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ABSTRACT

The lifting-based framework has dominated the field of monocular 3D human pose
estimation by leveraging the well-detected 2D pose as an intermediate represen-
tation. However, it neglects different initial states between 2D pose and per-joint
depth. The initial state of the 2D pose is well-detected, but the per-joint depth
is unknown and needs to be learned from scratch. The lifting-based framework
encodes the well-detected 2D pose and unknown per-joint depth in an entangled
feature space, explicitly introducing depth uncertainty to the well-detected 2D
pose. To address this limitation, we present a progressive multi-task learning pose
estimation framework named PrML. First, PrML introduces two task branches to
refine the well-detected 2D pose features and to learn the per-joint depth features.
This dual-branch design reduces the explicit influence of uncertain depth features
on 2D pose features. Second, PrML employs a task-aware decoder to indirectly
supplement the complementary information between the refined 2D pose features
and learned per-joint depth features. This step establishes the connection between
2D pose and per-joint depth, compensating for the lack of interaction caused by the
dual-branch design. We conduct theoretical analysis from the perspective of mutual
information and arrive at a loss to supervise this feature complementary process.
Finally, we use two regression heads to regress the 2D pose and per-joint depth,
respectively, and concatenate them to obtain the final 3D pose. Extensive experi-
ments show that PrML outperforms the conventional lifting-based framework with
fewer parameters on two widely used datasets: Human3.6M and MPI-INF-3DHP.
Code is available at https://anonymous.4open.science/r/PrML.

1 INTORDUCTION

Monocular 3D human pose estimation has been a crucial problem in computer vision, which aims
to locate the 3D joint positions of a human body (Moon & Lee, 2020; Pavlakos et al., 2018; Chen
et al., 2021). Nowadays, monocular 3D human pose estimation finds widespread applications in
various scenarios, including motion prediction (Liu et al., 2021b; 2022b), action recognition (Zhang
et al., 2022a), and human-robot interaction (Gong et al., 2022; Ye et al., 2021). Existing monocular
3D human pose estimation methods can be categorized as the end-to-end manner and lifting-based
manner. The end-to-end approaches (Kanazawa et al., 2018; Pavlakos et al., 2017; Sun et al., 2018)
directly estimate the 3D pose from the input image without the intermediate 2D pose representation.
Different from the end-to-end manner, lifting-based methods (Martinez et al., 2017; Liu et al., 2020)
first obtain 2D pose using 2D pose detector (Newell et al., 2016; Chen et al., 2018) and then lift
the 2D pose in image coordinate to the 3D pose in camera coordinate. These lifting-based methods
usually outperform the end-to-end manner and dominate the monocular 3D human pose estimation.

Recent lifting-based methods (Zheng et al., 2021; Li et al., 2022b; Zhang et al., 2022b; Yu et al., 2023;
Zhu et al., 2023; Peng et al., 2024) for monocular 3D human pose estimation focus on designing
various spatio-temporal encoders. As shown in Figure 1 left, they project the 2D pose into an
entangled feature space and regress the 3D pose from it. This lifting process neglects the different
initial states of 2D pose and per-joint depth. It encodes the well-detected 2D pose and unknown
per-joint depth in an entangled feature space, which introduces a main limitation: the high
uncertainty of the per-joint depth may erode the 2D pose. It is well-known that the monocular 3D
human pose estimation task is an ill-posed problem and inherently suffers from depth ambiguity (Li
et al., 2022b; Ma et al., 2021b; Wehrbein et al., 2021). One 2D pose possibly corresponds to multiple
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Figure 1: Given a 2D pose in the image coordinate, we aim to estimate the 3D pose in the camera
coordinate. Left: Conventional lifting-based framework directly projects the 2D pose in an entangled
feature space and regression the 3D pose from it. Right: Our proposed progressive multi-task learning
framework. The 2D pose and per-joint depth features are learned separately in the first step. In the
second step, we perform feature interaction to supplement the complementary information. Finally,
we regress the 2D pose and per-joint depth and concatenate them to obtain the final 3D pose.

Ground Truth 2D Pose Input 2D Pose MotionBERT (Lifting-Based) PrML (Multi-Task Learning)

Figure 2: Qualitative Comparison of 2D Pose (Ground Truth, Input, MotionBERT (Zhu et al., 2023)
and Ours). We project the 2D pose in the camera coordinate (part of the output 3D pose) back to the
image coordinate for comparison. The powerful lifting-based method MotionBERT gets a 2D pose
worse than the input, which contradicts our intuition. In contrast, our framework obtains a 2D pose
better than the input. Please refer to Appendix F for more qualitative and quantitative comparisons.

3D poses, where the lifting process is inherently ambiguous (Yu et al., 2021). To validate the impact
of depth uncertainty on the 2D pose, we project the 2D pose in the camera coordinate (part of output
3D pose) back to the image coordinate and compare it with the ground truth 2D pose and input 2D
pose. As shown in Figure 2, despite learning through multiple spatio-temporal encoders, the 2D pose
of the powerful lifting method MotionBERT (Zhu et al., 2023) is even worse than the original input
2D pose. This observation provides empirical evidence that directly encoding the well-detected 2D
pose features and the unknown per-joint depth features in an entangled feature space will inevitably
introduce explicit uncertainty to the 2D pose and cause erosion. To provide more empirical support
for the high uncertainty of per-joint depth, we conduct quantitative comparisons of Mean Per Joint
Position Error (MPJPE) across different axes for different hard actions (Zeng et al., 2021) with
MotionBERT (Zhu et al., 2023), GLA-GCN (Yu et al., 2023) and KTPFormer (Peng et al., 2024). As
shown in Figure 3, the MPJPE of per-joint depth is significantly higher than the MPJPE of 2D pose
and accounts for the majority of the overall MPJPE. These quantitative findings highlight the high
uncertainty of per-joint depth compared to the well-detected 2D pose.

Motivated by these qualitative and quantitative observations, we propose a progressive multi-task
learning pose estimation framework named PrML to address this limitation. As shown in Figure 1
right, the first step of PrML introduces two task branches: refining the well-detected 2D pose features
and learning the per-joint depth features. The dual-branch design brings two benefits. First, learning
the features of the 2D pose and per-joint depth separately avoids the explicit impact of uncertain depth
features on the 2D pose. Second, the model parameters are not shared across two task branches, which
makes the training more targeted. After dual-branch learning, we obtain the refined 2D pose features
and learned depth features, mitigating the uncertainty of depth features. In light of this, the second
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(a) Average MPJPE of all actions 
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(b) MPJPE of hard action: photo 
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(c) MPJPE of hard action: sitting 
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GLA-GCN (ICCV'23)
KTPFormer (CVPR'24)
PrML (Ours)

Z 
(Depth)

X-Y 
(2D Pose)

X-Y-Z 
(3D Pose)

25

30

35

40

45

50

55

60

65

M
ea

n 
Pe

r J
oi

nt
 P

os
iti

on
 E

rro
r (

m
m

) 

(d) MPJPE of hard action: sitting down 
MotionBERT (ICCV'23)
GLA-GCN (ICCV'23)
KTPFormer (CVPR'24)
PrML (Ours)

Figure 3: Quantitative Comparison of Mean Per Joint Position Error (MPJPE) of different axes for all
actions and three hard actions (Zeng et al., 2021) with lifting-based methods (Zhu et al., 2023; Yu
et al., 2023; Peng et al., 2024). The MPJPE of the Z-axis (per-joint depth) is significantly higher than
the X-Y axes (2D pose) and accounts for the majority of the overall (3D pose) MPJPE. Our proposed
framework achieves better results across different axes than the lifting-based framework.

step of PrML employs a task-aware decoder to indirectly supplement the complementary information
between the refined 2D pose features and the learned per-joint depth features. This step compensates
for the information loss caused by the dual-branch structure and establishes the connection between
2D pose and per-joint depth. We also conduct theoretical analysis from the perspective of mutual
information (Becker, 1996) and arrive at a loss to supervise this feature complementary process.
Finally, we regress the 2D pose and per-joint depth, respectively, and concatenate them to obtain the
final 3D pose. As shown in Figure 2, our framework could reduce the erosion of the 2D pose caused
by depth uncertainty. The quantitative results in Figure 3 also demonstrate our framework performs
favorably across different parts (2D pose and per-joint depth) of the 3D pose. Extensive experiments
on two widely used monocular 3D human pose estimation benchmarks (i.e., Human3.6M (Ionescu
et al., 2013) and MPI-INF-3DHP (Mehta et al., 2017)) demonstrate that the proposed progressive
multi-task learning framework outperforms conventional lifting-based framework in terms of accuracy
and robustness with fewer parameters. The key contributions of this paper are as follows:

• We tackle an overlooked different initial states between the well-detected 2D pose and the unknown
per-joint depth of the lifting-based framework and present a novel progressive multi-task learning
pose estimation framework named PrML to address it.

• We propose a task-aware decoder to indirectly supplement the complementary information between
2D pose and per-joint depth after task learning. We also conduct theoretical analysis from the
perspective of mutual information to explicitly supervise this feature complementary process.

• Our framework achieves state-of-the-art results on Human3.6M and MPI-INF-3DHP datasets with
fewer parameters. These results demonstrate the potential of the progressive multi-task learning
framework for future monocular 3D human pose estimation research.

2 RELATED WORK

Monocular 3D Human Pose Estimation. Existing methods for monocular 3D human pose estimation
can be categorized as end-to-end and lifting-based. End-to-end approaches (Kanazawa et al., 2018;
Pavlakos et al., 2017; Sun et al., 2018) directly estimate the 3D pose from the input image without the
intermediate 2D pose representation. With the reliable achievement of 2D human pose detectors (Chen
et al., 2018; Newell et al., 2016; Sun et al., 2019), lifting-based methods (Fang et al., 2018; Martinez
et al., 2017; Zhao et al., 2019; Liu et al., 2020) first obtain 2D pose representations in the image
and then lift the 2D joint coordinates to 3D space. Recently, Transformers (Vaswani et al., 2017)
have been applied to various visual tasks (Dosovitskiy et al., 2021; Carion et al., 2020). For the
monocular 3D human pose estimation task, PoseFormer (Zheng et al., 2021) introduces transformer
architecture to leverage spatial and temporal dependency. MHFormer (Li et al., 2022b) addresses
the depth ambiguity by learning multiple pose hypotheses and MixSTE (Zhang et al., 2022b)
constructs a mixed spatiotemporal transformer to capture the temporal motion of different body
joints. STCFormer (Tang et al., 2023) decomposed spatio-temporal attention and integrated the
structure-enhanced positional embedding. On the other hand, MotionBERT (Zhu et al., 2023) trains
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a unified model for multiple downstream tasks. In (Peng et al., 2024), KTPFormer uses two prior
attention modules to facilitate pose estimation. Moreover, MotionAGFormer (Soroush Mehraban,
2024) using two parallel transformer and GCNFormer streams to better learn the underlying 3D
structure. However, these methods are developed within the conventional lifting-based framework. In
contrast, we propose a progressive multi-task learning framework to estimate 3D human pose.

Multi-Task Learning. Multi-Task Learning (MTL) (Caruana, 1997) is a learning paradigm in
machine learning, and it aims to leverage useful information contained in multiple related tasks to
help improve the generalization performance of all the tasks (Zhang & Yang, 2021). Numerous models
have been explored (Vandenhende et al., 2020; Brüggemann et al., 2021) within the MTL framework.
Moreover, existing approaches analyze the optimization of multi-task learning by designing multi-task
loss (Liu et al., 2021a; Li et al., 2022a) or gradient manipulations (Yu et al., 2020; Wang et al., 2020).
MTL has been widely used in computer vision, such as image classification (Rebuffi et al., 2017),
semantic segmentation (Hoyer et al., 2021; Li et al., 2023), and dense prediction (Proesmans et al.,
2022; Hoyer et al., 2021). In (Iqbal et al., 2018), they introduce a novel scale and translation invariant
2.5D pose representation contain 2D pose and depth. Our approach is motivated by these former
attempts but from the perspective of decomposing the single 3D human pose estimation task into two
sub-tasks and learning them in a progressive manner, which is a novel and unexplored question.

Mutual Information. Mutual Information plays an important role in the representation learning.
As the pioneering work among mutual information methods, Linsker (Linsker, 1988) proposes to
maximize mutual information between the input and output. Designing optimization objectives based
on mutual information maximization has been extensively studied (Becker, 1992; Wiskott & Se-
jnowski, 2002). For human pose estimation, CV-MIM (Zhao et al., 2021) introduces a representation
learning method to disentangle pose-dependent and view-dependent factors from 2D human poses.
FAMI-Pose (Liu et al., 2022a) designs a mutual information loss to maximize the complementary
information between temporal frames. TDMI (Feng et al., 2023) proposes to minimize the mutual
information between useful and noisy constituents of the raw features. To the best of our knowledge,
we are the first to introduce mutual information loss to the monocular 3D human pose estimation task.

3 RETHINKING LIFTING-BASED MONOCULAR 3D HUMAN POSE ESTIMATION

Since SimpleBaseline (Martinez et al., 2017) proposes the 2D-to-3D lifting framework, numerous
methods (Pavllo et al., 2019; Zhang et al., 2022b; Li et al., 2022b; Shan et al., 2022; Zhao et al.,
2023b; Shan et al., 2023; Zhu et al., 2023; Tang et al., 2023; Peng et al., 2024; Mehraban et al., 2024)
have been developed within this framework. These lifting-based methods usually outperform the
end-to-end manner (Kanazawa et al., 2018; Pavlakos et al., 2017; Sun et al., 2018) and have been the
dominant paradigm in monocular 3D human pose estimation for a long time.

The ensuing question is why lifting-based methods perform better than end-to-end approaches. We
argue that this is mainly attributed to leveraging the 2D pose as an intermediate representation. First,
there exists a high relevance between 2D pose and 3D pose. Regressing 3D pose directly from
raw images is a highly nonlinear and challenging problem (Pavlakos et al., 2017). This difficulty
also exists in 2D human pose estimation (Pfister et al., 2015; Tompson et al., 2014). In contrast,
with the widespread usage of 2D human pose detectors (Chen et al., 2018; He et al., 2017; Newell
et al., 2016; Sun et al., 2019), lifting-based methods could leverage the well-detected 2D pose,
which contributes to its 3D counterpart and make network training easy. Second, the 2D pose is
exceptionally lightweight regarding memory cost compared to raw image. This property enables
lifting-based methods to leverage long-term temporal clues to address the occlusion and achieve
advanced accuracy. (e.g., 243 frames for MixSTE (Zhang et al., 2022b), MotionBERT (Zhu et al.,
2023), and KTPFormer (Peng et al., 2024); large as 351 frames for MHFormer (Li et al., 2022b))

Once we have a well-detected 2D pose, lifting it directly to 3D space is natural and simple. However,
these lifting-based methods neglect different initial states between 2D pose and per-joint depth and
encode the well-detected 2D pose features and unknown per-joint depth features in an entangled
feature space. This leads to the fact that despite these methods (Zhu et al., 2023; Peng et al., 2024; Li
et al., 2022b) striving to design various encoders to leverage the well-detected 2D pose, the 2D pose
itself is inevitably eroded by the uncertainty of depth features (see Figure 2). This paper presents a
progressive multi-task learning framework that addresses the different initial states between 2D pose
and per-joint depth and provides a new choice for future monocular 3D human pose estimation.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Shared Bottom

Head

Softmax

Θ= (θ1,θ2)

Cross
Attention

Cross
Attention

Input	2D	Pose	Sequence

C

Feature	Complement

FC

C

Task	Aware	Decoder

Coarse	Alignment

C

Layer Norm

Temporal
Self Attention

Layer Norm

MLP

Layer Norm

Spatial
Self Attention

Layer Norm

MLP

2D	Pose
Branch

×N

Output	3D	Pose	Sequence

C Head

Depth
Branch

Q QKK

VV

Re�ined 2D Pose Feature

C

Learned Depth Feaure

Ehanced 2D Pose Feature Ehanced Depth Feature

Task Shared Feature

Learnable 2D Pose Bias Learnable Depth Bias

2D Pose Support Feature Depth Support Feature

ConcatSum

Figure 4: Overview of the proposed progressive multi-task learning framework PrML, which com-
prises a shared bottom, a 2D pose branch, a depth branch, and a task-aware decoder.

4 METHODOLOGY

4.1 PROBLEM FORMULATION

Given a 2D pose sequence X ∈ RT×J×Cin , the goal of monocular 3D human pose estimation is to
estimate the 3D pose sequence Y ∈ RT×J×Cout . Here, T refers to the number of input frames, and J
refers to the number of joints. Cin and Cout denote the dimension of the input and output.

4.2 MULTI-TASK LEARNING BRANCH

One of the widely used multi-task learning models is proposed by Caruana (Caruana, 1997; 1993),
which has a shared-bottom model structure that substantially reduces the risk of overfitting (Ma et al.,
2018). We first use a linear embedding layer to project the 2D pose sequence into high-dimensional
features. Then, we employ the DSTFormer block proposed by MotionBERT (Zhu et al., 2023) as
our shared bottom to extract general features F ∈ RT×J×C . The DSTFormer block is composed of
spatial-temporal and temporal-spatial branches. The outputs of two branches are adaptively fused by
an attention regressor. Next, we add the learnable 2D pose position embedding and per-joint depth
position embedding to F to obtain the 2D pose features F2D ∈ RT×J×C and the per-joint depth
features FD ∈ RT×J×C respectively. C denotes the feature dimension. Subsequently, the 2D pose
branch and depth branch repeat the temporal transformer encoder (TFT ) and spatial transformer
encoder (TFS) for N times to refine the 2D pose features and learn depth features separately as:

Fn
2D = TFS(TFT (F

n−1
2D )) Fn

D = TFS(TFT (F
n−1
D )) n = 1 . . . N (1)

4.3 TASK-AWARE DECODER

Coarse Alignment. We first use a fully connected layer FFC(·) and softmax function Softmax(·)
to compute the coarse alignment parameters Θ = (θ1, θ2) ∈ RT×J×2 to project the 2D pose features
and per-joint depth features into a shared feature space and obtain the shared features FS ∈ RT×J×C .
This coarse alignment operation mitigates the uncertainty erosion by avoiding direct interaction
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between the 2D pose feature and the per-joint depth feature and can be expressed as follows:

FS = Softmax(FFC(F
N
2D ⊕ FN

D ))︸ ︷︷ ︸
Θ

(
FN
2D

FN
D

)
= θ1F

N
2D + θ2F

N
D (2)

Feature Complement. The shared features FS obtained after coarse alignment have the 2D pose
and per-joint depth features but lack precise and targeted support information. Thus, we introduce
the learnable 2D pose bias B2D ∈ RT×J×C and per-joint depth bias BD ∈ RT×J×C to address this
issue. We concatenate the task bias B2D and BD with the shared features FS to obtain the 2D pose
support features S2D ∈ RT×J×2C and depth support features SD ∈ RT×J×2C . Then, we utilize
Multi-Head Cross-Attention (Vaswani et al., 2017) (TFC) with the original features acting as the
query and the support features serving as the key and value for feature supplementation. Technically,
we get the enhanced 2D pose features F̃2D and enhanced depth features F̃D as follows:

F̃2D = TFC(F
N
2D, S2D) F̃D = TFC(F

N
D , SD) (3)

4.4 MUTUAL INFORMATION OBJECTIVE

Mutual Information. Mutual information (MI) is an important measurement to quantify the statistical
dependency of two random variables. Given two random variables x and y, p(x, y) represents the joint
probability distribution between x and y, while p(x) and p(y) represent their marginal distributions.
The mutual information between two random variables x and y is defined as:

I(X;Y ) =

∫
Y

∫
X

p(x, y) log

(
p(x, y)

p(x)p(y)

)
dxdy (4)

Mutual Information Loss. Within the task-aware decoder, our goal is to explicitly supervise the
feature complementary process. This mutual information objective can be formulated as follows:

max

[
I(Y2D;S2D | B2D) + I(YD;SD | BD)

]
(5)

where Y2D and YD denote the 2D pose and per-joint depth of the 3D pose label. Intuitively, optimizing
this objective will maximize the mutual information between the support feature and the label to
ehance the feature complementary. Due to the notorious difficulty of the conditional MI computations
especially in neural networks (Hjelm et al., 2018; Tian et al., 2021), we factorize Equation 5 as:

I(YD;SD | BD) = I(YD;SD)− I(SD;BD) +

∫
YD

DKL(P(SD,BD)|YD
∥PSD|YD

PBD|YD
)︸ ︷︷ ︸

KL Divergence ≥ 0

dPYD

≥ I(YD;SD)− I(SD;BD) (6)
Since both I(YD;SD) and I(SD;BD) are non-negative, the I(YD;SD) − I(SD;BD) will result
in negative values during training. This will yield negative values during training, leading to
vanishing gradients problem and preventing training from converging. Therefore, we simplified the
implementation of mutual information by calculating only the first term I(YD;SD). Finally, we
obtain two simplified mutual information optimization objectives as follows:

LMI = λ2DI(Y2D;S2D) + λDI(YD;SD) (7)
The λ2D and λD serve as hyper-parameters in our framework to balance different objects.

4.5 REGRESSION HEAD AND LOSS FUNCTION

We use two regression heads (MLP) to regress the 2D pose Y 2D ∈ RT×J×2 and per-joint depth
Y D ∈ RT×J×1 respectively and concatenate them to generate the 3D pose sequence Y . Losses are
independently calculated for 2D pose and per-joint depth as Equation 8. For the 2D pose, we use L2
loss to minimize the errors between predictions and ground truth. For the per-joint depth, we use
mean absolute error loss to minimize the errors between the estimated per-joint depth and label.

L3D =
1

JT

J∑
j=1

T∑
t=1

∥∥∥Y j,t
2D − Y

j,t

2D

∥∥∥
2︸ ︷︷ ︸

2D Pose Optimization Objective

+
1

JT

J∑
j=1

T∑
t=1

∣∣∣Y j,t
D − Y

j,t

D

∣∣∣︸ ︷︷ ︸
Depth Optimization Objective

(8)
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Where Y j,t
2D and Y j,t

D are the 2D pose and per-joint depth of 3D pose label. Y
j,t

2D and Y
j,t

D are the
predicted results of the j-th joint in t-th frame. In addition, the temporal consistency loss LT from
(Hossain & Little, 2018) is introduced to produce smooth poses. The total loss L is defined as follows:

L = L3D + λTLT + λMILMI (9)

where λT and λMI are hyper-parameters to balance the ratio of different loss terms.

5 EXPERIMENTS

5.1 EXPERIMENT SETTING

We evaluate our model on two large-scale monocular 3D human pose estimation datasets: Hu-
man3.6M (Ionescu et al., 2013) and MPI-INF-3DHP (Mehta et al., 2017). For the Human3.6M
dataset, we report the MPJPE (Mean Per Joint Position Error) and P-MPJPE (Procrustes-MPJPE)
as evaluation metrics as prior methods (Li et al., 2022b; Zhu et al., 2023; Zhang et al., 2022b; Zhao
et al., 2023b). For the MPI-INF-3DHP dataset, similar to existing approaches (Shan et al., 2022;
Tang et al., 2023; Chen et al., 2023; Zhu et al., 2023), we use ground truth 2D pose as input and
report MPJPE, Percentage of Correct Keypoint (PCK) with the threshold of 150mm, and Area Under
Curve (AUC) as the evaluation metrics. Please refer to Appendix B for implementation details.

Table 1: Results on Human3.6M in millimeters (mm) under MPJPE using 2D pose detected by
SH (Newell et al., 2016) following MotionBERT (Zhu et al., 2023). T is the length of the input 2D
pose sequence. The best result is shown in bold, and the second-best result is underlined.

MPJPE T Dir. Disc. Eat Greet Phone Photo Pose Pur. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg

MHFormer (Li et al., 2022b) 81 - - - - - - - - - - - - - - - 44.5
MixSTE (Zhang et al., 2022b) 81 39.8 43.0 38.6 40.1 43.4 50.6 40.6 41.4 52.2 56.7 43.8 40.8 43.9 29.4 30.3 42.4
P-STMO (Shan et al., 2022) 81 41.7 44.5 41.0 42.9 46.0 51.3 42.8 41.3 54.9 61.8 45.1 42.8 43.8 30.8 30.7 44.1
PoseFormerV2 (Zhao et al., 2023b) 81 - - - - - - - - - - - - - - - 46.0
STCFormer (Tang et al., 2023) 81 40.6 43.0 38.3 40.2 43.5 52.6 40.3 40.1 51.8 57.7 42.8 39.8 42.3 28.0 29.5 42.0
GLA-GCN (Yu et al., 2023) 81 - - - - - - - - - - - - - - - -
MotionBERT (Zhu et al., 2023) 81 - - - - - - - - - - - - - - - -
KTPFormer (Peng et al., 2024) 81 39.1 41.9 37.3 40.1 44.0 51.3 39.8 41.0 51.4 56.0 43.0 41.0 42.6 28.8 29.5 41.8
MotionAGFormer (Soroush Mehraban, 2024) 81 41.9 42.7 40.4 37.6 45.6 51.3 41.0 38.0 54.1 58.8 45.5 40.4 39.8 29.4 31.0 42.5
PrML (Ours) 81 39.7 41.4 39.4 35.5 43.1 50.7 40.0 37.2 51.1 56.0 43.7 40.5 39.1 28.7 28.8 41.0

MHFormer (Li et al., 2022b) 351 39.2 43.1 40.1 40.9 44.9 51.2 40.6 41.3 53.5 60.3 43.7 41.1 43.8 29.8 30.6 43.0
MixSTE (Zhang et al., 2022b) 243 37.6 40.9 37.3 39.7 42.3 49.9 40.1 39.8 51.7 55.0 42.1 39.8 41.0 27.9 27.9 40.9
P-STMO (Shan et al., 2022) 243 38.9 42.7 40.4 41.1 45.6 49.7 40.9 39.9 55.5 59.4 44.9 42.2 42.7 29.4 29.4 42.8
PoseFormerV2 (Zhao et al., 2023b) 243 - - - - - - - - - - - - - - - 45.2
STCFormer (Tang et al., 2023) 243 39.6 41.6 37.4 38.8 43.1 51.1 39.1 39.7 51.4 57.4 41.8 38.5 40.7 27.1 28.6 41.0
GLA-GCN (Yu et al., 2023) 243 41.3 44.3 40.8 41.8 45.9 54.1 42.1 41.5 57.8 62.9 45.0 42.8 45.9 29.4 29.9 44.4
MotionBERT (Zhu et al., 2023) 243 36.3 38.7 38.6 33.6 42.1 50.1 36.2 35.7 50.1 56.6 41.3 37.4 37.7 25.6 26.5 39.2
KTPFormer (Peng et al., 2024) 243 37.3 39.2 35.9 37.6 42.5 48.2 38.6 39.0 51.4 55.9 41.6 39.0 40.0 27.0 27.4 40.1
MotionAGFormer (Soroush Mehraban, 2024) 243 36.8 38.5 35.9 33.0 41.1 48.6 38.0 34.8 49.0 51.4 40.3 37.4 36.3 27.2 27.2 38.4
PrML (Ours) 243 36.0 38.2 37.3 33.5 40.4 46.9 37.5 34.6 48.9 52.9 40.7 36.6 36.7 26.1 26.1 38.2

Table 2: Results on Human3.6M in millimeters (mm) under MPJPE using ground truth 2D pose. T is
the number of input frames. Seq2seq refers to estimating 3D pose sequences rather than only the
center frame. MACs/frames represents multiply-accumulate operations for each output frame. The
best result is shown in bold, and the second-best result is underlined.

Method Venue Framework Seq2Seq T Parameter MACs MACs/frame MPJPE

MHFormer (Li et al., 2022b) CVPR’22 Lifting-Based × 351 30.9M 7.1G 7096M 30.5
MixSTE (Zhang et al., 2022b) CVPR’22 Lifting-Based ✓ 243 33.6M 139.0G 572M 21.6
P-STMO (Shan et al., 2022) ECCV’22 Lifting-Based × 243 6.2M 0.7G 740M 29.3
PoseFormerV2 (Zhao et al., 2023b) CVPR’23 Lifting-Based × 243 14.3M 0.5G 528M -
STCFormer (Tang et al., 2023) CVPR’23 Lifting-Based ✓ 243 4.7M 19.6G 80M 21.3
GLA-GCN (Yu et al., 2023) ICCV’23 Lifting-Based × 243 1.3M 1.5G 1556M 21.0
MotionBERT (Zhu et al., 2023) ICCV’23 Lifting-Based ✓ 243 42.5M 174.7G 719M 17.8
KTPFormer (Peng et al., 2024) CVPR’24 Lifting-Based ✓ 243 33.7M 69.5G 286M 19.0
MotionAGFormer (Soroush Mehraban, 2024) WACV’24 Lifting-Based ✓ 243 19.0M 78.3G 322M 17.3
PrML (Ours) - Multi-Task Learning ✓ 243 13.0M 49.3G 203M 17.2

5.2 COMPARISON WITH STATE-OF-THE-ART METHODS

Human3.6M. We compare our method with several state-of-the-art techniques on the Human3.6M
dataset. For fair comparisons, only the results of models without extra pre-training on additional
data are included. Table 1 summarizes the performance comparisons in terms of MPJPE of all 15
actions, and the number of the input frames T is also given for each method. Our method achieved
state-of-the-art performance with an MPJPE of 38.2mm with T = 243. It is worth noting that our
method in the case of T = 81 input frames still achieves state-of-the-art performance with an MPJPE
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error of 41.0mm and even surpasses the performance of several methods with a higher number of input
frames. For example, this result outperforms P-STMO (Shan et al., 2022) (41.0mm v.s. 42.8mm),
PoseformerV2 (Zhao et al., 2023b) (41.0mm v.s. 45.2mm) with 243 frames, and MHFormer (Li et al.,
2022b) even with 351 frames (41.0mm v.s. 43.0mm). These results demonstrate the effectiveness of
PrML. To further validate the effectiveness of the multi-task learning framework, we also report the
model parameters, MACs (Multiply–Accumulate Operations), and MPJPE using 2D ground truth
as input. As shown in Table 2, our method with T = 243 achieves the best performance with an
MPJPE of 17.2mm, which outperforms the lifting-based framework with faster inference speed. For
example, this result outperforms MotionBERT (Zhu et al., 2023) (17.2mm v.s. 17.8mm). Due to
space limitations, we present the results of P-MPJPE (Procrustes-MPJPE) in Appendix C.

Table 3: Results on MPI-INF-3DHP dataset under PCK, AUC,
and MPJPE using ground truth 2D pose as input. T is the
number of input frames. Seq2seq refers to estimating 3D pose
sequence. (*) indicate our re-implementation.

Method T Seq2Seq PCK↑ AUC↑ MPJPE↓
MHFormer (Li et al., 2022b) 9 × 93.8 63.3 58.0
MixSTE (Zhang et al., 2022b) 27 ✓ 94.4 66.5 54.9
P-STMO (Shan et al., 2022) 81 × 97.9 75.8 32.2
PoseFormerV2 (Zhao et al., 2023b) 81 × 97.9 78.8 27.8
GLA-GCN (Yu et al., 2023) 81 × 98.5 79.1 27.8
STCFormer (Tang et al., 2023) 81 ✓ 98.7 83.9 23.1
MotionBERT* (Zhu et al., 2023) 81 ✓ 98.7 85.6 16.5
KTPFormer (Peng et al., 2024) 81 ✓ 98.9 85.9 16.7
MotionAGFormer (Soroush Mehraban, 2024) 81 ✓ 98.2 85.3 16.2
PrML (Ours) 9 ✓ 98.1 82.2 23.3
PrML (Ours) 27 ✓ 98.6 85.8 18.1
PrML (Ours) 81 ✓ 98.9 86.9 15.7

MPI-INF-3DHP. To demonstrate
the generalization capability of our
model, we also evaluate our model
on the challenging MPI-INF-3DHP
dataset, which includes more com-
plex scenes and motions. Following
previous works (Zheng et al., 2021;
Zhang et al., 2022b; Shan et al., 2022;
Tang et al., 2023; Li et al., 2022b;
2024), we use ground truth 2D pose
as input and set the number of input
frames as 9, 27, or 81. As observed
in Table 3, our method with T = 81
achieves the best performance with
the PCK of 98.9%, AUC of 86.9%, and MPJPE of 15.7mm. Similar to the previous findings, our
method with T = 9, 27 input frames still outperforms the previous state-of-the-art methods and
achieves the MPJPE of 23.3mm and 18.1mm, respectively. More remarkably, our method with T = 9
input frames outperforms the GLA-GCN (Yu et al., 2023) with T = 81 input frames, despite having
only one-ninth of the input frames (23.3mm v.s. 27.8mm, 9 frames vs. 81 frames).

Robustness to Noisy 2D Pose. Benefiting from the 2D pose branch, our method not only preserves
well-detected 2D pose features but also allows us to handle noisy 2D pose input. To demonstrate that
the inclusion of the 2D pose branch helps improve the robustness of the proposed method, we make
the pose estimation task more challenging by adding zero-mean Gaussian noise to the ground-truth
2D pose on the Human3.6M (Ionescu et al., 2013) and MPI-INF-3DHP (Mehta et al., 2017). As
shown in Figure 5, the experimental evidence reveals that our proposed PrML suffers from less
performance drop as the standard deviation of Gaussian noise (sigma) increases compared with the
powerful lifting-based method MotionBERT (Zhu et al., 2023) while being more efficient.
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(a) Comparisons of PrML and MotionBERT in terms of robustness to noise on Human3.6M.
MotionBERT
PrML
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(b) Comparisons of PrML and MotionBERT in terms of robustness to noise on MPI-INF-3DHP.
MotionBERT
PrML

Figure 5: Comparisons of PrML and MotionBERT (Zhu et al., 2023) in terms of robustness to noise
on Human3.6M and MPI-INF-3DHP datasets. Zero-mean Gaussian noise of standard deviation sigma
is added to ground truth 2D pose, and we show their performance drop ( ∆ MPJPE, in millimeters)
as sigma increases. The size of markers indicates the computational cost of models.

5.3 ABLATION STUDY

We perform extensive ablation studies focused on analyzing the contribution of each component in
our proposed PrML. Experiments are conducted on the Human3.6M (Ionescu et al., 2013) dataset
with T = 243 as the number of input frames and MPJPE is used as the evaluation metric.
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Analysis on Effectiveness of Components. The results in Section 5.2 have demonstrated that our
framework achieves better results compared to the conventional lifting-based framework in terms
of accuracy and robustness with fewer parameters. In this section, we show how to construct our
proposed progressive multi-task learning pose estimation framework step by step.

• Baseline: Most multi-task learning models have a shared-bottom model structure following (Caru-
ana, 1997) which substantially reduces the risk of overfitting (Ma et al., 2018). We follow this
design and use the DSTFormer block from MotionBERT (Zhu et al., 2023) as the shared bottom.
As shown in Table 4, this structure achieves 50.6mm MPJPE and serves as our baseline.

• Multi-Task Branch: To reduce the explicit influence of uncertain depth features on the well-
detected 2D pose features, we introduce the multi-task branch design to refine the 2D pose features
and learn the depth features separately. Based on the shared bottom, we incorporate the 2D pose
branch and depth branch respectively bringing 6.2mm and 9.0mm error reduction (see also Table 4).
With both 2D pose and depth branches, we achieve the MPJPE of 39.1mm.

• Task-Aware Decoder: As shown in Table 4, we achieve a reduction in MPJPE from 50.6mm to
46.2mm by adding task-aware decoder to the shared bottom. The performance is further improved
to 38.6mm when task-aware decoder is introduced in conjunction with the multi-task branch.

• PrML: By introducing the mutual information loss to explicitly supervise the feature complement
and the learning of bias, our TAD module further resulted in a 2.2mm error reduction (from 46.2mm
to 44.0mm). After incorporating all components, we obtain the complete version of our PrML,
which achieves the best performance with an MPJPE of 38.2mm.

Table 4: Analysis of the effectiveness of each component within PrML.

Model Setting Shared
Bottom

2D Pose
Branch

Depth
Branch

Task-Aware
Decoder

Mutual
Information MPJPE ↓

Baseline (Shared Bottom) ✓ - - - - 50.6
+ 2D Pose Branch Only ✓ ✓ - - - 44.4 (-6.2)
+ Depth Branch Only ✓ - ✓ - - 41.6 (-9.0)
+ TAD Only ✓ - - ✓ - 46.2 (-4.4)
+ TAD + MI Loss ✓ - - ✓ ✓ 44.0 (-6.6)
+ Multi-Task Branch ✓ ✓ ✓ - - 39.1 (-11.5)
+ Multi-Task Branch + TAD ✓ ✓ ✓ ✓ - 38.6 (-12.0)
PrML ✓ ✓ ✓ ✓ ✓ 38.2 (-12.4)

Analysis on Task-Aware Decoder (TAD). We first analyze the effectiveness of each operation in
TAD and report performance in Table 5. By incorporating coarse alignment and task bias separately,
we achieve the results of 39.5mm and 39.1mm. When both of them are incorporated, we obtain the
best performance with an MPJPE of 38.2mm. We also examine the impact of different task biases
within TAD. As shown in Table 6, the best results are achieved when both the 2D pose bias and
per-joint bias are introduced and made learnable during the training process.

Table 5: Analysis of various designs within TAD.
Step Feature Complement Coarse Alignment Task Bias MPJPE

1 ✓ - - 39.5
2 ✓ ✓ - 39.1
3 ✓ - ✓ 38.7

TAD ✓ ✓ ✓ 38.2

Table 6: Analysis of task biases within TAD.
Step 2D Pose Bias Per-Joint Depth Bias Learnable MPJPE

1 ✓ - ✓ 38.7
2 - ✓ ✓ 38.5
3 ✓ ✓ - 38.5

TAD ✓ ✓ ✓ 38.2

Table 7: Analysis on the generalization of multi-task learning
framework. (*) denotes our re-implementation.

Method Framework MPJPE ↓
MixSTE* (Zhang et al., 2022b) Lifting-Based 40.9

+ Two Regression Heads Multi-Task Learning 40.0 (-0.9)
MotionBERT* (Zhu et al., 2023) Lifting-Based 39.8

+ Two Regression Heads Multi-Task Learning 38.9 (-0.9)
CA-PF* (Zhao et al., 2023a) Lifting-Based 41.4

+ Two Regression Heads Multi-Task Learning 40.2 (-1.2)

Multi-Task Learning for Lifting-
Based Methods. An alternative to
our framework is to directly copy a
branch from the lifting-based meth-
ods to construct the multi-task learn-
ing framework. However, this would
increase the number of parameters
substantially and lead to an unfair
comparison. In light of this, we per-
form an embarrassingly simple transformation: replacing the original single regression head of
the lifting-based framework with two regression heads. This replacement transforms the lifting-
based framework into a hard parameter sharing multi-task learning framework (Ruder, 2017). As
shown in Table 7, such simple modification leads to performance improvement in both multi-frames
(MixSTE (Zhang et al., 2022b), MotionBERT (Zhu et al., 2023)) and single-frame (CA-PF (Zhao et al.,
2023a)) lifting-based methods. Due to space limitations, we present more details in Appendix C.1.
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5.4 VISUALIZATION

Feature Distribution Visualization. To further analyze the difference between the 2D pose features
and per-joint features, we utilize t-SNE (Van der Maaten & Hinton, 2008) to visualize their feature
distributions. We select samples from Human3.6M (Ionescu et al., 2013) and visualize the features
before regression heads (i.e., F̃2D and F̃D). As shown in Figure 6, the distributions of the 2D features
and depth features are different across various situations. These qualitative results provide strong
evidence that we should not simply encode the 2D pose features and per-joint depth features in an
entangled feature space. Due to space limitations, we present more visualization in our Appendix F.

(a) Feature distributions of all 17 joints 
 (Random 243 frames poses)

2D feature
Depth fearure

(b) Feature distributions of joint: left knee 
 (Random 243 frames poses)

2D feature
Depth fearure

(c) Feature distributions of all 17 joints 
  (Continuous 243 frames poses)

2D feature
Depth fearure

(d) Feature distributions of joint: left knee 
  (Continuous 243 frames poses)

2D feature
Depth fearure

Figure 6: Feature distributions visualization of 2D features (green) and depth features (purple) using
t-SNE (Van der Maaten & Hinton, 2008) method on Human3.6M (Ionescu et al., 2013) dataset. The
distributions of the 2D features and depth features are different across various situations.

3D Human Pose Estimation Visualization. We present 3D human pose estimation results by our
proposed PrML and MotionBERT (Zhu et al., 2023). As shown in Figure 7, our method generalizes
well to in-the-wild videos including self-occlusion and fast motion.

MotionBERT

PrML

Input 2D Pose

MotionBERT

PrML

Input 2D Pose

Figure 7: Qualitative comparisons of PrML with MotionBERT (Zhu et al., 2023). The green cycle
indicates locations where our method achieves better results. See Appendix F for more comparison.

6 CONCLUSION

This work presents a novel progressive multi-task learning framework named PrML for monocular
3D human pose estimation. Our framework addresses the limitation of the lifting-based framework
that neglects different initial states between a well-detected 2D pose and an unknown per-joint depth.
PrML first learns 2D pose features and per-joint depth features separately by multi-task branch design
and then employs a task-aware decoder to indirectly supplement information between the refined
2D pose features and the learned per-joint depth features. We also propose a mutual information
loss to supervise the feature complementary process. Extensive quantitative experimental results on
the Human3.6M and MPI-INF-3DHP datasets show that our PrML outperforms the conventional
lifting-based framework in terms of accuracy and robustness with fewer parameters.

Future Work. The core contribution of our work is providing a new framework for monocular 3D
human pose estimation. To this end, we use the widely used spatial and temporal transformer as our
encoder to ensure a fair comparison with the lifting-based framework. It will be novel and interesting
to design specific encoders for different tasks to extend our framework in future research.
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A APPENDIX

The Appendix is organized as follows:

• Section B: Experiment Setting

• Section C: Additional Experiment Analysis

• Section D: Limitation

• Section E: Additional Analysis of Mutual Information

• Section F: Additional Visualization

B EXPERIMENT SETTING

B.1 DATASETS AND EVALUATION METRICS

Human3.6M (Ionescu et al., 2013) is the most popular benchmark for indoor 3D human pose
estimation, which contains approximately 3.6 million frames captured by 4 cameras at different views.
This dataset contains 11 subjects performing 15 typical actions (e.g., walking and sitting). To ensure
a fair comparison, we follow previous methods (Zheng et al., 2021; Zhang et al., 2022b; Tang et al.,
2023; Zhu et al., 2023) by using subjects 1, 5, 6, 7, and 8 for model training and subjects 9 and 11 for
evaluation.

MPI-INF-3DHP (Mehta et al., 2017) is a recently proposed large-scale challenging dataset with both
indoor and outdoor scenes. The training set comprises 8 subjects, covering 8 activities, ranging from
walking and sitting to complex exercise poses and dynamic actions. The test set covers 7 activities,
containing three scenes: green screen, non-green screen, and outdoor environments. It complements
existing test sets with more diverse motions (standing/walking, sitting/reclining, exercise, sports
(dynamic poses), on the floor, dancing/miscellaneous).

Evaluation Metrics. For the Human3.6M dataset, we use two common evaluation metrics: MPJPE
and P-MPJPE. MPJPE (Mean Per Joint Position Error) is computed as the mean Euclidean distance
between the estimated joints and the ground truth in millimeters after aligning their root joints (hip).
P-MPJPE (Procrustes-MPJPE) is the MPJPE after the estimated joints align to the ground truth via a
rigid transformation. For the MPI-INF-3DHP dataset, following previous works (Shan et al., 2022;
Tang et al., 2023; Chen et al., 2023; Zhu et al., 2023), we use ground truth 2D pose as input and
report MPJPE, Percentage of Correct Keypoint (PCK) with the threshold of 150mm, and Area Under
Curve (AUC) as the evaluation metrics.

B.2 IMPLEMENTATION DETAILS

Our model is implemented using PyTorch and executed on a server equipped with 2 NVIDIA 3090
GPUs. We apply horizontal flipping augmentation for both training and testing following (Tang
et al., 2023; Zhu et al., 2023; Foo et al., 2023; Zhao et al., 2023a). For model training, we set each
mini-batch as 16 sequences. The network parameters are optimized using AdamW (Loshchilov &
Hutter, 2017) optimizer over 90 epochs with a weight decay of 0.01. The initial learning rate is set to
5e-4 with an exponential learning rate decay schedule and the decay factor is 0.99. In the experiments
on Human3.6M, two kinds of input are utilized, including the 2D ground truth and the Stacked
Hourglass (Newell et al., 2016) 2D pose detection, following (Zhu et al., 2023; Ci et al., 2019). For
MPI-INF-3DHP, 2D ground truth is used following previous works (Zheng et al., 2021; Zhang et al.,
2022b; Shan et al., 2022; Zhu et al., 2023). While our proposed framework is capable of adapting to
input sequences of any length, to be fair, we choose specific input sequence lengths (denoted as T ) for
two datasets to compare our method with other approaches that have a certain 2D input length (Zheng
et al., 2021; Zhang et al., 2022b; Shan et al., 2022; Tang et al., 2023): Human3.6M (T = 81, 243),
MPI-INF-3DHP (T = 9, 27, 81).
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Figure 8: Previous pipeline (MixSTE (Zhang et al., 2022b) or MotionBERT (Zhu et al., 2023)):
Using a single regression head to directly estimate the 3D pose. Improved pipeline: Replacing the
original single regression head with two regression heads to transform the existing lifting framework
into a hard parameter sharing multi-task learning framework (Ruder, 2017).

C ADDITIONAL EXPERIMENT ANALYSIS

C.1 MULTI-TASK LEARNING FOR LIFTING-BASED METHODS.

Table 8: Analysis on the generalization of multi-task learning
framework. (*) denotes our re-implementation.

Method Framework MPJPE

MixSTE* (Zhang et al., 2022b) Lifting-Based 40.9
+ Two Regression Heads Multi-Task Learning 40.0 ↓ 0.9

MotionBERT* (Zhu et al., 2023) Lifting-Based 39.8
+ Two Regression Heads Multi-Task Learning 38.9 ↓ 0.9

CA-PF* (Zhao et al., 2023a) Lifting-Based 41.4
+ Two Regression Heads Multi-Task Learning 40.2 ↓ 1.2

As shown in Figure 8, the 2D-to-
3D lifting process employs a sin-
gle regression head to directly es-
timate the 3D pose after extracting
spatio-temporal information. We
transform the existing 2D-to-3D lift-
ing framework into a hard parame-
ter sharing multi-task learning frame-
work (Ruder, 2017) by replacing the
original single regression head with
two regression heads. We regress the
2D pose and per-joint depth separately. Then, we concatenate them together to obtain the 3D pose. As
shown in Table 8, such simple modification leads to improvement in multi-frames (MixSTE (Zhang
et al., 2022b), MotionBERT (Zhu et al., 2023)) and single-frame (CA-PF (Zhao et al., 2023a))
lifting-based methods.

Table 9: Analysis on the initial distribution of Task
Bias within Task-Aware Decoder. G and L represent
Gaussian distribution and Laplacian distribution re-
spectively.

Step 2D Pose Bias Per-Joint Depth Bias MPJPE

1 L G 38.9
2 G L 38.6
3 L L 38.4

Ours G G 38.2

Table 10: Analysis on various micro de-
signs within transformer block. S and T
denote Spatial Transformer and Temporal
Transformer.

Step S T T–S S→T T→S MPJPE

1 ✓ 40.6
2 ✓ 39.6
3 ✓ 39.0
4 ✓ 38.3

Ours ✓ 38.2

C.2 ANALYSIS ON TASK BIAS WITHIN TASK-AWARE DECODER.

In this section, we investigate the impact of different initial distributions of task bias on the model.
As shown in Table 9, we use Gaussian or Laplace distribution as our initial distributions. We
achieve a result of 38.9mm when initializing the 2D pose bias with Laplace distribution and the
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per-joint depth with Gaussian distribution. The MPJPE decreased from 38.9mm to 38.6mm when
we initialized the 2D pose bias with Gaussian distribution and the per-joint depth with Laplace
distribution. Experimental results revealed that employing Gaussian distribution for both biases
yielded the best performance.

C.3 ANALYSIS ON STRUCTURE DESIGN OF TRANSFORMER BLOCK.

We conducted experiments on Human3.6M for five different types, including S, T , S − T , S → T ,
T → S in the Transformer layer, where S and T denote Spatial Transformer Encoder and Temporal
Transformer Encoder, respectively. S − T is a two-stream layer that uses Spatial Transformer and
Temporal Transformer Encoder simultaneously. S → T means Spatial Transformer first and then
Temporal Transformer; the same goes for T → S. The results in Table 10 show that the T → S
variant has improved by 2.4mm (from 40.6mm to 38.2mm), 1.4mm (from 39.6mm to 38.2mm),
0.8mm (from 39.0mm to 38.2mm), and 0.1mm (from 38.3mm to 38.2mm), respectively, compared to
the other four variants.

C.4 ANALYSIS ON HYPERPARAMETER SETTING.

Table 11: Analysis on the hyperparame-
ter setting.

Dimension (C) λMI MPJPE

64 0.01 40.4
96 0.01 39.3
128 0.01 38.2

128 1 38.6
128 0.1 38.5
128 0.01 38.2

We consider the dimension C of hidden feature, and the
weight λMI of mutual information loss as free parameters.
Table 11 shows the results of different hyperparameter
settings. We divide the configurations into 2 groups by
row, and allocate different values for one hyperparameter
in each group, while keeping the other hyperparameter
fixed, to evaluate the impact of each configuration. The
best results were obtained when the C was 128 and λMI

was 0.01. Based on the results shown in the table, we
chose the combination of C = 128, and λMI = 0.01 as our
configuration.

C.5 ADDITIONAL QUANTITATIVE RESULTS.

In this section, we provide the results of P-MPJPE on the Human3.6M (Ionescu et al., 2013) dataset.
As shown in Table 12, our proposed PrML achieved the best performance with the MPJPE of 38.2mm
and the third-best results with the P-MPJPE of 32.3mm.

Table 12: Results on Human3.6M in millimeters (mm) under MPJPE. T is the number of input frames.
Seq2seq refers to estimating 3D pose sequences rather than only the center frame. MACs/frames
represents multiply-accumulate operations for each output frame. The best result is shown in bold,
and the second-best result is underlined.

Method Venue Framework Seq2Seq T Parameter MACs MACs/frame MPJPE P-MPJPE

MHFormer (Li et al., 2022b) CVPR’22 Lifting-Based × 351 30.9M 7.1G 7096M 43.0 34.4
MixSTE (Zhang et al., 2022b) CVPR’22 Lifting-Based ✓ 243 33.6M 139.0G 572M 40.9 32.6
P-STMO (Shan et al., 2022) ECCV’22 Lifting-Based × 243 6.2M 0.7G 740M 42.8 34.4
PoseFormerV2 (Zhao et al., 2023b) CVPR’23 Lifting-Based × 243 14.3M 0.5G 528M 45.2 35.6
STCFormer (Tang et al., 2023) CVPR’23 Lifting-Based ✓ 243 4.7M 19.6G 80M 41.0 32.0
GLA-GCN (Yu et al., 2023) ICCV’23 Lifting-Based × 243 1.3M 1.5G 1556M 44.4 34.8
MotionBERT (Zhu et al., 2023) ICCV’23 Lifting-Based ✓ 243 42.5M 174.7G 719M 39.2 -
KTPFormer (Peng et al., 2024) CVPR’24 Lifting-Based ✓ 243 33.7M 69.5G 286M 40.1 31.9
MotionAGFormer (Soroush Mehraban, 2024) WACV’24 Lifting-Based ✓ 243 19.0M 78.3G 322M 38.4 32.5
PrML (Ours) - Multi-Task Learning ✓ 243 13.0M 49.3G 203M 38.2 32.3

C.6 ATTEMPT TO USE IMAGE FEATURE.

As the inherent information entropy of the input 2D pose sequence, the performance of methods only
using 2D pose sequences as input gradually approaches the theoretical limit. Incorporating image
features is a potential solution to this general limitation. There are several single-frame lifting-based
methods that utilize image features, such as ContextPose (Ma et al., 2021a)and CA-PF (Zhao et al.,
2023a). Unfortunately, integrating these methods into existing multi-frame lifting methods or our
PrML is challenging due to their complex model architectures. Therefore, we employ one cross-
attention layer to fuse image features, making a preliminary attempt to fuse image features into our
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framework. Due to the lightweight nature of 2D poses, traditional lifting-based frameworks typically
input a 2D pose sequence. However, inputting a long-term image sequence is clearly impractical.
How to effectively extend image input from a single frame to multiple frames remains an open
question. To tackle this problem, we employ VAE to compress the original images into latent features,
allowing for multi-frame input. We use the pre-trained VAE (Kingma, 2013) from SDXL (Podell
et al., 2023). Although we have compressed the images using VAE, processing 243 frames remains
computationally expensive. Therefore, we leverage VAE to incorporate 15 frames image feature,
making a preliminary attempt to fuse multi-frame image features into our framework.

As shown in the Table 13, despite using simple cross-attention to fuse image features, we still observe
performance improvement. When we incorporated image features into the 2D branch, we observed
a significant improvement. This is likely due to the fact that image features can easily capture 2D
spatial information. However, when we added image features to the depth branch, the improvement
was limited. This is because we used a simple cross-attention mechanism to process the images, and
extracting depth information from RGB images is a challenging task. Similarly, when we incorporated
image features into all branches, the improvement was modest. These experiments demonstrate the
potential for further extending our framework.

Moreover, the insights from multi-task learning can be further extended. Using 2D pose detectors
to estimate 2D poses has been widely used, so why not similarly utilize powerful depth estimation
networks (like DepthAnything (Yang et al., 2024)) to estimate a relative depth from the image to
facilitate 3D human pose estimation as well? We can integrate depth features into existing single-
frame methods that utilize image features to validate this idea. As shown in Table 14, by incorporating
depth features from DepthAnything (Yang et al., 2024), we can reduce the error of CA-PF by 1.9mm,
which demonstrates the effectiveness of depth features.

In summary, how to leverage image features to facilitate multi-frame 3D human pose estimation is a
non-trivial question and our future research direction.

Table 13: Results on the Hu-
man3.6M in millimeters (mm)
under MPJPE. T is the number
of input frames.

Method T MPJPE

PrML 15 49.7
+ Image Feature for 2D 15 47.2
+ Image Feature for Depth 15 49.6
+ Image Feature for All 15 49.5

Table 14: Results on the Hu-
man3.6M in millimeters (mm) un-
der MPJPE.

Method MPJPE

CA-PF (Zhao et al., 2023a) 41.4
+ Depth Feature (Yang et al., 2024) 39.5

Table 15: Results on the 3DPW in
millimeters (mm) under MPJPE
and P-MPJPE.

Method MPJPE P-MPJPE

MotionBERT (Zhu et al., 2023) 85.5 50.2
MotionBERT (Zhu et al., 2023) 76.9 47.2
PrML 73.9 49.1

C.7 ADDITIONAL EXPERIMENT ON 3DPW.

We also conduct an experiment on the 3DPW dataset following the experiment setting of Motion-
BERT (Zhu et al., 2023). As other methods we compared did not conduct experiments on 3DPW, we
are unable to provide their performance in the table. As shown in the Table 15, the MPJPE of our
PrML is not only lower than the MotionBERT trained from scratch but also lower than its finetune
variant. PrML’s P-MPJPE is still lower than the MotionBERT trained from scratch.

D LIMITATION.

Although we propose a novel framework for monocular 3D human pose estimation, our input remains
the same as conventional lifting-based methods: a 2D pose sequence. Such 2D joint coordinates
undoubtedly cause visual representation reduction compared to raw images. This inherent information
entropy of the 2d pose sequence limits the theoretical upper bound on performance.

E ADDITIONAL ANALYSIS OF MUTUAL INFORMATION

Calculating the conditional mutual information loss is notoriously difficult, especially in neural
networks (Hjelm et al., 2018; Tian et al., 2021). The approximate mutual information loss is much
easier to compute. Given A ≥ B, maximizing B can maximize the lower bound of A. By maximizing
the approximate mutual information, we can maximize the lower bound of the conditional mutual

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

information. This is in line with our original goal: provide as much relevant information as possible.
In summary, although it is a mathematically suboptimal result, it is the best result we can achieve.

We use Y to represent the label, S to represent task support features and B to represent task bias.
Optimizing this objective will maximize the mutual information between task support features and
the label to support the task. By the definition of condition mutual information, we have:

I(Y ;S | B) =

∫
B

(∫
S

∫
Y

pY,S|B(y, s|b) log
(

pY,S|B(y, s|b)
pY |B(y|b)pS|B(s|b)

)
dyds

)
pB(b)db

=

∫
S

∫
Y

p(y, s) log

(
p(y, s)

p(y)p(s)

)
dyds−

∫
B

∫
S

p(s, b) log

(
p(s, b)

p(s)p(b)

)
dsdb

+

∫
Y

(∫
B

∫
S

pS,B|Y (s, b|y) log
(

pS,B|Y (s, b|y)
pS|Y (s|y)pB|Y (b|y)

)
dsdb

)
pY (y)dy

= I(Y ;S)− I(S;B) +

∫
Y

DKL(P(S,B)|Y ∥PS|Y PB|Y )︸ ︷︷ ︸
KL Divergence ≥ 0

dPY

= I(Y ;S)− I(S;B) + EY [DKL(P(S,B)|Y ∥PS|Y PB|Y )]

≥ I(Y ;S)− I(S;B)

(10)

The optimization objective thus becomes:

max I(Y ;S | B) −−→ max I(Y ;S)− I(S;B) (11)

However, since both I(Y ;S) and I(S;B) are non-negarive (KL Divergence ≥ 0), the I(Y ;S) −
I(S;B) will result in negative values during training. This will cause the training process to fail to
converge. Therefore, we simplified the implementation of mutual information by calculating only the
first term. Our final optimization objective becomes:

max I(Y ;S | B) −−→ max I(Y ;S) (12)

F ADDITIONAL VISUALIZATION
Table 16: Results on Hu-
man3.6M. (PCKh@0.5)

Method PCKh@0.5

MotionBERT 95.9
PrML 96.4

To further comparing the accuracy of the projected 2D pose, we report
the PCKh@0.5 following MPII (Andriluka et al., 2014). The table shows
that our PrML achieves better accuracy in the projected 2D poses than
the MotionBERT.

Ground Truth 2D Pose Input 2D Pose MotionBERT (Lifting) Ours (Multi-Task) Ground Truth 2D Pose Input 2D Pose MotionBERT (Lifting) Ours (Multi-Task)

Figure 9: Qualitative Comparison of 2D Pose (Ground Truth, Input, MotionBERT (Zhu et al., 2023)
and Ours). We project the 2D pose in the camera coordinate system back to the image coordinate
system for comparison. The powerful lifting-based method MotionBERT gets a 2D pose worse than
the input, which contradicts our intuition. In contrast, our proposed framework obtains a 2D pose
better than the input.
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Figure 10: Feature distributions visualization of 2D feature (green) and depth feature (purple) using
t-SNE (Van der Maaten & Hinton, 2008) method on Human3.6M (Ionescu et al., 2013) dataset.
(Random 243 frames poses, all 17 joints are visualized)

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

2D feature
Depth fearure

2D feature
Depth fearure

2D feature
Depth fearure

2D feature
Depth fearure

2D feature
Depth fearure

2D feature
Depth fearure

2D feature
Depth fearure

2D feature
Depth fearure

2D feature
Depth fearure

2D feature
Depth fearure

2D feature
Depth fearure

2D feature
Depth fearure

2D feature
Depth fearure

2D feature
Depth fearure

2D feature
Depth fearure

2D feature
Depth fearure

2D feature
Depth fearure

Figure 11: Feature distributions visualization of 2D feature (green) and depth feature (purple) using
t-SNE (Van der Maaten & Hinton, 2008) method on Human3.6M (Ionescu et al., 2013) dataset.
(Continuous 243 frames poses, all 17 joints are visualized)
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MotionBERT

PrML

Input 2D Pose

MotionBERT

PrML

Input 2D Pose

Figure 12: Qualitative comparisons of PrML with MotionBERT (Zhu et al., 2023). The green cycle
indicates locations where our method achieves better results.

(a) Feature distributions of all 17 joints 
 (Random 243 frames poses)

2D feature
Depth fearure
Entangled Feature

(b) Feature distributions of joint: left knee 
 (Random 243 frames poses)

2D feature
Depth fearure
Entangled Feature

(c) Feature distributions of all 17 joints 
  (Continuous 243 frames poses)

2D feature
Depth fearure
Entangled Feature

(d) Feature distributions of joint: left knee 
  (Continuous 243 frames poses)

2D feature
Depth fearure
Entangled Feature

Figure 13: Feature distributions visualization of 2D features (green) and depth features (purple)
and entangled features (orange) using t-SNE (Van der Maaten & Hinton, 2008) method on Hu-
man3.6M (Ionescu et al., 2013) dataset. The 2D features and depth features are extracted from our
PrML (Multi-Task Learning). The entangled features are extracted from the lifting-based method
MotionBERT (Zhu et al., 2023). Visualization results show that the distribution of entangled features
is more compact, while our 2D pose features and per-joint depth features exhibit a more diverse
distribution, indicating the potential to learn various representations.
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Figure 14: Feature distributions visualization of 2D feature, depth feature and entangled feature
using t-SNE (Van der Maaten & Hinton, 2008) method on Human3.6M (Ionescu et al., 2013) dataset.
(Random 243 frames poses, all 17 joints are visualized)
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Figure 15: Feature distributions visualization of 2D feature, depth feature and entangled feature
using t-SNE (Van der Maaten & Hinton, 2008) method on Human3.6M (Ionescu et al., 2013) dataset.
(Continuous 243 frames poses, all 17 joints are visualized)
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(a) 2D Feature distributions of all 17 joints 
 (Random 243 frames poses)

2D feature

(b) Depth Feature distributions of all 17 joints 
 (Random 243 frames poses)

Depth fearure

(c) Entangled Feature distributions of all 17 joints 
 (Random 243 frames poses)

Entangled Feature

(d) 2D Feature distributions of all 17 joints 
 (Continuous 243 frames poses)

2D feature

(e) Depth Feature distributions of all 17 joints 
 (Continuous 243 frames poses)

Depth fearure

(f) Entangled Feature distributions of all 17 joints 
 (Continuous 243 frames poses)

Entangled Feature

Figure 16: Feature distributions visualization of 2D feature, depth feature, and entangled fea-
ture in their own feature space using t-SNE (Van der Maaten & Hinton, 2008) method on Hu-
man3.6M (Ionescu et al., 2013) dataset. (Random 243 frames poses, all 17 joints are visualized)
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