework Seq2Seq T | Parameter MACs MACs/frame MPJPE P-MPJPE
MHFormer (Li et al., 2022b) CVPR’22 Lifting-Based x 351 30.9M 7.1G 7096M 43.0 34.4
MixSTE (Zhang et al., 2022b) CVPR’22 Lifting-Based v 243 33.6M 139.0G 572M 40.9 32.6
P-STMO (Shan et al., 2022) ECCV’22 Lifting-Based X 243 6.2M 0.7G 740M 42.8 34.4
PoseFormerV2 (Zhao et al., 2023b) CVPR’23 Lifting-Based X 243 14.3M 0.5G 528M 45.2 35.6
STCFormer (Tang et al., 2023) CVPR’23 Lifting-Based v 243 4.7™M 19.6G 80M 41.0 32.0
GLA-GCN (Yu et al., 2023) ICCV’23 Lifting-Based X 243 1.3M 1.5G 1556M 44.4 348
MotionBERT (Zhu et al., 2023) ICCV’23 Lifting-Based v 243 42.5M 174.1G 719M 39.2 -
KTPFormer (Peng et al., 2024) CVPR’24 Lifting-Based v 243 33.7M 69.5G 286M 40.1 319
MotionAGFormer (Soroush Mehraban, 2024)  WACV’24 Lifting-Based v 243 19.0M 78.3G 322M 384 325
PrML (Ours) - Multi-Task Learning v 243 13.0M 49.3G 203M 38.2 323

C.6 ATTEMPT TO USE IMAGE FEATURE.

As the inherent information entropy of the input 2D pose sequence, the performance of methods only
using 2D pose sequences as input gradually approaches the theoretical limit. Incorporating image
features is a potential solution to this general limitation. There are several single-frame lifting-based
methods that utilize image features, such as ContextPose (Ma et al., 2021a)and CA-PF (Zhao et al.,
2023a). Unfortunately, integrating these methods into existing multi-frame lifting methods or our
PrML is challenging due to their complex model architectures. Therefore, we employ one cross-
attention layer to fuse image features, making a preliminary attempt to fuse image features into our

18



Under review as a conference paper at ICLR 2025

framework. Due to the lightweight nature of 2D poses, traditional lifting-based frameworks typically
input a 2D pose sequence. However, inputting a long-term image sequence is clearly impractical.
How to effectively extend image input from a single frame to multiple frames remains an open
question. To tackle this problem, we employ VAE to compress the original images into latent features,
allowing for multi-frame input. We use the pre-trained VAE (Kingma, 2013) from SDXL (Podell
et al., 2023). Although we have compressed the images using VAE, processing 243 frames remains
computationally expensive. Therefore, we leverage VAE to incorporate 15 frames image feature,
making a preliminary attempt to fuse multi-frame image features into our framework.

As shown in the Table 13, despite using simple cross-attention to fuse image features, we still observe
performance improvement. When we incorporated image features into the 2D branch, we observed
a significant improvement. This is likely due to the fact that image features can easily capture 2D
spatial information. However, when we added image features to the depth branch, the improvement
was limited. This is because we used a simple cross-attention mechanism to process the images, and
extracting depth information from RGB images is a challenging task. Similarly, when we incorporated
image features into all branches, the improvement was modest. These experiments demonstrate the
potential for further extending our framework.

Moreover, the insights from multi-task learning can be further extended. Using 2D pose detectors
to estimate 2D poses has been widely used, so why not similarly utilize powerful depth estimation
networks (like DepthAnything (Yang et al., 2024)) to estimate a relative depth from the image to
facilitate 3D human pose estimation as well? We can integrate depth features into existing single-
frame methods that utilize image features to validate this idea. As shown in Table 14, by incorporating
depth features from DepthAnything (Yang et al., 2024), we can reduce the error of CA-PF by 1.9mm,
which demonstrates the effectiveness of depth features.

In summary, how to leverage image features to facilitate multi-frame 3D human pose estimation is a
non-trivial question and our future research direction.

Table 13: Results on the Hu- Table 14: Results on the Hu- Table 15: Results on the 3DPW in
man3.6M in millimeters (mm) man3.6M in millimeters (mm) un- millimeters (mm) under MPJPE

under MPJPE. T is the number der MPJPE. and P-MPJPE.
of input frames. Method MPJPE _Method MPIPE _P-MPJPE
- MotionBERT (Zhu et al., 2023 85.5 50.2
Method T MPIPE CA-PF (Zhao et al., 20232) 414 MotionBERT EZhE otal. 2023; 769 472
ML 5 97 + Depth Feature (Yang et al., 2024) 39.5 PrML ’ 73.9 49.1
T .

+ Image Feature for 2D 15 47.2
+ Image Feature for Depth 15 49.6
+ Image Feature for All 15 49.5

C.7 ADDITIONAL EXPERIMENT ON 3DPW.

We also conduct an experiment on the 3DPW dataset following the experiment setting of Motion-
BERT (Zhu et al., 2023). As other methods we compared did not conduct experiments on 3DPW, we
are unable to provide their performance in the table. As shown in the Table 15, the MPJPE of our
PrML is not only lower than the MotionBERT trained from scratch but also lower than its finetune
variant. PrML’s P-MPJPE is still lower than the MotionBERT trained from scratch.

D LIMITATION.

Although we propose a novel framework for monocular 3D human pose estimation, our input remains
the same as conventional lifting-based methods: a 2D pose sequence. Such 2D joint coordinates
undoubtedly cause visual representation reduction compared to raw images. This inherent information
entropy of the 2d pose sequence limits the theoretical upper bound on performance.

E ADDITIONAL ANALYSIS OF MUTUAL INFORMATION

Calculating the conditional mutual information loss is notoriously difficult, especially in neural
networks (Hjelm et al., 2018; Tian et al., 2021). The approximate mutual information loss is much
easier to compute. Given A > B, maximizing B can maximize the lower bound of A. By maximizing
the approximate mutual information, we can maximize the lower bound of the conditional mutual
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information. This is in line with our original goal: provide as much relevant information as possible.
In summary, although it is a mathematically suboptimal result, it is the best result we can achieve.

We use Y to represent the label, S to represent task support features and B to represent task bias.
Optimizing this objective will maximize the mutual information between task support features and
the label to support the task. By the definition of condition mutual information, we have:

A T LS o
= [ ] ptos 1Og(<(> ;) s [ [ s y1os (Fts ) s

+/Y </B/SPS,BIY(S7by) log (psifi,§5;2|iggzy)> dsdb) py (y)dy (10)

=Z(Y;S)—Z(S;B) + / Dy r(Ps,B)y | Psyy Psjy) dPy
v KL Divergence > 0
=I(Y;5) = Z(S; B) + Ey [Dr1.(Ps,8) v || Psjy Priy )]
>Z(Y;S)-Z(S;B)
The optimization objective thus becomes:

max Z(Y; S | B) — max Z(Y; S) — Z(S; B) (11)

However, since both Z(Y’; S) and Z(.S; B) are non-negarive (KL Divergence > 0), the Z(Y7; S) —
Z(S; B) will result in negative values during training. This will cause the training process to fail to
converge. Therefore, we simplified the implementation of mutual information by calculating only the
first term. Our final optimization objective becomes:

max Z(Y;S | B) — max Z(Y; S) (12)

F ADDITIONAL VISUALIZATION
Table 16: Results on Hu-

To further comparing the accuracy of the projected 2D pose, we report man3.6M. (PCKh@0.5)

the PCKh@0.5 following MPII (Andriluka et al., 2014). The table shows Method PCKh@0.5
that our PrML achieves better accuracy in the projected 2D poses than MotionBERT 95.9
the MotionBERT. PrML 96.4

Ground Truth 2D Pose Input 2D Pose MotionBERT (Lifting) Ours (Multi-Task) Ground Truth 2D Pose Input 2D Pose MotionBERT (Lifting) Ours (Multi-Task)

ot

Figure 9: Qualitative Comparison of 2D Pose (Ground Truth, Input, MotionBERT (Zhu et al., 2023)
and Ours). We project the 2D pose in the camera coordinate system back to the image coordinate
system for comparison. The powerful lifting-based method MotionBERT gets a 2D pose worse than
the input, which contradicts our intuition. In contrast, our proposed framework obtains a 2D pose
better than the input.
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Figure 10: Feature distributions visualization of 2D feature (green) and depth feature (purple) using
t-SNE (Van der Maaten & Hinton, 2008) method on Human3.6M (Ionescu et al., 2013) dataset.
(Random 243 frames poses, all 17 joints are visualized)
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Figure 11: Feature distributions visualization of 2D feature (green) and depth feature (purple) using
t-SNE (Van der Maaten & Hinton, 2008) method on Human3.6M (Ionescu et al., 2013) dataset.
(Continuous 243 frames poses, all 17 joints are visualized)

22



Under review as a conference paper at ICLR 2025

Input 2D Pose

— g s 2219 8158 18

| | » Oy | i
PIML /5: | < A | /5/ | /7 1 7/ " 7[ L ]

Input 2D Pose b D 9 O

PrML

V=L

Figure 12: Qualitative comparisons of PrML with MotionBERT (Zhu et al., 2023). The green cycle
indicates locations where our method achieves better results.

(a) Feature distributions of all 17 joints (b) Feature distributions of joint: left knee (c) Feature distributions of all 17 joints (d) Feature distributions of joint: left knee
(Random 243 frames poses) (Random 243 frames poses) (Continuous 243 frames poses) (Continuous 243 frames poses)
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Figure 13: Feature distributions visualization of 2D features (green) and depth features (purple)
and entangled features (orange) using t-SNE (Van der Maaten & Hinton, 2008) method on Hu-
man3.6M (lonescu et al., 2013) dataset. The 2D features and depth features are extracted from our
PrML (Multi-Task Learning). The entangled features are extracted from the lifting-based method
MotionBERT (Zhu et al., 2023). Visualization results show that the distribution of entangled features
is more compact, while our 2D pose features and per-joint depth features exhibit a more diverse
distribution, indicating the potential to learn various representations.
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Figure 14: Feature distributions visualization of 2D feature, depth feature and entangled feature
using t-SNE (Van der Maaten & Hinton, 2008) method on Human3.6M (Ionescu et al., 2013) dataset.
(Random 243 frames poses, all 17 joints are visualized)
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Figure 15: Feature distributions visualization of 2D feature, depth feature and entangled feature
using t-SNE (Van der Maaten & Hinton, 2008) method on Human3.6M (Ionescu et al., 2013) dataset.
(Continuous 243 frames poses, all 17 joints are visualized)
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(d) 2D Feature distributions of all 17 joints
(Continuous 243 frames poses)

(e) Depth Feature distributions of all 17 joints
(Continuous 243 frames poses)

(f) Entangled Feature distributions of all 17 joints
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Figure 16: Feature distributions visualization of 2D feature, depth feature, and entangled fea-
ture in their own feature space using t-SNE (Van der Maaten & Hinton, 2008) method on Hu-
man3.6M (lonescu et al., 2013) dataset. (Random 243 frames poses, all 17 joints are visualized)
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